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Abstract— Nearshore estimates of bathymetry are crucial for
understanding coastal processes. However, current passive remote
sensing methods for estimating bathymetry require in situ depth
measurements to train inversion models, which can be difficult
or impossible to obtain in many areas. To address this issue,
we investigated the fusion of range measurements from the
advanced topographic laser altimeter system (ATLAS) aboard the
NASA ICESat-2 satellite, and multispectral satellite imagery from
European Space Agency (ESA) Sentinel-2 using two common
bathymetric inversion algorithms. The active ranging capability
of the ATLAS green (532-nm) laser has been shown to gen-
erate returns of up to 38-m depth in optically clear waters,
providing depth measurements to constrain passive bathymetric
inversion results. Data acquired in November 2018 over the
nearshore in Destin, FL, USA, offer a proof of concept for
this approach. The results of the bathymetric inversion were
quantitatively assessed by comparison with airborne bathymetric
LiDAR collected using the U.S. Army Corps Coastal Zone
Mapping and Imaging LiDAR (CZMIL) system in October–
November 2018. Overall, the results of the bathymetric inversion
compared with the CZMIL data have a root mean square error
(RMSE) of 0.35 m in waters with similar turbidity and bottom
reflectivity, and demonstrate that a combination of ICESat-2
depth observations with Sentinel-2 multispectral imagery can
estimate seamless nearshore bathymetry for optically clear
coastal waters.

Index Terms— Bathymetry, ICESat-2, Sentinel-2, support
vector regression (SVR).

I. INTRODUCTION

THERE is currently a global lack of bathymetric data
covering the shallow nearshore zone, extending seaward

from the shoreline to the 5–10-m depth contour [1]. Even in
developed countries with well-funded hydrographic surveying
offices, data are frequently lacking in the shallowest areas, and
in remote coastal regions, there is almost no available data [2].
The most viable techniques for mapping coastal (generally,
<30 m depth) bathymetry are using conventional acoustic
methods or airborne LiDAR bathymetry (ALB). Sonar, which
is boat-based, is difficult and dangerous to deploy in the
nearshore (i.e., near rocks, reefs, and in areas of significant
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wave action). ALB is difficult to deploy in remote areas,
and requires significant human and monetary resources for
acquisition. As a result, neither method is viable for repeated
global acquisition of high-resolution nearshore bathymetry.
For better understanding of coastal processes, a more continu-
ous and seamless estimate of nearshore bathymetry is desirable
[3], [4]. Spectral-based approaches for water depth estima-
tion using multi and hyperspectral imagery have been well
established in the published literature going back more than
four decades [5]. Although there is an empirical relationship
between light attenuation and water depth [6], complex factors,
such as primary production, turbidity, and bottom-type, can
further complicate the nonlinear relationship between surface
reflectance and water depth in ways that cannot be empirically
determined [7]. Consequently, in situ depths are required
to calibrate spectral-based approaches to achieve reasonable
accuracy. While in situ depths are not currently available on
a global scale, the recent launch of ICESat-2 equipped with a
green laser profiler capable of shallow water bathymetry has
the potential to unlock this possibility. This is the first study,
to our knowledge, that uses ICESat-2 determined water depths
to seed bathymetric inversion models.

Previous studies using NASA’s airborne photon-counting
ICESat-2 simulator, Multiple Altimeter Beam Experimental
Lidar (MABEL), suggest that measuring bathymetry from
ICESat-2 is possible [8], [9], but it has been an open question
if those results can be duplicated using range profiles from
ICESat-2. Even if bathymetric measurements were possible,
the spacing between beam pairs is wide enough −3 km at low
latitudes—that ICESat-2 alone would be insufficient for com-
piling high-resolution bathymetric models. However, depths
measured from ICESat-2 profiles could be used to seed satel-
lite derived bathymetry (SDB). A recent publication presents
first evidence that ICESat-2 can measure water depths of up to
38 m in optically clear waters [10]. This letter leverages these
initial findings to investigate the fusion of ICESat-2 depth
profiles with multispectral satellite imagery from Sentinel-
2. Using ICESat-2 profiles and Sentinel-2 imagery collected
over Destin, FL, USA, in November 2018, we present a
comparison of linear regression (LR) and machine learn-
ing support vector regression (SVR) bathymetric inversion
algorithms for deriving seamless high-resolution nearshore
bathymetry. We demonstrate that using these techniques, seam-
less bathymetric maps can be obtained with a mean difference
of 0.01 m ± 0.35 m (mean ± std.), root mean square error
(RMSE) = 0.35 m between the model and the independent
ground truth provided by coincident ALB observations (nega-
tive difference indicates reference is shallower than the model).
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Fig. 1. (Top) Sentinel-2 image RGB composite collected on November 16,
2018, ICESat-2 depth profiles collected on November 18, 2018, strong beams
(west, light green), weak beams (east, dark green), beam pairs numbered
1–3 from east to west; (Bottom) USACE CZMIL topobathymetric LiDAR
collected October–November 2018. Elevation ranges from 0.4 to −18.7 m
and is reported as orthometric NAVD 88 heights using GEOID12B.

II. METHODS

A. Study Site

The site is located around the East Pass near Destin, FL,
USA—a tidal inlet that connects the Gulf of Mexico with
the Choctawhatchee Bay (Fig. 1). The inlet is bounded by
jetties constructed by the U.S. Army Corps of Engineers
(USACE), who also regularly dredge the channel, which adds
a man-made element to this study area. Water depths vary
from 0 m to greater than 18 m, and the optical clarity of
the water makes it ideal for measuring the performance of
ICESat-2 bathymetric profiles. The beach is oriented in the
east/west direction such that the near polar orbit of ICESat-2
is perpendicular to beach, which is optimal for collecting a
profile with the widest range of water depths. In addition, this
location is coincident with an airborne bathymetric LiDAR
data set collected in 2018 by the USACE Optech Coastal Zone
Mapping and Imaging LiDAR (CZMIL) system used here for
independent validation.

B. Observations

1) ICESat-2: Launched in September 2018, the advanced
topographic laser altimeter system (ATLAS) aboard the NASA
satellite ICESat-2 uses a 532 nm laser with a 17 m footprint
to detect the elevation of land and water surfaces on a global
scale [11]. The laser can operate at a high repetition rate, 10
kHz, which results in 70 cm separation for each laser shot
in the alongtrack direction [8]. A diffractive optical element
splits the laser into six beams, three pairs of strong and weak
beams spaced 90 m apart, and 3 km spacing between pairs
of beams, which provides increased spatial coverage [12].
On November 18, 2018, ICESat-2 orbited over East Pass on
a descending track. Of the three beam pairs, one pair landed
to the west of the pass and two pairs are located eastward
(Fig. 1).

The L2A Global Geolocated Photon Data (ATL03) contain
noise common to single photon counting LiDAR systems,

primarily solar noise and atmospheric scattering [13]. Existing
filtering algorithms and higher level data products have not
been optimized for bathymetric applications [14], [15], and
therefore, classification of points was done manually.
2) Sentinel-2: Multispectral Sentinel-2 imagery [16] was

used for bathymetric inversion in this letter. The image used
here is a Level-2A image collected on November 16, 2018,
which is an orthoimage, bottom of the atmosphere corrected
reflectance product. Only the 10 m resolution bands were
used, namely bands B2 (Blue/497 nm), B3 (Green/560 nm),
B4 (Red/665 nm), and B8 (NIR/835 nm). A normalized
difference vegetative index (NDVI) was applied to mask out
nonwater pixels using a threshold of −0.2

Nonwater Pixels = B8 − B4

B8 + B4
> −0.2

3) USACE CZMIL: The airborne LiDAR data set was
collected after Hurricane Michael from October 24–
November 04, 2018 by the Joint Airborne LiDAR Bathymetry
Technical Center of eXpertise (JALBTCX) CZMIL system of
the USACE [17]. The LiDAR system collects data at 10 kHz
with a planned data density of at least 2 points/m2 in shallow
water, 0.5 points/m2 in deep water, and classified bathymetric
point clouds that meet the standard of 3.5 + 0.05d m horizontal
accuracy and ((0.302) + ((0.013d)2))1/2 m vertical accuracy
at 95% confidence level, where d is depth. CZMIL data are
provided in a presegmented format with benthic layer returns
already identified for easy bathymetry retrieval and these
returns were used to generate the bathymetric map in Fig. 1.

C. Data Processing

1) Index of Refraction Correction: The ATLAS/
ICESat-2 L2A Global Geolocated Photon Data Product
(ATL03) [18] assumes that the photons collected have
traveled primarily through air, but for bathymetric points the
photons must also travel through water slowing the return of
the incident photon. When light crosses the air–sea barrier,
the phase velocity decreases due to the change in propagation
medium. The index of refraction (n) change results in points
that are measured deeper than would be expected based
on a time-of-flight calculation through air, and points that
are horizontally offset due to slant range from a nonzero
angle of incidence in the case of nonnadir facing lasers (four
laser beams are nonnadir). A rigorous explanation of the
necessary corrections, including accounting for the curvature
of the Earth across the swath, is given in [10]. In this letter,
a correction is applied to the water depths measured to
account for the index of refraction in seawater (T = 20 ◦C,
S = 33 practical salinity units (PSU), at atmospheric pressure,
λ = 546.1 nm, n = 1.324) [6]. Parrish et al. [10] points out
that the widest angle of incidence is currently 0.38 ◦, which
corresponds to a horizontal offset refraction correction of
0.003d , where d is depth, or <4 cm at 12-m water depth.
The horizontal refraction correction was deemed negligible
in comparison to the beam footprint (17 m) and a vertical
correction was applied.
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2) Datum Transformation: ICESat-2 photons are reported
as geographical coordinates using the World Geodetic System
1984 (WGS84) ellipsoid in the ITRF2014 reference frame,
and the USACE/CZMIL points are reported as geographical
coordinates in the North American Datum of 1983 (NAD83)
with the vertical elevations referenced to the North Ameri-
can Vertical Datum of 1988 (NAVD 88) using geoid model
GEOID12B. ICESat-2 photons were transformed into the
NAD83 datum and ellipsoid heights were converted to ortho-
metric heights, and all points were projected into Universal
Transverse Mercator (UTM) 16N using National Oceanic and
Atmospheric Administration (NOAA)’s VDatum software.
3) Bathymetric Inversion: The use of bathymetric inversion

models requires a training data set to tune the model for opti-
mal performance. For our experiments, depth measurements
are provided by the ICESat-2 refraction corrected range mea-
surements [19] and then their respective locations are matched
via their coordinates to corresponding Sentinel-2 pixels to
build a training data set. For comparative purposes, we trained
two algorithms to model bathymetry at each pixel location.
The first inversion model is a linear transform model [5] and
the second is a nonlinear machine learning technique named
SVR [20].

a) LR: There is a long history of applying a simple linear
model to correlate surface reflectance recorded in satellite
image pixels with depth. First developed by Lyzenga [5], [21]
this method requires relatively little computational effort and
can be expanded to accommodate any number of wavelength
bands. The downside is that it assumes homogeneous water
quality and bottom type throughout the scene and that the
nonlinear relationship between surface reflectance and depth
can be adequately modeled using a polynomial function of
n + 1 tunable parameters (ai ), where n is the number of
wavelength bands for a given image and Xi are the min–max
normalized reflectance values for each band. This method is
widely used in the literature [22], [23] and thus serves as a
point of reference for comparison purposes.

K = a0 +
n∑

i=1

ai Xi (1)

b) SVR: This technique is a machine learning algorithm
that uses a training data set to learn the nonlinear relationship
between surface reflectance and water depth without any
empirical knowledge of the processes that would affect surface
reflectance, such as attenuation, turbidity, or bottom type. The
support vectors used for regression are found by splitting
the known pixel depths (both weak and strong beam returns)
80/20 into uniformly distributed training/validation data sets
and mapping the training data set into a multidimensional
feature space. The best regression fit is found by using a kernel
function and tuning the model parameters to best match the
validation data set [24]. Radial basis kernel functions (RBFs)
have been shown to model nonlinear behavior with a smaller
number of inputs and therefore, work well in this context [20]

K (xi , x j) = exp(−γ ||xi − x j ||2), γ > 0. (2)

The RBF kernel function above has a tunable gamma
parameter. Vapnik [25] introduced an error (loss) function

Fig. 2. ICESat-2 points (yellow) overlaid on top of USACE CZMIL
points < 1.5 m distance, separated by beam pair into strong and weak profiles.

Fig. 3. (Top) LR results range from 1.9 to −8.9 m. (Bottom) SVR results
range from −0.3 to −8.6 m.

with ε-insensitivity zone that decreases the number of sup-
port vectors, and a cost (C) parameter that decreases the
weight of points outside of the ε-insensitivity zone thereby
preventing overfitting. Parameter optimization for these three
parameters (γ , ε, C) determines the model with the best SVR
performance. More details of the use of SVR for bathymetric
inversion can be found in [20]. LIBSVM software was used
to create the SVR model used in this letter [26].

III. RESULTS AND DISCUSSION

Profiles collected over Destin, FL, USA, clearly demonstrate
the ability of ICESat-2 to capture the shallow water coastline
with elevations measured between 0.0 and −8.8 m. The
coherence is close between points collected by ICESat-2 and
the CZMIL LiDAR (Fig. 2). The RMSE of the profiles ranges
from 0.26 to 0.34 m for the strong beams and 0.20–0.31 m
for the weak beams, which smaller than the RMSE range of
0.43–0.60 m and 0.43–0.56 m for strong and weak beams,
respectively, reported by Parrish et al. [10]. In general,
the strong beams have 4× more points than the weak
beams. Differences between the strong and weak beams are
summarized in Table I. The 95th percentile elevation listed
in the table represents the range (from 0) containing 95% of
the measured points.
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Fig. 4. (Top Left) Error map [IS2/S2-CZMIL]—95th Percentile. (Top Right) Histogram of All Areas (yellow), 95th Percentile (orange). (Bottom Left) Error
map [IS2/S2-CZMIL]—95th Percentile between beams 1 and 2. (Bottom Right) Histogram 95th Percentile between beams 1 and 2 (green)—For error maps:
blue indicates the model is deeper than reference, red indicates the model is shallower than reference.

TABLE I

COMPARISON OF DIFFERENCE BETWEEN ICESAT-2 PROFILES

AND CZMIL TOPOBATHYMETRIC LIDAR FOR
STRONG AND WEAK BEAMS 1–3

The estimated depth maps from the two bathymetric algo-
rithms are presented in Fig. 3. The LR algorithm has a
model RMSE = 0.69 m and R2 = 0.93, and does not
perform as well as the SVR algorithm, model RMSE =
0.14 m and R2 = 0.996. Note that these model fits are
with respect to the regression validation data, not the CZMIL
bathymetry. The SVR algorithm is better able to capture
the fine scale features and interpolate for the remaining
pixels in the image. The results of the statistical comparison
of each technique with the USACE CZMIL data set are
summarized in Table II. We conclude based on both the
model validation and the external validation data set that
SVR is the superior inversion technique. Therefore, further
analysis will only be performed on the SVR bathymetry
results.

First results indicate that extrapolating the inversion model
to depths beyond those measured by ICESat-2 leads to gross
inaccuracies when compared to CZMIL LiDAR. In addition,
there are outlier ICESat-2 depths that may skew inversion
results. To be conservative, we therefore, removed all points
beyond the 95th percentile elevation and removed results

TABLE II

COMPARISON OF DIFFERENCE BETWEEN ICESAT-2/
SENTINEL-2 BATHYMETRY AND CZMIL
TOPOBATHYMETRIC LIDAR FOR LR AND

SVR ALGORITHMS

where the estimated elevation is deeper than the 95th percentile
elevation. When the outlier depths are removed, ICESat-2 pro-
files are reliably able to measure elevations from 0.0 to −6.0 m
and −0.4 to −6.7 m for strong and weak beams, respectively.

It is noteworthy that the area inside east pass is not sampled
by the ICESat-2 profiles and the bottom-type seems to be
sufficiently different from the natural sandy beaches, probably
due to repeated dredging. Depths in this area were consistently
underestimated by the SVR model results (Fig. 4). There is
also a patchy area in the CZMIL data set around beam 3 (west
beam) that made direct comparison in this area difficult. When
the error analysis was constrained to the area between beams 1
and 2, then the mean error decreases from −0.53 m ± 0.88 m
to 0.01 m ± 0.35 m and decreases the RMSE from 1.03 to
0.35 m (Table III). These results indicate that the SVR fusion
technique works very well in areas that are directly observed
by ICESat-2, but in areas deeper than observed by ICESat-2
or areas where bottom types are not sampled directly it
will be difficult to accurately estimate bathymetry. Therefore,
this approach is best suited for shorelines with homogeneous
benthic conditions between ICESat-2 profiles.

Authorized licensed use limited to: Craig Glennie. Downloaded on June 15,2020 at 14:19:45 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALBRIGHT AND GLENNIE: NEARSHORE BATHYMETRY FROM FUSION OF SENTINEL-2 AND ICESAT-2 OBSERVATIONS 5

TABLE III

STATISTICAL COMPARISON OF SVR BATHYMETRY COMPARISON WITH
THE CZMIL LIDAR BATHYMETRY ELEVATIONS WITH

95TH PERCENTILE OF ICESAT-2 DEPTHS, BOTH

INCLUDED AND EXCLUDED

IV. CONCLUSION

This letter has further validated that the ICESat-2 ATLAS
sensor is able to estimate shallow water bathymetry in non-
turbid waters. A comparison with a coincident LiDAR data
set established that ATLAS was able to estimate bathymetry
with an RMSE range of 0.26–0.34 m and 0.20–0.31 m for
strong and weak beams, respectively, over a range of elevations
from 0.0 to −8.8 m. The depths were combined with two
model-based bathymetric inversion approaches, LR, and SVR.
Overall, SVR outperformed the LR technique, the algorithm
validation (using only ICESat-2 data points) reported a model
RMSE = 0.14 m, R2 = 0.996 and model RMSE = 0.69 m,
R2 = 0.93, respectively. The SVR algorithm when trained
with the ICESat-2 profiles accurately estimated depth using
ATLAS range measurements, and when validated externally
with airborne LiDAR, the areas between beams 1 and 2 had a
mean difference of 0.01 m ± 0.35 m and RMSE = 0.35 m. The
resultant depth map showed no significant decrease in accuracy
between beam profiles 1 and 2, suggesting that if turbidity
and bottom reflectance are consistent between profiles, then an
SVR combination of ICESat-2 depths and Sentinel-2 spectral
observations should be able to provide temporal estimates of
near-shore bathymetry with a 91-day repeat rate: the nominal
revisit rate of ICESat-2.
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