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Abstract— Due to the nonlinear distortion caused by
radio-frequency (RF) components in the transceiver, detect-
ing transmitted symbols for multiple-input and multiple-output
orthogonal frequency-division multiplexing (MIMO-OFDM) sys-
tems can be challenging and resource consuming. In this work,
we introduce a Deep Echo State Network (DESN) to serve as the
symbol detector for 5G communication networks. Our DESN
employs memristive synapses as the dynamic reservoir layer to
accelerate the learning algorithm and computation. By cascading
multiple dynamic reservoir layers in a hierarchical processing
structure, our DESN processes received signal in both spatial and
temporal domains. The resulting hybrid memristor-CMOS co-
design provides the nonlinear computation required by the reser-
voir layer while significantly reduces the power consumption.
From the benchmark on nonlinear system prediction, our DESN
exhibits 10.31X reduction on the prediction error compared to
state-of-the-art neural network designs. Moreover, our DESN
records a bit error rate (BER) of 5.76 × 10−2 on the high-speed
transmitted symbol detection task for MIMO-OFDM systems,
yielding 47.73% more precise than state-of-the-art techniques in
the literate for 5G communication networks.

Index Terms— Deep learning, reservoir computing, echo
state network, memristive crossbar, 5G/beyond-5G system,
MIMO-OFDM, symbol detection.

I. INTRODUCTION

THE fifth generation (5G) communication networks will
not only interconnect people, but also interconnect

machines and devices. The new level of performance and
efficiency of 5G communication networks will empower new
user experiences, delivering multi-Gbps (Gigabits per second)
peak rate, ultra-low latency, and massive capacity [1].

The enhanced mobile broadband (eMBB), the ultra-reliable
low latency communications (URLLC), and the massive
machine type communications (mMTC) are the three primary
sets of cases defined for 5G New Radio (NR). In particular,
eMBB supports stable wireless connections with high data
rates across a wide coverage area; URLLC ensures ultra-low
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latency connections for mission critical communications, such
as remote surgery and autonomous vehicles; mMTC reinforces
durable connections for an enormous number of simultaneous
devices within a small area. Consequently, the corresponding
signal processing in 5G communication networks is challeng-
ing and resource consuming due to the nonlinear distortion
caused by practical radio frequency (RF) components in the
transceiver chain, as well as the noise interference introduced
by wireless connections.

In scenarios where seamless wide-area coverage is needed,
5G communication networks support the high-speed mobility
up to 500km/hr [2]. As such, a high-speed and reliable
receiver is needed to conduct the symbol detection under
different wireless propagation characteristics. In recent years,
bio-inspired artificial neural networks (ANNs) have provided
effective solutions for various nonlinear dynamic systems [3].
Based on the framework of supervised learning, ANNs can
learn to reconstruct corrupted symbols from the aforemen-
tioned distortion, interference, and noise at the receiver. In par-
ticular, recurrent neural networks (RNNs), a subset of ANNs,
allow effective processing and learning of nonlinear signals
with recurrent memory [4]. Due to the nonlinear sequential
feature of communication signals, RNNs could be one possible
deep learning architecture candidate for the task of symbol
detection in wireless systems.

In this work, we introduce a Deep Echo State Net-
work (DESN) to serve as the symbol detector for 5G
multiple-input and multiple-out orthogonal frequency-division
multiplexing (MIMO-OFDM) systems. Major contributions of
our work are summarized as follows:
• By fashioning multiple reservoir layers in a hierarchical

processing structure, our DESN enables the learning
behavior on both temporal and spatial domains;

• In the endeavor to accelerate the learning operation,
the hybrid memristor-CMOS co-design facilitates the
in-memory computing capability, significantly improving
the computing and power efficiency;

• Benchmark result on the nonlinear system prediction
exhibits 10.31X reduction on the prediction error com-
pared to state-of-the-art neural network designs;

• Experimental results on the 5G MIMO-OFDM sym-
bol detection record a bit error rate of 5.76 × 10−2,
yielding 47.73% more precise compared to state-of-the-
art techniques in the literate for 5G communication
networks.
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In this paper, the general architecture of memristive-based
deep neural networks and the symbol detection technique in
the literate for 5G MIMO-OFDM systems are introduced in
Section II and Section III, respectively. The design methodol-
ogy and experimental evaluations on our DESN are demon-
strated in Section IV, followed by benchmark and application
evaluations in Section V. The paper is then concluded in
Section VI.

II. MEMRISTIVE-BASED DEEP NEURAL NETWORK

A. Deep Neural Networks

Deep neural networks (DNNs), also known as the deep
learning, provide systems the ability to automatically learn and
improve from data through a general-propose learning algo-
rithm, rather than designed by human engineers [5]. The major
structure of DNNs can be summarized into two categories:
(1) the depth-in-space structure represented by feedforward
neural networks (FNNs), and (2) the depth-in-time structure
represented by RNNs.

The depth-in-space structure creates a network through
multiple hidden layers to learn the representation of data with
different levels of abstractions [6], enabling the spatial-based
learning capability. For instance, in the natural image recogni-
tion task [7], learned features in the first hidden layer typically
represent edges at particular orientations and locations of an
image, while rest of hidden layers may detect motifs by
recognizing particular arrangements of edges. On the other
hand, the major design challenge in the depth-in-space struc-
ture is that the learning time, the inference accuracy, and the
computational power are toughly affected by the number of
hidden layers and their associated neurons.

At the meantime, the depth-in-time structure creates a net-
work with recurrent memory, establishing the context of data
and allowing the system to learn from its previous knowledge,
and thus, enabling the temporal-based learning capability.
For instance, Hochreiter and Schmidhuber introduce a long
short-term memory (LSTM) [8] with memory cells and forget
gate, such that values would be remembered over arbitrary
time intervals within memory cells and information would
be regulated in the forget gate. However, due to the state
of the network with recurrent memory, the present neural
state can possibly depend on all previous learned informa-
tion. In other words, all internal weight matrices and bias
vector parameters are needed to be learned, resulting in a
computational-expensive learning process.

The reservoir computing, representing a unified computing
framework divided from conventional RNNs as demonstrated
in Fig. 1, utilizes a dynamic reservoir layer having the
short-term memory for high-dimensional feature projection.
The node state of the generic reservoir computing model at
the present time step, s(t), can be expressed as

s(t) = f (x(t) ·Win + s(t − 1) · Wres + y(t − 1) ·W f b), (1)

where f () is a nonlinear activation function; x(t) represents
the input at the present time step; s(t−1) and y(t−1) are the
internal state and output state of the network, respectively,
from the previous time step; Win , Wres , and W f b denote

Fig. 1. Generic architecture of reservoir computing model.

input weights, internal weights within the reservoir layer, and
feedback weights from the output to the reservoir, respectively.
The output state of the network at the present time step can
be then expressed in terms of the internal state of the network
and output weighted elements, Wout , which can be written as

y(t) = s(t) · Wout . (2)

In general, the echo state network (ESN) [9] and the liquid
state machine (LSM) [10] are the two representations of
the reservoir computing model. The methodology of internal
signal processing is the major characteristic that sets these
two models apart. For instance, in the ESN, actual numerical
number from the input are adapted for the computation, while
spiking signals are examined in the LSM during the operation.
The major characteristic of the reservoir computing is that
input weights and weights within the internal reservoir layer
are fixed at all time, and thus, training operations to Win ,
Wres , and W f b are not required. More specifically, the role
of the reservoir layer is to project the sequential input onto a
higher dimensional space, such that crucial features of input
information can be efficiently readout by a simple learning
algorithm with output weighted elements.

B. Memristive Synapse With In-Memory Computing
Capability

Together with the development of DNNs, the crossbar with
emerging nonvolatile memory (NVM) has been considered
as a promising candidate for intensive vector-matrix com-
putation as in the neural network design, e.g., the resistive
random-access memory (ReRAM) [11]. The ReRAM, a type
of memristor, is a two-terminal metal-oxide-based nano-scale
device, which performs the same functionality as a variable
resistor with the non-volatility characteristic. Due to the forma-
tion of conductive filaments in the insulating material between
two terminals, the resistance of a ReRAM cell can be switched
from its high resistance state (HRS) to its low resistance
state (LRS) when the stimulus across the device excesses a
specific threshold, or vice versa.

The general mathematical representation of the neural com-
putation at the j -th output neuron can be written as

y j =
m∑

i=1

xi · Wij , (3)

where xi and m represent the input vector and its data length,
respectively, and Wij denotes the particular weighted element
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Fig. 2. Representation of vector-matrix computation on a memristive
crossbar.

located between the i -th input neuron and the j -th output
neuron. By mapping the input vector to analogue voltage and
the weight matrix to memristive crossbar as depicted in Fig. 2,
the vector-matrix computation as in the neural network design
can be realized by sampling the total output current on each
bit-line, I j , which can be expressed as

I j =
m∑

i=1

Vi · Gij , (4)

where Vi is the i -th input voltage, and Gij denotes the
conductance (G = 1

R ) of a ReRAM cell located between the
i -th word-line and the j -th bit-line. The memristor is naturally
adapt in the historical behavior [12]. Firstly, the memristor-
based crossbar supports a numerous amount of signal
propagation within a small silicon area, mimicking synaptic
connections in a neurological system. Secondly, the memristor-
based crossbar inherently provides the vector-matrix computa-
tion with the intrinsic parallel-computing capability, imitating
the operation of dendrite potential [13].

Due to the high access latency to memory unit, the con-
ventional computing architecture can no longer offer timely
response [14]. Through the crossbar structure, information
within each column of memory cells can be readout directly
via the sensing element at the end of each bit-line, as expressed
in (4). Such computing structure eliminates the use of external
memory storage and power-hungry peripheral devices, signif-
icantly improving the computing and energy efficiency.

III. 5G COMMUNICATION SYSTEMS

In 5G communication networks, one of the major chal-
lenges is to conduct the detection on transmitted symbols
for MIMO-OFDM systems under heterogeneous environments
and channel conditions. This is because the received signal in
a MIMO-OFDM system is the superposition of all modulation
symbols associated with its sub-carriers, in which modulation
symbols refer to the character selected from a predefined finite
alphabet table [15]. Increasing the size of the alphabet table
can convey more information through one modulation symbol.

Fig. 3 demonstrates general transmitting and receiving oper-
ations in MIMO-ODFM systems. In the conventional receiving
operation, channel estimation is firstly conducted, followed by
the symbol detection based on the estimated channel. However,

such approach requires accurate channel estimation, which is
usually challenging and resource consuming. In fact, there is a
clear trade-off between the performance of channel estimation
and resources used for data transmission, showing that more
accurate channel estimation will require more resources to
be allocated for this process, which results in less resources
available for data transmission. On the other hand, it is crucial
for a 5G communication network to be able to conduct
MIMO symbol detection methods under heterogeneous chan-
nel knowledge (e.g., limited or even without available channel
knowledge). In this section, we first introduce conventional
MIMO-OFDM symbol detection techniques in literature with
their associated hardware challenges.

A. Conventional MIMO-OFDM Symbol Detection

The MIMO-OFDM technology is the foundation of modern
cellular networks and wireless local area networks. The Maxi-
mum Likelihood (ML) detector is one of the optimal solutions
to the MIMO detection problem [16]. However, a brute-force
ML detector implementation involves an exhaustive search
over the space of all possible transmitted symbols, and thus,
such detection method does not scale properly with the modu-
lation order and the number of antennas, making the hardware
complexity prohibitively high. The soft-output Sphere Decod-
ing (SD) [17] is another optimal decoding technique that can
achieve ML or near-ML Bit Error Rate (BER). However, such
computational complexity also scales exponentially with the
number of transmitted data streams [18].

The massive MIMO, a fundamental technology that forms
a basis for modern wireless standards, proposes employing
antenna arrays with significantly larger number of antenna
elements than conventional MIMO systems. In a massive
MIMO uplink, complexity and power consumption are key
considerations in data detection tasks at a Base Station (BS)
with hundreds of antenna elements and a large number of
users. Consequently, low-complexity albeit sub-optimal detec-
tion schemes such as Zero Forcing (ZF), Minimum Mean
Squared Error (MMSE), and Successive Interference Cancel-
lation (SIC)-based schemes [19], [20] have been introduced.
Although such linear detection schemes result in reduced BER
performance compared to optimal detectors, such hardware
implementation complexity is much lower.

Low-order MIMO symbol detectors based on linear detec-
tion schemes have been introduced, e.g., a FPGA-based
MMSE detector for a 4 x 4 MIMO system [21]. More-
over, a sphere decoder based on Djistra’s algorithm for a
4 x 4 MIMO system has implemented using the 180nm CMOS
process [22]. To this end, several Lattice Reduction (LR)
algorithms that only increase the pre-processing complexity
have been used in conjunction with linear or SIC detectors
with available FPGA implementations [23]. An MMSE-based
detector for a 3GPP LTE-based 128 antenna, 8 user massive
MIMO system had its first FPGA implementation demon-
strated in [24]. However, such model-based approaches to
MIMO symbol detection rely on simplification techniques,
e.g., a matrix inversion to achieve correspondingly lower
symbol-rate hardware complexity and power consumption.
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Fig. 3. General transmitting and receiving operations of MIMO-OFDM systems.

Alternatively, data-driven approaches powered by DNNs
may pave the way towards large-scale MIMO detection with
acceptable hardware implementation costs.

B. Neural Network-Based Symbol Detection

The conventional symbol detection method in MIMO-
OFDM systems relies on modeling the convolutional feature
of the transmission channel and solving the formulated prob-
lem based on the model. Recent advances in DNNs offer a
solution to the symbol detection problem without relying on
such model-based assumptions. First, DNNs can be used to
perform parameter tuning based on existing symbol detection
methods. For instance, in [25], a DNN is used to conduct
MIMO symbol detection based on the estimated Channel
State Information (CSI) and the received symbols as inputs.
Moreover, in [26], a DNN is constructed based on iterative
soft-thresholding algorithms to fine tune the parameters for
MIMO symbol detection. However, such methods usually
require a large training dataset along with explicit CSI avail-
ability. In addition, they do not consider the effect of OFDM on
MIMO symbol detection. Second, the MIMO symbol detection
can be formulated as a classification problem, whereby DNNs
can be directly utilized. For instance, in [27], an ESN is
applied for MIMO-OFDM symbol detection without relying
on explicit CSI. The effectiveness of such method is eval-
uated via comparison with conventional model-based meth-
ods with the consideration of RF impairments. Furthermore,
[28] presents an energy efficient perspective, showing the
energy efficiency of the ESN-based detection technique to
be better than the popular linear MMSE (LMMSE)-based
approach. By taking the ESN-based detection approach fur-
ther, [29] introduced a windowed ESN (WESN) by adding a
sliding window to the ESN’s input to enhance the short-term
memory of the underlying ESN, showing that the performance
of WESN to be better than the standard ESN when using
LTE/LTE-Advanced compatible reference/pilot signals as the
training set.

For such single-layer ESNs, the memory capacity, which
represents the amount of input data an ESN can store, is lim-
ited. As the complexity of input dataset scales up, the learning
capability of ESNs from short-term memory reduces, and

thus, increasing the prediction error. In [30], a series deep
ESN architecture is introduced by cascading multiple ESN in
series, allowing such system to capture more features between
input and output sequences, and thus, improving the overall
prediction accuracy. Moreover, in [31], a deep ESN with
stacked hierarchy of ESN is introduced to achieve multiple
temporal representation of input sequence and enhance the
richness of reservoir states as well as the memory capacity.
In recent years, the concept of ESN is also implemented
with the federated learning for mobile edge applications,
e.g., the cyber-security [32] and the virtual reality [33].

Due to the nonlinear sequential feature of communication
signals, RNNs could be one possible deep learning architec-
ture candidate for the task of symbol detection in wireless
systems. To this end, we investigate a computational- and
energy-efficient RNN-based symbol detector, in particular,
a symbol detector based on the topology of deep ESN.

IV. DESIGN METHODOLOGY

A. Deep Echo State Network

It can be observed that transmitted signals undergo atten-
uation and delay due to the nonlinear distortion of wireless
transmission. As discussed in Section III, an accurate channel
estimation, required by the symbol detection on MIMO sys-
tems, relies in obtaining accurate CSI estimation and channel
equalization. Unlike conventional detection techniques, our
DESN-based symbol detector can learn to reconstruct cor-
rupted symbols from the aforementioned distortion, interfer-
ence, and noise at the receiver based on the framework of
supervised learning algorithm.

The general architecture of our DESN is demonstrated
in Fig. 4. In general, our DESN contains three major com-
puting layers, namely, the input layer, the cascaded dynamic
reservoir layer with intermediate I/Os, and the output layer.
During the computation, a set of complex time-domain sym-
bols of binary digits with both real and imaginary elements
are applied as the global input signal, which can be defined as
u(t) = x (1)(t) ∈ NU , where NU is the global input dimension.
Such input layer is associated with the anterior reservoir layer
through global input weights, W (1)

in ∈ [NR × NU ], where
NR is the number of neurons in each reservoir layer. Within
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Fig. 4. Architecture of Deep Echo State Network (DESN).

the dynamic hidden layer, each hidden reservoir layer adopts
the intermediate output, generated from the previous module,
as its input to compute the corresponding output signal. Based
on (1), by denoting the total number of hidden dynamic
reservoir layer as NL , the state of the network at the l-th
hidden reservoir layer at the present time step can be written
as

s(l)(t) = f (x (l)(t) · W (l)
in + s(l)(t − 1) ·W (l)

res

+ y(l)(t − 1) ·W (l)
f b), (5)

where x (l)(t) = y(l−1)(t) represents the l-th local input at the
current time step; Win ∈ [NR × NU ], Wres ∈ [NR × NR ],
and W f b ∈ [NR× NY ] denote input weights, internal weights,
and feedback weights, respectively; y(l)(t−1) is the l-th local
output at the previous time step. From (2), the l-th output state
of the network at the present time step can be rewritten as

y(l)(t) = s(l)(t) · W (l)
out , (6)

where Wout ∈ [NY ×NR ] is output weights, and NY represents
the output dimension. Unlike conventional RNNs, Win , Wres ,
and W f b in each hidden reservoir layer remain fixed at
all times, while Wres is sparsely connected. Such structure
significantly reduces the learning cost, and decompose various
levels of interference for the received OFDM signal.

By transforming the processing structure into a hierarchy
of stacked reservoir layers, the learning behavior is carried
out layer by layer. For instance, the intermediate output of
the first hidden reservoir layer is learned based on the input
OFDM signal, while each latter hidden reservoir layer is
learned based on the computed results from its previous layer.
To reduce the design complexity, the teacher forcing for each
hidden reservoir layer is the same. Correspondingly, the final
output, y(L)(t), generated from the last hidden reservoir layer,
estimates the desired OFDM symbol through global output
weights, W (L)

res ; such operation can be achieved by minimizing
the L2 norm distance between the computed output, ŷ(t), and
the targeted output, y(t), which can be expressed as

min
Wout

NU−1∑

0

∥∥y(t)− ŷ(t)
∥∥2

2 . (7)

As such, readout weights can be then updated by the following
closed-form expression

Wout = ([ST
0 , · · · , ST

NU−1])+ · [ŷT
0 , · · · , ŷT

NU−1]T , (8)

where (S)+ is the pseudo-inverse of matrix of s(t). The
learning operation can be summarized as in Algorithm 1.

Algorithm 1 DESN-Based MIMO-OFDM Symbol
Detection

Data: x(t)
Result: ŷ(t)
initialization;
for l ← 0 to l − 1 do

Generate the state matrix based on (5):
s(l)(t) = f (x (l)(t) ·W (l)

in + s(l)(t − 1) ·W (l)
res

end
return s(l)(t);
Calculate the output matrix according to (6):
y(l)(t) = s(l)(t) ·W (l)

out ;
Determine the loss between outputs:
loss = ∥∥y(t)− ŷ(t)

∥∥2
2;

Minimize the L2 norm distance according to (7):
loss_min = min

∑NU−1
0 loss;

Update output weights according to (8):
Wout = (S)+ · (ŷT )T ;

B. Reservoir Layer on a Memristive Crossbar

A generic model of the reservoir layer within our DESN
is deployed on a memristive crossbar, as depicted in Fig. 5.
As discussed in the previous subsection, the internal state
of the hidden reservoir layer at the present time step can
be written as in (5), while the output state is expressed as
in (6). In the mathematical point of view, such operation can
be realized by the sum-of-product computation. By mapping
the sequential input to analogue voltage and weighted elements
to conductance, such sum-of-product computation can be
implemented by a memristive crossbar.

As depicted in Fig. 5, the generic reservoir layer contains
two crossbar arrays, where the major crossbar determines
the internal state of the network while the output crossbar
computes the desired output. The major crossbar can be further
divided into three groups of memory cells, which represent
the fully-connected Win , the sparsely-connected Wres , and the
fully-connected W f b, respectively.

During the operation, the input, x(t), represented by the
analogue voltage, is applied to horizontal word-lines of the
crossbar. Consequently, an intermediate current is generated at
each vertical bit-line by multiplying the input voltage and the
conductance of the corresponding ReRAM cell as explicated
in (4). Similarly, the corresponding current signal within the
reservoir layer and the feedback unit can be computed by
adopting the feedback signal from the previous internal state
and output state of the network, and thus, the total j -th bit-line
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Fig. 5. Deploying the hidden reservoir layer on a memristive crossbar.

current generated from the reservoir layer at the present time
step can be defined as

s�j (t) =
NU∑

i=1

Vi (t) · Gij +
NR∑

i=NU+1

Vi (t − 1) · Gij

+
NY∑

i=NR+1

Vi (t − 1) · Gij . (9)

The state of the network, s�(t), in the format of analogue
current, is accumulated in the linear current amplifier with the
inlaid current-to-voltage converter. The converted voltage out-
put is then projected onto a higher dimensional space through
the nonlinear activation function. Consequently, the output
from the reservoir layer can be then determined by multiplying
the transferred state of the network, s(t) in the analogue
voltage domain, and the output crossbar. To establish recurrent
connections from the internal state and the output state of the
network, s(t) and y(t) are fed back to the major crossbar
respectively through the sample/hold amplifier. Such y(t) is
also used as the input for the following layer.

Our DESN closely emulates the recurrent connections as
required by the reservoir layer with the in-memory computing
capability relied on the memristive crossbar. In our hardware
implementation, each element in the crossbar is composed
of the discrete ReRAM cell [34], where the resistance range
Rmem ∈ [20k�, 1M�]. In practice, the ReRAM cell is known
to have large device-to-device and cycle-to-cycle variations as
the system is scaled up [35]. In order to properly preserved

Fig. 6. Bipolar switching behavior of ReRAM cell.

the system performance and the inference accuracy, only the
binary weight, represented by HRS and LRS of the ReRAM
cell, with a large resistance ratio ( H RS

L RS ≈ 50) is applied in our
hardware implementation [36].

The bipolar switching behavior of the discrete ReRAM cell
is depicted in Fig. 6. By gradually increasing the potential
across the ReRAM cell, the current jumps abruptly at a
positive voltage of 0.4V, switching the ReRAM cell from
HRS to LRS. On the other hand, the ReRAM cell switches
from LRS to HRS at a negative voltage of −0.4V, and fully
resets at a negative voltage of −0.8V. By directly processing
the information extracted from weighted elements through
the crossbar with a linear current amplifier, such in-memory
computing capability can be achieved.

C. Linearity of Sum-of-Product Computation

Recently, the voltage sensing amplifier with a fixed resis-
tor [37] and the spike sensing neuron [38] are the most
widely used sensing methodology to read out the valuable
information from the crossbar. However, the accuracy of the
sensing network is degraded by the fixed resistor and the
output headroom of the voltage sensing amplifier; additionally,
the nonlinear behavior occurs in the spike sensing neuron due
to the intrinsic delay within the membrane capacitance.

Within each hidden reservoir layer of our DESN, a linear
current amplifier with the inlaid current-to-voltage converter
is implemented, as shown in Fig. 7. During the operation,
the transistor M1 accumulates the total current from the input,
Iin , and the reference current from the current source, Ir1,
such that, IM1 = Iin + Ir1. An operational amplifier with the
transistor M3 create a negative feedback, allowing the voltage
of Vr+ keeps tracking the variation of input voltage, Vr−, and
dynamically regulate the driving voltage of transistor M3. With
a 1:1 design ratio between M1 and M2, the current through
the transistor M3 can be denoted as IM3 = IM2 − Ir2 = Iin .
The output current mirror duplicates the buffered current, IM3,
to the transistor M4 and consistently converts into a voltage
signal through the loading transistor ML .
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Fig. 7. Design scheme of linear current amplifier with inlaid current-to-
voltage converter.

Fig. 8. Linearity of the linear current amplifier with inlaid current-to-voltage
converter compared to conventional voltage sensing methodology.

Such linear current amplifier isolates the sum-of-product
computation in the memristive crossbar and the current-to-
voltage conversion in the current amplifier, and thus, computa-
tion result in the crossbar cannot be distorted, and the linearity
as well as the stability during the current-to-voltage conversion
can be preserved. In general, the optimal goal of implementing
the linear current amplifier is to minimize the output voltage
variation under various input current. To demonstrate such
functionality, the input current, collected from the bit-line of
the crossbar with a range of 0 to 1mA, was applied. As plotted
in Fig. 8, it can be observed that the linear correlation between
the input current and the output voltage can be obtained. It is
reasonable to conclude that the implemented linear current
amplifier is capable of providing a stable and accurate current-
to-voltage conversion compared to the conventional voltage
sensing amplifier.

D. Nonlinear Behavior of Network Transition

The nonlinear transition is typically introduced between
synapses in neural network designs, allowing such networks to
learn and model a complex arbitrary function between inputs
and outputs. As both sigmoid and hyperbolic tangent func-
tions are suffered from the vanishing gradient problem [39],
the rectified linear unit (ReLU) has become the most widely

Fig. 9. Analogue circuit model of MG nonlinear activation function.

used activation function in recent neural network designs [40].
However, the ReLU function does not contain the timing
coefficient to model the time domain computation required by
RNNs. Originating from a biological perspective, the Mackey-
Glass (MG) equation [41] defines a feedback system in which
dynamics depend on both current and previous states. The
explicit representation of MG equation can be written as

Xout = α · Xin

1+ τ n · Xn
in

, (10)

where α is the arbitrary design parameter that define the
scaling factor of the equation, n and τ are the nonlinear and
timing coefficients, respectively.

Fig. 9 illustrates the analogue circuit model of the MG
equation. In general, the nonlinear characteristic of the MG
equation can be formed by controlling the switching condi-
tional of a n-type switch, Mn , and a p-type switch, Mp . During
the operation, Mp fully turns on to reduce charges from the
low-pass filter under the condition of Vin < Vth,p, where Vth,p

is the threshold voltage of Mp ; as such, the voltage across the
low-pass filter remains at zero. If Vth,p < Vin < Vth,n , where
Vth,n is the threshold voltage of Mn , charges from the input
source accumulate in the low-pass filter, and thus, the voltage
across the low-pass filter follows the input voltage. Under the
condition of Vin > Vth,n , Mn fully turns on to reduce charges
from the low-pass filter again, such that the voltage across
the low-pass filter remains at zero. To accurately model the
explicit representation of the MG equation, the transistor M2
is implemented to serve as the scaling parameter in the circuit
point of view. The non-linearity of the signal can be turned by
the aspect ratio of Mn and Mp , while the timing coefficient
can be adjusted by the reference current source, Ire f .

To demonstrate the nonlinear characteristic of the designed
circuitry, a sequential bias voltage was applied as the input
with the range of −1.8V to 1.8V. By gradually increasing the
bias voltage, the nonlinear characteristic of the MG equation
was recorded together with the corresponding numerical fit,
as plotted in Fig. 10. It can be observed that the designed
analogue circuit model of the MG equation fits the ideal MG
equation with the scaling parameter, the nonlinear and the
timing coefficients of α = 1, n = 0.4 and τ = 6, respectively.

E. Power Analysis

Our introduced neural network design is implemented
through the standard 180nm CMOS process. In the experiment
of power analysis, total of 128 neurons were implemented
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Fig. 10. Experimental result on analogue circuit model of MG nonlinear
activation function together with the corresponding numerical fit.

Fig. 11. Average power distribution of a single reservoir unit and a single
neuron.

for the major crossbar, while 8 neurons were built for the
output crossbar on a single hidden reservoir layer. The power
consumption of the hybrid memristor-CMOS co-design was
then simulated through the Cadence Virtuoso platform with
the sampling frequency at 1MHz. The power distribution of
the implemented reservoir layer is illustrated in Fig. 11. The
total power of a single reservoir layer reaches 104.51mW,
where the input state of the network consumes 0.81mW of
total power, the internal state of the network absorbs 97.6mW
of total power, and the rest are occupied by the output state of
the network. Within each neuron, the sample/hold amplifier
requires 9% of the reservoir’s power, the analogue circuit
model of MG nonlinear activation function absorbs 8% of
the reservoir’s power, and the rest are occupied by the linear
current amplifier. The design specification of the implemented
reservoir layer with state-of-the-art ESN implementations are
summarized in Table I.

In recent years, several application specific integrated cir-
cuit (ASIC) implementation methodologies have introduced
to accelerate the operation and reduce the energy cost for

TABLE I

COMPARISON OF INTRODUCED MEMRISTIVE-BASED RESERVOIR
LAYER WITH STATE-OF-THE-ART ESN DESIGNS

the MIMO detection through the pure CMOS implementa-
tion [42]. However, the accuracy of the detection is toughly
affected by the performance of power amplifier, low noise
amplifier, and signal demodulator. Our neural network-based
symbol detector, on the other hand, significantly reduces the
power overhead and noise interference caused by conventional
RF components, but still, achieving a low BER performance.

V. APPLICATION EVALUATION

A. Experimental Setup

The preferment of our DESN are evaluated through a
benchmark on a nonlinear system prediction task as well
as the application on the MIMO-OFDM symbol detection.
To demonstrate the robustness and reliability of our system,
experimental results from our DESN are compared to the
baseline model of shallow ESN and state-of-the-art neural
network designs. During the evaluation, the number of neurons
for each reservoir layer was kept at 128 on both experiments.
For the OFDM symbol detection task on a 5G MIMO system,
the number of transmitting and receiving antennas was set to
be 4 and the number of sub-carriers in the OFDM system was
set to be 1024.

B. Nonlinear System Prediction

The experiment was initially carried out through the
tenth-order nonlinear auto-regressive moving average system
(NARMA-10) benchmark [50], which can be governed by

o(t) = β · o(t − 1)+ γ · o(t − 1) ·
9∑

k=0

o(t − k)

+ δ · d(t − 9) · d(t)+ � (11)

where d(t) is the random input signal at time t; o(t − 1)
is the output at the previous time step; β, γ , δ, and � are
random design parameters that would be replaced with a
new random values taken from a ±50% interval around the
respective original constants for every 2000 steps. In this
experiment, the initial condition of design parameters were
set to be β = 0.3, γ = 0.05, δ = 1.5, and � = 0.1. Total
of 10 thousand sampling points were generated for training
and inference. 100 samples were used for the initialization,
while 5900 samples were used for the training. The predicted
output was automatically generated once the training operation
is completed, and compared to target output. The prediction
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TABLE II

COMPARISON OF INFERENCE ERROR ON NARMA-10 BENCHMARK
TO STATE-OF-THE-ART NEURAL NETWORK DESIGNS

error was examined using the normalized mean square error
(NMSE), which can be express as

N M SE = (
|yi − ŷi |
|ŷi | )2, (12)

where yi and ŷi represent the target output and predicted
output, respectively. Inference error on our DESN is compared
to our baseline shallow ESN model and state-of-the-art neural
network designs, as summarized in Table II. Compared to the
baseline model, it can be observed that our DESN exhibits
22.15% accuracy improvement in the nonlinear system predic-
tion task. Moreover, the NMSE on our DESN yields 2.33X ∼
10.31X reduction on inference error compared to state-of-the-
art neural network designs.

C. Symbol Detection

To further demonstrate the performance, our DESN is used
as the symbol detector in the receiving chain of a 5G network.
The analog waveform of received MIMO-OFDM signals are
directly fed into our DESN. Through the learning operation,
readout weights of our DESN are adjusted to generate the
desired output, which is the transmitted MIMO-OFDM sig-
nals. In this experiment, the MIMO-OFDM signal used for
the training is generated according to the 5G NR specification
that follows the standard 3GPP TS 38.212 version 15.2.0 [51],
where the channel is generated according to the Winner II
channel model [52]. The modulation method is configured
as 16-quadrature amplitude modulation (16-QAM). Specifi-
cally, pilots of communications system, which are utilized
for channel estimation, are evenly used as in the training
set, offering a compatible way to replace the state-of-the-art
receiving process to the neural network-based ones.

The inference BER of our DESN is shown in Fig. 12
compared to the state-of-the-art model-based and neural
network-based techniques. The LMMSE is a classic
model-based approach using the linear processing method for
symbol detection. Such method requires the knowledge of the
noise variance of the channel. However, the LMMSE method
relies on accurate channel information, which is challenging
to be obtained in the low signal-to-noise ratio (SNR) regime.
Comparing to the reported average BER of 11.02 × 10−2

of the LMMSE approach, the BER from our DESN-based
approach is 5.76 × 10−2, which is 47.73% more accurate.
The inference BER from our DESN is also compared to
the multilayer perception (MLP) model with three hidden
layers and 1024 neurons per layer. Due to the limited training
data, the MLP-based approach has an average inference BER

Fig. 12. Inference bit error rate with respect to various symbol detectors.

Fig. 13. Inference bit error rate versus the signal-to-noise ratio with respect
to various symbol detectors.

of 50.12 × 10−2. As such, it is convincing that our DESN
outperforms state-of-the-art symbol detection techniques.

The average BER under various SNR scenarios for the
MIMO-OFDM system is plotted in Fig. 13. It can be observed
that our DESN beats the classic model-based LMMSE sym-
bol detection for all SNR regimes. Furthermore, our DESN
performs very close to the shallow ESN when the SNR is
below 10dB, and demonstrates a lower BER starting at 10dB
and beyond. Most importantly, our baseline shallow ESN
and DESN do not require the statistical channel information,
where the model-based LMMSE symbol detector does. Fig. 15
illustrates the inference BER with respect to various model
of ESN. Compared to the shallow ESN, which contains only
one reservoir layer, our DESN demonstrate a lower inference
BER. Intuitively, such improvement can be interpreted as
latter reservoir layers further increase the detection based
on the processed observation from any previous reservoir
layers. As shown in Fig. 14, our DESN with MG activation
function has similar inference BER compared to the one
with hyperbolic tangent function; however, more samples are
distributed in the low BER regime with our DESN.
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Fig. 14. Inference bit error rate with respect to various activation functions.

Fig. 15. Inference bit error rate with respect to various module of ESN.

VI. CONCLUSION

In this paper, we demonstrate a DESN with embedded mem-
ristive synapses, facilitating the in-memory computing capa-
bility. By fashioning multiple reservoir layers in a hierarchical
processing structure, our DESN enables the learning behavior
on both temporal and spatial domains. Experimental results
on the hybrid memristor-CMOS co-design offers the neces-
sary nonlinear computation required by each reservoir layer
with merely 104.51mW of power consumption. Experimental
results on nonlinear system prediction task achieve an error
rate as low as 0.045, exhibiting 22.15% improvement com-
pared to the shallow ESN and 2.33X ∼ 10.31X improvement
compared to state-of-the-art ESN designs. Moreover, through
the symbol detection task on a 5G MIMO-OFDM system, our
DESN demonstrates an average BER of 5.76×10−2, which is
47.73% more precise compared to state-of-the-art techniques
in the literate for 5G networks.
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