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ABSTRACT

Crowdsourcing is essential for collecting information about real-
world entities. Existing crowdsourced data extraction solutions use
fixed, non-adaptive querying strategies that repeatedly ask work-
ers to provide entities from a fixed domain until a desired level
of coverage is reached. Unfortunately, such solutions are highly
impractical as they yield many duplicate extractions. We design an
adaptive querying framework, CRUX, that maximizes the number
of extracted entities for a given budget. We show that the prob-
lem of budgeted crowdsourced entity extraction is NP-Hard. We
leverage two insights to focus our extraction efforts: exploiting the
structure of the domain of interest, and using exclude lists to limit re-
peated extractions. We develop new statistical tools to reason about
the number of new distinct extracted entities of additional queries
under the presence of little information, and embed them within
adaptive algorithms that maximize the distinct extracted entities
under budget constraints. We evaluate our techniques on synthetic
and real-world datasets, demonstrating an improvement of up to
300% over competing approaches for the same budget.
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1 INTRODUCTION

Structured data repositories, such as knowledge bases, taxonomies,
and hierarchies, enable many end-user applications including key-
word search, product catalogs, event detection and recommender
systems in a variety of companies, such as Google [23], Microsoft [6],
Yahoo [7], Walmart [8], and Amazon [2]. The majority of these
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Table 1: Extracting people from the news. Percentage of en-
tities reported by at least two different workers for each
(occupation, news portal).

News Portal | Actors/Singers | Athletes | Politicians
WashPost 47% 55% 56%
NY Times 41% 65% 53%
HuffPost 45% 63% 60%
USA Today 54% 45% 57%
WSJ 42% 77% 57%

repositories are constructed using automated extraction schemes
that target popular text and web corpora. As a result, they contain
information primarily on head data, i.e., popular entities and their
attributes, comprising a tiny fraction of all entities. There has there-
fore been increasing interest in augmenting this with information
about the so called long-tail, not-so-popular entities, to reduce the
sparsity of present-day structured data repositories. Crowdsourc-
ing is a natural solution to extract these entities; examples of such
efforts include Google’s Guides', and Facebook’s Professional Ser-
vices?. In fact, a recent study reports that a number of companies
use crowdsourcing for entity extraction [17].

Motivated by the aforementioned applications, we study crowd-
sourced entity extraction, i.e., the problem of collecting entities by
asking crowd workers to list entities from a domain of interest.
Recent work from Trushkowsky et al. [25, 26] has studied crowd-
sourced entity extraction using fixed questions like “give me an-
other entity”, extending species estimation techniques to assess
the degree of completeness of their extraction. Unfortunately, due
to the cost of human labor and the inherent redundancy in the
answers of crowd workers, crowdsourced entity extraction using
this fixed form of questions can become highly impractical. We
use a small pilot experiment on Amazon’s Mechanical Turk [1] to
illustrate this.

Example 1.1. Our goal was to extract people from the news. We
asked workers to list people of different occupations mentioned
in five major US news portals during the period of a single day. In
particular, we asked workers to provide us with “Actors/Singers”,
“Athletes”, and “Politicians” listed in “The New York Times”, “Huff-
ington Post”, “The Washington Post”, “USA Today” and “The Wall
Street Journal”. For each newspaper we provided a link to the news-
paper’s homepage and for each (occupation, news portal) combina-
tion, e.g., “Athletes mentioned in NY Times”, we asked 30 distinct
workers to provide us with five entities, leading to 150 extractions
per combination.

Table 1 shows the percentage of entities that were provided
by at least two different workers for different <occupation, news
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portal> combinations. As shown, on average, more than half of
the extracted entities were reported by at least two workers, while
there are cases where the percentage of duplicate entities was as
high as 77%. This means that at least 77% of the cost (in compensat-
ing workers for their answers) is simply wasted. Thus, a static or
fixed querying strategy that issues the same question repeatedly
to crowd workers, such as in Trushkowsky et al. [25], leads to a
large number of repeated extractions of the popular entities, and
low coverage of the less-popular entities. In fact, the not-so-popular
entities may only be extracted after a very long time (translating
to high cost and effort) or may never be extracted at all. It is ex-
actly this abundance of duplicate extractions that can make
fixed-query crowdsourced data extraction impractical.

Our Approach and Challenges. Our goal is to reduce redundancy
in crowdsourced data extraction by leveraging two key insights
that allow us to adaptively issue fine-grained queries, i.e., queries
that target only a subspace of the entity-domain, to the crowd:

1) Exploit Structure to Partition the Search Space. Most do-
mains that one may choose to extract entities from are structured,
i.e., domains are associated with a collection of attributes, each of
which typically exhibits hierarchical structure. One can leverage the
existence of such attributes to choose queries from a much richer
space, considering all combinations of values for these attributes.
For example, if we had a hierarchy associated with athletes in our
pilot experiment, we could leverage that to partition our extrac-
tion space and extract tennis players, marathon runners, or javelin
throwers, by asking workers questions like provide a marathon
runner mentioned in the New York Times today. It is easy to see that
targeted queries which focus on disjoint partitions of the underlying
entity domain can drastically limit duplicate extractions.

2) Use Exclude Lists. We can also extend typical crowd queries to
include an exclude list, e.g., “list a person in the New York Times
that is not Donald Trump”. Excluding popular entities can help us
identify new distinct entities much faster.

Overall, fine-grained queries of the form above enable us to de-
sign adaptive querying strategies that aim to limit the number of
duplicate extractions. We refer to a querying strategy as adaptive
if it analyzes the entities returned in previously issued queries to
dynamically adapt further queries in two ways: (i) either by limit-
ing their scope to a subdomain of the overall entity domain, thus,
exploiting the structure of the entity domain, or (ii) by introducing
an exclude list to them to prevent already extracted entities from
bing extracted again. To guarantee that our methods will lead to
efficient crowdsourced entity extraction techniques, we study a
budgeted version of the problem, where our goal is to identify the
adaptive querying strategy that maximizes the number of distinct
retrieved entities for a given budget.

Unfortunately, designing adaptive querying policies comes with
new challenges. The main question we seek to address is: what
is the most profitable query to issue next? Given a cost model for
crowd queries, we need to estimate the gain of a new query, i.e.,
estimate how many new entities would be extracted from a query
in expectation, given the already extracted data. In addition, we
also need to deal with the sparsity and the exponential size of the
query space. Many of the attribute combinations are likely to be
empty, i.e., the corresponding queries are likely to have no answers
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(e.g., there may not be few, if any, javelin throwers living in New
York); avoiding such queries is essential to keep monetary cost low.
Finally, we need to deal with the interrelationships across queries.
Many of the queries are coupled. For example, the results from a few
queries to “list an athlete in today’s New York Times” can inform
whether issuing queries to “list a Baseball player in today’s New
York Times” is useful or not. Thus, identifying the right order to
ask queries is highly important. Overall, we want to maximize the
number of distinct entities extracted with the minimal number of
queries against crowd workers.

To address the above challenges we introduce CRUX, a frame-
work for efficient CRowdsoUrced data eXtraction under budget
constraints. We propose a collection of statistical techniques for es-
timating the gain of further queries, i.e., the number of new distinct
entities extracted, for any attribute combination. Our techniques
make use of the extracted entities in previously issued queries to
derive accurate estimates for new queries. Eventually we covert the
problem of budgeted crowdsourced entity extraction to an adaptive
optimization problem to detect the optimal queries to be issued
against the crowd.

Prior Work. As mentioned previously, Trushkowsky et al. [25, 26]
describe the use of species estimation techniques to estimate the
completeness of extracted entities from the crowd. Other work [3]
has studied the problem of leveraging crowd workers to provide
recommendations to users by listing entities relevant to user queries.
These papers ask human workers to “list one more entity”, without
leveraging structure or an exclude list. For example, if we consider
the task of enumerating all people mentioned in today’s issue of
the New York Times, previous techniques focus on issuing the
query “list one person in today’s New York Times” repeatedly
against the crowd until a certain desired degree of completeness
is achieved. However, all these approaches suffer from the same
problem identified earlier: severe wasted cost, with only the popular
entities being extracted repeatedly. As we will see in Section 6, there
are scenarios where the existing state-of-the-art methods focus
only on the head entities and are only able to retrieve less than
20% of the total entities for a fixed budget while our techniques
can extract more than 75% of the total entities. Other recent work
employs adaptive querying for filtering, as opposed to extraction,
problems [16]. We discuss other related work in Section 7.
Contributions. Our main contributions are:

o Formalization and Characterization of Hardness. We formalize
the notion of generalized entity extraction queries that can also
include an exclude list. Such queries are of the type “List k en-
tities with attributes X that belong in domain D and are not in
{A, B, ...}”. We also provide statistical techniques to estimate the
gain, i.e., the number of newly extracted distinct entities, for
generalized queries. We prove that this budgeted crowdsourced
entity extraction problem is NP-Hard.

o Gain Estimation for Generalized Queries. We develop a new tech-
nique to estimate the gain of generalized queries in the pres-
ence of little information, i.e., when only a small portion of
the underlying entity population has been observed. We em-
pirically demonstrate its effectiveness when extracting entities
from sparse domains.
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o Adaptive Querying Strategies. We propose an algorithmic frame-
work that exploits the structure of the entity domain to maximize
the number of extracted entities under budget constraints by tar-
geting tail entities. We view the problem of entity extraction as
a multi-round adaptive optimization problem. At each round we
exploit the available information about entities obtained by pre-
vious queries to adaptively select the next query that maximizes
the overall cost-gain trade-off.

We evaluate our techniques on both real-world and synthetic
data and show that CRUX extracts up to 300% more entities com-
pared to a collection of baselines, and for large entity domains is
at most 25% away from an omniscient adaptive querying strategy
with perfect information.

The remainder of the paper is organized as follows: In Section 2
we formalize the notion of a structured data domain, in Section 3
we define the problem of budgeted crowdsourced entity extraction
and show that the problem is NP-hard. In Section 4, we describe
techniques for estimating the gain of further queries. Then in Sec-
tion 5, we introduce an algorithm for discovering the most profitable
queries to be issued against the crowd. In Section 6 we present an
empirical evaluation for CRUX on both real-world and synthetic
data from two distinct application domains.

2 PRELIMINARIES

We formalize the problem of crowdsourced entity extraction over
structured domains.

2.1 Structured Data Domains

Let D be a data domain described by a set of discrete attributes
Ap = {A1,Az,...,Ayz}. Let dom(A;) denote the domain of each
attribute A; € Ap. Each attribute A; can also be hierarchically
organized. Consider Eventbrite (www.eventbrite.com), an online
event aggregator, that uses crowdsourcing to compile a directory
of events, such as political rallies and concerts. Events are fully
described by their location, type, date and category. Here, entities in
the data domain D correspond to events. The attributes describing
the entities in D are Ap = {“Event Type”, “Location”, “Date”},
with “Location” and “Date” being hierarchically organized.

The domain D can be viewed as a poset, i.e., a partially ordered
set, corresponding to the cross-product of all available hierarchies>.
Part of the poset corresponding to the previous example is shown
in Figure 1. We denote the poset for a domain D as Hp. As shown
in Figure 1, nodes in the poset correspond to configurations where
only a subset of the attributes in Ap are specified while others are
allowed to take any value. For example the root of the poset {} has
no specified attributes, corresponding to queries of the form “list an
event”. Nodes at lower levels, such as {X1} and {C1}, correspond to
queries where the event type and location are specified respectively.

2.2 Entities and Entity Extraction Queries

Entities. Our goal is to extract entities from domain D. Each entity
e can be uniquely associated with one of the leaf nodes in the hier-
archy Hp; that is, there is a unique combination of attribute values
Ai, ..., Ay characterizing each entity. For example, in Eventbrite,

3Note that D is not a lattice since there is no unique infimum.
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Figure 1: Part of the poset for the domain of Eventbrite.
each event is of a specific type, takes place in a specific city, and on
a specific day.

Queries. We focus on generalized extraction queries that can be
issued to crowd workers. A query ¢ is said to be associated with a
node v € Hp when g% contains predicates that correspond to the
value combination for Ap associated with v. For example, if we
consider the poset in Figure 1 a query for node {X1} has a predicate
EventType = X1. Hence, workers are required to provide events
that satisfy this predicate.

There are three types of queries g°: (i) Single entity queries where
workers are required to provide only “one more” entity matching
the predicates of the query, (ii) queries of size k where workers are
asked to provide k distinct entities for a query ¢, and (iii) exclude
list queries where workers are additionally provided with a list E of
I entities that have already been extracted and they are required
to provide k distinct entities that are not present in the exclude
list. It is easy to see that the last variation generalizes the previous
two. Therefore, in the remainder of the paper, we will only consider
queries using the third configuration. We refer to these queries as
generalized queries. To describe a generalized query, we use the
notation g (k, E) denoting a query of size k with an exclude list
E of length [ that is associated with node v € Hp. We denote the
configuration for a query as (k, [, v).

2.3 Query Response

We consider a querying interface that asks human workers to not
only list entities but to also provide, for each entity, the values for
its attributes in Ap that are not specified in the predicates of q. For
example, if the query is “list one concert in Manhattan, New York”,
with k = 1, E = 0, the worker gives us one concert in Manhattan,
New York, but also gives us the day on which the concert will
take place (here, the missing, unspecified attribute) and the type of
concert, i.e., rock concert. If the query is “a concert in the US”, with
k = 1, E = (, the human worker gives us one concert in the US, but
also gives the day on which the concert will take place, as well as
the specific city. If less than k entities are present in the underlying
population, workers have the flexibility to report either an empty
answer or a smaller number of entities.

While getting additional attribute values for entities is not strictly
necessary, this information allows us to assign an extracted entity
to all relevant nodes in Hp. Furthermore, in most practical appli-
cations, it is useful to get the values of the missing attributes to
organize and categorize the extracted entities better. Similar query
interfaces that ask users to fully specify the attributes of entities
have been proposed in recent work [19]. That said, our techniques
still apply even if workers do not provide all attributes: in such a
setting, entities will be assigned to interior nodes but not to leaves.
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Often, workers unwittingly provide the same entity, resulting in
duplicates. Resolving duplicates during extraction is crucial for two
reasons: (i) they are used to estimate the completeness of extracted
entities, and thus, reason about the gain of additional queries, and
(ii) they can be used to resolve erroneous values for the attributes
of the extracted entities. In practice, standard entity resolution and
data fusion techniques [11] can be used to address this problem.
Given that we obtain information about several attributes of entities
from the crowd, we can apply simple rules that match the entity
attribute values to detect duplicates and resolve erroneous values.
Additional worker quality detection techniques that consider lim-
ited ground truth data [9] can be used to determine the accuracy of
workers. During our experiments, we found that simple data fusion
techniques were sufficient to resolve noisy labels and duplicates. So,
for this paper, we focus on devising near-optimal adaptive crowd
querying strategies for entity extraction.

2.4 Query Cost

In a typical crowdsourcing marketplace, tasks have different costs
based on their difficulty. While our algorithms works with any cost
function, we consider a cost function c(+) that obeys the following
properties: (a) given a query with fixed size, its cost should increase
(or remain the same) as the size of its exclude list should increase, (b)
given a query with a fixed exclude list size, its cost should increase
(or remain the same) as the number of requested answer increases,
and (c) given a query with fixed size and exclude list size, its cost
should increase (or remain the same) as the query contains more
predicates, i.e., it corresponds to nodes v at the lower-levels of Hp.
The cost function is fixed upfront by the interface-designer based
on the amount of work involved.

3 BUDGETED EXTRACTION

We now define budgeted crowd entity extraction over structured
domains and present an overview of our framework.

3.1 Problem Definition

The problem of crowdsourced entity extraction seeks to extract en-
tities that belong to D. For large entity structured domains, one
may need to issue a series of entity extraction queries at multiple
nodes in Hp—often overlapping with each other—to ensure that
the coverage across the domain is maximized. We refer to a series
of generalized g% (k, E) queries at different nodes v € Hp as a
querying policy.

Let 7 denote a querying policy. A policy 7 can select a query
q° (k, E) multiple times. Let C(r) denote the overall monetary cost
of policy 7. We define the gain of =, denoted by E(xr), to be the
total number of unique entities extracted when following 7. There
is a natural trade-off between the gain (i.e., the number of extracted
entities) and the cost of policies.

We require that the user will only provide a monetary budget z..
The poset Hp and the possible query size and exclude list size con-
figurations (k, [) for each node are given as input by the application
designer. Our goal is to identify the querying policy that maximizes
the number of retrieved entities under the given budget constraint:

ProBLEM 1 (Budgeted Crowd Entity Extraction). Let D be
an entity domain characterized by a poset Hp. For each nodev € Hp,
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let K¥ and LY be the sets of allowed query sizes and exclude list sizes
for queries at node v. Let 7. be a budget on the total cost of issued
queries. Find a querying policy n* using queries q° (k, E) withk € K?
and |E| =1 € L? over nodes v € Hp that maximizes E(r*), the
number of unique entities extracted, under the constraint C(n*) < .

Note that the optimal policy not only specifies the nodes at which
queries will be executed but also the size and exclude list of each
query. The cost of a querying policy 7 is C() = 2 4e ¢(q), Where
the cost of each query ¢ is defined according to a cost model
specified by the user, is easy to compute. However, the number
of unique entities extracted by a policy is not known upfront and
needs to be estimated as we discuss in Section 4. Moreover, the
problem of finding an optimal querying policy is NP-hard.

THEOREM 3.1 (NP-Hardness). Problem 1 is NP-hard.

The proof is provided in our technical report [20] (with all other
proofs) and is based on a reduction from the unbounded knapsack
problem. This problem is a variation of the original 0-1 knapsack
problem that places no upper bound on the number of copies of
each kind of item.

Finally, computing the total cost of a policy 7 is easy. However,
the gain &(x) of a policy n is unknown as we do not know in
advance the entities corresponding to each node in Hp, and hence,
needs to be estimated (see Section 4).

3.2 Query Response Model

To reason about the occurrence of entities as response to specific
queries, we assume that each entity has an unknown popularity
value with respect to crowd workers. Since workers are likely to
return different answers based on how the query is phrased, this
popularity can be different for different nodes in Hp, and thus,
is query-dependent. Given a query q“(1, 0), the probability that
we get entity e in the result of ¢V is simply the popularity value
of e divided by the popularity value of all entities e’ that also sat-
isfy the same predicate constraints. For example, if there are only
two entities eq, ep that satisfy the constraints of a query g, with
popularity values 3 and 2, then the probability that we get e; on
issuing a query q1(1, 0) is 3/5. If an exclude list E is specified, then
the probability that we get e ¢ E is the popularity value of e divided
by the popularity values of all entities e’ ¢ E also satisfying the
predicates of ¢°.

Since workers are asked to provide a limited number of enti-
ties, each query can be viewed as taking a random sample from
an unknown population of entities. We refer to the distribution
characterizing the popularities of entities in a population as the
popularity distribution of the population. We do not know the pop-
ularity distribution in advance; rather we use the samples retrieved
by previous queries as a proxy to reason about this distribution.
Also, it is not necessary that workers follow the same popularity
distribution. Rather, the overall popularity distribution can be seen
as an average of the popularity distributions across all workers.

Estimating the gain of a query q“(k,E) at a node v € Hp is
equivalent to estimating the number of new entities extracted by
taking additional samples from the population of v given all the
retrieved entities (running sample) associated with node v. Due to
the structure of the poset we may retrieve entities for a node when
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issuing queries at other nodes. We discuss this form of indirect
sampling in Section 4.2.

3.3 CRUX Overview

CRUX casts the budgeted crowd entity extraction problem as a
multi-round adaptive optimization problem where at each round
we solve the following subproblems:

¢ Estimating the Gain for a Query (Section 4). For each node
v € Hp, consider the retrieved entities associated with v and
estimate the number of new unique entities that will be retrieved
by a new query q°(k, E). The query gain is estimated for different
query size and exclude list configurations.

e Detecting the Optimal Querying Policy (Section 5). Using
the gain estimates from the previous step, identify the query
configuration (k, I, v) that maximizes the total gain across all
rounds given the budget constraint. When identifying the next
query we do not explicitly optimize for the exclude list to be used.
We rather optimize for the exclude list size I. Once the size is
selected, the exclude list is constructed in a randomized fashion.
We elaborate more on this in Section 5.1.

CRUX iteratively solves the aforementioned problems until the
entire budget is used.

4 ESTIMATING THE GAIN OF QUERIES

As discussed previously, crowd entity extraction queries are equiv-
alent to retrieving samples from a population of items following
an unknown popularity distribution. Deciding which query to is-
sue is dictated by the estimated gain of each query, i.e., the ex-
pected number of newly extracted entities. Estimating the gain of
a query requires reasoning about the population percentage cov-
ered by all entities extracted by previous queries as well as the
expected number of unseen entities in the underlying population.
Prior work [25, 26] studied the problem of estimating the afore-
mentioned quantities for queries of the form “list one more entity”,
drawing from species richness estimation [5], the problem of esti-
mating the number of distinct species using samples from the un-
derlying population. The proposed techniques extend an estimator
from Chao et al. [5] and do not consider queries with exclude lists
or queries on non-root nodes of the poset. Moreover, the original
Chao estimator has been shown to exhibit negative biases [12, 21],
i.e., it underestimates the expected gain. The latter is worse in the
presence of little information. Negative biases can severely impact
entity extraction since nodes that contain entities from the long
tail of the popularity distribution may never be queried as they
may be deemed to have zero population. In this section, we first
review the existing methodology for estimating the gain of a query,
and then discuss how these estimators can be extended to consider
support a poset (Section 4.2) and exclude lists (Section 4.3). Finally,
we propose a new gain estimator for queries q%(k, E) that exhibits
lower biases, and thus, improved performance, in the presence of
little information compared to previous techniques (Section 4.4).

4.1 Single-Node Estimators without Exclusion

Consider a specificnode v € Hp. Let Q be the set of all existing sam-
ples retrieved by issuing queries at v without an exclude list. These
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Querying node {EventType X1}

’

Figure 2: Querying the red node reveals entities from the

green nodes. o .
samples can be combined into a single sample, referred to as a run-

ning sample, corresponding to a multiset of size n = ¥, ¢ size(q).
Let f; denote the number of entities that appear i times in this
unified sample, fy denote the number of unseen entities from the
population under consideration, and C be the population coverage
of the unified sample, i.e., the fraction of the population covered

_ fitht..
by the sample. We have that C = P
equivalent to increasing the size of the unified sample by k, thus, its
gain is the number of new distinct entities included in the increased

sample. Originally, Shen et al. [21] proposed an estimator for the

. A new query q“(k,0) is

number of new species Ngp,,, that would be found in an increased
sample of size k. The approach assumes that unobserved entities
have equal relative popularity. An estimate of the unique elements
found in an increased sample of size k is given by:

1-C

S e

% 1)

For crowdsourced entity extraction, the term of Shen’s formula in
parenthesis corresponds to the probability that at least one unseen
entity will be present in the result of a query asking for k more
entities. Thus, multiplying this quantity with the number of unseen
entities fy corresponds to the expected number of unseen entities
in the result of g% (k, 0).

The quantities fy and C are unknown and need to be estimated
for the population of node v using the observed entities in the
running sample for v. The coverage can be estimated by the Good-

Turing estimator C = 1— ]% for the retrieved sample. To estimate fp,
the number of unseen items, the Chao et al. [5] estimator is known
to do well [25, 26]. The Chao estimator relies on sample coverage
C and the estimated skew of the underlying popularity distribu-
tion. The latter is estimated via the information in the available f;
counts [5]. Recently, Hwang et al. [12] proposed an alternative esti-
mator for fy that is more robust in the presence of little information
and utilizes a regression technique that exploits the information
available in all f; counts.

4.2 Indirect Sampling

Given a structured domain, the extracted entities for a node v can
be obtained either by querying v directly or by indirect information
flowing to v by queries at other nodes connected to v. We refer
to the latter case as indirect sampling. Eventually, we have two
different kinds of samples: (i) those that are extracted by the entire
population of v, and (ii) those that are extracted by sampling
only a part of the population of v. We use an example (Figure 2)
using the poset in Figure 1, to illustrate these two cases. Assume a
query gq(k, 0) at node {EventType X1} whose result contains entities
only from node {X1,ST2}. The green nodes in Figure 2 are nodes
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for which samples are obtained indirectly without querying them.
Notice, that all these nodes are ancestors of {X1,ST2}. We have:

e The samples for nodes {X1, C1} and {X1,ST2} are obtained by their
entire population since node {EventType X1} is an ancestor of
both and its population fully contains the populations of {X1,C1}
and {X1,ST1}.

e The samples for nodes {}, {Country C1} and {State ST2} are ob-
tained only by a part of their population since the population of
node {EventType X1} does not fully contain the populations of
these nodes.

Samples of both types are used to estimate the gain of a query.
To do so we merge the extracted entities for each node into a single
sample and treat the unified sample as being extracted from the
entire population. As we discuss later in Section 5, we develop
querying strategies that traverse the poset Hp in a top-down ap-
proach, hence, the number of samples belonging in the first category,
i.e., samples retrieved considering the entire population of a node,
dominates the number of samples retrieved by considering only
part of a node’s population.

4.3 Exclude Lists and Negative Answers

A query q°(k,E) with E # 0 issued at node v € Hp effectively
limits the sampling to a subset of the population corresponding to
node v. To estimate the expected return of such a query, we need
to update the estimates fo and C before applying Equation (1), by
removing entities in E from the running sample for node v and
updating the frequency counts f; and sample size n. The above
requires that the exclude list is known, discussed in Section 5.1.

Finally, we consider the effect of negative answers on estimating
the gain of future queries. It is possible to issue a query at a specific
node v € Hp and receive no entities, i.e., we receive a negative an-
swer. This is an indication that either underlying entity population
of v is empty. In such a scenario, we assign the expected gain of
future queries at v and all its descendants to zero. Another type
of negative answer corresponds to issuing a query at an ancestor
node u of v and receiving no entities for v. In this case, we do not
update our estimates for node u as entities from other descendants
of u may be more popular than entities associated with u.

4.4 Direct Gain Estimation

The techniques reviewed in Section 4.1 result in negative bias when
the number of observed entities represents only a small fraction of
the entire population [12, 21]. This holds for the large and sparse
domains we consider. Bias is introduced as all techniques rely on
Equation (1). To eliminate negative bias, we propose a direct estima-
tor for the gain of queries g (k, E) that does not use Equation (1).
We extend the approach in Hwang [12] and use a regression based
technique that captures the structural properties of the expected
gain function. The proofs for the results below are in [20].

Let S be the total number of entities in the population and p; the
abundance probability (i.e., popularity) of entity i. Given a sample
of size n (where n corresponds to the total sum of sizes for all

S (-p)”
T pi(l-pi)™
First, we focus on queries without an exclude list. Later we relax

previously issued queries), define K(n) to be K(n) =
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this and discuss queries with exclude lists. We have the following
theorem on query gain:

THEOREM 4.1 (Direct Gain Estimation). Given a nodev € Hp
and a corresponding entity sample of size n, let fi and f> denote
the number of entities that appear exactly once (i.e., singletons) and
exactly twice respectively. Let G denote the number of new items

retrieved by a query q(m, 0). We have: P
19J2\m
1 Kﬁ_K,fl(l—zzfl)
n n+m

@)

R

where K = K(n) and K’ = K(n + m).

All quantities apart from K and K’ in Equation (2) are known.
The value of K can be estimated using the regression approach of
Hwang and Shen [12]. To estimate the value of K’ for an increased
sample of size n + m, we first show that K increases monotonically
as the size of the running sample increases.

. T (1-pi)"
LEmma 4.2. Th tion K(n) = —=i="F
e function K(n) 5 prip

tonically, i.e., K(n + m) > K(n),Vn,m > 0.

increases mono-

Given its monotonicity, we model K as a generalized logistic func-
tion of the form K(x) = m.
of different sizes for different queries we estimate K as described
above and therefore we observe different realizations of f(-). Thus,
we can learn the parameters of f and use it to estimate K’. In the
presence of an exclude list of size [ we follow the approach described
in Section 4.3 to update the quantities f; and n used above.

As we observe samples

5 DISCOVERING QUERYING POLICIES

We now focus on the core component of CRUX responsible for
discovering querying policies that maximize the total number of
extracted entities by exploiting the structure of the input domain.

We introduce a multi-round adaptive optimization algorithm for

identifying good querying strategies. At each round we assume

access to a gain estimator for any query ¢q%(k, E), constructed using
the techniques in the previous section. The gain of each query
can be viewed as a random variable. By issuing a query we get to
observe the value of this random variable, and using the previous
observations we decide which query to issue next. Our framework

builds upon ideas from the multi-armed bandit literature [4, 10],

with additional challenges:

e The number of nodes in Hp is exponential in the number of
attributes Ap describing D. Querying every node to estimate the
expected return for queries q¥(k, E) is prohibitively expensive.

e Balancing the trade-off between exploitation/exploration [4] is
hard. The first refers to querying nodes with sufficient retrieved
entities, and hence, accurate estimates for their expected gain;
the latter refers to exploring nodes to avoid myopic policies.

e Optimizing all potential exclude lists (i.e., all subsets of observed
entities) leads to an exponential explosion. To limit the query
space we instead optimize over all potential query configurations

(k,1,0).

5.1 Optimizing over Query Configurations

Instead of optimizing over all potential queries g% (k, E), we opti-
mize over all potential query configurations (k, [, v). That is, we
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do not optimize directly for the exclude list but rather for its size I.
Once we decide on [, the exclude list E is constructed following a
randomized approach, where [ of the retrieved entities are included
in the list uniformly at random. Below, we denote a query config-
uration (k, [/, v) and a query q°(k, E) with |E| = I using the same
symbol q for convenience. We now need to estimate the gain for a
configuration (k, I, v) instead of a query q“(k,E). When [ = 0, i.e.,
E = 0, then we use the techniques introduced in Section 4 directly.
When I # 0, we generate multiple instances of ¢“(k, E) queries us-
ing the configuration (k, [, v) and use the techniques from Section 4
to estimate the expected gain of each. The exclude list of each query
is generated following the randomized approach described above.
Finally, we estimate the expected gain of configuration (k, [, v) by
considering the average gain of all generated instances. The vari-
ance of the gain is also used to compute an upper bound on the
gain of the configuration (k, [, v) as described next.

5.2 Balancing Exploration and Exploitation

The estimate of the expected gain of a query configuration (k, I, v)
is based on a rather small sample of the underlying population—
exploiting this information at every round may lead to suboptimal
decisions. Hence, we need to balance the trade-off between exploit-
ing configurations with high estimated gain and those that have
not been selected many times. Formally, the latter corresponds to
upper-bounding the expected gain of each configuration with a
confidence interval that depends on the variance of the expected
gain and the number of times a query was issued [4].

Next, we use ¢ to denote a query configuration (k, I, v). Let r(q)
denote the expected gain of g. This is an estimate of the true gain
r*(q). Let o(q) be an error component on the gain of configuration
q chosen such that r(q) — o(q) < r*(q) < r(q) + o(q) with high
probability. The parameter o(q) should take into account both the
empirical variance of the expected gain and our uncertainty
about the gain of query configuration q if its has only been chosen
a few times. Given r(q) and o(q), we assign a score to each configu-
ration by using a linear function of the quantity r(q) + o(q). This
score prioritizes exploration when the variance or our uncertainty
is high, and thus, we could potentially discover a profitable new
configuration, and exploitation when the estimated gain is high.
Next, we discuss how we set o(q).

We proceed in rounds and at each round select a query config-
uration g. Let ng,; be the number of times we have chosen g by
round t, and vg, ; be the maximum value between some constant
(e.g., 0.01) and the empirical variance for the gain for g at round ¢.
The latter can be computed via bootstrapping over the retrieved
sample and applying the estimators from Section 4 over the boot-
strapped samples. Several techniques have been proposed in the
multi-armed bandits literature to compute parameter o(q) [24], that
we can reuse.

5.3 A Multi-Round Querying Policy Algorithm

We now introduce a multi-round algorithm for solving the budgeted
entity enumeration problem (Algorithm 1). It takes as input the
poset Hp , a set K of query size assignments, a set L of exclude
list size assignments and a budget 7. The algorithm also assumes
access to an oracle providing r(q) and o(q, t) — t denotes the round
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count — which characterize the upper gain of ¢, and an oracle
providing the query cost ¢(q). The algorithm has also access to
method ActiveQueryConf (see Section 5.4) returning the allowed
configurations per round.

Algorithm 1 Multi-round Extraction Algorithm

1: Input: Hp: the hierarchy describing the entity domain; K: set of valid query size
assignments; L: set of valid exclude-list size assignments; 7.: budget; r, o: value
oracle access to upper-bounded gain for different query configurations; c: value
oracle access to the query configuration costs;

: Output: &: a set of extracted distinct entities;

&= {}

: t < 1/* Initialize round counter */

: Rembudget « 7. /* Initialize remaining budget */

: Q « ActiveQueryConf(Hp, 0, NULL, K, L, ¢) /* Initialize active query configu-
rations */

7: while Rembudget > 0 and Q # {} do

raitolg.t) Rembudget — c(g*) > 0

c(q)

U W

8: q* « arg maXgeQ
9:  if ¢* isNULL then
break;
Rembudget < Rembudget — c(q*) /* Update budget */
Given configuration ¢* = (k*, I*, v*) generate an exclude list E such that
|E| =17
Issue query qv* (k*, E)
E « entities extracted by query q”* (k*, E)
& « & U E /* Update unique entities */
16:  Q « ActiveQueryConf(Hp, Q, v*, K, L, t) /* Update active queries */
17: t « t +1/* Increase round counter */
18: return &

14:
15:

Algorithm 2 ActiveQueryConf

1: Input: Hp: the hierarchy describing the entity domain; Q,;4: the running set of
active query configurations; v*: the node in Hp associated with the last query;
K: set of valid query size assignments; L: set of valid exclude-list size assignments;
t: running round counter; 7, o value oracle access to upper-bounded gain for
different query configurations;

2: Output: Q¢+ : the updated set of active query configurations;

3: if Qo4 is empty then

4 /* Initialize Set of Active Query Configurations */

5: /* Populate Q¢+, with all possible (k, I) configuration for the root of Hp. */

6: Qnew «— UkEKXlEL{(k’ I, root)}

7: else

8: /" Extend Set of Active Query Configurations */

9: Quew — Sold

10: for all d € Set of Direct Descendant Nodes of v* do

11: Qnew — Qnew Y UkEK)(lEL {(k, I, d)}

12: /" Remove Bad Query Configurations*/

13: /* Find maximum lower-bounded gain over all g in Qpevw*/
14: Y — maxqrEQnEW(r(q/) -o(q, 1))

15: B « All configurations q in Qper with r(q) + o(q, t) < ¥
16: Qnew — Qnew \ 8

17: return Qpeny

Algorithm 1 proceeds as follows: First it initializes the set &
of extracted entities, the round count ¢, the remaining budget
Rembudget and the set of candidate queries Q (i.e., query con-
figurations to be considered) at the first round (Ln.3-6). Then it
proceeds in rounds and iteratively selects one query configuration
to be used until the total budget is utilized or the set of candidate
queries is empty (Ln. 7). At each round our algorithm performs the

following steps. It first detects a configuration in Q that maximizes

r(@+ao(g,t)
c(q)

c(q) is less or equal to the remaining budget (Ln. 8). If no such

configuration exists the algorithm terminates (Ln. 9-10). Otherwise,
the algorithm proceeds by executing a query corresponding to the
selected configuration g*, updates the set of extracted entities, the
remaining budget, the set of active queries, and the round counter

the score quantity under the constraint that the cost
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(Ln. 11 - 17). Finally, Algorithm 1 returns the set of distinct entities
extracted (Ln. 18).

5.4 Updating the Set of Actions

We now introduce an algorithm to effectively limit the number of
query configurations considered at each round of Algorithm 1. To
do so we exploit the structure of poset Hp and the gain estimates
for different configurations ¢ = (k,I,v). Let Q denote the set of
candidate query configurations. We propose an algorithm that adds
configurations to Q by traversing the input poset in a top-down
manner. These configurations (k, [, v) correspond to nodes v that
are direct descendants of already queried nodes.

To limit the number of candidate configurations, we also remove
any bad query configurations from Q. A configuration q is defined
to be bad at round ¢ when r(q) + (g, t) < maxgeq(r(q’)—o(q’, 1)),
Intuitively, we do not need to consider a configuration as long as
there exists another such that the upper-bounded gain of the former
is lower than the lower-bounded gain of the latter. This technique is
also adopted in multi-armed bandits to limit the number of actions
considered [10].

Our algorithm for determining the set of active queries for each
round is shown in Algorithm 2. It proceeds as follows: If the running
set of active queries is empty (Ln. 3), i.e., if we have issued no queries
previously, the set of active query configurations is initialized to
contain all potential configurations (k, I) for the root of the poset
Hp (Ln. 6). Otherwise, the algorithm first adds all configurations
for the direct descendants of node v* to Q4 (Ln. 9 - 11) and then
removes any bad configurations from the new set Qe (Ln.13-16).
The algorithm terminates by returning the set Qpeqy-

6 EXPERIMENTAL EVALUATION

We present an empirical evaluation of CRUX on both real and
synthetic datasets. The evaluation is performed on an Intel Core i7
3.7 GHz 32GB machine; algorithms are implemented in Python 2.7.

6.1 Experimental Setup
Gain Estimators. We evaluate the gain estimators below:

e Chao92Shen, combines the methodology proposed by Chao [5]
with Shen’s formula, i.e., Equation (1).

e HwangShen, combines the regression-based approach proposed
by Hwang and Shen [12] with Shen’s formula.

e NewRegr, our new technique proposed in Section 4.4.

All estimators are coupled with bootstrapping to estimate the gain

variance to upper bound the return of a query as in Section 5.2.

Entity Extraction Algorithms. We evaluate the following algo-

rithms for crowdsourced entity extraction:

¢ Rand, executes random queries until all the available budget is
used. It selects a random node from Hp and a random query
configuration (k, I) valid with the k, [ input.

e RandL, same as Rand but only executes queries at the leaf nodes
of Hp until all the available budget is used.

e BFS, performs a breadth-first traversal of Hp, executing one
query at each node. The query configuration is randomly selected
from all valid combinations. Negative-answers are used to prune
non-populated parts of Hp.
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e RootChao, corresponds to the entity extraction scheme of Trush-
kowsky et al. [25, 26] that uses Chao92Shen to measure the gain
of an additional query. RootChao is agnostic to the structure
of the input domain, thus, equivalent to issuing queries only
at the root node of Hp. Since the authors only propose a pay-
as-you-go scheme, we coupled this algorithm with Alg. 1 to
optimize for the input budget constraint. We allow the algorithm
to consider different query configurations (k, I) but restrict the
possible queries to the root node.

e GSChao, GSWang, GSNewR, are different variations of CRUX.
These algorithms correspond to our proposed graph search query-
ing policy algorithm (Section 5.3) coupled with Chao92Shen,
HwangShen and NewRegr respectively.

e GSExact, is a near-optimal, omniscient baseline that allows us to
see how far off our algorithms are from an algorithm with perfect
information. We combine the algorithm proposed in Section 5.3
with an exact computation of the return or gains from queries.

For the results reported below, we run each algorithm ten times
and report the average gain achieved under the given budget.
Querying Interface. For all datasets we consider generalized queries
q%(k,E). The nodes v are set based on the input poset and (k, [)
takes values in {(5, 0), (10, 0), (20, 0), (5, 2), (10, 5), (20, 5), (20, 10)}. The
cost of each query is computed using an additive model over three
terms that depend on the characteristics of the query. The cost
terms are: (i) CostK that depends on the number of responses k
requested from a user, (ii) CostL that depends on the size of the
exclude list / in the query, and (iii) CostSpec that depends on the
specificity of the query q;. We define the specificity of a query to
be equal to the number of attributes assigned non-wildcard values
for the node u € Hp the query corresponds to.

We consider two types of cost functions. The first is a linear func-

tion where the overall cost for a query with configuration (k, I) with
SpeCiﬁCitY S iSiCost(q) =% max. qL{(ery size +h- max. ex,llist size TV max, spseciﬁcity .
The cost of a query should be significantly increased when an ex-
clude list is used, thus, § should be set to a larger value than a and
y. Different (a, B, y) configurations were tested. We also consid-
ered a step cost function CostK + CostL, where CostK and CostL
are set as follows: (k, CostK) = {(5, 0.20), (10, 0.60), (20, 0.80)} and
(1, CostL) = {(0,0),(2,0.10), (5, 0.50), (10, 0.70) }. We observed that
the relative performance of the extraction algorithms for different
cost functions was the similar. Below, we mention the cost function
we used for each experiment we report.
Data. We use two datasets, Eventbrite and PeopleInNews, where
the entities in the first correspond to events while the entities in
the second to people. Eventbrite is a large real-world dataset where
responses from workers are simulated using real-world events,
while PeopleInNews is a small real-world dataset where responses
from workers are obtained via Amazon’s Mechanical Turk (AMT).
Next, we describe each dataset in detail.

The first dataset was extracted from Eventbrite (Section 1). We
collected a dataset spanning events of 19 different types, such as
rallies, tournaments, conferences, and conventions, over the months
of October and November 2014. The dataset has three dimensions:
(i) event type, (ii) location, and (iii) time, with location and time
being hierarchically structured. The poset of the domain can be
fully specified if we consider the cross product across the possible
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values for location, event type and time. For each of the location,
time, type dimensions we also consider a special wildcard value. The
poset has 8,508,160 nodes and 57,805 distinct events overall. Only
175,068 nodes are populated leading to a rather sparsely populated
domain. Due to lack of popularity proxies for the extracted events,
we assigned a popularity value in (0, 10] to each event.

To construct the second dataset, we used Amazon’s Mechanical
Turk to extract people “in the news”, like in Example 1.1. We asked
workers to extract the names of people belonging to four different
occupations from five different news portals. We issued 20 HITS
for each leaf node of the domain’s poset, resulting in 600 HITS in
total, and 1,245 unique people in total. The popularity value of each
extracted entity was assigned to be equal to the number of distinct
workers that reported it.

6.2 Experimental Results

We evaluate different aspects of the extraction techniques.

How does CRUX compare against baselines? We evaluated the
performance using the total entities extracted for different budgets.
The results for Eventbrite and PeopleInNews are shown in Fig-
ure 3(a) and Figure 3(b) respectively. As shown, CRUX, i.e., GSChao,
GSHwang, GSNewR, outperforms all baselines by at least 30% across
both datasets. This is expected as CRUX not only exploits the struc-
ture of the domain to diversify entity extraction and target even
less-popular entities but also optimizes the queries for the given
budget. Against the naive baselines Rand, RandL, and BFS, we see
that GSChao, GSHwang and GSNewR extracted more than 200%
more entities for the sparse Eventbrite domain and around 100%
more entities for small budgets and 54% for larger ones when con-
sidering the dense PeopleInNews. For Eventbrite and a budget of 50
all CRUX schemes extracted more than 600 events while Rand and
RandL extracted 1.1 and 0.2 events and BFS extracted 207.7 events,
an improvement of over 180%.

Against RootChao, we see that GSChao, GSHwang and GSNewR
were able to retrieve up to 30% more entities for Eventbrite and
400% more entities for the PeopleInNews dataset. This difference is
because the gain achieved by RootChao saturates at a faster rate
than GSChao, GSHwang and GSNewR as the cost increases. This
is because RootChao issues queries at the root of the poset, and
hence, it is not able to extract entities belonging to the long tail.
For PeopleInNews, RootChao performs poorly even compared to
the naive baselines Rand, RandL and BFS. Again, this is due to the
skew of the popularity distribution.

How does CRUX compare against a near-optimal policy dis-
covery algorithm? We evaluated the different variations of CRUX,
i.e.,, GSChao, GSHwang and GSNewR, against the near-optimal
querying policy discovery algorithm GSExact. The results can be
found in our technical report [20]. In short, we find that our pro-
posed techniques are not too far away from GSExact which has
perfect information about the gain of each query; for example, for
Eventbrite, the difference in extractions was less than 25%.

How do the different techniques compare with respect to the
total number of queries issued during extraction? We com-
pared RootChao against the CRUX algorithms GSChao, GSHwang
and GSNewR with respect to the total number of queries issued dur-
ing extraction. This evaluation metric is a surrogate for the overall
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Figure 3: A comparison of the CRUX techniques against
baselines for (a) Eventbrite and (b) PeopleInNews.
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Figure 4: The number of events extracted by different algo-

rithms for Eventbrite versus the total number of queries.
latency of the crowd-extraction process. Figure 4 shows the results

for a run for Eventbrite and a budget of 80. As shown, RootChao
requires almost up to 200% more queries to extract the same number
of entities as our techniques, thus, exhibiting significantly larger
latency compared to GSChao, GSHwang and GSNewR.

How do different CRUX versions traverse the poset and use
query configurations? We first measure how many queries each
algorithm issues at various levels of the poset. In Figure 5, we plot
the number of queries (per level) issued by our algorithms when the
budget is set to 10 and 100 respectively for 10 runs of PeopleInNews.
For a small budget, all algorithms prefer queries at higher levels.
The inner nodes are preferred and only a small number of queries is
issued at the root (i.e., level one) of the poset. This is justified if we
consider that due to their popularity, certain entities are repeatedly
extracted, thus, leading to a lower gain. As the budget increases,
we see that all algorithms tend to consider more specialized queries
at deeper levels of the poset. It is interesting to observe that all
algorithms issue the majority of their queries at level two nodes,
while GSExact, which has perfect information, focuses mostly on
leaf nodes. Thus, our techniques could benefit from being more ag-
gressive at traversing the poset and reaching deeper levels; overall,
our techniques may end up being more conservative to cater to a
larger space of posets and popularity distributions.

In Figure 6, we plot the query configurations chosen by our
algorithms when the budget is set to 10 and 100. GSExact always
prefers queries with k = 20 and I = 0 for both small and large
budgets. On the other hand, our algorithms issue more queries
of smaller size when operating under a limited budget and prefer
queries of larger size for larger budgets. GSNewR was the only one
issuing queries with exclude lists of different sizes, thus, exploiting
the rich diversity of query interfaces.
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Figure 5: The number of queries issued at different levels

when budget is set at 10 or 100.
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Figure 6: The query configurations used when budget is set
at 10 or 100.

How effective are different estimators at predicting the gain
of additional queries? GSNewR was able to outperform GSChao
and GSHwang for Eventbrite but the opposite behavior was ob-
served for PeopleInNews. To understand the relative performance
of the estimators, we measure their error at predicting the number
of new retrieved entities for different query configurations for both
Eventbrite and PeopleInNews. In summary, for large and sparse do-
mains, NewRegr slightly outperforms Chao92Shen and HwangShen
for certain queries. For example, for k = 10,1 = 5, Chao92Shen has
a relative error of 0.58, HwangShen had a relative error of 0.7, and
NewRegr had a relative error of 0.29. For smaller, dense domains,
such as PeopleInNews, NewRegr offers better gain estimates for
small query sizes, but as the query size increases, hence, a larger
portion of the population is observed, Chao92Shen outperforms
both regression-based techniques. Detailed results can be found in
our technical report [20].

7 RELATED WORK

Prior work related to the techniques proposed in this paper can be
placed in a few categories; we describe each of them in turn: We
have already discussed prior work on crowdsourced extraction or
enumeration [18, 25] in the introduction.

Knowledge Acquisition Systems. Recent work has also consid-
ered the problem of using crowdsourcing within knowledge acquisi-
tion systems [13, 15, 27]. This line of work suggests using the crowd
for curating knowledge bases and for gathering additional informa-
tion to be added to the knowledge base, instead of augmenting the
set of entities themselves.

Deep Web Crawling. A different line of work has focused on data
extraction from the deep web [14, 22] where data is obtained by
querying a form-based interface over a hidden database and extract-
ing results. Sheng et al. [22] provide near-optimal algorithms that
exploit the exposed structure of the underlying domain to extract
all the tuples present in the hidden database. Our goal is similar in
that we also extract entities via a collection of interfaces. Unlike
our setting, answers from a hidden database are deterministic, i.e.,
a query will always retrieve the same top-k tuples. So, it suffices to
ask each query precisely once, making it much simpler.
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8 CONCLUSION

We studied the problem of crowdsourced entity extraction over
large and diverse data domains. We proved that the problem of bud-
geted crowdsourced entity extraction is NP-hard. We introduced
CRUX, a novel crowdsourced entity extraction framework, that
combines statistical techniques with an adaptive optimization algo-
rithm to maximize the total number of unique entities extracted.
We proposed a new regression-based technique for estimating the
gain of further querying when the number of retrieved entities is
small with respect to the total size of the underlying population.
We also introduced a new algorithm that exploits the often known
structure of the underlying data domain to devise adaptive query-
ing strategies. CRUX extracts up to 300% more entities compared to
baselines, and for large sparse entity domains is at most 25% away
from an omniscient adaptive querying strategy.
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