
High elevation insect communities face shifting
ecological and evolutionary landscapes
Alisha A Shah1, Michael E Dillon2, Scott Hotaling3 and

H Arthur Woods1

Climate change is proceeding rapidly in high mountain regions

worldwide. Rising temperatures will impact insect physiology

and associated fitness and will shift populations in space and

time, thereby altering community interactions and composition.

Shifts in space are expected as insects move upslope to

escape warming temperatures and shifts in time will occur with

changes in phenology of resident high-elevation insects.

Clearly, spatiotemporal shifts will not affect all species equally.

Terrestrial insects may have more opportunities than aquatic

insects to exploit microhabitats, potentially buffering them from

warming. Such responses of insects to warming may also fuel

evolutionary change, including hitchhiking of maladaptive

alleles and genetic rescue. Together, these considerations

suggest a striking restructuring of high-elevation insect

communities that remains largely unstudied.
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Rapid change in high mountains
Around the world, high-mountain regions are changing at

an unprecedented rate [1]. In these regions, which are

typically above tree line between 2000–4000 m, the hall-

mark of change is rapidly rising air temperature, with

strong impacts on glacial cover [2], streamflow [3], and

dissolved oxygen levels [4��], among other factors.

Together, these changes pose a grave risk for small

ectotherms, especially insects [5�]. To understand this

risk, most studies have focused solely on abiotic factors,

particularly temperature [6–9]. However, the best

documented organismal responses to rising temperature

– physical migration in space, often uphill, and phenolog-

ical shifts in time for spatially co-occurring taxa [10,11] –

will alter interactions and potentially restructure insect

communities [12�]. Although this idea has been discussed

in other contexts [13–15], it has not been considered for

high-elevation insect communities, a key research gap

given the rapid, ongoing climate change threats to moun-

tain ecosystems [1]. Here, we outline how climate change

may reassemble high-elevation communities through

shifts in space and time, how patterns of community

(dis)assembly across elevation may differ between terres-

trial and aquatic insect species, and how these ecological

changes may translate to evolutionary change (Figure 1).

Climate-driven shifts in space and time
Warming in mountain ecosystems is promoting upslope

movement of insects [16,17] and the organisms with

which they interact [18,19] (Figure 1a). Patterns of move-

ment, however, can be complicated. For example, over

the past century, bumble bees from southern latitudes

shifted to higher elevations by up to several hundred

meters whereas species from northern latitudes moved to

lower elevations [20]. Although cooler temperatures at

high elevation may generally favor upslope migration, a

number of other factors associated with higher elevation

may constrain this movement, including shorter growing

seasons [21], altered snow cover patterns [22], and linked

effects of changing temperatures and other abiotic factors

[4��]. For instance, populations of the leaf beetle in the

Sierra Nevada Mountains may be prevented from uphill

migration by hypoxia, which depresses larval performance

and magnifies the effects of other factors like low tem-

perature [23��]. Low-elevation species that successfully

colonize high elevations will likely be those for which all

life-cycle stages are able to cope with new high-elevation

conditions [24].

Upslope movement may not be possible for species

residing at the highest elevations. These species might

be effectively ‘trapped’ because either they have reached

the top of the mountain or there may not be suitable

habitat beyond their current range edge [25]. This may

result in the local extinction of many high-elevation

endemics. However, a recent study has shown that a

high-elevation aquatic insect community presumed to

be imperiled by glacier loss has persisted despite wide-

spread deglaciation in the highest elevations of Glacier
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National Park, USA [26]. Indeed, for some species, the

need to escape may not arise if they have the physiologi-

cal tolerance to cope with changing temperature [27–29].

For example, high-elevation aquatic insects have surpris-

ingly wide thermal breadths compared to low elevation

counterparts, which may have evolved as a result of the

greater climatic variation typical of some high-mountain

areas [8]. Thus, responses to changing conditions may

largely depend on species’ physiological ecology. Never-

theless, empirical studies indicate that many lower ele-

vation species have already begun migrating upslope as

their native habitats become increasingly unsuitable [30].

In addition to driving uphill migration, rising tempera-

tures may alter the timing of life-history events, changing

the extent of temporal overlap among species in high-

elevation communities [31,32]. Such phenological shifts

could eventually lead to changes in community structure

and dynamics. Restructuring of communities could arise

if winter and spring warming together with earlier spring

snowmelt alter physiology and development during win-

ter dormancy [22]. Ultimately, this will affect overwinter

survival and spring emergence timing. These and related

temporal shifts will have two general outcomes: genera-

tion of new interactions or decoupling of existing ones

(Figure 1b). When researchers experimentally warmed an

alpine meadow, for example, an important interaction was

lost because pollinating moth larvae emerged later, but

the host plant for the moth flowered and senesced earlier

[33]. The complexity of responses such as these suggests

that understanding how phenology will change with rising

temperatures will require both experimental approaches

and long-term observations of high-elevation insect

communities.

Varying responses in terrestrial and aquatic
taxa
A number of considerations indicate that expected shifts

in space and time will differ for aquatic and terrestrial

insects. The high specific heat capacity of water relative

to air underlies two predictions. First, aquatic habitats will

be more buffered from future warming. Aquatic insects

will therefore experience smaller average increases in

temperature and be required to make smaller behavioral
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Figure 1
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(a) Warming is causing upslope shifts of lowland species (‘shifts in space’) resulting in new species interactions that may be positive or negative,

depending on the functional group of the shifting species (table at right: numbers indicate studies that have documented the general impact of

shifting functional groups on native species). (b) Phenological shifts in insect abundance (‘shifts in time’), can lead both to new species

interactions and losses of previous ones. (c) Aquatic and terrestrial insects may be differentially impacted. Water temperatures tend to be cooler

and less variable than nearby terrestrial temperatures, which are also projected to increase more drastically in the future. Terrestrial insects may

therefore require large shifts in thermal performance curves (TPCs) or move greater distances to keep pace with changing temperatures. Aquatic

species and life stages, however, may be buffered for longer despite narrower TPCs. (d) Novel ecological interactions may ultimately result in

evolutionary change in high-elevation communities. Movement of populations (or species) across elevation could result in hybridization or isolation;

and alleles from the lowlands may have a negative (maladaptive) or positive (rescue) effect on high-elevation insects.
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or physiological adjustments than terrestrial insects

(Figure 1c). Second, temperature variability in space and

timeisgenerallymuch lower inaquatic relative to terrestrial

habitats. Although thermal heterogeneity can develop in

still water (including ponds, lakes, and river and stream

pools [34]), it is less likely to do so in swiftly moving

mountain streams and is generally less pronounced than

thermal heterogeneity on land. So, although terrestrial

insects may have to cope with larger changes in mean

temperatures, they will also have more opportunities to

exploit microhabitat variation to select appropriate micro-

climates [35,36]. Further, aquatic insects may struggle to

take advantage of thermal variation due to the greater

difficulty of locomotion in water compared to air [37].

Given decreased thermal variation in water, aquatic

insects may have evolved narrower thermal tolerances

[28] and live closer to their thermal limits, potentially

making them more susceptible to warming conditions

than terrestrial species (but see Ref. [38]). However,

recent work with a common mayfly revealed that plastic-

ity in thermal tolerance through development can facili-

tate population persistence across highly variable thermal

conditions [39�]. Rising temperatures may also increase

an aquatic insect’s oxygen demand relative to stream

oxygen availability, and in some cases could cause insects

to succumb to oxygen limitation at warm temperatures

[40]. By contrast, upper thermal limits for terrestrial

insects appear to be unrelated to oxygen levels, at least

at biologically realistic oxygen partial pressures [41].

Because aquatic insects have a limited ability to capitalize

on microclimates, and have narrower thermal tolerances,

they may be more likely than terrestrial insects to move

upslope to escape warming temperatures. Moving

upstream will be especially challenging for aquatic

insects, given the confined paths for movement of imma-

ture stages (but see Ref. [42]). At the highest elevations,

the harsh conditions of glacial runoff (e.g. low tempera-

ture and high conductivity) have historically acted like a

barrier to upstream dispersal of lower elevation aquatic

insects [43]. But as glacial runoff decreases with rising

temperature, such abiotic barriers may be lifted, thus

facilitating upstream migration. Most aquatic insects have

a winged terrestrial adult phase, the primary life stage

capable of upslope dispersal. Temperatures experienced

by aquatic larvae can influence morphology of terrestrial

adults and alter dispersal ability [44�]. Given that juve-

niles and adults occupy divergent thermal conditions,

they likely also differ in thermal tolerance and in capacity

to thermoregulate, which together may drive them to

respond asynchronously to a warming climate.

Novel interactions arising from shifts in space
and time
Insect communities are structured mainly by predation,

disease loads, competition, and the quantity and quality

of available resources [45]. Climate change at high eleva-

tions will alter the strengths of existing interactions –

particularly when interacting species have different ther-

mal performance curves such that shifts in temperature

lead to differential changes in performance among the

interactors [46]. In addition, species and population shifts

in space and time will generate many qualitatively new

kinds of interactions [13]. Because plants are important

resources for many insects, most studies have focused on

spatial and phenological shifts involving plant-herbivore

interactions, but few of these focus on high-elevation

regions [47]. Insects that can switch hosts may benefit

from the immigration of new host species. For example,

after its distribution shifted in response to warming, the

comma butterfly altered its host preference from a native

plant to two nonnative species and subsequently grew

and survived better [48]. Other insects may be negatively

impacted as immigrating plants outcompete native plants

or adapt to high elevation and produce tougher new

leaves with reduced nutrients and increased levels of

secondary compounds, making them unsuitable for sup-

porting growth [49]. Insects that rely on new leaves in the

spring may also be negatively impacted if warming causes

asynchrony in the timing of insect emergence and leaf-

out in the spring. Elevation differences in the timing of

leaf-out dates for tree species in the European Alps, for

instance, advanced strikingly from 1960 to 2016 [50] (but

see Ref. [51]), reflecting stronger warming at higher

elevations [52]. If these results hold more generally across

geographic regions and plant taxa, then widespread mis-

matches between leaf-out and the appearance of spring

insect herbivores are expected.

Empirical studies on the formation of new predator-prey

or competitive interactions following climate change are

rare. Nevertheless, these interactions are likely to have a

strong impact on insect communities as new parasitoids,

predators [53], and competitors [32] appear in high-ele-

vation regions. High-elevation insects may be especially

imperiled if predators invading from low elevations are

generalists, as was found in an experimental transplant of

lowland carnivorous stoneflies into an alpine stream [54].

Similarly, when the Brown Argus butterfly expanded its

latitudinal range northward to track cooler temperatures,

it encountered novel, generalist parasitoids, which

quickly adopted the butterfly as a new host [55]. Whether

most parasitoids moving upslope will be able to switch to

endemic high-elevation hosts is presently unknown [56].

The arrival of new species seeking the same resources can

create new competitive interactions. For instance, warm-

ing in an arctic pond induced major changes in the

resident chironomid community, presumably through

new competitive interactions with warm-adapted species

[57]. In the Swiss Alps, alpine plant performance was

significantly reduced through competition with novel

competitors experimentally transplanted from the
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lowlands [58]. If high-elevation species are cold-temper-

ature specialists, then generalist competitors from lower

elevations may be particularly problematic.

In addition to bringing about new ecological interactions,

warming may alter the outcome of existing interactions

due to differences in thermal sensitivities. We know of no

study exploring such trophic changes in high-elevation

insects, but elegant experiments have been conducted in

other systems. When faced with warming, for example,

predatory field spiders relocated to cooler habitats, alter-

ing spatial overlap with less sensitive grasshopper prey

and shifting interactions in the food chain [59��].

Research aimed at understanding the effects of differen-

tial thermal sensitivities will be key in predicting winners

and losers among interacting species in warming habitats.

Evolutionary changes following novel
ecological interactions
Not only will the arrival of new resources, predators, and

competitors alter community composition and the

dynamics of species interactions, but in the presence of

adequate standing genetic variation, it could also drive

rapid evolutionary change. For example, soapberry bugs

native to African grasslands have rapidly evolved longer

mouthparts to match and exploit fruits of an invasive

balloon vine [60��]. In other insects, such as nymphalid

butterflies, high speciation rates are strongly associated

with host-shifts, though empirical documentation of these

radiations remains rare [61].

A less appreciated possibility is the rise of hybrids that are

more adept at dealing with change [62]. Hybrid alpine

butterflies, for example, persisted in extreme alpine con-

ditions even though both parental species could not [63].

Unlike the parental species, hybrids did not attach eggs to

the host plants, so that when the plants died in winter or

blew away with strong winds, the eggs remained close to

new plant growth in the following spring. Similarly, lab-

reared hybrid copepods could tolerate much warmer

temperatures than either parental species [64]. Hybrid-

ization among species, or even gene flow between locally

adapted populations, may thus create novel combinations

of alleles that are well-suited to new conditions, or that

provide the necessary genetic background for rapid adap-

tation under novel selective regimes.

Increased tolerance to heat stress in hybrids (and also low-

elevation immigrants) may not always be beneficial,

especially if mechanisms for different types of stress

responses lead to trade-offs. Individuals may derive

greater heat tolerance from altered membrane composi-

tions that are more stable at high temperatures – but

which may also cause membranes to be too solid at low

temperatures [65]. Increased heat tolerance may make

hybrids more susceptible to cold snaps, thus driving the

evolution of maladaptive winter physiologies.

Evolutionary change may also arise from the uphill

movement of populations adapted to low elevations.

Most simply, previously isolated populations may be

reconnected with new gene flow, homogenizing their

genetic differences. Alternatively, uphill movement of

some, but not all, of a population (or shifts in reproduc-

tive timing [66]) could cause an existing population to

diverge into two or more, perhaps eventually promoting

climate-induced speciation (Figure 1d). If local adapta-

tion exists, one potential consequence of an uphill shift

is the introduction of maladaptive alleles that decrease

the ability of resident populations to survive high-eleva-

tion conditions (Figure 1d). For example, introduced

alleles from stick insects locally adapted to one host

plant reduced the patch occupancy of stick insects

locally adapted to another by disrupting their patterns

of camouflage [67].

An alternative outcome is genetic rescue, in which an

influx of low elevation alleles introduces new genetic

variation into small, inbred, high-elevation populations

in a way that potentiates evolutionary change (Figure 1d).

Although no specific accounts of genetic rescue exist for

montane insects, there are examples in other taxa. For

instance, headwater populations of Trinidadian guppies

experienced remarkable increases in population size

owing to higher recruitment and survival following an

experimental introduction of low elevation guppies from

the same drainage [68].

Implications and a call to action
Insect communities in high-mountain regions are facing

rapid change. Increasing temperatures are causing shifts

in species distributions and phenologies that will lead to

new ecological interactions and evolutionary change.

Thus far, research on high-elevation insects has been

limited, due in part to the difficulty of accessing alpine

areas, with little known of their endemic communities

and how they are being altered. We identify three areas of

research that should be addressed. First, observational

work is needed to establish current relationships among

members of high-mountain communities. Second, long-

term monitoring efforts are critical to understand how

community composition and dynamics are changing over

time. Third, experimental research is required to quantify

key physiological traits and underlying genetic bases to

predict current high-elevation insect sensitivities, evolu-

tionary potentials, and response to encroaching lower

elevation taxa. Together, these efforts will vastly improve

our understanding of high-mountain insect communities

and strengthen our ability to predict their responses to

climate change.
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