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Machine Learning Meets Point Process: Spatial Spectrum
Sensing in User-Centric Networks

Bodong Shang

Abstract—This letter introduces a novel machine learning
(ML)-based approach to approximate the distributions of the
aggregated interference power in wireless networks. We focus
on the application of spatial spectrum sensing (SSS) in user-
centric networks where Poisson cluster process (PCP) is used
to model the primary users. A nonlinear regression method,
i.e., kernel regression, is introduced to learn the distributions
of the aggregated interference power of the PCP modeled pri-
mary user network. Simulation results demonstrate the accuracy
of our approach.

Index Terms—Stochastic geometry, Poisson cluster process,
cognitive radio networks, machine learning.

I. INTRODUCTION

PATIAL spectrum sensing (SSS) motivates the mobile

devices to sense the spatial spectrum opportunities, which
can improve the wireless networks overall spectrum utiliza-
tion efficiency by selecting an appropriate sensing radius. The
spatial false alarm probability and the spatial miss detection
probability of mobile sensing devices (MSDs) are essen-
tial to characterize the channel access probability and thus
the mutual interference. In order to obtain the spatial false
alarm probability and the spatial miss detection probability,
one needs to characterize the distributions of the aggregated
interference power generated from primary users in false alarm
case and miss detection case, respectively. In the previous
works [1], [2], Poisson point process (PPP) is widely used
to model the primary users due to its tractability in the anal-
ysis and the convenience of the well approximate conditional
distributions of the aggregated interference power.

However, the assumption of the uniformly distributed pri-
mary users is not quite accurate nowadays. In 5G and beyond
networks, the cellular small cell base stations (BSs) are sug-
gested to be deployed in the hotspots of high user density
such as downtown areas, superstores, and coffee shops. Such
user-centric deployment of small cells reuses the wireless spec-
tral resources more aggressively and is proposed by the 3rd
Generation Partnership Project (3GPP) [3]. Therefore, Poisson
cluster process (PCP) is more suitable to capture the clustering
behaviours of the primary users than PPP in wireless networks.
However, in order to analyze and optimize the SSS for MSDs
in user-centric networks, the analytical conditional distribu-
tions of the aggregated interference power remain unknown.
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Fig. 1. Scenario A: SSS in the PPP modeled primary users networks.

This is because the deficiency of accurate mathematical mod-
els and the algorithm deficit of calculating the approximate
models.

To address the above issue, this letter introduces a novel
approach which is based on machine learning (ML) to obtain
the approximate conditional distributions of the aggregated
interference power in user-centric networks. We verify that
the conditional probability density functions (PDF) of the
aggregated interference power in PCP modeled primary users
networks can be well approximated by inverse Gaussian (IG)
distributions by correcting the mean and the shape parame-
ters. Before conducting the training process, we generate the
training dataset based on Monte Carlo method. Furthermore,
a kernel-based nonlinear regression is introduced to learn the
parameters of IG distributions. The proposed approach can
be applied to many complex wireless networks where the
distributions of the interference power are unknown.

The remainder of this letter is organized as follows. In
Section II, system model is presented. Section III discusses
the analytical results for SSS in PCP modeled networks.
Section IV introduces the ML-based approach to approximate
the conditional distributions of aggregated interference power.
Simulation results are shown in Section V. Finally, conclusions
are drawn in Section VI.

II. SYSTEM MODEL
A. Network Layout

Scenario A: In the networks where the primary users are
modeled by PPP shown in Fig. 1, the primary users are uni-
formly distributed in a 2-dimension plane R? denoted by a set

2162-2345 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 15,2020 at 04:27:43 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-7966-0017
https://orcid.org/0000-0003-1915-1784

SHANG AND LIU: ML MEETS POINT PROCESS: SSS IN USER-CENTRIC NETWORKS 35

1000 T = T PR
A Xk x %
900 - 4 x x b
x X ox
8001 P iy
X x XX x
700 I +:>,<X+ * « x x o T xx i
x P ><>< x* x X
A B T X ) x
600  x x Xt X’i( X x Tt Xx b
_ x x PR
£ 5001 X o X, Ax { ° §: L X x A |
= Xy M x N_ s K ke X
x X x
400 - e X B . E
x
300 A X 4a % xxxf(:x x 4
*+ x A
+  Cluster centers Xk X
200} x Clustered primary users + % . !
® Typical mobile sensing device e %
%
1001 & Mobile sensing devices * * b
- - =SSS radius
0 : : . .
0 200 400 600 800 1000
[m]

Fig. 2. Scenario B: SSS in the PCP modeled primary users networks.

of &, = {u;} with the density of Ay, where u; indicates the
jth primary user. The MSDs are modeled by a PPP with the
density of A4 and the set of MSDs is denoted by &4 = {d}.}
where dj, represents the k™ MSD.

Scenario B: In the networks where the primary users are
modeled by PCP shown in Fig. 2, the locations of cluster
centers, being the parent point process of clusters, are modeled
as a PPP with the density of )\, denoted by ®;, = {z;}. The
clustered primary users are modeled as a PCP with the cluster
centers . The set of clustered primary users is ®¢ = {®3 },
where @,/ represents the set of primary users attached to the
cluster center x;. The number of primary users per cluster can
be fixed or random following Poisson distribution averaged
on n,,. The PDF of each primary user conditioned on its cluster
center can be modeled by a symmetric normal distribution or a
symmetric uniform spatial distribution named Thomas cluster
process or Matern cluster process, respectively [4].

B. Spatial Spectrum Sensing

Assume that each MSD has a sensing radius R . The sens-
ing region Ay of a typical MSD dj, is given by Ay =
B(dy,Rs), where B(dy,Rs) = {z € R?|||d} —z| < R s}
and ||x — y|| denotes the distance between x and y. Let H" be
the event that there is no primary user in the sensing region
Ag,» and let ! be the event that there is at least one primary
user in Ag, .

In Scenario B, the received signals y[n] from the primary
users during SSS at d;, under H? and H! are given as follows

H iyl = ) > T4 [n)+molnl, (1)
%€y u; ;€@ ui ;¢ Aa,

H:yln)= ) > Ty (7] +noln, ()
z; €Dy Uj,j GCPZj ,@gﬂfldk #0

where TB \/Pu widy || Wi — dill” “su, ;[n] is the

received s1gna1 from wu; ; in nth sample in Scenario B, P,

is the transmit power of primary users, hy, 4, is the channel

power gain, « is the path-loss exponent, sy, ;[n] is the nth

sample from u; ;, and ng[n] is i.i.d. circularly symmetric com-
plex Gaussian with mean 0 and variance ¢,,2. The distribution

of the test statistics T'|IX = ]{] 52—01 ly[n]|? approaches to
Gaussian distribution accordlng to central limit theorem, i.e.,

DIX ~ N(IX + 0,2, %)J{ =0, 1, where
Pyhy. .
r=y Y ts 0
i — di|
z€®y u,-,jecbuf 7Ui,j¢Adk ’

Puhy 4
Il — i,5 Ok 4
PSR N e

%€y u; je@,) @ENAY A0

Note that 1O and I rely on various network parameters. In
SSS, the probability of spatial false alarm and the probability
of spatial miss detection are given by

Py, :E,o{n»(r >5|7-LO,IO)} /OOO O(z)fo(z)dz, (5)
Pmd:Ell{P(F<5|Hl,Il>}:/0 =(a)fpi (2)dz, (6)

where ¢ %s the energy detection threshold, O(z) =
Q(E=2=92"\/N), Q(-) is the Q-function, Z(z) = 1 — O(z).

If Itﬁg test statistic I' at a MSD is greater than ¢, the
MSD will transmit with probability 31, otherwise, it will
transmit with probability Sy, where Sy > (1. Under event
O, a MSD will access the channel with probability P
Pra1 + (1-— Pfa)ﬂo Under event #', a MSD will access
the channel with probability P! = (1 — P,,,4)51 + PpmaBo- To
evaluate the SSS network performance, the distributions of the
aggregated interference power conditioned on the false alarm
and miss detection cases (f;o(z) and fr1(z)) are required.

III. STOCHASTIC GEOMETRY-BASED RESULTS

In this section, we discuss the analytical results for the dis-
tributions of the aggregated interference power, i.e., /% and
Il, in Scenario B in SSS.

In Scenario A, fro(z) can be approximated as IG distribu-
tion or log-normal distribution with the first and the second
cumulants of 79 [5]. In addition, fr1(z) can be obtained using
the inverse Laplace transform by [6, eq. (3. 24)]

In Scenario B, the Laplace transform of I9 is given in (7)
at the top of the next page, Where we con51der the Thomas
cluster process, fy(r|z) = - Sy exp(—%5 +I )Io((7 L), oy is
the scattering variance of the locations of plfimary users around
each cluster center, Iy(-) is the modified Bessel function of the
first kind with order zero.

The Laplace transform of I' is given in (8) at the
top of the next page, where we assume that the near-
est primary user is located in the nearest cluster with
the cluster center i, and Ix, (1) = 2mpm e‘“?’le
U1 = ”Uil_dk” Fy(rlzm) = 1 — Qi(3. 7o),
Qi(a,b) = [;°te” Io(at)dt is the Marcum Q-function,
fU171 (7") = ’ﬂu(l - FU(T|$1 ) lfU(u1,1|$1)’ fUL',l (r|$l
A=Fy(rjz)™"" BI?ZT(LZ‘Z'L)D FU’_l(r|x1)fU(r\x1), B(-,-) is the beta
function.

Based on the inverse Laplace transform, the PDF of 0 and
I' can be expressed as

fre(@) = L7HLx(s)} x =0, 1. )

Remark 1: The analysis in PCP modeled networks is more
complex than that in PPP modeled networks. It is not tractable
to calculate (9) since there are many integrals, which leads
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to the algorithm deficit. In addition, the accurate mathemati- where x; = [a:-(l)7 RN a:-(L)} and L is the number of input-

cal model for the Laplace transform of I' in PCP modeled
networks remains unknown, which leads to the model deficit.

IV. MACHINE LEARNING-BASED APPROACH

In this section, we introduce an ML-based approach, i.e.,
kernel regression, to obtain the approximate analytical distri-
butions of 70 and I'' in Scenario B. The obtained distributions
are closed-form which are useful in the network analysis and
simulations.

Proposition 1: By observing from the simulation results,
we propose that the aggregated received signal strength gener-
ated from PCP modeled primary users can be approximated by
IG distributions with appropriate mean and shape parameters.

In Scenario B, the network parameters which can impact
the SSS performance are the density of parent point process
of clusters \p, the spatial spectrum sensing radius R, the
average number of primary users per cluster n,, the scattering
variance o, and the path-loss exponent .. Due to the algorithm
deficit and the model deficit for SSS in the PCP modeled
primary users networks, we apply the data-driven ML method
to characterize the relationships between the input values of
network parameters and the output values of the parameters of
distributions (the mean parameter ux and the shape parameter
AX, x = 0,1 for events HO and H1Y).

To generate the dataset, we can use Monte Carlo simulations
or practical field tests. In this letter, we generate the dataset
by Monte Carlo simulations with various network parameters
to guarantee the diversity of the data. The parameters X and

AX, x = 0,1 can be determined as follows
§X = B{IXY, (10)
1
W= ————— (11)
1 1
E{Tx} T OE{Ix}

For SSS in Scenario B, the input variables are x(1) =

(() () &) () 2L

Ty 'y T3 x5 ') (corresponding to the network
parameters )\p, Rs, Ny, 0y, @) and the output variable is
y(i) (corresponding to the mean parameter uX or the shape
parameter AX of the IG distributions), where (%) indicates the
dataset index. Since the values of different inputs in x(0) vary
greatly, we can use the normalization method (scaling inputs
values between 0 and 1) to statistically equivalent the impact
of each input in the training process as follows

@ o~ min(x)
T =

j=1,...,5, (12)

max(xj) - min(xj) ’

output pairs in the dataset. Then we have the normalized input
variables denoted by (1) = ('fl(z),?fél),'féz), il),}g )).

Remark 2: If primary users have same transmit power,
when the transmit power varies, we can update the trained
distributions by the scaling property of IG distribution, i.e., if
IX ~ IG(pX, \X), we have tIX ~ IG(tpX,t X). If trans-
mit powers of primary users are different, we need to add the
new network parameters which can impact the primary user’s
transmit power to input variables of the training process.

We use the kernel regression method to fit the data which
utilizes the local information of the dataset at a query point.
The query point is given by @ = (g1, 92,43, @, 95). In
this letter, we use the Gaussian kernel function f(z) =

1 (z—pa)®
exp [—
V2710 g2

EPE: ], where p is the mean and o¢ is

the standard variance which controls the degree of the influ-
ence of local information at a query point. Note that the out

term = will not impact the weighted average. Therefore,
Yixe
the modified kernel function is expressed as
A 2
, D(q,x)
K(q,i(z)> =exp| ——5—5"—|, (13)
220G

where (V) is the normalized input variables given in (12),
D(q,%x()) is the distance between the query point q and the
normalized input variables (data point) x(9) from dataset which
is given by

D(ax) = /(a=5) (a-x)"

To leverage the local information of the dataset at a query
point, we can obtain the approximate output values at the query
point q by the following equation

L

o (+{a)y)
i K(ax0)

Note that the kernel function K (q,X(%)) reflects the weight
value for the input-output pair (¥(9),y(9)) regarding to
the query point q. Due to the nature of the Gaussian
kernel function, the data points which are near the query
point will contribute significantly to the estimate output

value y(q).

(14)

Y(q) = (15)
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To obtain the approximate values of pX and AX, y = 0,1,
given the network parameters, we need to evaluate the (15)
over a range of query points. When we input a combination of
network parameters (A\p, Rs, Ny, 0y, v), We search its nearest
query point and obtain the corresponding output value.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we examine the proposed ML-based
approach on the distributions of the aggregated interference
power under the events #° and H' in Scenario B, where
ny =5, 0y =30, a =4, A\, = 3 x 1075/m?, P, = 0.05W,
the number of Monte Carlo simulations is 2000 which refers
to the number of simulations for testing ML-based approach
in a specific network setting, unless specified otherwise. In
the process of dataset collection, the input parameters x(0)
should guarantee the data diversity and also reflect the practical
network settings.

In Fig. 3, the CDF of [ 0 in Scenario B is presented, where
Rs = 50m. The results of the simulation-based approxima-
tion are obtained by the IG distribution which parameters are
generated by (10) and (11) from Monte Carlo results. We
observe that the ML-based approximation can approximate the
simulation results. Particularly, the ML-based approximation
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Fig. 5. CDF of IY in Scenario B.

performs well in the top twenty percent, which is helpful in the
design of practical engineering system since the false alarm
probability is usually set to a small value. It’s worth noting
that the ML-based approximation needs to collect dataset in
the early stage before the training process, but the trained
distributions can be used permanently. For simulation-based
approximation, we need to do multiple simulations when the
network parameters change.

In Fig. 4 and Fig. 5, the PDF and CDF of I' in Scenario B
are shown, respectively. We observe that the ML-based
approximation can well approximate the simulation results. In
SSS, if Neyman-Pearson criteria is applied, the values of I’
in the bottom twenty percent are usually used to characterize
the miss detection probability which can be well estimated by
the ML-based approximation.

VI. CONCLUSION

This letter focuses on the SSS in PCP modeled primary
users networks and discusses the technical issues on obtaining
the distributions of the aggregated interference power ana-
lytically. Furthermore, a ML-based approach to approximate
the distributions are introduced. Simulation results verify the
accuracy of the proposed approach.

In future work, similar approaches are encouraged to be
applied to various realistic scenarios that may have more
complex models, such as unmanned aerial vehicle (UAV)
networks, vehicle-to-everything (V2X) networks, and hetero-
geneous user-centric deployed cellular networks, etc.
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