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Abstract
Mobile network operators (MNOs) are in the 

process of overlaying their conventional macro cel-
lular networks with shorter range cells such as out-
door pico cells. The resultant increase in network 
complexity creates substantial overhead in terms 
of operating expenses, time, and labor for their 
planning and management. Artificial intelligence 
(AI) offers the potential for MNOs to operate 
their networks in a more organic and cost-efficient 
manner. We argue that deploying AI in fifth gen-
eration (5G) and beyond will require surmounting 
significant technical barriers in terms of robustness, 
performance, and complexity. We outline future 
research directions, identify top five challenges, 
and present a possible roadmap to realize the 
vision of AI-enabled cellular networks for Beyond-
5G and sixth generation (6G) networks. 

Introduction
Artificial intelligence (AI) is having a transforma-
tional effect in every industry and will likely be 
the foundation of a fourth industrial revolution. 
Indeed, we are in the middle of the perfect storm 
propelling AI from advancements in hardware, 
storage, and software. In areas such as computer 
vision, gaming, and natural language processing, 
AI has already made significant advancements, 
and their presence is ubiquitous. In contrast, the 
application of AI within the cellular domain, while 
promising, is still in its nascent stages. Below, we 
outline key motivations for employing AI-enabled 
cellular networks. 

Network Complexity. Advancements in error 
control coding and communication design have 
resulted in the performance of the point-to-point 
link being close to the Shannon limit. This has 
proven effective for designing the fourth gener-
ation (4G) long-term evolution (LTE)-Advanced 
air interface which (conceptually) consisted of 
multiple parallel point-to-point links. However, 5G 
and future 6G air interfaces will be vastly more 
complicated due to their complex network topol-
ogy, multiple numerologies, network coordina-
tion schemes, and the diverse nature of end-user 
applications. Considering its multifaceted nature, 
in such complex deployment scenarios, deriving 
any performance optimum is likely computation-
ally infeasible. AI, however, can tame the network 
complexity by providing pragmatic, yet competi-
tive performances. 

Model Deficit. Contemporary cellular sys-
tems have been designed with the premise of 
approximating the end-to-end system behav-
ior using simple modeling approaches that are 
amenable to clean mathematical analysis. For 
example, practical systems apply techniques 
such as digital pre-distortion to linearize the 
end-to-end model, for which information 
theory provides a simple closed-form capac-
ity expression. However, in the presence of 
non-linearities, either due to the underlying 
wireless channel (e.g., mmWave and Terahertz 
channels) or device components (e.g., power 
amplifier), it becomes difficult to analytically 
model such behaviors in a tractable manner. 
In contrast, new AI-based detection strategies 
can be developed to overcome the underlying 
unknown non-linearities [1]. 

Algorithm Deficit. There are a variety of sce-
narios in cellular networks where the optimal 
algorithms are well characterized, yet are too 
complex to be implemented in practice. Sys-
tem designers often have to rely on heuristics 
based on some simple decision making rules. For 
example, for a point-to-point multiple-input-multi-
ple-output (MIMO) link operating with an M-ary 
quadrature amplitude modulation (QAM) con-
stellation and K spatial streams, the optimum 
maximum likelihood receiver incurs prohibitive 
complexity O(MK). In practice, most MIMO sys-
tems employ linear receivers, e.g., linear min-
imum mean squared error (MMSE) receivers, 
which are known to be sub-optimal, yet easy 
to implement. AI can offer an attractive perfor-
mance–complexity trade-off in such scenarios. 
For example, a deep learning based MIMO 
receiver can provide better performance than 
linear receivers in a variety of scenarios, while 
retaining low complexity [2]. 

AI for Wireless: Status
This section overviews the key thrusts in AI for 
wireless communication from a fundamental 
research perspective, and from an industry and 
standardization perspective. 

Research Thrusts in AI for Wireless
From a point-to-point link’s perspective, the 
aurhors in [3] demonstrated that an end-to-end 
trained deep neural network (DNN)-based sys-
tem performs identically to, and (under certain 
cases) outperforms, a conventional commu-
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nication system. Deep learning has also been 
used for devising computationally efficient 
approaches for physical (PHY) layer communi-
cation receiver modules. Under the umbrella 
of supervised learning, the authors in [2] pres-
ent a deep learning framework, called Det-
NET, for MIMO symbol detection. DetNET has 
been able to achieve near optimal detection 
performance, while providing 30 times faster 
real-time implementation compared to a semi-
definite relaxation-based approach. A recurrent 
neural network (RNN)-based detection strate-
gy using supervised learning is introduced in 
[1] for MIMO orthogonal frequency division 
multiplexing (OFDM) systems, and is shown 
to outperform traditional detection techniques 
under channel non-linearity. Convolutional neu-
ral network (CNN)-based supervised learning 
techniques can also be utilized for channel esti-
mation problems off ering better generalization 
ability and robustness to channel distortions 
[4]. Another PHY layer application for super-
vised learning is channel decoding, where deep 
learning based decoding solutions have shown 
potential for classical codes such as convolu-
tional and Turbo codes [5], as well as for rather 
recent Polar codes [6]. Besides point-to-point 
links, deep learning approaches have also been 
applied to wireless network design. Using an 
unsupervised learning framework, the authors 
in [7] develop an automatic fault detection and 
root cause analysis technique for LTE networks 
based on self-organizing maps. Meanwhile, 
deep reinforcement learning (DRL) has been 
applied for designing efficient spectrum access 
[8] and scheduling strategies [9] for cellular net-
works. Automatic cell-sectorization for cellular 
network coverage maximization is another area 
where DRL has shown tremendous potential 
[10]. Table I lists key contemporary research 
works on AI applications relating to cellular net-
works. 

IndustrY And stAndArdIZAtIon
Standards bodies have taken the first steps toward 
providing a framework for integrating AI mod-
els within planning, operation, and healing of 
future cellular networks. The third generation part-
nership project (3GPP) has defined a so-called 
network data analytics function (NWDAF) speci-
fi cation for data collection and analytics (includ.
ing AI) in automated cellular networks [11]. The 
standardization specifies only the interfaces to the 
NWDAF block, as shown in Fig. 1. By leaving the 
AI model development to implementation, 3GPP 
provides adequate flexibility for network vendors 
to deploy AI-enabled use cases. The inbound 
interfaces ingest data from various sources such 
as operation, administration, and maintenance 
(OAM), network function (NF), application func-
tion (AF), and data repositories, while the out-
bound interfaces relay the algorithmic decisions 
to the NF and AF blocks, respectively. 

In addition to 3GPP, five MNOs (AT&T, China 
Mobile, Deutsche Telekom, NTT DOCOMO, and 
Orange) established the O-RAN Alliance in 2018, 
with the vision of an open and efficient radio 
access network (RAN) to leverage AI for auto-
mating different network functions and reduce 
operating expenses. As of now, 21 MNOs and 

81 network vendors including Samsung, Erics-
son, Nokia, and ZTE are members of the alli-
ance. The O-RAN architecture is shown in Fig. 
2, which includes an AI-enabled RAN intelligent 
controller (RIC) for both non-real time (non-RT) 
and near-real time (near-RT), multi-radio access 
technology protocol stacks. The non-RT functions 
include service and policy management, higher 
layer procedure optimization and model-training 
for the near-RT RAN functionality [12]. The near-
RT RIC is compatible with legacy radio resource 
management and enhances challenging opera-
tional functions such as seamless handover con-
trol, Quality of Service (QoS) management and 
connectivity management with AI. The O-RAN 
alliance has set up two work groups standardiz-
ing the A1 interface (between non-RT RIC and 
near-RT RIC) and E2 interface (between near-RT 
RIC and digital unit (DU) stack). The European 
Telecommunication Standards Institute has also 
initiated an Industry Specification Group on Expe-
riential Networked Intelligence to define a cogni-
tive network management architecture utilizing AI 
and context-aware policies to improve operator 
experience [13]. 

FIGURE 1. 3GPP 5G network automation.
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TABLE 1. Overview of research areas on applying AI toward cellular networks. 

Layer Applications Learning method Tools

PHY & 
MAC 
Layer

Channel estimation and 
prediction

Supervised CNN[4]

Symbol Detection Supervised RNN [1], DNN [2]

Channel Coding Supervised DNN [6], RNN [5]

End-to-end learning Supervised Autoencoder [3]

Dynamic Spectrum Access Reinforcement learning DRL [8]

Network 
Layer

Fault recovery and analysis Unsupervised Self-organizing maps [7]

Energy Optimization Supervised/unsupervised DNN

Resource management and 
scheduling

Reinforcement learning DRL [9]

Cell-sectorization Reinforcement learning DRL [10]
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AI-Enabled Cellular Networks

AI for the PHY and MAC Layers
The PHY and medium access control (MAC) lay-
ers are foundational layers of cellular networks 
where many technical innovations for 3G and 4G 
have taken place. The following paragraphs dis-
cuss use-cases where applying AI can potentially 
deliver improved performances within these lay-
ers. 

Channel Estimation and Prediction. Accurate 
channel state information (CSI) at the BS is critical 
for MIMO operation. In massive MIMO systems, 
allocating pilot signals to derive complete CSI 
becomes prohibitive from the control overhead 
perspective. To reduce the pilot overhead, exist-
ing 5G NR standards limit the number of pilot 
signals to be significantly smaller than the num-
ber of antenna ports. In this case, learning-based 
approaches can be adopted for tackling this chan-
nel estimation problem. It is shown in [4] that 
MMSE channel estimators can be learned with 
low complexity using DNNs, and the learned esti-
mator is shown to be optimal for some idealized 
channels. 

Receive Processing. MIMO symbol detection 
constitutes a key module within the signal pro-
cessing chain of communication receivers. For 
example, assuming the availability of receiver CSI, 
the optimal strategy is to apply the maximum 
likelihood detector. However, their performance 
is quite sensitive to model inaccuracies and/or 
CSI estimation errors. On the other hand, learn-
ing-based approaches can provide robust per-
formance without relying on detailed channel 
models. For example, the works in [1], [2] show 
that through end-to-end training of DNNs, AI 
models can outperform conventional MIMO sym-
bol detection approaches even under imperfect 
receiver CSI. Meanwhile, AI models can also be 
applied for interference cancellation to improve 
receiver performance. 

Channel Decoding. AI approaches can be 
used for channel decoding in either an integrat-
ed or a stand-alone manner. In the first case, 
DNNs are utilized in conjunction with convention-
al approaches for obtaining performance gains. 

For instance, as a variant of belief propagation 
decoding, the weights of the tanner graph can be 
learned using a DNN. These schemes are partic-
ularly suitable for long block-length codes where 
learning the underlying structure of encoded 
blocks requires an exorbitant amount of training 
and entails significant complexity. On the other 
hand, stand-alone DNN-based strategies are able 
to perform close to maximal aposteriori probabil-
ity decoding for short block length communica-
tions [5], [6]. 

Random Access and Dynamic Spectrum 
Access. Spectrum access will be a critical problem 
for Beyond-5G and 6G networks. Existing meth-
ods mainly focus on designing spectrum access 
protocols under specific models so that efficient 
solutions can be achieved. Due to the heteroge-
neous nature of future cellular networks, such 
model-dependent solutions cannot effectively 
adapt to real environments. Learning-based ran-
dom access and dynamic spectrum access (DSA) 
strategies can be deployed in a distributed fashion 
to support spectrum access of a massive number 
of devices. A DRL-based distributed DSA strategy 
is introduced in [8] showing devices could learn 
near-optimal spectrum access strategies without 
prior knowledge of the underlying network sta-
tistics. 

AI for the Network Layer
The unrelenting demand for mobile data traffic 
imposes significant operational challenges for 
MNOs. The dense cell deployment for 5G will 
create increased network complexity requiring 
MNOs to devote additional resources for plan-
ning, operation, and trouble-shooting their 5G 
networks. As shown in Fig. 3, an AI-enabled fault 
identification and self-healing system, within the 
framework of a self-organizing network, can be 
introduced so that MNOs can reduce their OPEX, 
reduce recovery time, and provide improved ser-
vice quality to their end consumers. The follow-
ing paragraphs discuss use-cases for each of the 
above aspects. 

Fault Recovery (Root Cause Analysis 
(RCA)). Each BS provides various data sourc-
es designated as key performance indicators 
(KPIs) to an operations support system. These 
KPIs typically consist of performance manage-
ment (PM) counters sent periodically (typically 
every 15 minutes). The PM data reflect the state 
and behavior of the system. A subset of these 
data provide aggregated metrics reflecting the 
level of service accessibility, service retainabil-
ity, service availability, service quality, and ser-
vice mobility. Troubleshooting is triggered in 
response to detecting one or more service qual-
ity anomalies. Manual troubleshooting requires 
human domain experts engaging in each RCA 
step including problem detection, diagnosis, and 
problem recovery. Since each BS reports thou-
sands of KPIs during a single reporting interval, 
troubleshooting by a human expert, which is 
prevalent in most current networks, is non-triv-
ial. An AI-driven fault recovery system consists 
of two components, namely a knowledge base 
and an inference engine. The knowledge base 
consists of pre-processed historical data, derived 
using human domain expertise in combination 
with exploratory data analysis. The inference 

FIGURE 2. O-RAN architecture.
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engine consists of an AI model or a set of rules 
applying the knowledge base data for RCA. 
Once the inference engine is trained, it can pro-
cess real-time KPI data, detect anomalies and 
their associated root causes, and take remedial 
actions. For example, prior works [7], [14] have 
employed association rule-mining and self-or-
ganizing maps for detecting network anomalies 
and their underlying root causes. 

Operation (AI-based Energy Optimization).
Network function virtualization (NFV) will be an 
integral part of managing 5G networks. Using 
NFV, diff erent virtual networks can be established 
in the same infrastructure providing diverse net-
work services. Diff erent virtual network functions 
(VNF) are created in different virtual machines, 
and VNF instances can be started, modified, or 
terminated on demand using a network manage-
ment and orchestration system. Through contain-
er migration technologies, diff erent VNF instances 
and the services provided by the VNFs can be 
shifted from one server to another. Usually data 
centers host the servers and are major sources of 
power consumption in the network. By efficiently 
running the services in diff erent servers, it is now 
possible to turn off  a few servers, thereby saving 
power and OPEX. Given the large size of data 
centers and the complicated inter-connections, it 
is difficult to optimize their energy consumption 
in an error-free manner. 

An AI-managed data center can take into 
account a diverse set of network parameters and 
KPIs for optimizing the on-off operation of serv-
ers while ensuring uninterrupted services for the 
clients. Using the historical data collected by data 
center servers, it is possible to learn the pattern 
for usage and services. The collected data can 
also include information on resources such as 
CPU, storage, and network usage required for 
supporting each service. 

Operation (Scheduling). Scheduling plays a 
vital role in the operation of cellular networks. 
Due to the large number of control variables, to 
ensure manageable complexity, practical sched-
ulers often implement simple metrics (e.g., rate 
proportional fair based), which are inherent-
ly sub-optimal. With the advent of newer 5G 
use-cases such as massive machine type commu-
nication, cellular networks will not only have to 

serve human users but potentially also thousands 
of low-cost low-power devices and sensors. Such 
devices will have different traffic characteristics 
than regular human users. For example, a sensor 
could wake up, relay its measurements via the 
cellular networks, and go back to sleep. Given the 
heterogeneous nature of future cellular networks, 
AI can be employed in practical schedulers for 
predicting the traffic arrivals and the amount of 
radio resources to allocate. In this regard, DRL 
has shown tremendous potential in solving chal-
lenging online decision-making tasks. In DRL, an 
agent, through direct interaction with its environ-
ment, learns to take better decisions over time. 
Recently, DRL has been applied for user sched-
uling for cellular networks and shown to provide 
superior performances over conventional strate-
gies [9]. 

Network Planning (Self-Sectorization). Along 
with user-specific MIMO operation, cellular net-
works also need to create sector-specific wide 
beams to enhance network coverage, or trans-
mit control and access signals. Selecting good 
broadcast beam parameters, such as elevation 
and azimuth beam-widths and antenna tilt, is 
important to maximize the network coverage. 
Traditionally, these parameters are set based on 
drive-test results, and once set, the parameters are 
kept unchanged for a long period of time, often 
months or years. This setup cannot be updated 
according to the change in users’ distribution or 
mobility patterns, and hence results in strictly sub-
optimal solutions. A DRL-based framework can 
be introduced to learn the best broadcast beams 
[10], and automatically update the antenna 
weights based on the changes in user distributions 
maximizing network coverage. Machine learn-
ing techniques can also be applied for predicting 
mobility for better handover management, and 
for beamformer design for highly mobile millime-
ter wave communication. 

chAllenges And roAdMAP
Even though AI shows great promise for cellu-
lar networks, significant challenges remain to be 
overcome . In this section, we list the key chal-
lenges and provide a roadmap for realizing the 
vision of AI-enabled cellular networks for beyond-
5G and 6G. 

FIGURE 2. AI-enabled fault identifi cation and self-healing system.
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Top Five Challenges

Training Issues. We foresee system overhead 
and availability of training data as two key imped-
iments relating to training AI models for cellular 
networks. From a PHY and MAC layer perspec-
tive, training a cellular AI model using over-the-air 
feedback — to update layer weights based on the 
back-propagation algorithm — is likely prohibitive-
ly expensive in terms of uplink control overhead. 
Reducing training overhead is, therefore, a critical 
issue for the viability of PHY/MAC layer based 
AI models. Second, the separation of informa-
tion across network protocol layers makes it diffi-
cult to obtain labeled training data. For example, 
training an AI model residing within a base-station 
scheduler may be challenging if it requires access 
to application layer information (e.g., end-user 
streaming video resolution quality). 

Lack of Bounding Performance. Unlike some 
other fields, it is important for cellular networks 
to be able to predict the worst-case behavior. 
Under traditional model-based approaches, it is 
generally well understood what the system output 
distribution would be, in response to a certain 
input distribution. This allows the system design-
er to prepare for a certain worst case scenario, 
while providing a minimum acceptable QoS or 
performance guarantee. On the other hand, due 
to their non-linear characteristics, it may be hard 
or even infeasible for AI approaches, however 
well they perform in live networks, to provide any 
worst-case performance guarantee. For smoothly 
integrating AI into cellular networks, it is crucial to 
ensure a tolerable and graceful degradation in a 
worst-case scenario. 

Lack of Explainability. AI tools are often treat-
ed as black boxes as it is hard to develop ana-
lytical models to either test their correctness, or 
explain their behaviors, in a simple manner. The 
lack of explainability is a potential stumbling block 
in scenarios where AI is applied for real-time 
decision making (e.g., for vehicle-to-vehicle com-
munications). Historically, cellular networks and 
wireless standards have been designed based on 
a mixture of theoretical analysis, channel measure-
ments, and human intuition and understanding. 
This approach has proved amenable for domain 
experts to resort to either theoretical analysis or 
computer simulations to validate communication 
system building blocks. It is desirable for AI mod-
els to have similar levels of explainability when 
designed for cellular networks. 

Uncertainty in Generalization. If a communi-
cation task is performed using an AI model, it is 
often unclear whether the dataset used for training 
the model is general enough to capture the dis-
tribution of inputs as encountered in reality. For 
example, if a neural network-based symbol detec-
tor is trained under one modulation and coding 
scheme (MCS), it is unclear how the system would 
perform for a different MCS level. This is not desir-
able in cellular networks, where MCS levels are 
changing adaptively due to mobility and channel 
fading, and it is important to predict system behav-
ior in different scenarios. This is particularly true 
in mission-critical services where it is important to 
safeguard for rare events. Even though the learning 
engine did not see the data point during training, it 
should still be able to generalize to unseen cases. 

Lack of Interoperability. Interoperability plays 
a critical part in today’s increasingly complex cel-
lular networks and frees the customers from ven-
dor lock-in. Any inconsistency among AI-modules 
from different vendors can potentially deteriorate 
overall network performance. For example, some 
actions (e.g., setting handover threshold) taken 
by an AI-based module from one vendor could 
counteract the actions taken by another network 
module (which may or may not be AI-based) 
from a second different vendor. This could lead 
to unwanted handover occurrences between 
the original BS and the neighboring BS causing 
increased signaling overhead. Last, because an 
AI-based cellular network could have complex 
dependencies, it may be hard to pin-point which 
vendor equipment/AI module is responsible in 
case of any KPI degradation. 

Technology Roadmap
In light of the preceding challenges, from a tech-
nology roadmap perspective, new training algo-
rithms and neural network architectures should 
be investigated to reduce training complexity and 
the amount of training needed for PHY/MAC 
layer applications. Furthermore, interpretable and 
explainable AI tools will be crucial for obtaining 
insights into their decision making process. To 
maximize their robustness and minimize uncer-
tainty in generalization, a canonical requirement 
could involve comparing the AI model output 
against a well-understood theoretical performance 
bound (e.g., maximum likelihood). 

Standards bodies such as 3GPP will have 
to carefully evaluate the underlying specifica-
tion impact of AI models (e.g., neural network 
weights). If an air interface design uses a DNN for 
a certain transmission scheme, the standardization 
will have to carefully evaluate the associated sig-
nalling overhead (e.g., control information feed-
back). With the advent of IoT devices in addition 
to smart phones, given their low power require-
ments for devices at the edge of the network, 
the training of AI models could be split between 
the edge and the cloud. The specification could 
consider newer learning use-cases based on fed-
erated learning, i.e., distributed learning, at edge 
devices [15]. 

Future cellular networks will enable newer 
end-user application scenarios by utilizing fea-
tures from both air interface and cross-layer infor-
mation to operate the AI models which could 
potentially incorporate multiple sensory modal-
ities (e.g., based on vision, smell, hearing etc.). 
From a network design perspective, to maximize 
ease of deployment, it is desirable to provide 
clean interfaces, both within and across proto-
col stack layers, to provide feature inputs to AI 
models. Lastly, it is inevitable that next-genera-
tion wireless devices will adapt their behaviors 
using contextual information derived from their 
surrounding environment. For example, a wireless 
device could adapt its behavior after extracting 
contextual information such as geographic loca-
tion of the end-user, their trusted neighbors, their 
individual preferences etc. If two nearby trusted 
users are downloading identical content, upon 
understanding this context, an AI algorithm could 
trigger the devices to cache part of their content 
locally, authenticate, and share it with each other. 

With the advent of 
IoT devices in addi-
tion to smart phones, 
given their low power 
requirements for devic-
es at the edge of the 
network, the training 
of AI models could 
be split between the 
edge and the cloud. 
The specification could 
consider newer learn-
ing use-cases based on 
federated learning, i.e., 
distributed learning, at 
edge devices.
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Deployment Roadmap

Given the incipient nature of deploying AI for 
wireless applications and the high levels of ser-
vice guarantees required by MNOs, it is obliga-
tory to employ AI in a phased manner. This will 
facilitate system designers to apply their lessons 
during initial AI deployments, and subsequently 
refine their AI tools and testing methodology. 
A first consideration relates to the time-scales 
for deploying AI in cellular. It may be preferable 
initially for AI models to operate across longer 
time-scales (e.g., order of minutes or hours), so 
that human domain experts can override model 
recommendations, if needed. 

Fail-safe mechanisms are desirable for minimiz-
ing the impact of cascading errors due to unfore-
seen AI model outputs. Consider an example 
where an AI-based scheduler adapts its resource 
allocation (e.g., MCS) based on the underlying 
radio environment. If the actions of the AI model 
result in an unacceptably large block error rate, 
the scheduler could override the model and re-ini-
tialize with the lowest MCS level for robust trans-
missions. 

Additional robustness can be added if the AI 
model adapts its actions based on human expert 
feedback. One such scenario is where, upon 
detecting a network anomaly, an AI model out-
puts a certain root cause explanation that appears 
erroneous. If the expert can provide feedback 
regarding the incorrect decision, the model can 
refine and improve its decision-making until it 
reaches a point where its decisions are indistin-
guishable from an expert. 

Conclusion
AI promises to revitalize wireless communications 
in the 21st century. This article has overviewed 
the state-of-the-art research topics, identified key 
obstacles, and presented a roadmap toward ful-
filling the potential of AI in cellular networks. The 
formidable technological barriers should inspire 
fundamental research and engineering ingenui-
ty in this field. We believe this is the surest path 
toward realizing the vision of AI for Beyond-5G 
and 6G cellular networks. 
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Given the incipient 
nature of deploying AI 

for wireless applications 
and the high levels 

of service guarantees 
required by MNOs, it 

is obligatory to employ 
AI in a phased manner. 

This will facilitate sys-
tem designers to apply 

their lessons during 
initial AI deployments, 

and subsequently refine 
their AI tools and test-

ing methodology.
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