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FD-MIMO via Pilot-Data Superposition:
Tensor-Based DOA Estimation and
System Performance

Zhou Zhou

Abstract—Increased pilot overhead is one of the major issues
for 5G full-dimension MIMO (FD-MIMO) systems. In this paper,
we introduce the FD-MIMO system using pilot-data superposition
to reduce the uplink pilot overhead and investigate the impact of
superimposed pilots on the overall network performance. The pilot-
data superposition can relatively increase the resources allocated
to the uplink data transmission. However, in time division duplex
(TDD) systems, it also negatively impacts the downlink throughput
since the relatively reduced pilot power can affect the estimation of
the channel state information (CSI) which is used for the downlink
precoding. To improve the CSI estimation, the intrinsic tensor
feature of the FD-MIMO channel is exploited in our method.
The introduced CSI estimation algorithm is designed through
the expectation-maximization (EM) framework via tensor as the
processing data structure. Furthermore, Cramér-Rao lower bound
(CRLB) is utilized as a metric in our evaluation. The overall system
achievable rate which is a weighted sum of the uplink and downlink
throughput is investigated to reveal the fundamental trade-off
between the uplink and downlink transmission in the TDD-based
FD-MIMO system. In our simulation, the results demonstrate the
superior performance of the introduced strategy as opposed to the
conventional orthogonal pilot-data approach. Meanwhile, the pilot
power allocation, as well as different transmitting and receiving
strategies are investigated to offer various trade-off points between
the uplink and downlink transmission.

Index Terms—FD-MIMO, DOA estimation, tensor decomposi-
tion, EM algorithm and MIMO precoding.

1. INTRODUCTION

ASSIVE-MIMO [1] is a key enabling technology in 5G
M system. With a large number of antennas configured at
the base station (BS), the system can perform high spectral and
energy efficiency [2]. To circumvent the form factor limitation at
the BS, full-dimension MIMO (FD-MIMO) [3], [4] is introduced
in 3GPP as one of the realization of massive-MIMO in sub-6GHz
spectrum bands. In FD-MIMO, active antenna elements are
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placed in a 2D panel to enable 3D beamforming. To achieve the
gains promised by FD-MIMO, channel state information at the
transmitter (CSIT) is crucial for conducting the corresponding
precoding/beamforming operation at downlink transmission.

For time division duplex (TDD) systems, CSIT for the down-
link transmission can be obtained through the uplink channel
estimation according to channel reciprocity. In conventional
systems, such as 3GPP LTE/LTE-Advanced, uplink pilots and
uplink data are assigned to separate resource elements. However,
as the number of users increases, the uplink pilot overhead
becomes unaffordable, which limits the achievability of 5G
FD-MIMO systems [3]. To overcome this issue, the pilot-data
superposition, in which the pilots are superimposed with the
transmitted data, is introduced for FD-MIMO systems. In this
way, although the resources for data transmission are relatively
increased, additional interference for uplink channel estimation
is involved in. In other words, the relatively reduced pilot power
inevitably sacrifices the accuracy of CSIT estimation, where
the resulting data demodulation is conducted through error-
corrupted channel spaces. Therefore, it is unknown whether this
introduced superposition scheme can increase uplink throughput
or not.

For the pilot-data superposition system, it is meaningful to
look at the overall system achievable rate which is defined as

R= HDLRDL + HULRUL (1)

where RPL denotes the downlink transmission rate; RVE is
the uplink rate which is summed up by the rate of pure uplink
data and data with superposition pilots interference; xpy, and
Ky 1, respectively represent the weight of uplink and downlink
transmission priority. Accordingly, we are able to characterize
the trade-off between uplink and downlink throughput using dif-
ferent priorities. To be specific, K pr, and k1, can be chosen such
that they are proportional to the number of allocated resource
elements. Previously, [5], [6] conclude that the achievable trans-
mission rate of pilot-data superposition systems is superior to
the system with orthogonal pilots-data when pilot contamination
exists. Meanwhile, [ 7] shows the pilot-data superposition system
can offer substantial gains of energy and spectrum efficiency. For
the system having a large number of communication links, [§]
demonstrates that the incorporated superimposed pilot scheme
performs better than conventional strategies when the channel
coherent time is limited.
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Note that the existing works of pilot-data superposition sys-
tems mainly focus on general massive MIMO systems with
ideal assumptions such as Rayleigh fading channel and infi-
nite number of antennas. However, these assumptions are not
always true for practical systems. Furthermore, there is no study
on applying the pilot-data superposition scheme to FD-MIMO
systems which have been standardized in 3GPP LTE-Advanced
Pro. This motivates us to investigate our discussion on the
FD-MIMO system. To this end, we primarily consider the algo-
rithm of CSIT acquisition since it is a function of the data-pilot
power ratio which implicitly determines the overall system rate.
Traditionally, the CSIT is obtained by inferring the entries of
underlying MIMO channel matrix. Alternatively, the channel
can be characterized by a few numbers of parameters, such as
direction of arrivals (DOAs), direction of departures (DODs) and
delay spread, etc. [9]. Therefore, the channel estimation can be
equivalently conducted by retrieving these channel parameters,
especially through the estimation of DOAs [10].

In [11], the CSI in FD-MIMO systems is estimated through
subspace methods [12], [13]. Specifically, it characterized the
downlink rate of angular beamforming as a function of the DOA
estimation error. Furthermore, in [14], the estimation method is
extended to the joint estimation of DOAs and delays of wide-
band channels. In [15], a variational Bayesian-based method is
utilized to infer the DOAs with outliers in the observation. Very
recently, [16] introduced an estimation and feedback framework
for the estimation of DOAs/DODs pairs in dual-polarized MIMO
systems. In [17], [18], a spatial 2-D fast Fourier transform-based
DOA estimation method has been introduced to unify the uplink
and downlink channel estimation. Meanwhile, [19] proposed
the DOA estimation in dual-polarized massive MIMO systems
using tensor decomposition. However, all of the above works
are designated to single-user MIMO systems with orthogonal
pilot-data structures. For the uplink multi-user DOA estimation
with pilot-data superposition, the following two challenges need
to be addressed

e The introduced algorithm needs to be targeted at low

signal-to-interference-plus-noise ratio (SINR) regime, be-
cause of the strong interference, such as self-data interfer-
ence, intra-cell pilot-data interference, inter-cell pilot-data
interference, and pilot contamination.

® The algorithm is required to be able to pair estimated

angles, since the pilot signals coming from all users are
mixed in the uplink, and each path has both elevation and
azimuth angles.

To efficiently address these issues, we introduce a DOA esti-
mation algorithm by solving the maximum likelihood estimation
using expectation-maximization (EM) algorithm [20]. We note
that the spatial transmission channel of FD-MIMO systems
can be naturally expressed as multi-way arrays (a tensor) [21],
where the modes of the tensor correspond to the antenna ar-
rays at BS and MSs. In general, it is not necessary to use
this tensor structure to design the DOA estimation algorithm,
such as [11], [14], [22] where the channel vectorization is first
conducted at the received signal to construct a two-dimensional
signal model. However, from our previous work [23], [24], it
shows this channel vectorization can lead to high computational

complexity in the DOA estimation [23], [24]. Therefore, we
continue to leverage the underlying channel tensor structure
in the algorithm design. As a result, our developed algorithm
iteratively refines the DOA estimation by a tensor decomposition
at each M-step of the EM algorithm. This tensor decomposition
procedure converts the multiple-dimensional likelihood estima-
tion to several single dimensional parameter searchings, which
can significantly improve the efficiency and performance [25].
Furthermore, the derived EM algorithm can be interpreted as
the following interference cancellation procedure. In the E-step
of the EM algorithm, the interference is estimated via a linear
minimum mean square error estimation (LMMSE) according to
the estimated DOAs from the previous iteration. In the M-step,
the DOAs are updated by using the observation subtracted from
the estimated interference at the E-step. Compared with the
one-stage tensor decomposition method introduced in [23], [24],
the algorithm framework introduced in this paper is more general
and robust to the interference.

Meanwhile, the Cramér-Rao lower bound (CRLB) as a func-
tion of the power allocation is derived, serving as a benchmark
to evaluate the DOA estimation performance. Simulation results
suggest that our introduced channel estimation algorithm can
perform close to the CRLB when the pilot-interference power
is low. Moreover, to further evaluate our introduced algorithm,
various downlink multiuser FD-MIMO precoding strategies are
introduced. According to (1), the uplink-downlink achievable
rate trade-off is characterized through the power allocation on
superimposed pilots, uplink-downlink resources split ratio and
DOAs estimation error. The conventional orthogonal pilot-data
transmission is incorporated into our framework as a special
case where the power of superposition data is zero. Further-
more, in our numerical results, the optimal power allocations
of the superimposed pilot for different FD-MIMO precoding
strategies are obtained. Overall, our contributions in this paper
are summarized as follows:

® A tensor decomposition based DOA estimation algorithm
is introduced in the multi-user FD-MIMO system with the
pilot-data superposition.

® Theoretical analyses related to our introduced algorithm
are characterized by the uniqueness of the M-step de-
composition, CRLB of the DOA estimation and algorithm
complexity.

e Extensive performance evaluations are conducted to the
uplink and downlink throughput trade-off, which offers
guidance to the system design.

The paper structure is organized as follows: Section II intro-
duces the system model of pilot-data superposition of multi-user
FD-MIMO systems. The EM algorithm based channel estima-
tion is derived in Section III. The Cramér-Rao lower bound and
the uniqueness of the tensor decomposition in the M-step is
discussed in Section IV-A. In Section V, we characterize the
overall system achievable rate to reveal the uplink-downlink
trade-off in the FD-MIMO system. Section VI contains the
simulation evaluation results. Finally, Section VII concludes the
paper.

Notations: a stands for a column vector. A is denoted as a
matrix. AT, AH and A* stand for the transpose, hermitian and
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conjugate respectively. The mathcal version A represents the
tensor. o stands for the outer product between two vectors, ® is
the Kronecker product of two matrices, ® stands for the Khatri-
Rao product. x,, stands for the multi-mode product on the nth
mode of a tensor, A, represents the mode-n unfolding of the
tensor .A. For more details about tensor, please refer to [21].

II. SYSTEM MODEL

We consider a multi-cell multi-user FD-MIMO system with
TDD operation. In each cell, we consider one BS serves J MSs
simultaneously. The BS is configured with FD-MIMO, while
the MSs are with uniform linear arrays. Moreover, we denote
the number of neighboring BSs in each cell as G.

A. Channel Model

The uplink channel from the jth MS at the gth BS to the
ith BS can be naturally written as a third order tensor, i.e.,
Higi € CNBsaxNpsexNus where Nggq, Npse and N,, stand
for the number of antennas in BS azimuth direction, BS elevation
direction and MS respectively. At the kth sub-carrier of one
OFDM symbol, the channel tensor can be expressed as,

Jg i
szkq—]q i1fs

Hjg.i Z VAigiCigillle™ ®— (2

where L, ; stands for the number of paths, /A, ; represents
the pathloss, fs is the sample rate, N, is the number of sub-
carriers and 7 ; ; is the time delay;

Pig,i1—1
CroiD 2 D° affa(u ( ok, l) ca (vﬁ’;)u) ca ( ok l)
p=0
3)

in which P}, ; ; stands for the number of sub-paths derived from

the [th path, a( )Z 1 1s the associated path gain, and the steering
vectors a are deﬁned as

. ] T
a(ufl); ) 2 [Lerimiier, e Nps D]
T
a() ) 2 [1eim i, e s )
) T
a(wj(g)”) = [1 eI v e I 71)‘”;;9))”} (6)

where u and v are the virtual angular representations of the direc-
tion of arrival (DOA) at the azimuth and elevation direction re-
spectively [26], and w is the virtual direction of departure (DOD).

The definition of the virtual angle is uy;)l ;= 20/ sin(ﬁj(g i)

in which 6 is the actual DOA, A is the antenna spacing and A
is the wavelength. Meanwhile, for ease of later discussion, we

define the matrix A (w4 ;) as
(0) (Pjg,ii—1)
A(ujgi) = {a (“jg,i,O) e @ (“jgfi,L;g,i—lﬂ

Similarly, A(v;4,;) and A(wj, ;) are defined in the same way.

B. Received Signal Model

During the uplink channel estimation stage, the MSs send
data symbols X € C™V»*T superimposed by pilot symbols S €
CNmxT to the BS, where T stands for the number of symbols
in each block. Therefore, at the ith BS and the kth sub-carrier,
the received signal is expressed as

G-1J-1

B) =) Hjgilk)x

g=0 j=0

X jg(k) + Sjq(k)) + Wilk)

(N

where Z;(k) € CNeaxNeexT and W, (k) € CNaxNpexT
represents the additive noise. Furthermore, we assume the distri-
butions of X and S are independent to each other. As we can see,
both the channel # ;4 ; (k) and the received signal Z; (k) are able
to be represented by tensor. This offers us with an motivation on
using tensor based processing in the algorithm design. Besides,
MSs usually transmit the pilot and data symbols with precoding.
Therefore, X and S are expressed as

Xjg(k) = P*(wjg,g)ng(k) (®)
Sjg(k) £ P (wjg,4)Sq(k) C))
where P*(wjg4,4) € CVn*M represents any angular informa-

tion based precoding scheme and M stands for the number
of transmission streams. For ease of discussion, in the pre-
coding design of each MS, we assume MSs have obtained
angular channel knowledge perfectly. In this way, the precod-
ing can be conducted by conjugate beamforming, P(w, ) =
A(wjg 4), or zero forcing, P(w;,,) = A ' (wjy4). In order
to characterize the pilot power allocation, we further assume
S,4(k) € CM*T and X, (k) € CM*T are with the energy
constraints ||5,;(k)? || = \/7 and [|Z,;(k)|2 = VT =7, in
which 5,,; (k)" and Z,,; (k)" respectively represent a row-vector
of 8,;(k) and X ,,; (k).

Now, we consider the CSI estimation from the received tensor
Z,(k). For the nth MS on the ith cell, by multiplying SZ on
the received tensor Z;(k), we have

Vni(k) = Zi(k) x5 S + Wi(k) (10)
which can be further expressed as
ynz(k): nzz X3 VY 1_ an +'VI

+ZHJZZ ><3 \/ 1 - Q]z +,01’Yl)
Jj#Fn

+Zq'tngz XS VY 1_ nng +71)
g#i

+ZZHJ91 XS VY 7)82;4(k
g#Fi j#En

+p171) + Wi(k) (11)

where I is an identity matrix, 1 is the matrix with ones every-
where, and

Hoii(k) £ Hpii(k) X3 P (wnis); (12)
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Similarly, #;;;(k), Hng,i(k) and H,, (k) are defined in
the same way; £2;,(k) £ X]g(k)Sfl( k) € CM*M 5 a ran-
dom matrix whose element-wise definitionis Z;, (k) 5,,; (k) =
w;g\/7(1 =), in which wj, is a complex random variable
which is asymptotically approximate to zero due to the inde-
pendence between pilot and data symbols as 7T increases; For
2,:(k), £2;:(k) and £2,,,(k), they have similar definitions to
N ig(k); p1 denotes the pilot correlation between any two users,
ie., 8;i(k)"5,;(k) = p1v. For ease of discussion, we further
define the following notations

2%311 XS VY 17 le

) +ypl) (13)

j#Fn
2N Fogi(k)xs (VA (L= 7)820g(k) +4I)  (14)
g7t
ZZHJQZ XS \Yael ]-_ ng +“/P1 )
gFi j#En

(15)

where Z,,(k), Z,(k) and Z.(k) respectively represent intra-
cell interference, pilot contamination and inter-cell interference.
Therefore, (11) can be rewritten as the following signal plus
interference model

+Z,(k)+Zu(k)+Zc(k)+Wi(k). (16)

When v = 1, the above signal model represents the conventional
orthogonal pilot-data scheme. When ~ = 0, the observation of
pilots in (16) is null. Therefore, the DOAs of the user n cannot
be identified. This is because the DOAs of the user n associated
with its data symbols are merged into the interference term. In
general, when +y increases, the received SNR in (16) increases
as well, which results in more accurate CSI estimation.

III. UPLINK ANGULAR CHANNEL ESTIMATION

From (2), we see the channel model is characterized by the
propagation parameters such as u, v and 7, etc. Therefore, we
can obtain the uplink CSI through these parameters instead of
the whole channel matrix. In (16), for a fixed k, the “primary”
channel parameters for channel estimation are the uplink DOAs
u and v. Here, the DOAs named as “primary parameters” is
because other channel parameters such as path gain, o, can be
consequently estimated after the DOAs are obtained. Moreover,
the delay parameters are equivalently estimated when the fre-
quency fading on all the sub-carriers is obtained. The uplink
DOAs of the user n on the sub-carrier k are embedded into an
order-3 tensor as follows

Hoii 3 (Vy(1 =) 820 +I) (A7)

where the index k is dropped off for ease of expression. Most
importantly, the received signal can be expressed as a sum
of rank-one tensors, namely CANDECOMP/PARAFAC (CP)
decomposition. This inherent decomposed structure is utilized
in our channel estimation algorithm design.

Rrii(Uniis Uniyi) =

The likelihood estimation of v,,; ; and u,,; ; is given by

IOg P(yn'u UWUni,i, 'Uni,i)

max

Uni,i,Uni,i
where Y,,; is the observation from (16), v,;; and w,,; ; are
the parameters. By incorporating the interference as a hidden
variable, P(Y,i; Wni i, Unii) is calculated by

P(yni;uni,i;'vni,i) = /P(ynial; uni,ivvni,i)dz

= /P(ynz|Ia uni,ivvni,i)P(I)dI

where Z £ Z,+Z,+Z.. Alternatively, we have
logP(ym-\I; Uni,i,vm,z‘)

where oc means propotional to. The target parameters u and v are
in the term R,; i (Wn; i, Vni,i) Which has a CP decomposition
structure. However, when we consider the integral calculation by
incorporating Z’s PDF, the tensor R, i (Un; i, Uni i) needs to
be vectorized first. Thus, the resulting likelihood function cannot
preserve the tensor structure of Rp,; i (Un; i, Uni i) Which leads
the maximum likelihood estimation to be a far more complicated
multi-dimensional optimization problem.

To deal with the aforementioned issue, we utilize the
expectation-maximization (EM) algorithm [20]. In the EM al-
gorithm, the hyper-parameters are iteratively estimated by max-
imizing a lower bound of the likelihood function, which is
called M-step. On the other hand, the lower bound is gradually
updated by using a new estimated hyper-parameters, which is
called E-step. At the t + 1th iteration of the EM algorithm,
we denote the adaptive lower bound of the log-likelihood
log P(Ynis Uni,is Uni,i) as

-7

(18)

iy (t), vni,i(t))

where wu,; ;(t) and v,, ,;(t) are the estimated DOAs from the
previous iteration. By choosing wy,; ;(t + 1) and vy, ;(t + 1)
through maximizing the @) function, we can always obtain an
improvement of the likelihood value, i.e.,

Q(um,u Uniyi

log P(ynw uni,i(t + 1)) ’Uni,i(t + 1))
> log P(Ynis Uni,i(t), Vnii(t))

In our problem, the calculations of the E-steps and the M-steps
are given by
1) In E-step:

Q(Uni,is Vni,i|Uni,i (1), Unii(t))
=Ezy,; 0,0 (8),001,:() 108 P(Vnis s Unii, Uniyi)) (19)
which implies
Q(Uni iy Vi i| Wi i (£), Vi i(t))

-’
(20)

X ~E1y, 0 i (8)0nis ()1 Vni — Ronii(Wni iy Vi)
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2) In M-step:
o Q(Uni i Uni,i|Unii(t), Vnii(t)) (1)
which is equivalent to
w0 B2y (0)000(0)
X | Vi = Roniyi(Uniyir Vnii) — I (22)

The derivation of the above E-step and M-step are presented in
Appendix A. Accordingly, at each iteration of the M-step, the
updates of u and v are given by

H 2)(..
@, = argmax 12 (U)F((;)("p’l)l l=1,....L 23)
v v la()|[[1F (50,0l
Hw)FD (:5p,1
o). = argmax la” () (1)(’p’ oy L e
” v la(@)I[[FY G p, D
where

FW2[(Y0) —EI0)(F® © F) 4 1 A(uy ;)]

< [(F® o FO)Y (F® 0 F@) 1 1™ (25)

FO £ [(Yie) - E(Ip)(FP 0 FO) + nA(vn)]

x [(F® o FOY(F® o FO)Y 4 1] (26)

and

F® 2 (Y, — E(I)) ((F(2) @F(l))T)+ (27)

in which the expectation E stands for the posterior mean of
P(Z|Yni; Uni i(t), vni(t)). These three matrices are the intro-
duced auxiliary variables which essentially stand for the factor
matrices of R,; i (Wni,i; Uniyi)s 1.€.

Rnii(Wnii, Uniyi) = [[F(l),F(Q),F(g)ﬂ

where the bracket [-] stands for the CP decomposition [21].
For ease of later discussion, our introduced DOA estimation
algorithm is summarized in Algorithm 1.

By looking at the resulting EM algorithm, we see that each
iteration contains three interference cancellation stages which
are offered by the calculations of (Y1) — E(I(y))), (Yi2) —
E(I(3y)) and (Y i3y — E(I(3))) defined in (25), (26) and (27)
respectively, i.e., the LMMSE estimation of the interference
is subtracted from the observation. The stopping criterion for
tensor decomposition procedure inside the M-step is determined
such that the objective cannot ascend, i.e.,

Qa(k +1),0(k + 1)|wni,i(t), vnii(t))
< Q(a(k), O(k)|wnii(t), vni,i(t))

where @(k) and T (k) respectively stands for the estimated DOA
at the kth iterations of the decomposition. For the outer iterations
among E-steps and M-steps, the termination condition is chosen
as

Q(Uni i (t+ 1), 00 (t+ 1) |Uni(t), Viii(t))
< QUi i (1), Vi i ()| Uni i (t— 1), 004 (t —

1)

Algorithm 1: DOA Estimation by EM Algorithm.

Input: Interference Covariance Matrix
Output: ﬁni,is ani,i
(Initialization)
Initialize w,,:(0), v,1,1(0), R,
while ¢ < 7" do
(E-Step)
Update E(Z) by LMMSE as introduced in (59)
(M-Step)
while k£ < K do
Update FO, F(Q), F® according to (53), (54)
and (55).
Update @(k), ©(k) using (23) and (24)
Update J*) = Q(a(k), 5(k)|tni,i(t), vnii(t))
if 7(*) < J(=1) then
break;
end if
Update pp, = pg—1 * B2
k=kx1
end while
Update
f(t) = Q(’l_l,(k‘ u 1)’ 1_)(k - 1)|uni,i(ﬁ)avni7i<t))
if f®) < f(-1) then
break
else
um’z(t) = ’l_l,(]ﬂ — ].), vni,i(t) = 6(]{,‘ — ].)
end if
t=t+1
end while

t=0,upand k =0

It happens when the lower bound of the likelihood value no
longer ascends. Moreover, we see that the parameters retrieval in
(23) and (24) are conducted through one dimensional searching
on each decomposed vector, rather than operating on multiple
dimensional spaces. Due to the same reason as discussed in [23],
this decomposed manner can significantly reduce the complexity
since the decomposed structure of Y is utilized. In detail, a
complexity analysis is given in Section IV-C.

IV. THEORETICAL ANALYSES

In this section, we consider theoretical analysis related to our
introduced algorithm, including Cramér Rao lower bound of the
DOA estimation, uniqueness condition of the CP decomposition
in the M-step and algorithm complexity.

A. Cramér Rao Lower Bound of DOA estimation

To evaluate the performance of our introduced algorithm, we
utilize Cramér Rao lower bound as the performance benchmark.
In order to obtain the CRLB, we calculate the Fisher information
matrix via a vectorization of Y,,;. We write the mode-3 unfolding

of YV, as

Yni = A(‘Pm‘,i)am‘,i +it+w (28)
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where A(¢y;1) 2 A(Vnii) © Aluns) (v = 7)2,+
A/I)PH(wm-yi)A(wm,i)) and ¢,,; ; £ [Vpiiy Wni i) As shown
in [27], the Fisher information can be calculated by

1
Fyp o, = 5Tr {aC” 19 Cl}

20 \0pr, Y O, Y
where
R, M
C@I = :li *y
M, R,
in which
R, =E [A(p)aa™ A" (p)] +E(ii") + 0’ T (29)
M, =E [A(p)aa” AT (p)] + E(ii") (30)

E(i3) and E(43”) respectively represent the covariance matrix
and pseudo-covariance matrix of the interference. The resulting
approximate expressions of E(#i) and E(#i”) are given in
Appendix D. Meanwhile, more details of the CRLB calculation
are summarized in Appendix E. In Section VI, we will see the
value of the CRLB decreases as -y increases. This is because the
effective SINR in the channel estimation stage is improved.

B. Uniqueness of CP Decomposition in M-Step

In the M-step, the DOA is estimated from a CP decomposition
manner. Generally, the uniqueness condition for arbitrary CP
decomposition follows the Kruskal condition below

Theorem 1: Let R=[FV, F® FO] e Clixl2xls
where F) e CTixL If

k(FO) + k(FY) + k(FW) > 2L +2

where k(F') stands for the k-rank of matrix F', then the CP
decomposition [F(V) F2) FO®)] of R is unique.

Proof: For the proof, please refer to [28], [29]. [ |

In addition, the steering vector of FD-MIMO has a specific
Vandermonde structure which can be further leveraged to derive
a stronger uniqueness condition as follows,

Theorem 2: Let R=[FY, F® FO]eCh»l2xls
where F() e CI'*L and F® € C%2%L are Vandermonde
matrix. We suppose any two columns from F®Y and F@ are
different. If rank(F") = L and rank(F® © F®)) = L, the
given CP decomposition [V, F(2) F®)] of R is unique.

Proof: The proof can be found at the Corollary I11.4 in [30]. B

According to the above theorem, if the matrices F® and
F® © F® are full column-rank, the unique decomposition
can be achieved. Therefore, when it is applied to our case,
the resulting uniqueness of the M-step decomposition can be
ensured when the number of distinguishable paths is smaller
than the number of antennas at azimuth and elevation directions.

C. Complexity

At each iteration of our introduced EM algorithm, the ma-
jor computational task involves solving three regularized least
squared problems, noted as (25), (26) and (27) . In (25), since
F®) o F® e CNse ML the number of flops required to com-
pute (25)is O(Np,Np. ML + N, M L? + L?3), where the big

O represents ‘on the order of’. Similarly, the flops for (26)
and (27) are equal to O(Np,Np, ML + Ng.ML? + L?) and
O(NpoNp, ML + Np.Np,L?* + L?), respectively.

By following up a similar analysis in [23], when we conduct
a joint estimation of azimuth and elevation angle directions, the
major complexity is dominated by O(N% N B, ), Where Np, >
Np, and N, B, > Np,_ represent the number of quantization
grids on the azimuth and elevation angular spaces, respectively;
p is a positive integer related to selected algorithms. Therefore,
the joint estimation method essentially has a higher complexity
than the decomposition-based method.

V. SYSTEM SUM RATE

In the pilot-data superposition framework, the overall rate
performance is characterized by the weighted summation of the
uplink and downlink rate as introduced at the very beginning
of this paper, defined in (1). Through the previous discussion
on the CRLB, it reveals that the estimated channel is a function
of the allocated pilot power. Therefore, the performance of the
downlink rate is a function of the pilot power as well, since
the downlink precoding is designed according to the estimated
channel. Moreover, the uplink is more complicated than the
downlink as: when we allocate more power to data, the pilot
power is reduced accordingly, which leads to a deterioration of
the CSI estimation performance. Thus, increasing the data power
in uplink cannot sufficiently improve the uplink rate.

For simplicity, we define kpy + kyr =1 and Kk = Ky
Then, the overall sum-rate metric (1) can be rewritten as

R(r,7) = k(R"*(7) = RP*(7)) + R"*(v) 3D

Given a fixed power allocation -y, the difference between the
uplink and downlink rate is the slope of the rate function R(x).
Thus, different precoding and receiving techniques can result
in different sum rate slopes. In order to numerically reveal this,
we mainly introduce the sum-rate calculations of the uplink and
downlink in this section.

A. Uplink Sum-Rate by Linear Receiver

For the uplink transmission, it can be split into two steps.
In the first step, the data symbols are contaminated by the
superimposed pilot, in which the rate is denoted as RV%». In
the second step, the uplink resources are purely allocated for
data transmission which we denote as RV,

Now, we consider the uplink rate calculation in the first step
on a single carrier. To estimate the data symbols, the pilot term
> j Hjii X3 8 in (7) is first subtracted from the estimated
one » j 7-2]” x3 8;,i. Therefore, the observation of the data
symbols Z_nm is expressed as

Zii = Hpii¥3 X it Z(’ng —Hjii) %380+ T
J
(32)

where Z includes the remained interference. By substituting the
channel model in (32), the unfolding version of the tensor Z,,; ;
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on the third mode is given by
Zni,i(g) = X,TnPH(wm,i)A(wm,i)Ao(Otm',i)
X [A(Vnii) © Aluni )] + I3

Then, by conducting a linear receiver E}.; ; € CNosaNpsexl

on the right hand of an(3), we have
Zl

TL'Ll

=E.;iB(Vniisnii) Xni + 1

!/
where Z,; ;

£ (Zni,i(g)E S (CLXT I'= E,; 71(3)7

TL’L Z)
B('Uni,i» unzz)
£ [A(Unlz) © A(uni,i))]AO(ani,i)P*(wni,i)AT(wni,i)

Thus, for the Ith stream data, we have

!

— —H
ni,i,l enz 7 lb(vnl il Uni,i l) nz l

H —H -/ H
+erin D b(Oni s Wi B p + 4
V£l

z

where enHi’i’l represents the [throw of E,,; ;, jg,z is the [throw of
X i and b(Vyi .1, Wni 1) is the Ith column of B (v, i, Uni ;i)-
Therefore, the SINR at the /th stream of the nnth user in the uplink
can be expressed as

SINRY

nzzl

_ (1 — ) [b(Vni i, Unisig) |
(1 - V)IstTeam + fYIres + (1 - V)Iintra + Ifnter + TO'Q
(33)

7 A _H
where b(Vpi i1 Uniit) = €l o 1 D(Vniit, Uniii),

Istream £ Z |E(Uni,i,l’7 uni,i,l’)|2
U'#L

DO b wjii)

J#En U

Lres £ 0 10(vjiia wjiip) = b(8jir, i)l
TR
DN Ib(wjg s wigan)l

g#i j U
Similarly, when the pure data transmission is conducted through
a length-T" block in the uplink, the SINR is given by

>

Iz'ntra -

>

lI>

Iinter

SINRULd . |b(vni,i,l7uni,i,l)‘2

= 34
ni,il Istream + Iintra + Ilnter + To? ( )

where T'o? is the additive noise power on the length-T" symbols.
Therefore, the uplink rate on the ith cell can be calculated by

RUE =Y Z log, (1 + SINR],%,)

J

+ Nalog, (1+SINRV)

(35)

where Ny is the number of length-7" blocks allocated for pure
data transmission in uplink. In multiple carriers case, we assume

the first 7' OFDM symbols are allocated with pilot-data super-
position. Then, the uplink rate is directly obtained as N RV %,
where N, stands for the number of sub-carriers.

B. Downlink Sum-Rate by Linear Precoding

By unfolding the third mode of the downlink channel tensor
H i, 4, the nth MS channel can be expressed as H j; ; (3)" Letting
Q, € CNBsalNpsexT represent the precoded symbols at the ith

BS, we have
= PjiiXji
J

where P;; ; € CNesaNpsexL represents the precoding matrix
for the jth MS and X ;; € CE*7T is the corresponding trans-
mitted symbols. Therefore, the received signal at the nth MS is
given by

Yoi = Huii(g)PriiXni + Hniigs) Z P, X
Jj#En

+ Z Z Hniyg(g)Pjg,nggyg + Wi
g#Fi J

(36)

For the nth MS in the ¢th cell, we assume it employs a linear
receiver E,,; ;. Thus the received signal at the [th stream can be
expressed as

H _H H
€nii1Y nii = €ni i 1 H nii(3)Pnii i %ni 37

+> et i Hii ) Puiig@hi) + 47 (38)
Ul

Therefore, the SINR at the Ith stream of the nth user is given by

~H 2

h’ni,i,lpml,i,l

Istream + Iintra + Iinter + TUQ

SINR? (39)

'IL’Lll

where . el i Hpiis)

nii,l —
~H 2
Lstream = E hni,i7lpni,i,l”
U#l

~H
Lintra = hni,i,lpji,i,l’ ‘

j#Fn U

znter Jgglpjg 14

Hence, the downlink sum rate in the th cell is given by
Z Z log,(1 + SINRPE )

Similarly, in multiple-carriers case, the downlink rate is scaled
by RPL = N.RPL.

RPY = (40)

C. Linear Precoding for Downlink

From the previous two sub-sections, we see the down-
link/uplink rate are functions of the precoding/receiving
processing methods. To further investigate the extent of the
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downlink-uplink rate trade-off by precoding/receiving, we
briefly discuss the downlink precoding design. A similar uplink
receiving design can be attained through the uplink-downlink
duality [31]. Now, we consider maximizing the sum rate (40)

Sy ag,

j=11=1

max
{sz:,Lz

L

ZTF(sz‘,qi,lpg,i,z) < P;,Vj
=1

(41)

where the constraint represents the limitation of the allocated
power power for each user. This optimization problem can be
equivalently solved by a weighted minimum mean square error
(WMMSE) minimization problem which is given by [32]

22 M.

min

jiyig — log(wyi i)
{wji i ugii1,Pji,6,0)

s.t. ZTr(pji,i,lpﬁ,u) < Pj,Vj (42)

where M, ; ; stands for the receiving mean squared error (MSE)
on the /th stream of the jth user which is defined as

2

~H
A
Mjiip = ‘1 = Wi i 1Py

>

("1 # (50

2 2
, in,i,l)

where wj; ;; and wj;;; are auxiliary variables provides the
equivalence between (41) and (42) according to [32]. Further-
more, the WMMSE problem can be solved by the coordinate
descent algorithm [33]. However, the aforementioned precoding
method is too complicated to implement as the computational
complexity is proportional to the number of antennas at BS. To
alleviate this overhead, we can leverage the conjugate beam-
forming to construct an effective channel with reduced dimen-
sion and then conduct the WMMSE precoding to eliminate the
remained interference. Therefore, the design of the precoding
becomes

~ 2
(‘ WjiiRgiiaDji ’

L
x D> RPL

{pﬂ s

L
Z p]l?lpjzll)<Pv]

Pjiil = mezl’;ml (43)

where p;; ;; € CNoseNosexl gl e CNvs*land Py, =

H fl ; with column normalization. By comparing the optlmlza-

tion problem (41)to (43), we see that the problem (43) essentlally

restricts the form of the feasible solutions of (41) to P7,; ;p’; ; ;-

Thus the dimension of the targeting precoding is reduced from

NpsaNpBse to Nyss, which also means designing the precoder
~ H

on the effective channel H niiH ;-

VI. SIMULATIONS

In this section, we evaluate the performance of the pilot-data
superposition scheme as well as our introduced DOA estima-
tion algorithm. In the deployment of the cellular network, we
consider 7 hexagonal cells in one cluster and eight co-scheduled
MSs within each cell. Thus, for the received signal of each MS,
it contains intra-cell interference from the other 7 MSs, inter-cell
interference from the neighboring six cells and pilot contami-
nation. For any MS, the average relative path-loss to any other
MSsindifferent cellsis setas0.1,i.e., \/Apng 4/Aji,g = 0.1. The
antenna spacing for both MS and BS is set to be half-wavelength.
The number of antennas at MS is assumed to be 8. BS employs 64
antennas, where the number of antennas on azimuth and horizon
is assumed to be 8 x 8. The channel is assumed to be dominated
by 4 clusters, and each cluster is involved in 1 resolvable path.
The pilot and data correlation matrix £2,,; ; is randomly gener-
ated according to the product of two circular Gaussian matrices
with normalization. Moreover, for performance evaluation and
comparison purpose, we assume the uplink precoding methods
are matched to ideal DODs of MSs, i.e., P(w,g.4) = A(wjg.q)-
It is important to note that our method does not depend on the
underlying uplink precoding methods used at the MSs. However,
different uplink beamforming/precoding at MSs will lead to
different distributions of the third-factor matrix resulting in
different convergence behaviors of the tensor decomposition in
the M-step. The consequent convergence analysis related to the
distribution of the third factor matrix is out of the scope of this
paper. Finally, the pilot correlation coefficient p; is set to be less
than 1/7', where T is the length of uplink pilots.

A. Uplink SINR For Channel Estimation

In order to explain the CSI estimation performance of the
pilot-data superposition system, we first investigate the distribu-
tion of the received SINR in the channel estimation stage with
different allocated pilot power ~. Here, the SINR is defined by
the power ratio between the received signal to all the interference
plus noise in (16),

+~I)|2

[Honi,i(k)x3(/7(1 = 7) 2 (F)

SINR =
\Z, +Z,+Zc+W;|?

(44)

For the measurement of the SINR distribution, we calculate the
experimental CDF of the SINR by fixing a receiving channel
realization and varying the interference pattern according to
(44). From Fig. 1, we can observe the gap between two consec-
utive CDF curves shrinks as v increases. One is because of the
magnified interference power from pilot contamination, though
the interference caused by superimposed data becomes smaller
at the same time. On the other hand, the power contributing to
the CSI estimation decreases with decreasing ~.

B. Convergence Behavior

We now investigate the convergence behavior of the EM-
algorithm. For the EM algorithm, the initialization of the DOAs
is drawn from uniform distributions in the angle space. Mean-
while, the interference estimation is initialized through the high
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Fig. 1. The CDF of uplink pilot SINR under different allocation power -y .
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Fig. 2. The convergence of our introduced algorithm.

order SVD [21]. According to this initialization, the DOAs
can be retrieved due to the essential uniqueness of the CP
decomposition. The resulting convergence of the algorithm is
shown in Fig. 2, where the objective value is calculated using
Vi — Rnii(w,v) — I||%, where u, v is the estimated DOAs
according to every M-step. During the numerical simulation,
we also observe that merely conducting the CP decomposition
using alternative least squared (ALS) cannot lead to the conver-
gence. The main reason is the direct ALS method does not take
advantage of the Vandermonde structure of the tensor factor ma-
trix. Meanwhile, the existing interference needs to be mitigated
before processing. Moreover, in simulations, rank-deficiency of
the underlying CP model can occur. To avoid the loss of ranks
in the decomposition, the rank regularization term can be added
in the objective as discussed in [34].
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Fig. 3. Stochastic CRLB versus allocated pilot power v when p; =0, 0 =
10~%: (a) the squared error of estimated DOAs (b) beamforming rate.

C. Channel Estimation Performance

Fig. 3(a) shows our introduced channel estimation algorithm
compared with the CRLB by squared error, where the curves for
the CRLB and the EM algorithm are generated from the same
channel realization. We can see the gap between two consecutive
CDF curves shrinks as «y increases. This shrinkage is also similar
to the behavior observed in Fig. 1. In Fig 3(b), we compared the
performance of conjugate beamforming by using the estimated
DOAs and the ground truth DOAs combined with a Gaussian
distributed error, where the variance of the Gaussian error is
the CRLB. As we can see, the beamforming performance using
these two DOAs are very close.

D. Uplink and Downlink Sum Rate

We now consider the uplink rate distribution in Fig. 4. For the
uplink, the receiving method is conducted by the matched filter.
Fig. 4(a) depicts the rate performance without CSI estimation
errors. It reveals that the pilot power is negatively correlated
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Fig. 4. The CDF of cell uplink rate under different pilot power : (a) perfect
CSI and (b) with estimation error.

to the achieved rate. Moreover, when the CSI estimation er-
ror exists, lowing pilot power cannot lead to more accurate
CSI, which results in the deterioration of the rate performance.
However Fig. 4(b) reveals that the correlation between the pilot
power and the uplink rate is no longer monotonic. Interestingly,
we can observe that the best rate performance happens when
allocating a moderate amount of pilot power. As a dual case to
the uplink, Fig. 5 depicts the downlink sum-rate performance.
Fig. 5(a) compares different precoding algorithms using the
perfect CSI, where C-BF represents the conjugate beamforming,
C-WMMSE represents the WMMSE combined with the conju-
gate beamforming as introduced in Section V-C and WMMSE
is directly conducted by solving the problem (42). Moreover,
Fig. 5(b) to Fig. 5(d) shows the precoding performance with
estimation errors. From all these figures, we can observe that the
WMMSE can obtain the best performance gain as the estimated
channel becomes more accurate. On the other hand, the channel
accuracy gain for conjugate beamforming is not significant
compared with other methods. The WMMSE can alleviate the
inter-user interference by leveraging other users’ CSI through

C-WMMSE [

.
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Fig.5. The CDF of cell downlink transmission rate: (a) perfect CSI (b) C-BF
with estimation error (¢) C-WMMSE with estimation error (d) WMMMSE with
estimation error.
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a joint optimization procedure. However, the complexity of the
WMMSE is too high to implement. Therefore, the C-WMMSE
can be considered as a trade-off between complexity and perfor-
mance. From Fig. 5(c), we see that when C-WMMSE uses the
channel obtained at v = 0.1, it still outperforms the conjugate
beamforming at v = 1.

E. Uplink and Downlink Tradeoff

Finally, we consider the optimal trade-off curve of the uplink
and downlink transmission, i.e., max, R(k,~y), where R(x,~)
is defined in (31). RU” is calculated according to (35); RP*
is calculated by (40) times 1 + N4. Therefore, the calculation
of RVE and RPT are normalized to the same number of trans-
mission resources. In system sum-rate, the ratio between RV’
and RPT is controlled by the uplink importance factor . From
Fig 6, we observe that when we employ the WMMSE, the
downlink sum-rate can dominate the system rate. In this case,
allocating more power on the pilot is always better. Otherwise,

the pilot power and the data power should be carefully divided for
the optimal transmission in the pilot-data superposition system.
Note thatin this paper, we only provide numerical evaluations for
power allocation strategies, while the analytical characterization
of the optimal resource allocation will be treated as a future
extension to this work.

VII. CONCLUSION

Conventional pilot-data structure in communications systems
is conducted by splitting data and pilot through orthogonal
manners. For the multi-user FD-MIMO system with a large
number of active users, the conventional pilot-data structure
requires greater overhead. To address this issue, the pilot-data
superposition strategy is introduced to multi-user FD-MIMO
systems. However, the pilot-data superposition scheme lowers
the effective pilot power for channel estimation, hence reduces
the accuracy of CSI estimation at the BS. A tensor decomposition
based channel estimation algorithm is developed for uplink
channel estimation through the EM framework to substantially
increase the performance of the underlying CSI estimation.
Simulation results demonstrate the superior performance of our
algorithm in the limited pilot power regime. Furthermore, the
sum-rate trade-off on uplink and downlink is considered as the
most important aspect to determine the pilot power allocations
with different downlink multi-user MIMO precoding strategies.
The resulting optimal power allocation between pilot and data is
numerically characterized depending on the underlying channel
estimation algorithms, uplink receive processing, and downlink
precoding.

APPENDIX A
DERIVATION OF THE EM ALGORITHM FOR DOAS ESTIMATION
A. In E-step
we have
Q(Uni iy Vi i | Uni i (1), Vi i(t))
= E1y,iums i (8),0ns.: (1) 108 P(Vi, T Uni i, Vni i)

where ¢ represents the ¢th iteration. From the Bayesian formula,
we know that P(Y|Z; W i(t), Unii(t))

P(Z|Y; tnii(t), vnii(t))

= P(V|ZT; tnii(t), v0i,i(t)) P(Z)/ P(Y; Unii(t), vni,i(t))
Since W is i.i.d Gaussian distribution, we have
log P(Vi|Z; wniis Vnisi) X — || Vi = Ropi i (Wnisis Uniyi) — I
where

Rnii (Umu vnzz) = ﬁm,z‘XB,(\/ (1 - V)Qm‘(/ﬂ) +1)
(45)

by (16). Therefore,
Q(Uni iy Vnii|Uni i (t), Unii(t))
X By 05t 0011 (6) (108 P(Vil 5 Uni i, Vnisi))
X 2y, i (1) om0 1 Vi = Ronisi (Wi Vi) — I
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B. In M-Step

we have

max

Uni,isVUni,i

Q(Uniis Vni i Uni i (), Vnii(t))
which is equivalent to

E|lY: - R

min
Uni, i VUni,i

nii(Wniis Unii) — I (46)
where the expectation is taking into the conditional random
variable Z|Y;; n; i(t), Unii(t). To solve the problem (46), we
can introduce an auxiliary tensor variable . Then It can be

equivalently written as

min - F-I|?

Uni,iVni,i;

s.t. Roni,i(Wniyis Uniyi) = F

ElY:

By F = [F), F® F®)], the optimization problem then can
be expressed as
: FO FR FO] )2
uni,1>vni,i)II—Fl‘l({l)7F(2)7F(3) ”yl [[ ’ ]] H
s.t. FO = Aty )

F(z) = A(vni,i)

Furthermore, the above problem can be solved by the following
penalty method

E|Y; - [FV, F® FO] - I|?

min
Uni,iyVns,i, D, F@ FO
i1 (IFD = Aluns) |2+ | FD = Awai)|?)

where y; will gradually increase during the iteration, i.e., u; —
00 as | — oo. At the [th iteration, the solution of the previous
iteration, i.e., F(l)(,ul,l) and Wy, ;(p—1), can be used as the
warm-starter. Furthermore, for any given p;, the problem can
be solved by the alternative linear minimum mean squared error
(ALMMSE), where the factor matrices F' (1), F (2), F®) and the
parameters Uy ;, Un;,; are iteratively updated by

T 2
FO = arg I}I;‘I(ilr)lE HYl-(l) — F(l)(F(S) ® F(z)) - I(l)H
47)

+ | FD — Auni)|?

R
(48)

2 — i H .
F argrl?g)lE Yio

+ | F® — A(vy,0)|1? (49)

B - 2
F® — arg mink HYi(g) ~FO(F® o FO) — I H
F

(50)

Unpi,i = arg mln”F b A(u’m«l)Hz (D)
Unii

Vpi; = arg min|| F? ) — A(vni )2 (52)

Uni,i

where the above iterative decomposition is terminated as certain
convergence condition meets, such as the difference between two
consecutive updated factor matrices. Correspondingly, the close
form solution of (47), (48) and (50) are respectively given by

Y= (Vi) - BE0)FO 0 FO)' + A,
% [(F9 0 ) (PO 0 FO) 4 jul Ty
O = [(¥Vig) — BI))(FO 0 FO) + Ao,
v [(F(s) o FOY'(F® o FOY' 4 MI}_I (54)
O = (Vi - EIw) (F? o r®)) )

in which the proof can be found in Appendix C. Moreover, The
solution of (51) and (52) can be easily verified as the following
match filters

aﬁf;)“ = arg max @™ (u) (2)( i, )]

h () [ F®(;p,0)

67(5)1'1 = arg max |a ( ) 1)( 3D, )|

h 7 a@IIED 0]
APPENDIX B

M-STEP: FACTOR MATRIX ESTIMATION

In M-step, all the factor matrix estimation problems (47), (48),
(50) can be generally treated as the following LMMSE estimator

IIliIlEX,Y”X — VV}IH2
w

where X is the hidden variable, Y is the observation. The
optimal condition is equivalent to
IE| X — WY
194%%4
which leads to

=E{(X -WY)Y"} =0

W =CxyCy'y (56)

where Cx y 2 E[ XY ]and Cy y £ E[YY"].
For (47) and (48), it can be further expressed as (57)
and (58) shown at the bottom of this page. We see that in

FO = = arg minE H i(1),0] —

F

F® = arg m(iQI)ﬂEl H[Yi(g), 0] — F? [(F(?’) © F(l))T,
F

F) {(F(:’)) © F®)T,

2
f\/m] - [I(l),\/mA(um,i)A“)} H (57)
— Vi) = [Ty VA A (59
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(57), when F® and F? are fixed, the estimation of FO
can be treated as an LMMSE estimator, where the observa-

tion is [(F® © F®)" — /1] and the hidden variable is
[Y (1), 0] — [I (1), VErA(wni;)AW]. Thus, by using (56), we
have

Cxy =E{(Yiey~I)(F® © FO) 4 A, ) AV

~E(I0))(F® 0 FP) + A ) AY
T

—vil] [(FOoF®), - /|

= (F® o FOY (FO® o FOY 4 I

(Yiq)

Cyy= [(F(?’)@F )",

Therefore,

(1)

FU~ [(¥i) ~ET0)(F® 0 FO) 4y A ) A

P * -1
X [(F@) © FOY(F®) o F@)" 1 uzI}

Similarly, the solution of (48) can be derived as

£ (2)

F = [(¥i) ~ EIe))(FD 0 FO) + i A(va) A

. -1
X [(F<3> © FOY'(F®) o FOY* 1 ulI}

APPENDIX C
E-STEP CALCULATION

At the tth E-step, the major concern is the calculation of the
posterior mean value E (1 (1)), E(Z (2)) and E(I (3)). As we know,
P(Z|Y; wnii(t), 0ii(t)) o< P(Y|T5wni,i(t), vnii(t)) P(T)

where P(Z) is the PDF of interference,

P(Y|Z; i i(t), vnii(t)) ~ CN (Vi — Roii((t)),0°T,0)
As the discussion in [35], we apply a Gaussian approximation
to the interference. Here, PDF of the interference is defined in

Appendix-D which is denoted as

P(I)

where ~ stands for satisfying the distribution, R; and M ; are
given by (61) and (60). Meanwhile, we have

~CN(0,Rz,Mz)

POVIT: (1), vnisa(t) o< exp | (6= ) (i — )"

-1

oI 0
X
0 oI

where ¢ = vec(Z) and p; = vec(Y; — Rnii(@(t))). As the
product of Gaussian PDFs are still Gaussian, we can obtain the

posterior mean value as,

-1 -1
m;| [ |Rr M; N o’ 0
m;| \|M; R; 0 oI
-1
N -1
M )
= 02 RI* *I +1 Ni
M; R; i
-1
M M )
— RI* *I oI + RI* *I Ml* .
M; R; M; R; i

(59)

By rearranging the entries of m; according to the reverse order
of vectorization, we can easily arrive at E(I(y)), E(I(2)) and

E(I(3).

APPENDIX D
PRIOR DISTRIBUTION OF INTERFERENCE

For analysis, we can derive the Gaussian approximation of
the interference as

P(Z)~CN(0,Rz, M7)
in which CN (u, R, C) represents complex Gaussian probabil-

ity function with the mean value p, covariance matrix Rz and
pseudo covariance matrix M 7. In details,

-1
M 1
R; 7

I,s)) + vec(I

P(Z) x exp ['LH iT} L\ZI*
I

where i = vec(Z) and vec(Z) = vec(
vec(I.(3)) in which

I3 = Z v Aji,i(mﬁ;{i(k)

Jj#En

x P (wji i) A(wji i) Ao(oii) [(A(vjii) © Alugiq)]"
= Vgt (VAT =) 2y (k) + 1)
gFi

X PH(wngﬁg)A(wng,i)AO(ang,i)[A(vng,i) © A(ung,i)}T
Isy =D > VAVl =),

g#i j#Fn
x PH(wjg,g)A(wjg,i)AO(ajg,i)[A('Ujg,i) © A(Ujg,i)]T

p(3) +

+7p11)

p(3)

k) 4 p1v1)

Furthermore, we assume the path gains are independent to
each others and v, ; ; £ CN(0,1,5). Therefore, the pseudo-
covariance matrix and covariance matrix of the interference
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terms are respectively given by where
3 ~
Mz £ E(vec(T)vec(Z)") = ZMk (60) Xong = VYL =) 2ng +p11
=t in which
3
Rz £ E(vec(T)vee(T)") =Y Ry (61) E (pf;)lpgi‘;{T) = cM(v) ® M(u)
k=1
~T ~
where QK (ngM/(wjg,m wjy,i)ng)
a 1 (T
My 23 8 (B E (p{p!") = R(v) ® R(u)
i#n
Ry 2 ) AjiiE (pﬁ)zpﬁ)f{) o (X oF (@5.0: @i, 1)ng>
Jj#n
in which

>

P 2 ([(A(v)ig) © Aluyia)] © (VAT — 7

+ 901 1) P (wji i) A(wjii)]) i

Xjg= V71 =725 +7p11

9 NT Note that closed-form expressions of the above covariance ma-
M AZA__,E< 2 (2) )
2 = , i Prng,iPng.i trices do not exist. Therefore, we use sample covariance matrices
g7 in our simulations which is widely used when the closed-form
R, 2 Z AjiiE (png Zpgg)l;l ) cannot be directly obtained [27], [36].
g#i
@ a — APPENDIX E
png_’z = ([A('Ung z) © A ung i ( V ’Y 1 CRAMER RAO LOWER BOUND
+ )P (wig,4)A (wng i)])Qng,i In the expression of R, and M, the user channel terms
E[A(p)aa AT (p)]and E[A(p)aa” AT (p)] canbe further
Iy 3T
Ms = Z ZA”Q”'E (pyg iPjg,i ) expanded as
g#Fi j#En
(p) () () H( (p)
Bt Y YA o Zp;;:q 5 (o (1) o (4,) o0 (42 (42
g#i j#n pil
. ~T ~ %
pﬁ])l 2 ([A(vj4.0) © A(ujg.)] © [(V V)02, ® IEZ(XMPH(me-)a (Wff;)zz) a ( 7(5)1 z) P (wni;) Xni)
P s (o ) o (420) 0 (52) o (42
Moreover, when we define
M 2E,(a(v)a (1)) DB (X P (wni)a (w0 a7 (w0,) P (@nie) Xoo)
M' 2B, (PP (w)A(w)AT (w)P*(w)) respectively, where
_ H - _
R =Eo(a{v)a”(v) X 2 (VA=) 4 71)
R = E,(P"(w)A(w)A" (w)P(w)) or,
. Next, we take the derivative of ——*—. As
we can obtain Vi
(1) (1)T _ vl Ar %
E ( ) Mo MoE(XMX,) 0a (v, ) at (+2),,)
where =a (%?u) a” (Ur(ﬁ?i,l) +a (vfﬁ?u) a (”é@?i,l)
KA e 0a (12,) o (1)
2) ()T
(pELg)zp;g)Z) —<M®M®E<X MXng> o 7(5)”
2)H x' X' _al,® (») ® \ AT (@)
(p"91p71g2> )®E(X”9RX”9) *a(ngzl>a (7571)4*0,(75”)0, (ngzl)
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Therefore,
aifz)y =Gj (& (,UT(LZ;)ll) a'! (”g)zl))
niyi,l
®a (“g;)zl) a ( 55)@ l) ®E (X:ZR;PX:”)
(‘% =dTj (& (Uff;)u) a ( 'ES?'L,Z))
(»)

®a(u ’I’LZ’Ll

51% l) a” (

~T ~ %
) ® E (XniM;,ani)

where C'j(A) and T'j(A) respectively stands for A + A and
A+ AT,

R,

!
M,

a (v
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£Ew,., [AH(wm‘,z‘) a(wg;)z z) al (ng?i,o A(wm‘,i)}
» £ ]Ewm-,i [AH(wmi)a(w,(ﬁ)z l)aT (wr(g?i,l) A*(wm,i)}

@) £ diag(0, ~j,...,~j(Na = )m)a (v7),))
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