
CRUX: AdaptiveQuerying for
Efficient Crowdsourced Data Extraction

Theodoros Rekatsinas

thodrek@cs.wisc.edu

University of Wisconsin-Madison

Madison, WI, USA

Amol Deshpande

amol@cs.umd.edu

University of Maryland

College Park, MA, USA

Aditya Parameswaran

adityagp@berkeley.edu

University of California-Berkeley

Berkeley, CA, USA

ABSTRACT
Crowdsourcing is essential for collecting information about real-

world entities. Existing crowdsourced data extraction solutions use

fixed, non-adaptive querying strategies that repeatedly ask work-

ers to provide entities from a fixed domain until a desired level

of coverage is reached. Unfortunately, such solutions are highly

impractical as they yield many duplicate extractions. We design an

adaptive querying framework, CRUX, that maximizes the number

of extracted entities for a given budget. We show that the prob-

lem of budgeted crowdsourced entity extraction is NP-Hard. We

leverage two insights to focus our extraction efforts: exploiting the
structure of the domain of interest, and using exclude lists to limit re-
peated extractions. We develop new statistical tools to reason about

the number of new distinct extracted entities of additional queries
under the presence of little information, and embed them within

adaptive algorithms that maximize the distinct extracted entities

under budget constraints. We evaluate our techniques on synthetic

and real-world datasets, demonstrating an improvement of up to

300% over competing approaches for the same budget.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms.

KEYWORDS
crowdsourcing; extraction; structured domains

ACM Reference Format:
Theodoros Rekatsinas, Amol Deshpande, and Aditya Parameswaran. 2019.

CRUX: Adaptive Querying for Efficient Crowdsourced Data Extraction.

In The 28th ACM International Conference on Information and Knowledge
Management (CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3357384.3357976

1 INTRODUCTION
Structured data repositories, such as knowledge bases, taxonomies,

and hierarchies, enable many end-user applications including key-

word search, product catalogs, event detection and recommender

systems in a variety of companies, such as Google [23],Microsoft [6],

Yahoo [7], Walmart [8], and Amazon [2]. The majority of these

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00

https://doi.org/10.1145/3357384.3357976

Table 1: Extracting people from the news. Percentage of en-
tities reported by at least two different workers for each
⟨occupation, news portal⟩.

News Portal Actors/Singers Athletes Politicians
WashPost 47% 55% 56%

NY Times 41% 65% 53%

HuffPost 45% 63% 60%

USA Today 54% 45% 57%

WSJ 42% 77% 57%

repositories are constructed using automated extraction schemes

that target popular text and web corpora. As a result, they contain

information primarily on head data, i.e., popular entities and their

attributes, comprising a tiny fraction of all entities. There has there-

fore been increasing interest in augmenting this with information

about the so called long-tail, not-so-popular entities, to reduce the

sparsity of present-day structured data repositories. Crowdsourc-

ing is a natural solution to extract these entities; examples of such

efforts include Google’s Guides
1
, and Facebook’s Professional Ser-

vices
2
. In fact, a recent study reports that a number of companies

use crowdsourcing for entity extraction [17].

Motivated by the aforementioned applications, we study crowd-
sourced entity extraction, i.e., the problem of collecting entities by

asking crowd workers to list entities from a domain of interest.

Recent work from Trushkowsky et al. [25, 26] has studied crowd-

sourced entity extraction using fixed questions like “give me an-

other entity”, extending species estimation techniques to assess

the degree of completeness of their extraction. Unfortunately, due

to the cost of human labor and the inherent redundancy in the

answers of crowd workers, crowdsourced entity extraction using

this fixed form of questions can become highly impractical. We

use a small pilot experiment on Amazon’s Mechanical Turk [1] to

illustrate this.

Example 1.1. Our goal was to extract people from the news. We

asked workers to list people of different occupations mentioned

in five major US news portals during the period of a single day. In

particular, we asked workers to provide us with “Actors/Singers”,

“Athletes”, and “Politicians” listed in “The New York Times”, “Huff-

ington Post”, “The Washington Post”, “USA Today” and “The Wall

Street Journal”. For each newspaper we provided a link to the news-

paper’s homepage and for each (occupation, news portal) combina-

tion, e.g., “Athletes mentioned in NY Times”, we asked 30 distinct

workers to provide us with five entities, leading to 150 extractions

per combination.

Table 1 shows the percentage of entities that were provided

by at least two different workers for different <occupation, news

1
https://www.google.com/local/guides/

2
https://www.facebook.com/services/

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

841

https://doi.org/10.1145/3357384.3357976
https://doi.org/10.1145/3357384.3357976

portal> combinations. As shown, on average, more than half of

the extracted entities were reported by at least two workers, while

there are cases where the percentage of duplicate entities was as

high as 77%. This means that at least 77% of the cost (in compensat-

ing workers for their answers) is simply wasted. Thus, a static or

fixed querying strategy that issues the same question repeatedly

to crowd workers, such as in Trushkowsky et al. [25], leads to a

large number of repeated extractions of the popular entities, and
low coverage of the less-popular entities. In fact, the not-so-popular

entities may only be extracted after a very long time (translating

to high cost and effort) or may never be extracted at all. It is ex-
actly this abundance of duplicate extractions that can make
fixed-query crowdsourced data extraction impractical.

OurApproach andChallenges.Our goal is to reduce redundancy
in crowdsourced data extraction by leveraging two key insights

that allow us to adaptively issue fine-grained queries, i.e., queries
that target only a subspace of the entity-domain, to the crowd:

1) Exploit Structure to Partition the Search Space. Most do-

mains that one may choose to extract entities from are structured,
i.e., domains are associated with a collection of attributes, each of

which typically exhibits hierarchical structure. One can leverage the

existence of such attributes to choose queries from a much richer

space, considering all combinations of values for these attributes.

For example, if we had a hierarchy associated with athletes in our

pilot experiment, we could leverage that to partition our extrac-
tion space and extract tennis players, marathon runners, or javelin

throwers, by asking workers questions like provide a marathon
runner mentioned in the New York Times today. It is easy to see that

targeted queries which focus on disjoint partitions of the underlying

entity domain can drastically limit duplicate extractions.

2) Use Exclude Lists. We can also extend typical crowd queries to

include an exclude list, e.g., “list a person in the New York Times

that is not Donald Trump”. Excluding popular entities can help us

identify new distinct entities much faster.

Overall, fine-grained queries of the form above enable us to de-

sign adaptive querying strategies that aim to limit the number of

duplicate extractions. We refer to a querying strategy as adaptive

if it analyzes the entities returned in previously issued queries to

dynamically adapt further queries in two ways: (i) either by limit-

ing their scope to a subdomain of the overall entity domain, thus,

exploiting the structure of the entity domain, or (ii) by introducing

an exclude list to them to prevent already extracted entities from

bing extracted again. To guarantee that our methods will lead to

efficient crowdsourced entity extraction techniques, we study a

budgeted version of the problem, where our goal is to identify the

adaptive querying strategy that maximizes the number of distinct

retrieved entities for a given budget.

Unfortunately, designing adaptive querying policies comes with

new challenges. The main question we seek to address is: what
is the most profitable query to issue next? Given a cost model for

crowd queries, we need to estimate the gain of a new query, i.e.,

estimate how many new entities would be extracted from a query

in expectation, given the already extracted data. In addition, we

also need to deal with the sparsity and the exponential size of the
query space. Many of the attribute combinations are likely to be

empty, i.e., the corresponding queries are likely to have no answers

(e.g., there may not be few, if any, javelin throwers living in New

York); avoiding such queries is essential to keep monetary cost low.

Finally, we need to deal with the interrelationships across queries.
Many of the queries are coupled. For example, the results from a few

queries to “list an athlete in today’s New York Times” can inform

whether issuing queries to “list a Baseball player in today’s New

York Times” is useful or not. Thus, identifying the right order to

ask queries is highly important. Overall, we want to maximize the

number of distinct entities extracted with the minimal number of

queries against crowd workers.

To address the above challenges we introduce CRUX, a frame-

work for efficient CRowdsoUrced data eXtraction under budget

constraints. We propose a collection of statistical techniques for es-

timating the gain of further queries, i.e., the number of new distinct

entities extracted, for any attribute combination. Our techniques

make use of the extracted entities in previously issued queries to

derive accurate estimates for new queries. Eventually we covert the

problem of budgeted crowdsourced entity extraction to an adaptive

optimization problem to detect the optimal queries to be issued

against the crowd.

Prior Work. As mentioned previously, Trushkowsky et al. [25, 26]

describe the use of species estimation techniques to estimate the

completeness of extracted entities from the crowd. Other work [3]

has studied the problem of leveraging crowd workers to provide

recommendations to users by listing entities relevant to user queries.

These papers ask human workers to “list one more entity”, without

leveraging structure or an exclude list. For example, if we consider

the task of enumerating all people mentioned in today’s issue of

the New York Times, previous techniques focus on issuing the

query “list one person in today’s New York Times” repeatedly

against the crowd until a certain desired degree of completeness

is achieved. However, all these approaches suffer from the same

problem identified earlier: severe wasted cost, with only the popular

entities being extracted repeatedly. As we will see in Section 6, there

are scenarios where the existing state-of-the-art methods focus

only on the head entities and are only able to retrieve less than

20% of the total entities for a fixed budget while our techniques

can extract more than 75% of the total entities. Other recent work

employs adaptive querying for filtering, as opposed to extraction,

problems [16]. We discuss other related work in Section 7.

Contributions. Our main contributions are:

• Formalization and Characterization of Hardness. We formalize

the notion of generalized entity extraction queries that can also

include an exclude list. Such queries are of the type “List k en-

tities with attributes X̄ that belong in domain D and are not in

{A,B, ...}”. We also provide statistical techniques to estimate the

gain, i.e., the number of newly extracted distinct entities, for

generalized queries. We prove that this budgeted crowdsourced

entity extraction problem is NP-Hard.

• Gain Estimation for Generalized Queries. We develop a new tech-

nique to estimate the gain of generalized queries in the pres-

ence of little information, i.e., when only a small portion of

the underlying entity population has been observed. We em-

pirically demonstrate its effectiveness when extracting entities

from sparse domains.

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

842

• Adaptive Querying Strategies. We propose an algorithmic frame-

work that exploits the structure of the entity domain to maximize

the number of extracted entities under budget constraints by tar-

geting tail entities. We view the problem of entity extraction as

a multi-round adaptive optimization problem. At each round we

exploit the available information about entities obtained by pre-

vious queries to adaptively select the next query that maximizes

the overall cost-gain trade-off.

We evaluate our techniques on both real-world and synthetic

data and show that CRUX extracts up to 300% more entities com-

pared to a collection of baselines, and for large entity domains is

at most 25% away from an omniscient adaptive querying strategy

with perfect information.

The remainder of the paper is organized as follows: In Section 2

we formalize the notion of a structured data domain, in Section 3

we define the problem of budgeted crowdsourced entity extraction

and show that the problem is NP-hard. In Section 4, we describe

techniques for estimating the gain of further queries. Then in Sec-

tion 5, we introduce an algorithm for discovering themost profitable

queries to be issued against the crowd. In Section 6 we present an

empirical evaluation for CRUX on both real-world and synthetic

data from two distinct application domains.

2 PRELIMINARIES
We formalize the problem of crowdsourced entity extraction over

structured domains.

2.1 Structured Data Domains
Let D be a data domain described by a set of discrete attributes

AD = {A1,A2, . . . ,Ad }. Let dom(Ai) denote the domain of each

attribute Ai ∈ AD . Each attribute Ai can also be hierarchically

organized. Consider Eventbrite (www.eventbrite.com), an online

event aggregator, that uses crowdsourcing to compile a directory

of events, such as political rallies and concerts. Events are fully

described by their location, type, date and category. Here, entities in

the data domain D correspond to events. The attributes describing

the entities in D are AD = {“Event Type”, “Location”, “Date”},

with “Location” and “Date” being hierarchically organized.

The domain D can be viewed as a poset, i.e., a partially ordered

set, corresponding to the cross-product of all available hierarchies
3
.

Part of the poset corresponding to the previous example is shown

in Figure 1. We denote the poset for a domain D asHD . As shown

in Figure 1, nodes in the poset correspond to configurations where

only a subset of the attributes in AD are specified while others are

allowed to take any value. For example the root of the poset {} has

no specified attributes, corresponding to queries of the form “list an

event”. Nodes at lower levels, such as {X1} and {C1}, correspond to

queries where the event type and location are specified respectively.

2.2 Entities and Entity Extraction Queries

Entities.Our goal is to extract entities from domainD. Each entity

e can be uniquely associated with one of the leaf nodes in the hier-

archyHD ; that is, there is a unique combination of attribute values

A1, . . . ,Ad characterizing each entity. For example, in Eventbrite,

3
Note that D is not a lattice since there is no unique infimum.

{}

{EventType X1} {Country C1}

{State ST1} {State ST2}

{EventType X2}

{X1, C1} {X2, C1}

{X1, ST1} {X1, ST2} {X2, ST1} {X2, ST2}

Figure 1: Part of the poset for the domain of Eventbrite.
each event is of a specific type, takes place in a specific city, and on

a specific day.

Queries. We focus on generalized extraction queries that can be

issued to crowd workers. A query qv is said to be associated with a

node v ∈ HD when qv contains predicates that correspond to the

value combination for AD associated with v . For example, if we

consider the poset in Figure 1 a query for node {X1} has a predicate

EventType = X1. Hence, workers are required to provide events

that satisfy this predicate.

There are three types of queries qv : (i) Single entity querieswhere
workers are required to provide only “one more” entity matching

the predicates of the query, (ii) queries of size k where workers are
asked to provide k distinct entities for a query qv , and (iii) exclude
list queries where workers are additionally provided with a list E of

l entities that have already been extracted and they are required

to provide k distinct entities that are not present in the exclude

list. It is easy to see that the last variation generalizes the previous

two. Therefore, in the remainder of the paper, we will only consider

queries using the third configuration. We refer to these queries as

generalized queries. To describe a generalized query, we use the

notation qv (k,E) denoting a query of size k with an exclude list

E of length l that is associated with node v ∈ HD . We denote the

configuration for a query as (k, l ,v).

2.3 Query Response
We consider a querying interface that asks human workers to not

only list entities but to also provide, for each entity, the values for

its attributes inAD that are not specified in the predicates of q. For
example, if the query is “list one concert in Manhattan, New York”,

with k = 1,E = ∅, the worker gives us one concert in Manhattan,

New York, but also gives us the day on which the concert will

take place (here, the missing, unspecified attribute) and the type of

concert, i.e., rock concert. If the query is “a concert in the US”, with

k = 1,E = ∅, the human worker gives us one concert in the US, but

also gives the day on which the concert will take place, as well as

the specific city. If less than k entities are present in the underlying

population, workers have the flexibility to report either an empty

answer or a smaller number of entities.

While getting additional attribute values for entities is not strictly

necessary, this information allows us to assign an extracted entity

to all relevant nodes inHD . Furthermore, in most practical appli-

cations, it is useful to get the values of the missing attributes to

organize and categorize the extracted entities better. Similar query

interfaces that ask users to fully specify the attributes of entities

have been proposed in recent work [19]. That said, our techniques

still apply even if workers do not provide all attributes: in such a

setting, entities will be assigned to interior nodes but not to leaves.

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

843

www.eventbrite.com

Often, workers unwittingly provide the same entity, resulting in

duplicates. Resolving duplicates during extraction is crucial for two

reasons: (i) they are used to estimate the completeness of extracted

entities, and thus, reason about the gain of additional queries, and

(ii) they can be used to resolve erroneous values for the attributes

of the extracted entities. In practice, standard entity resolution and

data fusion techniques [11] can be used to address this problem.

Given that we obtain information about several attributes of entities

from the crowd, we can apply simple rules that match the entity

attribute values to detect duplicates and resolve erroneous values.

Additional worker quality detection techniques that consider lim-

ited ground truth data [9] can be used to determine the accuracy of

workers. During our experiments, we found that simple data fusion

techniques were sufficient to resolve noisy labels and duplicates. So,

for this paper, we focus on devising near-optimal adaptive crowd

querying strategies for entity extraction.

2.4 Query Cost
In a typical crowdsourcing marketplace, tasks have different costs

based on their difficulty. While our algorithms works with any cost

function, we consider a cost function c(·) that obeys the following
properties: (a) given a query with fixed size, its cost should increase

(or remain the same) as the size of its exclude list should increase, (b)

given a query with a fixed exclude list size, its cost should increase

(or remain the same) as the number of requested answer increases,

and (c) given a query with fixed size and exclude list size, its cost

should increase (or remain the same) as the query contains more

predicates, i.e., it corresponds to nodes v at the lower-levels ofHD .

The cost function is fixed upfront by the interface-designer based

on the amount of work involved.

3 BUDGETED EXTRACTION
We now define budgeted crowd entity extraction over structured

domains and present an overview of our framework.

3.1 Problem Definition
The problem of crowdsourced entity extraction seeks to extract en-

tities that belong to D. For large entity structured domains, one

may need to issue a series of entity extraction queries at multiple

nodes inHD—often overlapping with each other—to ensure that

the coverage across the domain is maximized. We refer to a series

of generalized qv (k,E) queries at different nodes v ∈ HD as a

querying policy.
Let π denote a querying policy. A policy π can select a query

qv (k,E) multiple times. Let C(π) denote the overall monetary cost

of policy π . We define the gain of π , denoted by E(π), to be the

total number of unique entities extracted when following π . There
is a natural trade-off between the gain (i.e., the number of extracted

entities) and the cost of policies.

We require that the user will only provide a monetary budget τc .
The posetHD and the possible query size and exclude list size con-

figurations (k, l) for each node are given as input by the application

designer. Our goal is to identify the querying policy that maximizes

the number of retrieved entities under the given budget constraint:

Problem 1 (Budgeted Crowd Entity Extraction). Let D be
an entity domain characterized by a posetHD . For each nodev ∈ HD ,

let Kv and Lv be the sets of allowed query sizes and exclude list sizes
for queries at node v . Let τc be a budget on the total cost of issued
queries. Find a querying policy π∗ using queries qv (k,E)with k ∈ Kv

and |E | = l ∈ Lv over nodes v ∈ HD that maximizes E(π∗), the
number of unique entities extracted, under the constraintC(π∗) ≤ τc .

Note that the optimal policy not only specifies the nodes at which

queries will be executed but also the size and exclude list of each

query. The cost of a querying policy π is C(π) =
∑
q∈π c(q), where

the cost of each query qv is defined according to a cost model

specified by the user, is easy to compute. However, the number

of unique entities extracted by a policy is not known upfront and

needs to be estimated as we discuss in Section 4. Moreover, the

problem of finding an optimal querying policy is NP-hard.

Theorem 3.1 (NP-Hardness). Problem 1 is NP-hard.

The proof is provided in our technical report [20] (with all other

proofs) and is based on a reduction from the unbounded knapsack
problem. This problem is a variation of the original 0-1 knapsack

problem that places no upper bound on the number of copies of

each kind of item.

Finally, computing the total cost of a policy π is easy. However,

the gain E(π) of a policy π is unknown as we do not know in

advance the entities corresponding to each node inHD , and hence,

needs to be estimated (see Section 4).

3.2 Query Response Model
To reason about the occurrence of entities as response to specific

queries, we assume that each entity has an unknown popularity
value with respect to crowd workers. Since workers are likely to

return different answers based on how the query is phrased, this

popularity can be different for different nodes in HD , and thus,

is query-dependent. Given a query qv (1, ∅), the probability that

we get entity e in the result of qv is simply the popularity value

of e divided by the popularity value of all entities e ′ that also sat-
isfy the same predicate constraints. For example, if there are only

two entities e1, e2 that satisfy the constraints of a query q1, with

popularity values 3 and 2, then the probability that we get e1 on

issuing a query q1(1, ∅) is 3/5. If an exclude list E is specified, then

the probability that we get e < E is the popularity value of e divided
by the popularity values of all entities e ′ < E also satisfying the

predicates of qv .
Since workers are asked to provide a limited number of enti-

ties, each query can be viewed as taking a random sample from

an unknown population of entities. We refer to the distribution

characterizing the popularities of entities in a population as the

popularity distribution of the population. We do not know the pop-

ularity distribution in advance; rather we use the samples retrieved

by previous queries as a proxy to reason about this distribution.

Also, it is not necessary that workers follow the same popularity

distribution. Rather, the overall popularity distribution can be seen

as an average of the popularity distributions across all workers.

Estimating the gain of a query qv (k,E) at a node v ∈ HD is

equivalent to estimating the number of new entities extracted by

taking additional samples from the population of v given all the

retrieved entities (running sample) associated with node v . Due to
the structure of the poset we may retrieve entities for a node when

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

844

issuing queries at other nodes. We discuss this form of indirect
sampling in Section 4.2.

3.3 CRUX Overview
CRUX casts the budgeted crowd entity extraction problem as a

multi-round adaptive optimization problem where at each round

we solve the following subproblems:

• Estimating the Gain for a Query (Section 4). For each node

v ∈ HD , consider the retrieved entities associated with v and

estimate the number of new unique entities that will be retrieved

by a new query qv (k,E). The query gain is estimated for different

query size and exclude list configurations.

• Detecting the Optimal Querying Policy (Section 5). Using

the gain estimates from the previous step, identify the query

configuration (k, l ,v) that maximizes the total gain across all

rounds given the budget constraint. When identifying the next

query we do not explicitly optimize for the exclude list to be used.

We rather optimize for the exclude list size l . Once the size is
selected, the exclude list is constructed in a randomized fashion.

We elaborate more on this in Section 5.1.

CRUX iteratively solves the aforementioned problems until the

entire budget is used.

4 ESTIMATING THE GAIN OF QUERIES
As discussed previously, crowd entity extraction queries are equiv-

alent to retrieving samples from a population of items following

an unknown popularity distribution. Deciding which query to is-

sue is dictated by the estimated gain of each query, i.e., the ex-

pected number of newly extracted entities. Estimating the gain of

a query requires reasoning about the population percentage cov-

ered by all entities extracted by previous queries as well as the

expected number of unseen entities in the underlying population.

Prior work [25, 26] studied the problem of estimating the afore-

mentioned quantities for queries of the form “list one more entity”,

drawing from species richness estimation [5], the problem of esti-

mating the number of distinct species using samples from the un-

derlying population. The proposed techniques extend an estimator

from Chao et al. [5] and do not consider queries with exclude lists

or queries on non-root nodes of the poset. Moreover, the original

Chao estimator has been shown to exhibit negative biases [12, 21],

i.e., it underestimates the expected gain. The latter is worse in the

presence of little information. Negative biases can severely impact

entity extraction since nodes that contain entities from the long

tail of the popularity distribution may never be queried as they

may be deemed to have zero population. In this section, we first

review the existing methodology for estimating the gain of a query,

and then discuss how these estimators can be extended to consider

support a poset (Section 4.2) and exclude lists (Section 4.3). Finally,

we propose a new gain estimator for queries qv (k,E) that exhibits
lower biases, and thus, improved performance, in the presence of

little information compared to previous techniques (Section 4.4).

4.1 Single-Node Estimators without Exclusion
Consider a specific nodev ∈ HD . LetQ be the set of all existing sam-

ples retrieved by issuing queries at v without an exclude list. These

{}

{EventType X1} {Country C1}

{State ST1} {State ST2}

{EventType X2}

{X1, C1} {X2, C1}

{X1, ST1} {X1, ST2} {X2, ST1} {X2, ST2}

Querying node {EventType X1}

Figure 2: Querying the red node reveals entities from the
green nodes.
samples can be combined into a single sample, referred to as a run-
ning sample, corresponding to a multiset of size n =

∑
q∈Q size(q).

Let fi denote the number of entities that appear i times in this

unified sample, f0 denote the number of unseen entities from the

population under consideration, and C be the population coverage

of the unified sample, i.e., the fraction of the population covered

by the sample. We have thatC =
f1+f2+..
f0+f1+...

. A new query qv (k, ∅) is

equivalent to increasing the size of the unified sample by k , thus, its
gain is the number of new distinct entities included in the increased

sample. Originally, Shen et al. [21] proposed an estimator for the

number of new species N̂Shen that would be found in an increased

sample of size k . The approach assumes that unobserved entities

have equal relative popularity. An estimate of the unique elements

found in an increased sample of size k is given by:

N̂Shen = f0

(
1 −

(
1 −

1 −C
f0

)k)
(1)

For crowdsourced entity extraction, the term of Shen’s formula in

parenthesis corresponds to the probability that at least one unseen

entity will be present in the result of a query asking for k more

entities. Thus, multiplying this quantity with the number of unseen

entities f0 corresponds to the expected number of unseen entities

in the result of qv (k, ∅).
The quantities f0 and C are unknown and need to be estimated

for the population of node v using the observed entities in the

running sample for v . The coverage can be estimated by the Good-

Turing estimator Ĉ = 1−
f1
n for the retrieved sample. To estimate f0,

the number of unseen items, the Chao et al. [5] estimator is known

to do well [25, 26]. The Chao estimator relies on sample coverage

C and the estimated skew of the underlying popularity distribu-

tion. The latter is estimated via the information in the available fi
counts [5]. Recently, Hwang et al. [12] proposed an alternative esti-

mator for f0 that is more robust in the presence of little information

and utilizes a regression technique that exploits the information

available in all fi counts.

4.2 Indirect Sampling
Given a structured domain, the extracted entities for a node v can

be obtained either by queryingv directly or by indirect information

flowing to v by queries at other nodes connected to v . We refer

to the latter case as indirect sampling. Eventually, we have two

different kinds of samples: (i) those that are extracted by the entire
population of v , and (ii) those that are extracted by sampling

only a part of the population ofv . We use an example (Figure 2)

using the poset in Figure 1, to illustrate these two cases. Assume a

query q(k, 0) at node {EventType X1} whose result contains entities
only from node {X1,ST2}. The green nodes in Figure 2 are nodes

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

845

for which samples are obtained indirectly without querying them.

Notice, that all these nodes are ancestors of {X1,ST2}. We have:

• The samples for nodes {X1, C1} and {X1,ST2} are obtained by their

entire population since node {EventType X1} is an ancestor of

both and its population fully contains the populations of {X1,C1}

and {X1,ST1}.

• The samples for nodes { }, {Country C1} and {State ST2} are ob-

tained only by a part of their population since the population of

node {EventType X1} does not fully contain the populations of

these nodes.

Samples of both types are used to estimate the gain of a query.

To do so we merge the extracted entities for each node into a single

sample and treat the unified sample as being extracted from the

entire population. As we discuss later in Section 5, we develop

querying strategies that traverse the posetHD in a top-down ap-

proach, hence, the number of samples belonging in the first category,

i.e., samples retrieved considering the entire population of a node,

dominates the number of samples retrieved by considering only

part of a node’s population.

4.3 Exclude Lists and Negative Answers
A query qv (k,E) with E , ∅ issued at node v ∈ HD effectively

limits the sampling to a subset of the population corresponding to

node v . To estimate the expected return of such a query, we need

to update the estimates
ˆf0 and Ĉ before applying Equation (1), by

removing entities in E from the running sample for node v and

updating the frequency counts fi and sample size n. The above

requires that the exclude list is known, discussed in Section 5.1.

Finally, we consider the effect of negative answers on estimating

the gain of future queries. It is possible to issue a query at a specific

node v ∈ HD and receive no entities, i.e., we receive a negative an-

swer. This is an indication that either underlying entity population

of v is empty. In such a scenario, we assign the expected gain of

future queries at v and all its descendants to zero. Another type

of negative answer corresponds to issuing a query at an ancestor

node u of v and receiving no entities for v . In this case, we do not

update our estimates for node u as entities from other descendants

of u may be more popular than entities associated with u.

4.4 Direct Gain Estimation
The techniques reviewed in Section 4.1 result in negative bias when

the number of observed entities represents only a small fraction of

the entire population [12, 21]. This holds for the large and sparse

domains we consider. Bias is introduced as all techniques rely on

Equation (1). To eliminate negative bias, we propose a direct estima-

tor for the gain of queries qv (k,E) that does not use Equation (1).

We extend the approach in Hwang [12] and use a regression based

technique that captures the structural properties of the expected

gain function. The proofs for the results below are in [20].

Let S be the total number of entities in the population and pi the
abundance probability (i.e., popularity) of entity i . Given a sample

of size n (where n corresponds to the total sum of sizes for all

previously issued queries), defineK(n) to beK(n) =
∑S
i=1
(1−pi)n∑S

i=1
pi (1−pi)n−1

.

First, we focus on queries without an exclude list. Later we relax

this and discuss queries with exclude lists. We have the following

theorem on query gain:

Theorem 4.1 (Direct Gain Estimation). Given a node v ∈ HD
and a corresponding entity sample of size n, let f1 and f2 denote
the number of entities that appear exactly once (i.e., singletons) and
exactly twice respectively. Let G denote the number of new items
retrieved by a query q(m, ∅). We have:

G =
1

(1 + K ′
n+m)

(K
f1
n
− K ′

f1(1 − 1

n 2
f2
f1
)m

n +m
) (2)

where K = K(n) and K ′ = K(n +m).

All quantities apart from K and K ′ in Equation (2) are known.

The value of K can be estimated using the regression approach of

Hwang and Shen [12]. To estimate the value of K ′ for an increased

sample of size n +m, we first show that K increases monotonically

as the size of the running sample increases.

Lemma 4.2. The function K(n) =
∑S
i=1
(1−pi)n∑S

i=1
pi (1−pi)n−1

increases mono-

tonically, i.e., K(n +m) ≥ K(n),∀n,m > 0.

Given its monotonicity, wemodelK as a generalized logistic func-

tion of the form K(x) = A
1+exp(−G(x−D)) . As we observe samples

of different sizes for different queries we estimate K as described

above and therefore we observe different realizations of f (·). Thus,
we can learn the parameters of f and use it to estimate K ′. In the

presence of an exclude list of size l we follow the approach described

in Section 4.3 to update the quantities fi and n used above.

5 DISCOVERING QUERYING POLICIES
We now focus on the core component of CRUX responsible for

discovering querying policies that maximize the total number of

extracted entities by exploiting the structure of the input domain.

We introduce a multi-round adaptive optimization algorithm for

identifying good querying strategies. At each round we assume

access to a gain estimator for any query qv (k,E), constructed using
the techniques in the previous section. The gain of each query

can be viewed as a random variable. By issuing a query we get to

observe the value of this random variable, and using the previous

observations we decide which query to issue next. Our framework

builds upon ideas from the multi-armed bandit literature [4, 10],

with additional challenges:

• The number of nodes in HD is exponential in the number of

attributesAD describingD. Querying every node to estimate the

expected return for queries qv (k,E) is prohibitively expensive.

• Balancing the trade-off between exploitation/exploration [4] is

hard. The first refers to querying nodes with sufficient retrieved

entities, and hence, accurate estimates for their expected gain;

the latter refers to exploring nodes to avoid myopic policies.

• Optimizing all potential exclude lists (i.e., all subsets of observed

entities) leads to an exponential explosion. To limit the query

space we instead optimize over all potential query configurations

(k, l ,v).

5.1 Optimizing over Query Configurations
Instead of optimizing over all potential queries qv (k,E), we opti-
mize over all potential query configurations (k, l ,v). That is, we

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

846

do not optimize directly for the exclude list but rather for its size l .
Once we decide on l , the exclude list E is constructed following a

randomized approach, where l of the retrieved entities are included
in the list uniformly at random. Below, we denote a query config-

uration (k, l ,v) and a query qv (k,E) with |E | = l using the same

symbol q for convenience. We now need to estimate the gain for a

configuration (k, l ,v) instead of a query qv (k,E). When l = 0, i.e.,

E = ∅, then we use the techniques introduced in Section 4 directly.

When l , 0, we generate multiple instances of qv (k,E) queries us-
ing the configuration (k, l ,v) and use the techniques from Section 4

to estimate the expected gain of each. The exclude list of each query

is generated following the randomized approach described above.

Finally, we estimate the expected gain of configuration (k, l ,v) by
considering the average gain of all generated instances. The vari-

ance of the gain is also used to compute an upper bound on the

gain of the configuration (k, l ,v) as described next.

5.2 Balancing Exploration and Exploitation
The estimate of the expected gain of a query configuration (k, l ,v)
is based on a rather small sample of the underlying population—

exploiting this information at every round may lead to suboptimal

decisions. Hence, we need to balance the trade-off between exploit-

ing configurations with high estimated gain and those that have

not been selected many times. Formally, the latter corresponds to

upper-bounding the expected gain of each configuration with a

confidence interval that depends on the variance of the expected

gain and the number of times a query was issued [4].

Next, we use q to denote a query configuration (k, l ,v). Let r (q)
denote the expected gain of q. This is an estimate of the true gain

r∗(q). Let σ (q) be an error component on the gain of configuration

q chosen such that r (q) − σ (q) ≤ r∗(q) ≤ r (q) + σ (q) with high

probability. The parameter σ (q) should take into account both the

empirical variance of the expected gain and our uncertainty
about the gain of query configuration q if its has only been chosen

a few times. Given r (q) and σ (q), we assign a score to each configu-

ration by using a linear function of the quantity r (q) + σ (q). This
score prioritizes exploration when the variance or our uncertainty

is high, and thus, we could potentially discover a profitable new

configuration, and exploitation when the estimated gain is high.

Next, we discuss how we set σ (q).
We proceed in rounds and at each round select a query config-

uration q. Let nq,t be the number of times we have chosen q by

round t , and vq,t be the maximum value between some constant

(e.g., 0.01) and the empirical variance for the gain for q at round t .
The latter can be computed via bootstrapping over the retrieved

sample and applying the estimators from Section 4 over the boot-

strapped samples. Several techniques have been proposed in the

multi-armed bandits literature to compute parameter σ (q) [24], that
we can reuse.

5.3 A Multi-Round Querying Policy Algorithm
We now introduce a multi-round algorithm for solving the budgeted

entity enumeration problem (Algorithm 1). It takes as input the

poset HD , a set K of query size assignments, a set L of exclude

list size assignments and a budget τc . The algorithm also assumes

access to an oracle providing r (q) and σ (q, t) — t denotes the round

count — which characterize the upper gain of q, and an oracle

providing the query cost c(q). The algorithm has also access to

method ActiveQueryConf (see Section 5.4) returning the allowed

configurations per round.

Algorithm 1 Multi-round Extraction Algorithm

1: Input: HD : the hierarchy describing the entity domain; K : set of valid query size

assignments; L: set of valid exclude-list size assignments; τc : budget; r, σ : value
oracle access to upper-bounded gain for different query configurations; c : value
oracle access to the query configuration costs;

2: Output: E: a set of extracted distinct entities;

3: E ← {}

4: t ← 1 /* Initialize round counter */

5: Rembudget← τc /* Initialize remaining budget */

6: Q ← ActiveQueryConf(HD , ∅, NULL, K , L, t) /* Initialize active query configu-

rations */

7: while Rembudget > 0 and Q , {} do
8: q∗ ← arg maxq∈Q

r (q)+σ (q,t)
c (q) s.t. Rembudget − c(q∗) > 0

9: if q∗ is NULL then
10: break;

11: Rembudget← Rembudget − c(q∗) /* Update budget */
12: Given configuration q∗ = (k∗, l ∗, v∗) generate an exclude list E such that

|E | = l ∗ ;
13: Issue query qv

∗
(k∗, E)

14: E ← entities extracted by query qv
∗
(k∗, E)

15: E ← E ∪ E /* Update unique entities */

16: Q ← ActiveQueryConf(HD , Q, v∗ , K , L, t) /* Update active queries */
17: t ← t + 1 /* Increase round counter */

18: return E

Algorithm 2 ActiveQueryConf

1: Input: HD : the hierarchy describing the entity domain; Qold : the running set of
active query configurations; v∗: the node in HD associated with the last query;

K : set of valid query size assignments; L: set of valid exclude-list size assignments;

t : running round counter; r, σ : value oracle access to upper-bounded gain for

different query configurations;

2: Output: Qnew : the updated set of active query configurations;

3: if Qold is empty then
4: /* Initialize Set of Active Query Configurations */
5: /* Populate Qnew with all possible (k, l) configuration for the root of HD . */

6: Qnew ←
⋃
k∈K×l∈L {(k, l, root)}

7: else
8: /* Extend Set of Active Query Configurations */
9: Qnew ← Sold
10: for all d ∈ Set of Direct Descendant Nodes of v∗ do
11: Qnew ← Qnew ∪

⋃
k∈K×l∈L {(k, l, d)}

12: /* Remove Bad Query Configurations*/
13: /* Find maximum lower-bounded gain over all q in Qnew */

14: ψ ← maxq′∈Qnew (r (q
′) − σ (q′, t))

15: B ← All configurations q in Qnew with r (q) + σ (q, t) < ψ
16: Qnew ← Qnew \ B
17: return Qnew

Algorithm 1 proceeds as follows: First it initializes the set E

of extracted entities, the round count t , the remaining budget

Rembudget and the set of candidate queries Q (i.e., query con-

figurations to be considered) at the first round (Ln.3-6). Then it

proceeds in rounds and iteratively selects one query configuration

to be used until the total budget is utilized or the set of candidate

queries is empty (Ln. 7). At each round our algorithm performs the

following steps. It first detects a configuration in Q that maximizes

the score quantity
r (q)+σ (q,t)

c(q) under the constraint that the cost

c(q) is less or equal to the remaining budget (Ln. 8). If no such

configuration exists the algorithm terminates (Ln. 9-10). Otherwise,

the algorithm proceeds by executing a query corresponding to the

selected configuration q∗, updates the set of extracted entities, the

remaining budget, the set of active queries, and the round counter

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

847

(Ln. 11 - 17). Finally, Algorithm 1 returns the set of distinct entities

extracted (Ln. 18).

5.4 Updating the Set of Actions
We now introduce an algorithm to effectively limit the number of

query configurations considered at each round of Algorithm 1. To

do so we exploit the structure of posetHD and the gain estimates

for different configurations q = (k, l ,v). Let Q denote the set of

candidate query configurations. We propose an algorithm that adds
configurations to Q by traversing the input poset in a top-down

manner. These configurations (k, l ,v) correspond to nodes v that

are direct descendants of already queried nodes.

To limit the number of candidate configurations, we also remove
any bad query configurations from Q. A configuration q is defined

to be bad at round t when r (q)+σ (q, t) < maxq′∈Q (r (q
′)−σ (q′, t)).

Intuitively, we do not need to consider a configuration as long as

there exists another such that the upper-bounded gain of the former

is lower than the lower-bounded gain of the latter. This technique is

also adopted in multi-armed bandits to limit the number of actions

considered [10].

Our algorithm for determining the set of active queries for each

round is shown in Algorithm 2. It proceeds as follows: If the running

set of active queries is empty (Ln. 3), i.e., if we have issued no queries

previously, the set of active query configurations is initialized to

contain all potential configurations (k, l) for the root of the poset
HD (Ln. 6). Otherwise, the algorithm first adds all configurations

for the direct descendants of node v∗ to Qold (Ln. 9 - 11) and then

removes any bad configurations from the new set Qnew (Ln.13-16).

The algorithm terminates by returning the set Qnew .

6 EXPERIMENTAL EVALUATION
We present an empirical evaluation of CRUX on both real and

synthetic datasets. The evaluation is performed on an Intel Core i7

3.7 GHz 32GB machine; algorithms are implemented in Python 2.7.

6.1 Experimental Setup
Gain Estimators. We evaluate the gain estimators below:

• Chao92Shen, combines the methodology proposed by Chao [5]

with Shen’s formula, i.e., Equation (1).

• HwangShen, combines the regression-based approach proposed

by Hwang and Shen [12] with Shen’s formula.

• NewRegr, our new technique proposed in Section 4.4.

All estimators are coupled with bootstrapping to estimate the gain

variance to upper bound the return of a query as in Section 5.2.

Entity Extraction Algorithms.We evaluate the following algo-

rithms for crowdsourced entity extraction:

• Rand, executes random queries until all the available budget is

used. It selects a random node from HD and a random query

configuration (k, l) valid with the k , l input.

• RandL, same as Rand but only executes queries at the leaf nodes
ofHD until all the available budget is used.

• BFS, performs a breadth-first traversal of HD , executing one

query at each node. The query configuration is randomly selected

from all valid combinations. Negative-answers are used to prune

non-populated parts ofHD .

• RootChao, corresponds to the entity extraction scheme of Trush-

kowsky et al. [25, 26] that uses Chao92Shen to measure the gain

of an additional query. RootChao is agnostic to the structure

of the input domain, thus, equivalent to issuing queries only

at the root node of HD . Since the authors only propose a pay-

as-you-go scheme, we coupled this algorithm with Alg. 1 to

optimize for the input budget constraint. We allow the algorithm

to consider different query configurations (k, l) but restrict the
possible queries to the root node.

• GSChao, GSWang, GSNewR, are different variations of CRUX.
These algorithms correspond to our proposed graph search query-

ing policy algorithm (Section 5.3) coupled with Chao92Shen,

HwangShen and NewRegr respectively.

• GSExact, is a near-optimal, omniscient baseline that allows us to

see how far off our algorithms are from an algorithmwith perfect

information. We combine the algorithm proposed in Section 5.3

with an exact computation of the return or gains from queries.

For the results reported below, we run each algorithm ten times

and report the average gain achieved under the given budget.

Querying Interface. For all datasets we consider generalized queries
qv (k,E). The nodes v are set based on the input poset and (k, l)
takes values in {(5, 0), (10, 0), (20, 0), (5, 2), (10, 5), (20, 5), (20, 10)}. The

cost of each query is computed using an additive model over three

terms that depend on the characteristics of the query. The cost

terms are: (i) CostK that depends on the number of responses k
requested from a user, (ii) CostL that depends on the size of the

exclude list l in the query, and (iii) CostSpec that depends on the

specificity of the query qs . We define the specificity of a query to

be equal to the number of attributes assigned non-wildcard values

for the node u ∈ HD the query corresponds to.

We consider two types of cost functions. The first is a linear func-

tion where the overall cost for a query with configuration (k, l)with
specificity s is:Cost (q) = α · k

max. query size
+β · l

max. ex. list size
+γ · s

max. specificity
.

The cost of a query should be significantly increased when an ex-

clude list is used, thus, β should be set to a larger value than α and

γ . Different (α , β ,γ) configurations were tested. We also consid-

ered a step cost function CostK + CostL, where CostK and CostL
are set as follows: (k,CostK) = {(5, 0.20), (10, 0.60), (20, 0.80)} and

(l ,CostL) = {(0, 0), (2, 0.10), (5, 0.50), (10, 0.70)}. We observed that

the relative performance of the extraction algorithms for different

cost functions was the similar. Below, we mention the cost function

we used for each experiment we report.

Data.We use two datasets, Eventbrite and PeopleInNews, where

the entities in the first correspond to events while the entities in

the second to people. Eventbrite is a large real-world dataset where

responses from workers are simulated using real-world events,

while PeopleInNews is a small real-world dataset where responses

from workers are obtained via Amazon’s Mechanical Turk (AMT).

Next, we describe each dataset in detail.

The first dataset was extracted from Eventbrite (Section 1). We

collected a dataset spanning events of 19 different types, such as

rallies, tournaments, conferences, and conventions, over themonths

of October and November 2014. The dataset has three dimensions:

(i) event type, (ii) location, and (iii) time, with location and time

being hierarchically structured. The poset of the domain can be

fully specified if we consider the cross product across the possible

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

848

values for location, event type and time. For each of the location,

time, type dimensions we also consider a specialwildcard value. The
poset has 8,508,160 nodes and 57,805 distinct events overall. Only

175,068 nodes are populated leading to a rather sparsely populated

domain. Due to lack of popularity proxies for the extracted events,

we assigned a popularity value in (0, 10] to each event.

To construct the second dataset, we used Amazon’s Mechanical

Turk to extract people “in the news”, like in Example 1.1. We asked

workers to extract the names of people belonging to four different

occupations from five different news portals. We issued 20 HITS

for each leaf node of the domain’s poset, resulting in 600 HITS in

total, and 1,245 unique people in total. The popularity value of each

extracted entity was assigned to be equal to the number of distinct

workers that reported it.

6.2 Experimental Results
We evaluate different aspects of the extraction techniques.

How does CRUX compare against baselines?We evaluated the

performance using the total entities extracted for different budgets.

The results for Eventbrite and PeopleInNews are shown in Fig-

ure 3(a) and Figure 3(b) respectively. As shown, CRUX, i.e., GSChao,

GSHwang, GSNewR, outperforms all baselines by at least 30% across
both datasets. This is expected as CRUX not only exploits the struc-

ture of the domain to diversify entity extraction and target even

less-popular entities but also optimizes the queries for the given

budget. Against the naive baselines Rand, RandL, and BFS, we see

that GSChao, GSHwang and GSNewR extracted more than 200%

more entities for the sparse Eventbrite domain and around 100%

more entities for small budgets and 54% for larger ones when con-

sidering the dense PeopleInNews. For Eventbrite and a budget of 50

all CRUX schemes extracted more than 600 events while Rand and

RandL extracted 1.1 and 0.2 events and BFS extracted 207.7 events,

an improvement of over 180%.

Against RootChao, we see that GSChao, GSHwang and GSNewR

were able to retrieve up to 30% more entities for Eventbrite and

400% more entities for the PeopleInNews dataset. This difference is

because the gain achieved by RootChao saturates at a faster rate

than GSChao, GSHwang and GSNewR as the cost increases. This

is because RootChao issues queries at the root of the poset, and

hence, it is not able to extract entities belonging to the long tail.

For PeopleInNews, RootChao performs poorly even compared to

the naive baselines Rand, RandL and BFS. Again, this is due to the

skew of the popularity distribution.

How does CRUX compare against a near-optimal policy dis-
covery algorithm?We evaluated the different variations of CRUX,

i.e., GSChao, GSHwang and GSNewR, against the near-optimal

querying policy discovery algorithm GSExact. The results can be

found in our technical report [20]. In short, we find that our pro-

posed techniques are not too far away from GSExact which has

perfect information about the gain of each query; for example, for

Eventbrite, the difference in extractions was less than 25%.

Howdo the different techniques comparewith respect to the
total number of queries issued during extraction? We com-

pared RootChao against the CRUX algorithms GSChao, GSHwang

and GSNewR with respect to the total number of queries issued dur-
ing extraction. This evaluation metric is a surrogate for the overall

 0

 400

 800

 1300

 10 20 50 80 100

E
x
tr

a
c
te

d
 E

v
e
n
ts

Budget

Extraction Performance - Eventbrite

 0

 75

 150

 250

 350

 10 20 50 80 100

E
x
tr

a
c
te

d
 P

e
o
p
le

Budget

Extraction Performance - PeopleInNews

 0
 75

 150
 250
 350

 10 20 50 80 100Ex
tra

ct
ed

 P
eo

pl
e

Budget

Extraction Performance - People’s Domain

Rand
RandL

BFS
RootChao

GSChao
GSHwang
GSNewR

Figure 3: A comparison of the CRUX techniques against
baselines for (a) Eventbrite and (b) PeopleInNews.

 0
 200
 400
 600
 800

 1000
 1200

 0 20 40 60 80 100 120 140 160T
o
ta

l
E

x
tr

a
c
te

d
 E

n
ti
ti
e
s

Total Queries

Total Gain vs. Number of Queries

RootChao
GSChao

GSHawng
GSNewR

Figure 4: The number of events extracted by different algo-
rithms for Eventbrite versus the total number of queries.
latency of the crowd-extraction process. Figure 4 shows the results

for a run for Eventbrite and a budget of 80. As shown, RootChao
requires almost up to 200% more queries to extract the same number

of entities as our techniques, thus, exhibiting significantly larger

latency compared to GSChao, GSHwang and GSNewR.

How do different CRUX versions traverse the poset and use
query configurations? We first measure how many queries each

algorithm issues at various levels of the poset. In Figure 5, we plot

the number of queries (per level) issued by our algorithms when the

budget is set to 10 and 100 respectively for 10 runs of PeopleInNews.

For a small budget, all algorithms prefer queries at higher levels.

The inner nodes are preferred and only a small number of queries is

issued at the root (i.e., level one) of the poset. This is justified if we

consider that due to their popularity, certain entities are repeatedly

extracted, thus, leading to a lower gain. As the budget increases,

we see that all algorithms tend to consider more specialized queries

at deeper levels of the poset. It is interesting to observe that all

algorithms issue the majority of their queries at level two nodes,

while GSExact, which has perfect information, focuses mostly on

leaf nodes. Thus, our techniques could benefit from being more ag-

gressive at traversing the poset and reaching deeper levels; overall,

our techniques may end up being more conservative to cater to a

larger space of posets and popularity distributions.

In Figure 6, we plot the query configurations chosen by our

algorithms when the budget is set to 10 and 100. GSExact always

prefers queries with k = 20 and l = 0 for both small and large

budgets. On the other hand, our algorithms issue more queries

of smaller size when operating under a limited budget and prefer

queries of larger size for larger budgets. GSNewR was the only one

issuing queries with exclude lists of different sizes, thus, exploiting

the rich diversity of query interfaces.

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

849

 0

 5

 10

 15

 20

GSChao GSHwang GSNewR GSExact

N
u

m
b

e
r

o
f

In
v
o

c
a

ti
o

n
s

Lv.1
Lv.2
Lv.3

 0

 20

 40

 60

 80

 100

GSChao GSHwang GSNewR GSExact

N
u

m
b

e
r

o
f

In
v
o

c
a

ti
o

n
s

Lv.1
Lv.2
Lv.3

Figure 5: The number of queries issued at different levels
when budget is set at 10 or 100.

 0

 5

 10

 15

 20

GSChao GSHwang GSNewR GSExact

N
u

m
b

e
r

o
f

In
v
o

c
a

ti
o

n
s

(5,0)
(5,2)

(10,0)
(10,5)
(20,0)
(20,5)

(20,10)

 0

 20

 40

 60

 80

 100

GSChao GSHwang GSNewR GSExact

N
u

m
b

e
r

o
f

In
v
o

c
a

ti
o

n
s

(5,0)
(5,2)

(10,0)
(10,5)
(20,0)
(20,5)

(20,10)

Figure 6: The query configurations used when budget is set
at 10 or 100.
How effective are different estimators at predicting the gain
of additional queries? GSNewR was able to outperform GSChao

and GSHwang for Eventbrite but the opposite behavior was ob-

served for PeopleInNews. To understand the relative performance

of the estimators, we measure their error at predicting the number

of new retrieved entities for different query configurations for both

Eventbrite and PeopleInNews. In summary, for large and sparse do-

mains, NewRegr slightly outperforms Chao92Shen and HwangShen

for certain queries. For example, for k = 10, l = 5, Chao92Shen has

a relative error of 0.58, HwangShen had a relative error of 0.7, and

NewRegr had a relative error of 0.29. For smaller, dense domains,

such as PeopleInNews, NewRegr offers better gain estimates for

small query sizes, but as the query size increases, hence, a larger

portion of the population is observed, Chao92Shen outperforms

both regression-based techniques. Detailed results can be found in

our technical report [20].

7 RELATEDWORK
Prior work related to the techniques proposed in this paper can be

placed in a few categories; we describe each of them in turn: We

have already discussed prior work on crowdsourced extraction or

enumeration [18, 25] in the introduction.

Knowledge Acquisition Systems. Recent work has also consid-

ered the problem of using crowdsourcing within knowledge acquisi-

tion systems [13, 15, 27]. This line of work suggests using the crowd

for curating knowledge bases and for gathering additional informa-

tion to be added to the knowledge base, instead of augmenting the

set of entities themselves.

DeepWeb Crawling. A different line of work has focused on data

extraction from the deep web [14, 22] where data is obtained by

querying a form-based interface over a hidden database and extract-

ing results. Sheng et al. [22] provide near-optimal algorithms that

exploit the exposed structure of the underlying domain to extract

all the tuples present in the hidden database. Our goal is similar in

that we also extract entities via a collection of interfaces. Unlike

our setting, answers from a hidden database are deterministic, i.e.,

a query will always retrieve the same top-k tuples. So, it suffices to

ask each query precisely once, making it much simpler.

8 CONCLUSION
We studied the problem of crowdsourced entity extraction over

large and diverse data domains. We proved that the problem of bud-

geted crowdsourced entity extraction is NP-hard. We introduced

CRUX, a novel crowdsourced entity extraction framework, that

combines statistical techniques with an adaptive optimization algo-

rithm to maximize the total number of unique entities extracted.

We proposed a new regression-based technique for estimating the

gain of further querying when the number of retrieved entities is

small with respect to the total size of the underlying population.

We also introduced a new algorithm that exploits the often known

structure of the underlying data domain to devise adaptive query-

ing strategies. CRUX extracts up to 300% more entities compared to

baselines, and for large sparse entity domains is at most 25% away

from an omniscient adaptive querying strategy.

Acknowledgements.We acknowledge support from grant IIS-121-

8367, IIS-1652750, and IIS-1815538 awarded by the NSF and grant

W911NF-18-1-0335 awarded by the Army.

REFERENCES
[1] Mechanical Turk. http://mturk.com.

[2] Amazon Product Categories, http://services.amazon.com/services/soa-approval-

category.htm . 2015.

[3] Y. Amsterdamer et al. OASSIS: query driven crowd mining. SIGMOD, 2014.

[4] P. Auer. Using confidence bounds for exploitation-exploration trade-offs. JMLR,
3, 2003.

[5] A. Chao and S. M. Lee. Estimating the Number of Classes via Sample Coverage.

JASA, 87(417):210–217, 1992.
[6] T. Cheng, H. W. Lauw, and S. Paparizos. Fuzzy matching of web queries to

structured data. In ICDE, 2010.
[7] N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bohannon,

S. Keerthi, and S. Merugu. A web of concepts (keynote). In PODS, 2009.
[8] O. Deshpande et al. Building, maintaining, and using knowledge bases: A report

from the trenches. In SIGMOD, 2013.
[9] P. Donmez, J. G. Carbonell, and J. Schneider. Efficiently learning the accuracy of

labeling sources for selective sampling. In KDD, 2009.
[10] E. Even-Dar et al. Action elimination and stopping conditions for the multi-armed

bandit and reinforcement learning problems. JMLR, 7, 2006.
[11] L. Getoor and A. Machanavajjhala. Entity resolution in big data. In KDD, 2013.
[12] W.-H. Hwang and T.-J. Shen. Small-sample estimation of species richness applied

to forest communities. Biometrics, 66(4), 2010.
[13] L. Jiang, Y. Wang, J. Hoffart, and G. Weikum. Crowdsourced entity markup. In

CrowdSem, 2013.

[14] X. Jin, N. Zhang, andG. Das. Attribute domain discovery for hiddenweb databases.

SIGMOD, 2011.

[15] S. K. Kondredi et al. Combining information extraction and human computing

for crowdsourced knowledge acquisition. In ICDE, 2014.
[16] D. Lan, K. Reed, A. Shin, and B. Trushkowsky. Dynamic filter: Adaptive query

processing with the crowd. In HCOMP’ 17, pages 118–127, 2017.
[17] A. Marcus and A. Parameswaran. Crowdsourced data management: Industry

and academic perspectives. Foundations and Trends in DB, 6(1-2):1–161, 2015.
[18] H. Park and J. Widom. Crowdfill: A system for collecting structured data from

the crowd. InWWW, 2014.

[19] A. J. Quinn and B. B. Bederson. Asksheet: Efficient human computation for

decision making with spreadsheets. CSCW, 2014.

[20] T. Rekatsinas, A. Deshpande, and A. Parameswaran. Technical report,

https://arxiv.org/abs/1502.06823. 2019.

[21] T. Shen, A. Chao, and C. Lin. Predicting the number of new species in further

taxonomic sampling. Ecology, 84(3), 2003.
[22] C. Sheng, N. Zhang, Y. Tao, and X. Jin. Optimal algorithms for crawling a hidden

database in the web. PVLDB, 5(11):1112–1123, July 2012.

[23] A. Singhal. Introducing the knowledge graph: things, not strings. Official Google
Blog, May, 2012.

[24] O. Teytaud, S. Gelly, and M. Sebag. Anytime many-armed bandits. In CAP, 2007.
[25] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Crowdsourced enumer-

ation queries. ICDE, pages 673–684, 2013.

[26] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar. Answering enumeration

queries with the crowd. Commun. ACM, 59(1):118–127, 2016.

[27] R. West, E. Gabrilovich, K. Murphy, S. Sun, R. Gupta, and D. Lin. Knowledge base

completion via search-based question answering. WWW, 2014.

Session: Long - Machine Learning Themes II CIKM ’19, November 3–7, 2019, Beijing, China

850

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Structured Data Domains
	2.2 Entities and Entity Extraction Queries
	2.3 Query Response
	2.4 Query Cost

	3 Budgeted Extraction
	3.1 Problem Definition
	3.2 Query Response Model
	3.3 CRUX Overview

	4 Estimating the Gain of Queries
	4.1 Single-Node Estimators without Exclusion
	4.2 Indirect Sampling
	4.3 Exclude Lists and Negative Answers
	4.4 Direct Gain Estimation

	5 Discovering Querying Policies
	5.1 Optimizing over Query Configurations
	5.2 Balancing Exploration and Exploitation
	5.3 A Multi-Round Querying Policy Algorithm
	5.4 Updating the Set of Actions

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References

