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In the last two decades, airborne laser scanning (ALS) has found widespread application and driven fundamental
advances in the Earth sciences. With increasing availability and accessibility, multi-temporal ALS data have been
used to advance key research topics related to dynamic Earth surface processes. This review presents a com-
prehensive compilation of existing applications of ALS change detection to the Earth sciences. We cover a wide
scope of material pertinent to the broad field of Earth sciences to encourage the cross-pollination between sub-
disciplines and discuss the outlook of ALS change detection for advancing scientific discovery. While significant
progress has been made in applying repeat ALS data to change detection, numerous approaches make funda-
mental assumptions that limit the full potential of repeat ALS data. The use of such data for 3D change detection
is, therefore, in need of novel, scalable, and computationally efficient processing algorithms that transcend the
ever-increasing data density and spatial coverage. Quantification of uncertainty in change detection results also
requires further attention, as it is vitally important to understand what 3D differences detected between epochs
represent actual change as opposed to limitations in data or methodology. Although ALS has become increas-
ingly integral to change detection across the Earth sciences, the existence of pre- and post-event ALS data is still
uncommon for many isolated hazard events, such as earthquakes, volcanic eruptions, wildfires, and landslides.

Consequently, data availability is still a major limitation for many ALS change detection applications.

1. Introduction

Rendering Earth's surface in 3D, Light Detection and Ranging
(lidar), also referred to as laser scanning, has enabled high accuracy
mapping of topography, bathymetry, and vegetation. By increasing
both the amount and detail of information to an unprecedented level,
laser scanning has found widespread application and driven funda-
mental advances in the Earth sciences. The contributions that laser
scanning has delivered across Earth sciences are reflected in the sharply
increasing number of publications relying on lidar over the last two
decades. Consequently, a number of reviews on laser scanning in spe-
cific applications have been published (e.g., Deems et al., 2013 in snow
depth measurement; Hodgetts, 2013 in the petroleum industry;
Jaboyedoff et al., 2012 for landslide investigation; Tarolli, 2014 for
geomorphology; and Wulder et al., 2012 for forest characterization).

Lidar data within the scope of Earth sciences span a wide array of
spatial scales ranging from global (satellite), to regional (airborne), to
local (terrestrial or mobile). Airborne laser scanning (ALS), in parti-
cular, has been widely adopted in Earth science because it provides
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high accuracy and resolution models that enable quantification at scales
previously not possible. The combination of the high resolution, areal
coverage, and sub-canopy mapping capability of ALS has revolutionized
data acquisition and helped to transform our understanding of the Earth
surface (Meigs, 2013; Tarolli, 2014). Consequently, ALS has become a
standard tool in many branches of Earth science (Hofle and Rutzinger,
2011). The applications of ALS in Earth science include, but are not
limited to, ecology, volcanology, glaciology, hydrology, geomor-
phology, and active tectonics (e.g., Charlton et al., 2003; Hudnut et al.,
2002; Jensen et al., 2008; Kennett and Eiken, 1997; Marenco et al.,
2011).

To date, the bulk of studies in Earth science used lidar data from
single acquisitions, however, recently the number of studies taking
advantage of multi-temporal lidar data has been steadily increasing.
The temporal dimension from repeat data acquisitions has provided
scientists with new capabilities to detect and evaluate spatiotemporal
change. The potential of additional lidar dimensions for advancing
change detection was realized early on (e.g., Murakami et al. 1999) and
has been highlighted elsewhere (e.g., Eitel et al., 2016). However, a
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detailed review of ALS change detection as applied to disciplines within
the Earth sciences has not been presented. The steady growth in the
number of ALS change detection studies is likely to continue with in-
creasing data availability and thus, a review of the state-of-the-art
throughout the Earth sciences is timely.

In this review, we cover a wide scope of change detection studies
using ALS pertinent to the broad field of Earth sciences, highlighting
specific aims, outcomes, and needs to encourage the cross-pollination
between sub-disciplines. Providing a comprehensive summary of stu-
dies and ideas, this review will come in useful for the growing number
of Earth scientists working on ALS change detection in various sub-
disciplines. We first give an overview of ALS change detection. We then
review existing repeat ALS applications in Earth science, divided by
sub-discipline. Finally, we discuss the outlook of ALS change detection
for advancing applications and probable future research directions in
order to maximize the capabilities of multi-temporal ALS observations.
Repeat lidar data acquisition was previously classified by Eitel et al.
(2016) as multi-temporal (> 1month) and hyper-temporal
(=1 month), which accounts for more frequent data acquisition inter-
vals such as autonomous TLS. In this review, however, we do not follow
this classification and term all repeat ALS data acquisitions as multi-
temporal regardless of the return interval.

2. ALS change detection

Remote change detection has become an important tool for mon-
itoring and understanding the dynamic processes of the local and global
environment. Singh (1989) referred to remote change detection as the
“process of identifying differences in the state of an object or phe-
nomenon by observing it at different times.” Remote change detection
quantifies the spatiotemporal differences including differences in
spectra, position (2D), elevation (2.5D), and volume (3D). With an ever
expanding collection of available data, remote change detection will
likely continue to be one of the top active research fields in the Earth
sciences (Jianya et al., 2008; Zhu, 2017).

Time stacks of imaging data obtained mostly from passive sensors
have been used to study and monitor change on Earth's surface for
decades (Wulder and Coops, 2014); many passive imaging change de-
tection algorithms have been developed, and a number of literature
reviews already exist (e.g., Coppin et al., 2004; Hansen and Loveland,
2012; Lu et al., 2004; Singh, 1989; Zhu, 2017). Providing mostly 2D
information, the image-oriented approach by itself is not sufficient for
most spatiotemporal change, which is inherently 3D (Qin et al., 2016).
To fill this gap, vertical information can only be extracted indirectly
from multiple overlapping images using photogrammetry. Laser scan-
ning, on the other hand, expands the scope of change detection appli-
cations to a fully 3D space. Consequently, multi-temporal ALS data have
been used in many applications such as monitoring changes in coastline
(e.g., Meredith et al., 1999) and canopy structure (e.g., Wulder et al.,
2012), quantifying mass balance of glaciers (e.g., Geist et al., 2003),
and near-field surface deformation (e.g., Ekhtari and Glennie, 2017) to
name a few.

The use of repeat ALS data can in many situations provide improved
change detection results compared to passive imaging approaches.
Because the location of each lidar return point is determined relative to
the sensor location in 3D, ALS data from different epochs are not af-
fected by geometric distortion due to perspective, which provides the
capability to detect change regardless of the viewing angle. For imaging
data, perspective distortion is a major issue and has limited the scope of
change detection applications to data acquired with comparable
viewing angles (Qin et al., 2016). Furthermore, imaging data acquired
using passive sensors are adversely affected by seasonal variations in
solar incidence angle. Consequently, images typically need to be se-
lected from the same season or seasonal effects need to be corrected
prior to any change detection analysis (Zhu, 2017). A lidar-based ap-
proach is more robust in this regard because, unlike passive remote
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sensing, lidar does not rely on solar radiation and thus, is not affected
by ambient illumination conditions or seasonal solar angle differences
(Chen et al., 2017).

Another prominent advantage of a lidar-based approach stems from
its ability to penetrate small gaps in the canopy making it possible to
render the 3D geometry of the underlying topography and detect
morphological changes. Observations such as these, conducted through
canopy or ground cover, have the potential to significantly advance
earthquake, volcanology, and morphodynamics studies, as well as
others, where key features may be partially obscured by vegetation.
Along with terrain models, canopy height models can be derived from
ALS data, which allows for the detection of change in canopy structure
and biomass. Therefore, a lidar-based approach is not only well-suited
for quantifying morphological change but also for monitoring change in
vegetation structure with both high accuracy and level of detail
(Campbell et al., 2017).

Despite the numerous advantages that ALS change detection has to
offer, a number of limitations remain. Incompatibility between data
collections is probably the greatest challenge in utilizing repeat ALS for
change detection. Acquisition parameters and scanning systems are
often dissimilar between different epochs of data, particularly those
with large temporal spacing (e.g., Glennie et al., 2014; Hudak et al.,
2012). As a result, the processing, analysis, and interpretation of multi-
temporal ALS data become exceedingly complicated without further
understanding of how the incompatibilities between data collections
should be treated (Eitel et al., 2016).

Acquiring data of appropriate quality is an important step for any
change detection application (Lu et al., 2004). The definition of data
quality and requirements for different change detection applications
can be highly disparate and depend on the scale of the change intended
to be resolved (Passalacqua et al., 2015). ALS data quality usually refers
to the spatial resolution and positional uncertainty of an individual data
collection. Due to a wide variety of available scanning systems and
propriety processing algorithms, the positional uncertainties associated
with data collections also vary (Qin et al., 2016). Therefore, under-
standing the potential error sources and recognizing error budgets for
individual data collections is crucial for lidar change detection (Deems
et al., 2013). For instance, inadequate system calibration and/or im-
proper spatial error modeling of individual data collections introduce
substantial systematic errors and adversely influence change detection
analysis (Glennie et al., 2014). Furthermore, ALS sensors record laser
returns without prejudice; the generated point cloud may contain
points from manmade structures, vegetation, or underlying topography.
It is, therefore, necessary to differentiate and classify ground and above-
ground returns. This process, however, introduces classification un-
certainty, depending on the methodology employed, and is made
complex by the presence of vegetation and topographic complexity.
Inaccuracies in ground vs above-ground return classification may result
in apparent change regardless of whether or not real change has taken
place. Therefore, positional and classification uncertainties collectively
influence the applicability, quantitative accuracy, and informative va-
lues of ALS change detection. While understanding and accounting for
these uncertainties is important, it is currently not considered in most
change detection applications using laser scanning, and a detailed
discussion is beyond the scope of this paper. Passalacqua et al. (2015)
offers an intensive discussion on common sources of error leading to
uncertainties in lidar data and derived products, spatial modeling of
these uncertainties, and error propagation.

Although ALS is regarded as a reliable source for point data with
high positional accuracy, horizontal and vertical accuracy are not
uniform. According to Glennie (2007), a good rule-of-thumb for ALS
data is that the vertical accuracy is almost 5 times better than the
horizontal accuracy. Currently, the best case positional (vertical/hor-
izontal) accuracy of ALS data is about 0.05/0.2m and 0.15/0.6 m at
500m and 3000m flight altitude, respectively (Glennie, 2007;
Passalacqua et al., 2015). The resolution of ALS data is commonly
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discussed based on point density (number of points per m?) and is de-
termined by flight and sensor parameters (Renslow, 2012; Shan and
Toth, 2008). It is common for the point density of ALS data to vary
between different epochs of data. The typical point density of modern
ALS data varies between 1 and 30 points per square-meter whereas for
legacy data (i.e., from before roughly 2007) it is around 0.1 to 2 points
per square-meter (Passalacqua et al., 2015). Owing to advances in
scanning systems, ALS has provided increasingly higher positional ac-
curacy and point density over time (Wulder et al., 2012). The increase
in point density could cause apparent changes in bare-earth topography
that is only due to greater penetration through vegetation and more
highly resolved features. Consequently, it is usually the older legacy
data that limits the accuracy and quality of change detection analysis.
Another important aspect pertinent to data compatibility is co-regis-
tration of different epochs of data. Proper georeferencing of the pre-
and post-event data with consistent projections and datums is funda-
mental to any further analysis (Passalacqua et al., 2015). Improper (or
missing) georeferencing and registration of data collections prevents
proper alignment of the pre- and post-event data. In the absence of
proper co-registration it becomes unclear whether the analysis results
represent real change or simply an artifact related to the misalignment
between data collections (Glennie et al., 2014).

3. Multi-temporal ALS in Earth sciences

In the last two decades, the use of multi-temporal ALS data has
dramatically increased and a variety of methodologies have been im-
plemented to elucidate fundamental earth surface processes. Below, we
briefly address commonly used ALS change detection methods and
present a comprehensive summary of the existing repeat ALS applica-
tions for the biosphere, cryosphere, and geosphere. The biosphere is
defined to include those processes that impact the intersection between
the critical zone and the broader field of ecology, including biomass
calculations and wildfire response studies. The cryosphere is defined as
those studies relating specifically to snow and ice, whether they be in
the Arctic, the Antarctic, or elsewhere around the world. Finally, the
geosphere encapsulates the sub-disciplines that typically fall under the
broader definition of geology i.e. volcanology, surface deformation,
morphodynamics, and landslides.

Some of the most commonly used methods within the scope of Earth
sciences are Differencing of DEMs (DoD) (Wheaton, 2008), Iterative
Closest Point (ICP) (Besl and McKay, 1992), Particle Image Velocimetry
(PIV) (Keane and Adrian, 1992), and Co-registration of Optically Sensed
Images and Correlation (COSI-Corr) (Leprince et al., 2007). Beyond
these commonly used methods, a number of ALS change detection
methods tailored for specific applications and purposes have been
proposed. Due to their limited use, these methods are briefly addressed
in their respective sections below.

DoD and ICP have been, by far, the most frequently used methods in
repeat ALS change detection studies. DoD is a simple image-based
method to quantify changes in elevation between different epochs of
lidar-derived DEMs. In the DoD approach, the elevations of an older
DEM are subtracted from a new DEM on a pixel-by-pixel basis. Using
the grid size and elevation differences obtained from DoD, volumetric
changes over time can be estimated. As such, Wheaton et al. (2010)
suggested that the DoD can be used to detect and quantify any volu-
metric changes larger than the minimum detection limits. ICP is a rigid
body transformation that minimizes the point to point differences be-
tween two point clouds. The algorithm matches the closest points in the
reference (non-moving) point cloud to those in the target (moving)
point cloud and then estimates the rotation and translation required to
minimize the point to point distances throughout the point cloud. The
target points are then transformed and the point to point distances are
recalculated. The algorithm runs iteratively until the misregistration
error between the two point clouds falls below a user-defined threshold.

PIV is an image registration method developed in the fluid dynamics
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community. The original technique relied on particles, seeded in fluids,
to track the motion of the fluid flow. This method has since been
adapted for image analysis, where individual pixels can be treated si-
milarly to particles seeded in a fluid. In order to use the PIV method,
lidar data must first be converted to an image. In most Earth science
applications, the image is colorized based on elevation. The primary
advantage of the PIV technique is that it provides a non-rigid trans-
formation, which is necessary for accurately modeling many Earth
science phenomena, for example landslides. COSI-Corr is another
image-based method developed specifically for monitoring surface de-
formation. The method allows precise co-registration and sub-pixel-
correlation of temporally spaced images. Sub-pixel correlation of pre-
and post-event images, achieved by phase plane correlation in the
Fourier domain, reveals the horizontal displacement due to surface
deformation. While the method was initially developed for optical
imagery, it has since been used for lidar-derived DEMs elevation models
and laser intensity images. Like PIV, COSI-Corr provides non-rigid
transformation parameters allowing accurate horizontal deformation
estimations.

3.1. Biosphere

3.1.1. Above-ground biomass (AGB)

While single ALS data collections have been used to estimate AGB
stock, multi-temporal ALS allows for modeling AGB change over time.
Approaches for modeling AGB change using repeat ALS can be sepa-
rated into direct and indirect approaches (McRoberts et al., 2014,
2015). The indirect approach models the AGB using laser metrics at two
points in time and estimates the change in AGB as the difference be-
tween these models. The direct approach uses the difference in the laser
metrics over time to estimate the change in AGB as a single model.
Implementing an indirect approach, Hudak et al. (2012) quantified AGB
change and carbon flux in the heavily managed, mixed conifer forests of
Moscow Mountain, ID. Using in-situ measurements and laser metrics in
a Random Forest machine learning algorithm (Crookston and Finley,
2008), predictive AGB models were created to estimate biomass change
at the plot, pixel, and landscape levels (Fig. 1). The results indicated a
net gain in AGB across the non-harvested forest and a net loss across
harvested forests. Overall, Moscow Mountain was found to be a carbon
source rather than a sink. It has been also noted that, despite a 30-fold
point density difference, plot-scale AGB change estimations were not
affected because the ALS data of different epochs were used to model
AGBs independently. The AGB stock and change in biomass across a
typical Mediterranean woodland, located in central Spain, was assessed
in an indirect modeling approach (Simonson et al., 2016). Regression
models on the basis of lidar-derived mean canopy height and in-situ
AGB estimates were created and used to estimate AGB stock and bio-
mass change over time. The lidar-derived and in-situ AGB change es-
timates were found to be in a close agreement. The results were then
used to simulate AGB dynamics over the next 100 years. The findings
suggested that AGB accumulation was accelerating, making the in-
vestigated forest a carbon sink under undisturbed conditions.

Tropical peat swamp forests in Indonesia have been huge natural
pools for carbon. However, due to deforestation and forest degradation
they have recently become a source of carbon. Biomass change in a peat
swamp forest near Sabangau, Central Kalimantan, was evaluated by
implementing an indirect approach (Boehm et al., 2013). The forest
regrowth and peat subsidence were estimated using lidar-derived Ca-
nopy Height Models (CHMs) and in-situ measurements. Between 2007
and 2011 the peat swamp subsided 18 cm whereas the forest regrew
1.9m suggesting the study area exhibits balance in the absence of
logging (Boehm et al., 2013). Another peat swap forest in Central Ka-
limantan near Plangka Raya was studied and the AGB dynamics were
quantified using an indirect approach with a focus on unaffected,
burned, and selectively logged forests (Englhart et al., 2013). The re-
sults indicated that 92% of the total biomass was lost across the burned
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Fig. 1. Predicted AGB across the study area in Moscow Mountain, ID in (A) 2003 and (B) 2009. (C) Estimated AGB change obtained differencing (A) and (B). Figure

originally from Hudak et al. (2012), used with permission.

forests. Unaffected forests exhibit a net biomass gain and canopy height
growth whereas selectively logged forests exhibit a net loss despite the
observed canopy height growth. While logging is an important pathway
to deforestation and increased carbon emission, the amount of carbon
release remains uncertain as the affected areas and carbon loss as a
result of logging have not been well quantified. In one such study,
Andersen et al. (2014) evaluated AGB changes associated with low-
density logging in natural tropical forests in the Western Brazilian
Amazon. Regression models were created and AGB change estimates
were obtained by differencing predictor rasters. The findings indicated
that the entire area exhibited a net AGB loss but the biomass loss in
areas affected by logging was almost six fold that of unaffected areas.

Monitoring changes in high-biomass tropical forests using ALS poses
specific challenges due to the significantly higher AGB modeling errors.
Nevertheless, a few studies have sought to evaluate AGB dynamics in

tropical forests using repeat ALS data. The change in AGB over a period
of four years was evaluated in an old-growth tropical forest of French
Guiana (Réjou-Méchain et al., 2015). In-situ AGB measurements were
regressed against lidar-derived median canopy height for 0.25 and 1 ha
areas to obtain AGB estimates. The change in AGB over time was esti-
mated by differencing these models and was subsequently compared to
in-situ AGB change estimates. The results showed a weak correlation
between in-situ and lidar-derived estimates, which is only significant at
the 0.25 ha resolution, and suggested that AGB dynamics of old-growth
tropical forests are not directly comparable from ground and lidar
perspectives. Similar findings concerning AGB dynamics in tropical
forests were reported in other literature (Dubayah et al., 2010). Canopy
structure and AGB dynamics across the tropical forests of the La Selva
Biological Station in Costa Rica were evaluated in an experimental
study using full waveform ALS data (Dubayah et al., 2010). Adopting a
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direct approach, changes in laser metrics were related to in-situ AGB
change observations for a series of old-growth and secondary forests.
However, the model performance was found to be weak. Nevertheless,
AGB change over the seven-year study was mapped at 1-ha resolution
using the plot level relationships. The results indicated a net loss of
height but no net AGB change in old-growth forests, whereas secondary
forests exhibited net height growth and net AGB gain. These results
were then used to infer whether old-growth and secondary forests were
sources, neutral, or sinks in terms of carbon flux. Secondary forests
were found to be predominantly sinks or neutral whereas old-growth
forests host spatially distributed sources and sinks.

While many studies implemented only one modeling approach, a
few studies evaluated the accuracies of both direct and indirect ap-
proaches in estimating AGB change. The magnitude and spatial pattern
of AGB change in an old-growth tropical forest on Barro Colorado
Island, Panama was evaluated using both the indirect and direct ap-
proaches at different spatial scales (0.04-10 ha) (Meyer et al., 2013).
The results indicated higher uncertainties associated with the direct
modeling approach for both AGB stock and biomass change estimates at
spatial scales smaller than 10 ha. While the indirect modeling approach
resulted in accurate estimates of AGB stock at 1 ha resolution, accurate
AGB change estimates were obtained at 10 ha resolution. Thus, re-
gardless of the modeling approach, repeat ALS estimated changes in
AGB with acceptable accuracy for areas larger than 10 ha. The finding
indicated old-growth forests exhibit a net loss of AGB, whereas the
secondary forests exhibit a net gain across the study area over 10 years.
It was also shown that there are no advantages to estimating AGB
change at spatial scales comparable to crown sizes, and that, in fact,
spatial scales below 1ha are dominated by uncertainties. Cao et al.
(2016) analyzed AGB change over a period of six years across a mixed
subtropical forest (Yushan Forest) near Suzhou, China using both in-
direct and direct modeling approaches. The results indicated that direct
modeling produced better AGB change estimates compared to the in-
direct approach. The spatial analysis of modeled AGB change has shown
that the investigated forest exhibits a net biomass gain over a six year
period and that the rate of biomass gain varied with respect to forest
type and age.

Bollandsas et al. (2013) evaluated different approaches for mod-
eling biomass change on 52 reference plots in a mountain forest near
Ringebu, Norway. In addition to the commonly used indirect and direct
approaches, a modified direct approach based on the relative annual
growth rate in the AGB was tested. The results indicated the superiority
of direct approaches over the indirect approach, while the traditional
direct approach performed slightly better than the modified direct ap-
proach. Qkseter et al. (2015) compared the accuracy of direct and in-
direct approaches for estimating biomass change in 39 circular re-
ference plots of a young boreal forest near Valer, Norway. In addition to
the three approaches evaluated in Bollandsas et al. (2013), two addi-
tional direct modeling variants were tested. As opposed to Bollandsas
et al. (2013), the findings indicated the indirect approach produced the
best results across the study area for a wide range of forest conditions.
The same data used in @kseter et al. (2015) were also used in Nasset
et al. (2013), Neasset et al. (2015), and McRoberts et al. (2015). The
direct and indirect approaches were compared in a statistically rigorous
and analytically derived, model-assisted estimation of AGB change
(Neesset et al., 2013). The findings indicated that direct modeling per-
formed better for estimating mean biomass change over time when
compared to the indirect approach. Neesset et al. (2015) evaluated the
effect of plot size on model-assisted direct and indirect estimation of
AGB change. Likewise, the direct AGB estimation approach produced
better relative efficiency compared to the indirect approach. The results
also showed a positive correlation between relative efficiency and in-
creasing plot size, indicating that plot size is an important survey design
parameter that should be taken into account for precise remote AGB
estimation. In addition to model-assisted direct and indirect ap-
proaches, McRoberts et al. (2015) used simple random sampling for
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estimating AGB change. As previously reported in the literature, both
direct and indirect model-assisted approaches were found to be superior
to simple random sampling. However, unlike the previously reported
findings, the indirect model-assisted approach produced more accurate
AGB change estimates in the study area. Model-assisted direct and in-
direct modeling approaches for estimating AGB change were tested in a
3 X 3km plot in the Silas Little Experimental Forest in New Lisbon, NJ
(Skowronski et al., 2014). The results favored the direct modeling ap-
proach for estimating biomass change over time. It was also shown that
a model-assisted indirect approach revealed larger variances compared
to in-situ biomass change estimations obtained from simple random
sampling; whereas a model-based direct approach produced a smaller
variance compared to in-situ estimations.

3.1.2. Wildfire response

ALS has been used sparingly to examine and characterize the effects
of wildfire in a dynamic way (Alonzo et al., 2017; Bohlin et al., 2017;
McCarley et al., 2017b; Reddy et al., 2015). While post-wildfire, single
ALS data can be used to estimate changes to forest volume, tree canopy
cover, and other metrics, these products are improved through the use
of complementary pre- and post-wildfire ALS datasets (McCarley et al.,
2017a; Reddy et al., 2015). New products characterizing the effects of
wildfires can also be developed where repeat ALS data are available,
including measurement of surface layer removal (Alonzo et al., 2017)
and tree-fall following wildfire events (Bohlin et al., 2017). Finally,
when other multi-temporal products, such as Landsat data, share a
coverage area with repeat ALS data, variable burn rates for individual
tree species (McCarley et al., 2017b) or for specific levels of tree health
(McCarley et al., 2017a) can be determined.

A combination of multi-temporal ALS and Landsat data were used to
examine the 2005 Fox Creek wildfire, in the Kenai Peninsula, AK
(Alonzo et al., 2017), the 2002 House River fire, in Alberta, Canada
(Wulder et al., 2009), and the 2012 Pole Creek fire, outside of Bend, OR
(McCarley et al., 2017b). In all three of these studies, there was pre- and
post-fire Landsat and ALS data coverage of the affected area. Landsat
data is frequently used to assess pre- and post-fire forest conditions,
including structure, burn severity and normalized burn ratio, and to
measure the changes in canopy cover resulting from wildfire (Alonzo
et al., 2017; Wulder et al., 2009). Wulder et al. (2009) used the two
data types in a primarily complementary way where ALS data was used
to specifically look at vertical forest structure, which is used to estimate
wildfire carbon emissions, inter-tree distance, and crown closure. A
marked increase in inter-tree distance and a decrease in canopy closure
were observed in the ALS data when comparing post-fire data to pre-fire
data. ALS and Landsat metrics, including crown closure, vegetation fill,
and change in canopy height for ALS and normalized burn ration for
Landsat, were found to be more closely correlated in the post-fire data
than the pre-fire data, an important consideration for any forest eva-
luation.

Repeat ALS and Landsat data over the Pole Creek, OR, wildfire were
used to assess what areas of the forest can be most accurately captured
by lidar, when compared to spectral Landsat data (McCarley et al.,
2017b). Generally speaking, the study found that canopy assessments
could be clearly made using lidar but that, depending on the density
and structure of the forest, there was less agreement between lidar and
Landsat results lower in the forest structure. A second study of the same
fire, using the same datasets, specifically examined the effect that pine
beetles have on the spread and severity of wildfire (McCarley et al.,
2017a). Trees that had been affected by the pine beetle outbreak ex-
perienced a higher degree of burn severity, which is defined as the
amount of lost organic matter (Keeley, 2009), and a greater loss of
canopy material than those that were not affected. A different repeat
ALS and Landsat study examined the 2005 wildfire on the Kenai Pe-
ninsula, AK (Alonzo et al., 2017). Pre-fire data from both ALS and
Landsat were used to classify tree types and then these classifications
were used to analyze burn severity in the post-fire data. Vegetation type
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Fig. 2. Estimated carbon loss per m? as a result of the 2011 Great Dismal
Swamp National Wildlife Refuge, VA wildfire. Figure originally from Reddy
et al. (2015), used with permission.

and location were both found to have a controlling influence on burn
severity but, in general, vegetation type alone was the stronger in-
dicator. Black spruce in upland areas lost markedly less canopy material
than the same species did in flat, lowland areas. However, white spruce
saw the same degree of canopy loss regardless of terrain. Broadleaf
trees, overall, experienced the least reduction in canopy volume fol-
lowing the fire. The study results are instructive for understanding the
heterogeneous effects of forest fire and could also be helpful in pre-
dicting forest fire severity in areas at high risk for forest fires.

Rather than examining the more commonly used metrics, including
burn severity, fire intensity, tree canopy loss, and forest density, for
wildfire, a wildfire study in Sweden used repeat ALS to measure the
degree of tree-fall following the fire (Bohlin et al., 2017; Keeley, 2009).
Combined with training data collected in the field, the study was able to
model the degree of tree-fall with relative success. Post-fire carbon
release was the focus of a peat bog fire study in the Great Dismal
Swamp National Wildlife Refuge, VA (Reddy et al., 2015). Repeat ALS
data allowed for the accurate assessment of burned volume in an area
that would have been difficult to characterize with discrete in-situ
measurements (Fig. 2). Despite the burned area being far less than that
in other peat wildfires, the carbon released per unit of area was notably
higher because a combination of dry conditions and anthropogenic
damming resulted in a drier than normal peat bog at the onset of the
fire.

3.2. Cryosphere

Multi-temporal ALS data have been used to improve our char-
acterization of glacial advance and retreat (Geist et al., 2003; Joerg
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et al., 2012; Knoll and Kerschner, 2009), glacier volumetric changes
(Bollmann, 2010; Hopkinson and Demuth, 2006), snow water equiva-
lent based on snow fall volume (Painter et al., 2016; Schober et al.,
2014), and glacier detection (Kodde et al., 2007), among other appli-
cations.

One of the most common applications of repeat ALS data in the
cryosphere is to define glacial extents and quantify the retreat and
advance of glaciers and associated parameters, such as volumetric
changes. In regions with numerous, smaller glaciers, tracking the evo-
lution of individual glaciers can be challenging (Abermann et al., 2010;
Knoll and Kerschner, 2009). Knoll and Kerschner (2009) used ALS data,
in conjunction with previously collected orthophotographs, to identify
and measure areal changes in eight separate glacier groups in South
Tyrol, Italy, and noted the importance of high resolution ALS data in
regions with multiple, smaller features. A different study in the same
region of Italy examined four ice glaciers and one rock glacier with four
ALS scans taken between 2001 and 2006 (Abermann et al., 2010). The
goal of the study was to determine how accurately glacier boundary
changes could be defined using ALS when compared to other common
methods. Despite sampling variable glacier surfaces, including both
debris free and debris rich surfaces, in the study, the results showed that
high resolution ALS data significantly improved the accuracy with
which glacial extents could be defined and noted that this was espe-
cially true for smaller glaciers.

A study of Hintereisferner glacier in Austria and Engabreen glacier
in Norway collected seasonal ALS data over the course of two years
(Geist et al., 2003). Though the changing extent of the glaciers was
measured, minimal differences were noted from one year to the next.
However, the high frequency of data collection in the study enabled a
seasonal evaluation of glacier surface features, such as crevasses, and
the study was able to track the lifecycle of numerous glacial morpho-
logical features with high precision. A much longer study, running from
2001 to 2008, used inter-annual ALS data to analyze the accuracy of
glacial volumetric calculations, when compared to other common
methods, and to calculate the mass balance of Hintereisferner glacier in
Austria (Bollmann, 2010). ALS had a notable advantage over other
methods, such as the direct glaciological method, which requires in situ
measurements on the glacier surface, due to the higher resolution of the
ALS data, which captures small scale surface variations with far more
accuracy. The results of determining glacial volume from ALS varied
significantly against those of other techniques but the ALS results were
generally determined to be more accurate. The area and volume cal-
culations were used to compute mass balance for Hintereisferner glacier
but the use of a single ice density value in these calculations introduced
error. A classification scheme based on the intensity of the ALS return
pulses was used to estimate zones of varying ice density, refining the
mass balance calculations.

Ice loss, especially with a focus on where on the glacier the loss is
occurring from, is frequently a focus of ALS research in the cryosphere
(Hopkinson and Demuth, 2006; Joerg et al., 2012). Ice loss from a
glacier in the Swiss Alps, Findelengletscher, was the target of repeated
ALS collections between 2005 and 2010 (Joerg et al., 2012). Given the
improvements in ALS technology over the course of the study, a de-
tailed assessment of error was completed prior to any other calcula-
tions. The glacier location, on the bottom of a valley, and other attri-
butes, such as its gentle slope and relatively debris-free surface, kept on-
glacier errors low throughout the study period. However, a dramatic
decrease in off-glacier error, mostly along the steep valley walls, was
observed from the beginning of the study to the end. Even including
error considerations, the ALS based results indicated far more ice loss
from the glacier over the five year study than did in situ measurements
taken during the same time frame. The differences were attributed to
the difference in resolution between the ALS and in situ data. However,
it is worth noting that, while this study (Joerg et al., 2012) showed a
consistent under-estimation of ice loss by in situ methods, the study by
Bollmann (2010) showed that in situ measurements could either over-
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or underestimate volumetric losses, depending on where the in situ data
was gathered. A study in the Canadian Rocky Mountains also focused
on ice loss from glaciers. However, the study focus was on the down-
stream water resources (Hopkinson and Demuth, 2006). Two ALS da-
tasets collected two years apart were used to analyze ice loss from Peyto
glacier, Canada. Peyto glacier was determined to contribute roughly
16% of the drainage basin's water and the ALS data was used to show
that the ice loss was significant from both above and below the snow
line, which is defined as the border between a region covered by snow
and a region not covered by snow.

While a number of studies have noted that ALS data is helpful in
manually locating and characterizing glaciers, Kodde et al. (2007)
published a technique for automating the detection and changing
characteristics of glaciers in repeat ALS data (Kodde et al., 2007). The
method is based on a smoothness criteria that assumes that the glacier
surface is relatively smooth in contract to the surrounding terrain and
was successfully tested on Hintereisferner glacier, Austria. In addition
to detecting the glacier extent, the study also proposed a technique for
detecting crevasses automatically, though this identification also relied
on certain glacier surface characteristics. Combining these two methods
with repeat ALS collections provides an automated method for de-
tecting glacial advance or retreat and for analyzing the changing sur-
face morphology of glaciers. A different dynamic application used re-
peat ALS data to define the flow field across glacier surfaces using PIV
(Telling et al., 2017). In situ studies can only collect a finite number of
data points on the glacier surface and flow fields for the glacier are
extrapolated based on these points. Telling et al. (2017) showed that
PIV can be used on rasterized ALS (or TLS) point clouds to define glacial
flow with far higher resolution than in situ methods. However, the
study also found that this method only works on glaciers with certain
roughness characteristics, since surface features need to be present and
clearly defined for the algorithm to track them, and with appropriate
data temporal spacing, dependent on the average velocity of the glacier.

Trends in snow accumulation and melt are an important component
of water modeling, especially as changing climatological trends alter
precipitation patterns (DeBeer and Pomeroy, 2010; Painter et al., 2016;
Schober et al., 2014). Repeat ALS surveys have been used in the Rocky
Mountains, North Basin and Range, and the Sierra Nevada Mountains,
to track seasonal snowfall accumulation with respect to topography and
vegetation (Tennant et al., 2017). In general, increasing snow depth
with increasing elevation was noted at all the study sites; however, the
relationship was not linear and a sharp drop in snow depth was noted at
the highest study elevations. In vegetated areas, both topography and
aspect (directional orientation of the slope) were found to exert a sec-
ondary influence on snow depth but above the tree line only aspect was
found to exert much influence (Tennant et al., 2017). As repeat ALS is
increasingly used to monitor snow depth, there is a need to understand
the sources of error that may be inherent in these measurements, when
compared to in situ data (Tinkham et al., 2014). This study, conducted
at Reynolds Mountain, ID, found that snow depth derived from repeat
ALS surveys was lowest in low-lying areas with smaller vegetation and
highest near forest margins where rapidly changing winds created ra-
pidly varying snow depths.

Building off of snow depth measurements, research at the inter-
section of the cryosphere and water resources fields translates this data
into snow water equivalent (SWE) estimates that can be used in melt
water modeling (DeBeer and Pomeroy, 2010; Painter et al., 2016;
Schober et al., 2014). One such study paired bare-earth ALS data with
ALS and imaging spectrometer data to both accurately measure the
snow depth and to characterize snow albedo (Painter et al., 2016). The
total snow volume was calculated from the ALS data, the snow density
was estimated based on the snow albedo, and then both measurements
were combined to derive SWE (Fig. 3). A similar study was conducted in
the Austrian Alps though, in this case, repeat ALS scans were paired
with Landsat data to estimate the snow density (Schober et al., 2014).
The SWE results were also used in hydrological models of the study
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area. Good agreement between the ALS data and the model results was
seen at the basin scale but there was less agreement between the two at
finer resolutions. A study in Alberta, Canada, used repeat ALS snow
depth measurements as the primary input for a model of SWE and melt
water scenarios (DeBeer and Pomeroy, 2010). When the model results
were compared to in situ observations, it was determined that variable
snow pack densities, and correspondingly variable melt rates, were
most accurate in replicating the field observations.

3.3. Geosphere

3.3.1. Volcanology

The use of repeat ALS data is still relatively novel in the field of
volcanology and limited work has been done exemplifying its utility.
Behncke et al. (2016) used repeat ALS data to measure the difference in
lava flow volumes between the 2007 and 2010 eruptive episodes of Mt.
Etna, Italy. The goal of the study was to estimate total erupted volume,
a key parameter in many volcanic models. While the volume was cal-
culated to be approximately 86 x 10°m?, nearly 90% of which was
from lava flows, the long lapse between observations enabled some
eruptive material to be removed by erosion. The calculated volumes
are, therefore, a constraint on the minimum erupted volume between
2007 and 2010. An earlier study of Mt. Etna used multiple overpasses
over the course of two days to increase the temporal resolution and
capture volcanic activity as it progressed (Favalli et al., 2010a). The
high temporal resolution allowed for the quantification of lava pulsing
during the eruption, a process that has been observed previously but is
difficult to measure. Similar pulsing at all six channels, in different vent
zones, led to the conclusion that, at least for the 2006 eruptive event,
the pulses were a result of changing material fluxes in the central vol-
canic conduit.

ALS can also be very useful for assessing morphometric changes to
volcanoes. At Mt. Etna, four ALS surveys were conducted between 2004
and 2006 in order to monitor scoria cone growth (Fornaciai et al.,
2010). The focus was on the atmospheric and situational factors that led
to the deterioration of one scoria cone and the preservation of the other.
Two ALS DEMs collected in 2005 and 2007 were used, together with
aerial photogrammetry from 1986 and 1998, in order to estimate
changes to the summit height and size of Mt. Etna (Neri et al., 2008). A
substantial increase in elevation both on and around the volcano was
found though the ALS data was noted to be, by far, the more accurate
data collection technique, permitting more precise measurements of
change between 2005 and 2007.

Monitoring lava flows and evaluating the topographical controls on
them is another area that has benefited from repeat ALS (Favalli et al.,
2010b; Harris et al., 2010; Joyce et al., 2009). One of Mt. Etna's lava
flows was mapped in both 2004 and 2005 using ALS with the goal of
observing the evolution of lobes in the flow (Favalli et al., 2010b).
Though eight progressing lobes were initially identified in the flow, the
outer lobes were observed to become levees, exerting control on the
flow motion, over time, rather than remaining active elements of the
advancing lava flow. Repeat ALS, in addition to satellite data, was used
to map lava flows following the 2007 break-out event at Mt. Ruapehu,
New Zealand (Joyce et al., 2009). The study found that manual flow
mapping was more precise than any of the automated techniques at-
tempted. However, the ALS data were collected at a low resolution of
only 1-2 points per m? resulting in a high vertical uncertainty that oc-
casionally exceeded the flow depth, making these areas impossible to
identify with the DoD approach. A different study at Mt. Etna used ALS
data collected in 2004 and 2006, along with a host of estimated vari-
ables regarding flow temperature and viscosity, to calculate the time
averaged discharge rate of two lava flows (Harris et al., 2010). The final
goal of the project was to make these calculations using repeat satellite
overpasses, which are collected at lower cost, but ALS was used to
verify and calibrate the satellite technique.

Finally, Favalli et al. (2009) proposed a way to use repeat ALS
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Fig. 3. Snow depth, density, water equivalent, and albedo products as derived from repeat ALS data. Figure originally from Painter et al. (2016), used with

permission.

collections specifically for registering data in volcanic settings. While
the method itself is used to register strips of a single ALS campaign to
one another, the intended final use of such a technique is to monitor
change at a smaller scale than would otherwise be feasible with more
standard registration techniques. The technique uses multiple tie points
in every overlapping area to match features with similar shapes within
a small radius on overlapping flight lines. The three-dimensional shift
between the features in two overlapping strips provides the registration
information (Fig. 4). While the method was tested on ALS data covering
Mt. Etna, Italy, it could be used in any application that has sufficient
surface roughness.

3.3.2. Surface deformation

Post-event ALS data have proven successful for delineating surface
ruptures and for discrete measurement of fault slip along a rupture
(e.g., Engelkemeir and Khan, 2008; Hudnut et al., 2002; Meigs, 2013).
Spatially distributed coseismic surface deformation, especially in the
near-field (< 1km) of the fault zone, however, cannot be measured
directly on the post-event data (Glennie et al., 2014). Repeat ALS col-
lections, on the other hand, provide the ability to render the surface
deformation through the comparison of detailed pre- and post-event
topography.

DoD, a straightforward method for surface deformation detection,
was successfully used to quantify the vertical displacement caused by
the 2010 El Mayor — Cucapah, Mexico earthquake (Oskin et al., 2012);
the 2010 Darfield, New Zealand earthquake (Duffy et al., 2013); and
the 2016 Kaikoura, New Zealand earthquake (Clark et al., 2017). The
differential survey of the El Mayor — Cucapah earthquake by Oskin et al.
(2012) studied the near-field deformation using a lower-resolution
(5m/pixel) DEM pair. Differential elevation changes revealed sig-
nificant, spatially distributed vertical displacement in the near-field

surrounding the faults. Duffy et al. (2013) used differential analysis of
multi-temporal ALS to estimate decimeter-scale deformation across the
Waterford releasing bend. Temporal elevation differences highlighted
otherwise indiscernible yet important structures and the overlapping
nature of the fault segments across the releasing bend. In a recent study,
Clark et al. (2017) investigated coseismic coastal deformation caused
by the Koikoura earthquake. The differential elevation changes re-
vealed highly variable (—2.5 to 6.5m) vertical displacement along a
~110km coastline caused by a rather complex rupture along a trans-
pressional plate boundary. All three studies noted that simple DEM
differencing neglects the horizontal displacement and that the apparent
vertical change obtained using this method does not necessarily reflect
the true vertical displacement. Surface deformation, indeed, occurs
along an arbitrary direction in 3D and differential elevation changes
stem from both vertical and horizontal motion (Mukoyama, 2011). In
an attempt to minimize the effect of lateral motion on vertical dis-
placement estimates, Clark et al. (2017) restricted their analysis to low-
slope (< 5°) areas in both pre- and post-event DEMs. The horizontal
displacement, however, was not explicitly investigated or quantified.
Duffy et al. (2013) performed a sub-pixel correlation of the DEMs using
COSI-Corr to estimate horizontal displacement independently. Al-
though pixel correlation revealed a north-northwest-striking structure,
it was rather ambiguous on the DoD map and was not detected in the
field at all. Pixel correlation was found to be noisy due to the limited
extent of the data and the lack of quality correlation points across the
area.

Image-based methods, such as COSI-Corr and PIV, have proven
successful in quantifying horizontal surface deformation and thus, are
getting more attention in the literature. Using PIV on ALS-derived slope
maps, Mukoyama (2011) extracted the horizontal vector components of
the surface deformation caused by the 2008 Iwate-Miyagi, Japan
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Fig. 4. Corrected DEMs from (a) 2004 and (b) 2005 ALS data. DoD between 2004 and 2005 (c) with the uncorrected and (d) with the corrected DEMs. Figure

originally from Favalli et al. (2009), used with permission.

earthquake. The image matching results revealed horizontal displace-
ment ranging between 0.5m and 5.2m in varying directions in the
investigated area. The vertical components of the deformation vectors
were also estimated on the basis of elevation differences at the head and
terminal vertices of the vector, revealing a more complete picture of
surface deformation. Similarly, Lyda et al. (2016) assessed the surface
deformation caused by the 2014 South Napa, CA earthquake using PIV
on the lidar-derived DEMs. Horizontal displacement estimates obtained
from PIV were comparable to field measurements. In addition to com-
monly used bare earth elevation models, they analyzed an elevation
model that included manmade structures (termed as geodetic markers)
in an effort to improve the PIV result. However, including the geodetic
markers in PIV improved the results only marginally. Later on, Ekhtari
and Glennie (2017) estimated the horizontal displacement in the same
study area from laser intensity images using COSI-Corr (Fig. 5). Cor-
relation of ALS intensity images was found to be a successful technique
for determining horizontal displacement in vegetated areas. Leprince
et al. (2011) estimated the horizontal deformation caused by the El
Mayor — Cucapah, Mexico earthquake using ALS-derived DEMs and
COSI-Corr. These estimates were then used to compensate for the

horizontal offset between the pre- and post-event DEMs, which allowed
for an unbiased estimation of vertical displacement using DoD.

All three of the methods discussed so far require gridding of ALS
data and thus, the surface deformation estimates are inherently 2.5D at
best. ICP, on the other hand, allows direct estimation of surface de-
formation in 3D. In fact, ICP and its variants have been the primary
method for estimating spatially distributed, 3D surface deformation
from either irregularly-spaced point clouds or regularly-gridded eleva-
tion models. Nissen et al. (2012) was the very first to demonstrate the
potential of ICP to estimate 3D surface deformation. The method was
tested on pre-earthquake and synthetically deformed post-earthquake
point clouds. The post-event data collection was simulated from the
“B4” (Bevis et al., 2005) ALS survey of the San Andreas Fault near
Coachella, CA. They show that the described adaptation of ICP not only
reproduced the simulated deformation, with around 20 cm horizontal
and 4 cm vertical accuracy, but also allowed measurement of the ro-
tation directly from the point clouds.

Nissen et al. (2014) estimated surface deformation caused by the
2008 Iwate-Miyagi and 2011 Fukushima-Hamadori earthquakes by
applying an adaptation of ICP to gridded, digital terrain models. In both
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Fig. 5. Horizontal components of surface displacement in South Napa derived
from laser intensity images using COSI-Corr along (a) east-west and (b) north-
south directions; (c) and (d) were created filtering (a) and (b) using NL-Means.
Figure originally from Ekhtari and Glennie (2017), used with permission.

case studies, the analysis focused on densely-vegetated sections of the
surface ruptures. The results showed a smoothly varying, 3D displace-
ment field from the Iwate-Miyagi rupture that indicated significant
right-lateral slip along the fault with a component of dip-slip. These
findings are in a close agreement with field observations and published
focal mechanisms and fault models of the earthquake. Despite using a
different post-event data collection, the horizontal components of ICP
resemble those of Mukoyama (2011) that were obtained from PIV. Si-
milarly, a smoothly-varying uplift/subsidence pattern along the Fu-
kushima-Hamadori rupture was revealed by the vertical components of
the ICP results (Fig. 6). The horizontal components, on the other hand,
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did not indicate any clear lateral motion along the rupture. While this
behavior is expected for a steeply dipping, normal faulting event, the
lack of a clear discontinuity along the rupture also suggests that hor-
izontal component signal was lost to the noise (Nissen et al., 2014).

The surface rupture caused by the 2010 El Mayor — Cucapah, Mexico
earthquake was the very first rupture with complete pre- and post-event
ALS data. In an early study discussed above, Oskin et al. (2012) pre-
sented the initial estimates of vertical displacement but also highlighted
significant systematic errors due to improper calibration of the pre-
event data, which manifested as erroneous displacement estimates.
Later on, Glennie et al. (2014) explicitly identified these systematic
errors through the use of ICP. The initial ICP results revealed a sig-
nificant periodic trend in the north-south displacement estimates along
the rupture. In an effort to minimize these errors, Glennie et al. (2014)
reprocessed the pre-event data and reevaluated the 3D displacement
and rotation. The resulting improved ICP components revealed a sig-
nificant right-lateral slip along with the dominant vertical displace-
ment, which could not be measured using DoD.

Later on, Zhang et al. (2015) introduced an anisotropic-weighted
ICP (A-ICP) algorithm and explored the use of a moving window to
estimate surface deformation in greater detail. The proposed im-
plementation was evaluated by estimating the known displacement in
simulated data with synthetic fault ruptures as well as estimating the
surface deformation caused by the 2010 El Mayor — Cucapah earth-
quake using pre- and post-event data. A-ICP has been shown to out-
perform standard ICP in estimating the synthetic displacement and even
better estimates were obtained with the addition of the moving window
technique. Despite unusually low point density in the pre-event data,
the combined moving window A-ICP algorithm provided significantly
smoother and more accurate displacement estimates than standard ICP.

Ekhtari and Glennie (2017) adopted the moving window ICP
method and compared the estimates of horizontal displacement caused
by the 2014 South Napa earthquake with those obtained from COSI-
Corr using laser intensity images. It was shown that decimeter scale
horizontal displacement could be resolved using both methods. The
disparities between these methods were analyzed by differencing the
estimation maps. COSI-Corr and moving window ICP have been found
to demonstrate similar performance in estimating the horizontal dis-
placement. However, COSI-Corr was much faster computationally. For
a subset of the same study area, Lyda et al. (2016) employed standard
ICP and compared its performance with PIV in estimating the hor-
izontal displacement. While both methods provided distinctive dis-
placement fields, the accuracy of ICP was significantly higher than that
of PIV. Including geodetic markers (manmade structures) in ICP in-
creased its performance even further.

In a recent study, Scott et al. (2018) calculated the 3D surface de-
formation caused by the 2016 Kumamoto, Japan earthquake by ap-
plying a windowed implementation of ICP to repeat ALS point clouds.
The focus of the analysis was on the on- and off-fault coseismic surface
deformation and strain fields, which, in turn, illustrate the behavior of
the surface-rupturing earthquake at shallow depths. Displacement dis-
continuity measurements at several apertures (35 m, 100 m, and 1 km)
indicated the presence of inelastic and spatially distributed off-fault
deformation. This study demonstrated that repeat ALS data provide
valuable information not only about the fault slip but also about off-
fault displacement and coseismic strain field. Additionally, an empirical
error metric, displacement correlation error, to evaluate the relative
quality of ICP displacement is proposed. Unlike point-to-plane error, a
metric to measure the quality of alignment between point clouds, the
newly proposed metric measures the 3D displacement uncertainty. The
displacement correlation error analysis of the ICP results indicated er-
rors up to a few decimeters, which correlate with surface relief and land
cover across the 50 m ICP window size.

As an alternative to ICP, Borsa and Minster (2012) presented the
cross-correlation of point clouds which simultaneously compares to-
pography and laser intensity between pre- and post-event data to
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estimate 3D surface deformation rapidly. The post-event point clouds
were obtained synthetically by deforming the pre-event data; the “B4”
ALS survey of the San Andreas Fault (Bevis et al., 2005). The results
indicated that the proposed method could recover the synthetically
introduced deformation with an accuracy better than 20 cm horizontal
and around 1 cm vertical.

3.3.3. Morphodynamics

Morphodynamics are defined as the changes to a landscape as a
result of erosional and depositional processes by which distinct topo-
graphic features are formed. Repeat ALS data are frequently used to
assess sediment budget, sediment transport, and spatial patterns of
morphodynamics across large areas. Due to the extent of the studies
evaluating morphodynamics across different landscapes (i.e., coastal
and inland) and a wide range of environments, this topic has been
subdivided into application-focused sections.

3.3.3.1. Coastal applications

3.3.3.1.1. Shore and near-shore. The use of repeat ALS products for
evaluating morphodynamics in coastal landscapes have been
demonstrated in numerous studies. Woolard and Colby (2002) used
lidar-derived DEMs for spatial characterization and volumetric change
estimation of the coastal dunes in Cape Hatteras, NC. This study also
evaluated the effect of using DEMs with different spatial resolutions
(1-20m) on feature representation and volume change estimation.
White and Wang (2003) investigated the spatial pattern of
morphodynamics along oceanfront beaches of five barrier islands in
North Carolina. The DoD results revealed that undisturbed beaches that
were managed differently (i.e., undeveloped, developed, nourished)
exhibited different net volume change. However, if the beaches were
disturbed by consecutive storm events, the differences disappeared.
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Mitasova et al. (2004) investigated morphodynamics in the coastal
landscapes of Jockey's Ridge State Park and Bald Head Island, NC using
the DoD technique. The spatial pattern of erosion and deposition in the
Jockey's Ridge sand dune field indicated a possible acceleration of the
long-term erosion and migration process in recent years. Important
aspects of beach evolution in Bald Head Island were also revealed:
although the entire length of the beach retreated, the western section
lost all nourished sand, whereas the eastern section exhibited
significant volume increase. Young and Ashford (2006) evaluated
seacliff and gully-beach sediment budget contributions to the
Oceanside Littoral Cell, San Diego County, CA during a relatively dry
period. The DoD results indicated substantial beach-sediment
contribution from seacliff erosion and significantly lower gully beach-
sediment contribution to the Oceanside Littoral Cell than was
previously reported in the literature. Zhou and Xie (2009) studied the
morphodynamics along Assateague Island National Seashore, VA and
MD. The volumetric changes in the coastal landscape were evaluated in
sections defined based on their historical changes and coastal
conditions. The analyses of annual and four-year DoD grids indicated
complex erosion-deposition cycles within the defined sections.

While DoD is a commonly used method in evaluating morphody-
namics across coastal landscapes, a number of other methods have also
been implemented (Brock et al., 2004; Mitasova et al., 2009, 2010;
Richter et al., 2013a; Starek et al., 2012). Mitasova et al. (2009) pro-
posed a per-cell statistics method to analyze ALS-derived DEM time-
series in order to investigate spatial patterns of morphological change.
For each DEM cell, multi-temporal, simple descriptive statistics (e.g.,
mean, median, standard deviation, etc.) or more complex relationships
(e.g., parameters of linear regression) were calculated. Subsequently, a
set of grids representing temporal trends in spatial patterns of mor-
phological change were generated. The method was applied to Pea
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Island Wildlife Refuge, a barrier island in NC, to investigate the evo-
lution of beach and dune systems. A time-series analysis of 13 ALS data
collections indicated that, in terms of elevation changes, the foredunes
are the most dynamic feature in the area. The spatial pattern of mor-
phodynamics suggested a trend toward inland sand transport and a
significant wind contribution to sand transport. Mitasova et al. (2010)
employed the per-cell statistics method to investigate decadal evolution
of beach and dune systems on two barrier islands in the Outer Banks,
NC. Similarly, foredunes were found to have the highest variation in
elevation in both study areas. The results indicated that beaches and the
ocean side of the dunes exhibited significant volume loss, whereas the
landward side of the dunes exhibited a slight volume gain, a pattern
consistent with barrier island transgression.

Richter et al. (2013a,b) monitored dune cliff erosion and beach-
width change at the northern (Ellenbogen) and southern (Hornum-
Odde) spits of Sylt, Germany. A semi-automated dune-cliff breakline
extraction method based on image filtering methods was presented. The
results indicated spatiotemporally variable morphodynamics in both
study areas. While dunes exhibit erosion only during winter due to
storm surges, the beach width varies throughout the year due to highly
dynamic shoreline. The effect of beach width on dune erosion was
found to be dissimilar at the two study sites. Overall, the maximum
dune cliff retreat was estimated to be 140 m at Hornum-Odde and 70 m
at Ellenbogen.

Cross-shore profile sampling of ALS-derived DEMs has also been
used to characterize morphodynamics across coastal landscapes. Brock
et al. (2004) proposed methods for calculating a set of laser metrics to
assess the morphology and morphodynamics of barrier islands. Using
these metrics, the coastal evolution along 10 km of the Northern As-
sateague Island National Seashore was analyzed. The morphology of the
barrier island was defined based on static metrics as a set of attributed
linear features based on the datum and longshore volume variation,
whereas the morphodynamics were described based on change metrics
calculated by differencing the static metrics. Most of the study area was
found to be degradational with volume loss along both the bay and
ocean shorelines. Of all the laser metrics obtained, the barrier island
volume balance line (i.e., a combined linear-volumetric static metric)
was found to be the single most important metric to provide informa-
tion on the barrier dynamics. The analysis demonstrated that, through
the use of laser metrics, even minor changes to barrier island mor-
phology can be resolved. Starek et al. (2012) presented a framework for
the probabilistic detection of morphologic metrics to assess short-term
spatial patterns of coastal landscape evolution. The techniques were
evaluated on a portion of St. Augustine Beach, FL. A total of nine
morphologic metrics were parameterized from ALS-derived DEMs into
several cross-shore profiles progressing alongshore, which were subse-
quently partitioned into erosional and depositional segments based on
shoreline change over time. The potential of these metrics to identify
zones of erosion and deposition was assessed. The results demonstrated
that morphologic metrics indicative of spatial patterns of shoreline
evolution can be detected and extracted systematically from repeat ALS
data. However, the authors emphasized that, while promising results
were obtained, the performance of the proposed technique is highly
dependent upon the data, the physical characteristics of the site, and
the coastal processes along the shorelines.

Studies concerning coastal morphodynamics have typically focused
on beach-dune systems and rarely on the near-shore area. Tidal inlets
and adjacent shorelines, however, exhibit significant changes in a re-
latively short amount of time as they are continuously modified by
erosion-deposition processes and thus, monitoring morphologic evolu-
tion in these dynamic environments is of importance to coastal system
management. In one such study, Levoy et al. (2013) investigated the
formation and migration of long-crested transverse bars near a tidal
inlet along the macrotidal west coast of Normandy, France on the basis
of DoD. A large sediment platform in the tidal inlet was found to be the
source of the sand for the transverse bars. Time-series analysis indicated
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a consistent northward migration of the bars with a mean rate of about
2m per month. Monitoring the response of transverse bars to six con-
secutive tides under fair-weather conditions showed that strong spring
tides are sufficient to maintain bar migration in the absence of waves.
Expanding the work of Levoy et al. (2013), Montreuil et al. (2014)
evaluated the spatial patterns of morphodynamics of the shoreline and
ebb delta near a tidal inlet along the macrotidal west coast of Nor-
mandy, France. In addition to DoD, topographic profiles extracted from
seven ALS data collections were analyzed. The results indicated a clear
sand recirculation pattern in the tidal inlet. As opposed to commonly
reported observations in wave-dominated macrotidal environments, the
sediment transport pattern in the area did not suggest any inlet sedi-
ment by-passing. However, it was also noted that the influence of tidal
channels on sand transport remains unclear.

3.3.3.1.2. Coastal lowland permafrost. Morphodynamics in coastal
lowland permafrost landscapes are drawing increasing attention due to
increased sediment release to the Arctic Ocean and mobilization of old
organic carbon from these landscapes. Only a few studies, however,
used repeat ALS data to characterize spatial patterns of coastal
permafrost erosion and to estimate volumetric change over time
(Jones et al., 2013; Obu et al., 2017). Jones et al. (2013) used repeat
ALS data in DoD to detect morphologic changes associated with
thermokarst and other thaw-related processes in the Beaufort Sea
coastal plain of northern Alaska. Erosional features associated with
thermo-erosional gullies and coastal, river, and lake bluffs indicated
ice-rich permafrost degradation, which accounts for about half of the
volume change over the study period in the area. The majority of the
remaining volume change was found to be associated with the erosion
of beach and spit deposits, riverine and deltaic flats, and sand dunes.
Significant subsidence was observed in > 300 thermokarst pits, likely
due to storm-surge flooding. Obu et al. (2017) investigated the
magnitude and spatial patterns of short-term coastal morphodynamics
in different landforms of the Yukon coastal plain and Herschel Island
along the Canadian Beaufort Sea coast. The DoD results indicated
spatially variable short-term movement and volume change along the
permafrost coast. While the low-elevation coasts exhibit relatively
uniform erosion, the high-elevation coasts, where mass-wasting is
more prominent, exhibit more spatially varied erosion. Of all mass-
wasting processes, retrogressive thaw slumping was found to be
particularly important as it not only affects the slump location,
decreasing erosion or even causing progradation, but also contributes
to sediment input and accumulation at adjacent coasts due to
significant sediment release.

3.3.3.1.3. Delta. While coastal wetlands represent some of the most
dynamic landscapes, repeat ALS data have rarely been used to study
spatiotemporal change in these landscapes. One such study assessed the
elevation change and stability across the Wax Lake Delta (WLD), LA
between 2009 and 2013 (Wagner et al., 2017). Multi-temporal ALS data
were used to quantify the equilibrium elevation, subaerial slope
adjustment, and volumetric changes to the delta. As opposed to DoD,
vertical differencing of bare-earth point clouds was performed
following the methodology outlined in Lague et al. (2013). However,
the differenced point cloud was subsequently gridded in an effort to
remove spatial clustering bias and present the data conveniently
(Fig. 7). The analysis indicated that 83% of the delta surface
exhibited net aggradation between 2009 and 2013, resulting in an
elevation mode increase. Across the WLD, elevations around 0.56 m
(above sea level) were found to be stable, suggesting the equilibrium
elevation of the delta. The observed equilibrium elevation was then
used to estimate the length of time required for the delta to approach
stable elevation. The average equilibrium time for the system was found
to be 16 years.

3.3.3.1.4. Response to extreme events. Extreme storm events play an
important role in morphodynamics of coastal landscapes; thus,
evaluating the changes induced by these events is of importance.
Meredith et al. (1999) studied hurricane-induced morphodynamics
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Fig. 7. Wax Lake Delta elevation in (A) 2009 and (B) 2013, and (C) the change in elevation over the four-year study period. Figure originally from Wagner et al.

(2017), used with permission.

along the entire North Carolina coastline using ALS data collected in
1997 and again, immediately after hurricane Bonnie, in 1998. The
volumetric change in beach sand due to deposition and erosion caused
by the hurricane was estimated using lidar-derived DEMs. The results
showed a spatial pattern of sediment loss and gain along the NC
coastline in response to this major storm event. Sherman et al. (2013)
investigated the impacts of hurricane Ike on the sandy beaches of the
Bolivar Peninsula, TX with a particular focus on the scour features
formed by the ebb flow of the storm surge. The DoD grids were created
from five sequential ALS data collections acquired in 2006, 2008 (in
September immediately after the hurricane and December), and 2009
(in February and April). The morphologic changes were then identified
and quantified through the implementation of the object-oriented
method outlined in Liu et al. (2010). The results showed the
development of five distinct types of scour features along the beaches
of the Bolivar Peninsula induced by the hurricane. The identified scour
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types were not uniformly distributed alongshore but rather clustered
depending upon the ebb flow environment. It was also noted that many
of the identified features persisted for months after the hurricane. The
total sediment loss caused by the hurricane was estimated to
be > 100m® per meter of the investigated portion of the beach,
which is larger than previously reported values. The response of
sandy and gravel beaches of southwest England to extreme storms
during the 2013-2014 winter was studied in 157 beach sections along
the coast of Somerset, Devon, Cornwall, and Dorset counties on the
basis of net volumetric change and the newly introduced longshore
variation index (LVI) derived from DoD grids (Burvingt et al., 2017).
Based on the analysis, four distinct types of beach responses were
identified. The spatial distribution of beaches of different types was
found to be coherent at a regional scale with several outliers disrupting
this coherence at a local scale. Pye and Blott (2016) used cross-shore
profiles along the Sefton Coast, northwest England to assess the impact
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of the stormy 2013-14 winter on coastal morphodynamics in the
context of longer term trends using ALS data acquired in 1999, 2013,
and 2014. Changes in the dune toe position along the profiles and the
sediment volume in the upper beach and frontal dunes within the
defined sections were quantified. Subsequently, short-term changes
(2013-2014) were compared to relatively longer term changes
(1999-2013 and 1999-2014). Overall, short-term sediment budget
estimations indicated a net loss of sediment from both beach and
frontal dune systems while some parts of the beach to the south of the
study area exhibited sediment gain, suggesting southward sediment
transport. Likewise, long-term sediment budget estimations indicated
net sediment loss in the central part of the study area. However, the
upper beach and dune systems to the south and north exhibit net
sediment gain over the study period. The findings of this study
indicated that, while major storm events impact short-term
morphodynamics significantly, their impact on long-term coastal
evolution can be limited.

3.3.3.2. Inland applications

3.3.3.2.1. Fluvial. Despite its influence on morphodynamics and
sediment budget, accurately estimating sediment transport in steep
mountain streams remains a challenge. Anderson and Pitlick (2014)
used repeat ALS data to quantify fluvial sediment transport along
Tahoma Creek, WA (Fig. 8). The amount of sediment transported
through a given cell was estimated by summing the DoD-derived
volumetric change upstream of that cell on the basis of morphologic
budgeting. The results suggested that the sediment transport between
2002 and 2008 was dominated by the 2006 flood. The ALS-based
sediment budget estimates suggested that unconsolidated glacial
sediment were mobilized from the upper basin, likely by debris flows.
The sediment mobilized between 2008 and 2012 was an order of
magnitude less than the previous (2002-2008) period. In both time
periods, however, more than half of the mobilized sediment was
transported past the downstream extent of the study area, while the
most of the remaining sediment was deposited along the upper half of
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the creek.

Cavalli et al. (2017) used repeat ALS data to assess the morphody-
namics in two adjacent steep mountain basins in the eastern Alps
(Gadria and Strimm) with contrasting morphology and different types
of sediment transport processes. The results indicated that, although
both the Gadria and Strimm catchments exhibited net volume loss, the
morphodynamic spatial patterns were significantly different. In the
former, erosion occurred predominantly toward the upper portion of
hillslopes and gullies; whereas in the latter, most of the erosion oc-
curred along the lowermost reach of the main channel. The DoD ana-
lysis facilitated investigation of the relationship between morphody-
namics and geomorphometric parameters (e.g., slope, contributing
area, curvature). It was found that erosion in both catchments occurred
primarily across persistently concave (up) surfaces or those transformed
into concave surfaces; whereas deposition mostly occurred across
convex surfaces. Volume changes estimated from the DoD grid were
compared to in-situ measurements collected after specific events be-
tween July 2005 and June 2011. Overall, DoD-derived estimates were
found to be larger than field observations in all cases except for the
deposition estimates in Strimm basin.

3.3.3.2.2. Eolian. In contrast to numerous successful applications in
coastal landscapes, the application of multi-temporal ALS to assess dune
migration and erosion in eolian landscapes has been limited (Dong,
2015; Reitz et al., 2010). Lidar-derived DEMs were used in DoD to
evaluate a predictive model for the downwind transition of barchan
dunes into more stabilized parabolic dunes in the White Sand Dune
Field, NM (Reitz et al., 2010). The model-predicted transition pattern
was found to correspond well with the observed spatial relationship.
Confirming the model-predicted threshold, the results showed that the
barchan-parabolic transition occurs when the ratio between erosion and
deposition rates across the dune surface decrease below half of the
vegetation growth rate. Dong (2015) proposed the Pairs of Source and
Target Points method for automated measurement of dune migration
direction and rate. The method was evaluated using multi-temporal ALS
data from the White Sands Dune Field. The centerlines of dune slip
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Fig. 8. ALS-derived DoDs showing the vertical change in (A) the lower and (B) the upper basins of Tahoma Creek. Figures originally from Anderson and Pitlick

(2014), used with permission.
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Fig. 9. The DoD grid draped over shaded relief views of (A) 2008 and (B) 2010 ALS-derived DEMs. Distribution of relative elevations for fill and scour pixels in (C)
2008 and (D) 2010. Figure originally from Lallias-Tacon et al. (2014), used with permission.

faces in different epochs of ALS-derived DEMs are extracted as the
source and target lines based on a range of slope angles. Random points
along the target line were selected and paired with corresponding
points on the source line. Source direction and migration distance were
estimated using the paired points. The overall spatial pattern of dune
migration was then evaluated on a surface grid that was interpolated
using migration rate estimates. In this case study, the majority of the
extracted target points had a source direction approximately parallel to
prevailing winds (225°-285°) and suggest migration rates between 4
and 7 m/yr with an average rate of 5.56 m/yr. The spatial distribution
of migration rates suggested that deviations in source direction of up to
30° from the prevailing wind direction do not have a significant effect
on migration rates. It was also noted that the Pairs of Source and Target
Points method is not exclusive to sand dune migration and can
potentially be modified and implemented in many other morphologic
change detection applications.

3.3.3.2.3. Glacial. While studying morphodynamics in glacial
landscapes using repeat ALS has been limited, a few studies have
taken advantage of these data (Irvine-Fynn et al., 2011; Sailer et al.,
2012). Irvine-Fynn et al. (2011) quantified short-term morphodynamics
and sediment redistribution in the forefield of Midtre Lovénbreen,
Svalbard using ALS data coupled with in-situ measurements. The DoD
analysis revealed two primary areas of sediment reworking: active
fluvial incision of proglacial streams and lateral moraine downwasting
both of similar magnitudes (~2 m). The ALS-derived sediment loss did
not correspond well with the observed sediment load in fluvial systems,
suggesting significant quantities of buried ice among the eroded
volume. One other study in the Swiss Alps utilized 18 ALS data
collections to characterize rock falls, erosion, fluvial erosion, and
topographic changes (Sailer et al., 2012). Annual and multi-annual
elevation differences were calculated using an Approximate Nearest
Neighborhood (ANN) method. The ANN works similar to DoD, except
vertical differences are calculated between two closest points within a
search radius. The scope of the investigation created a far more
comprehensive picture of the interactions between receding or
disappearing glaciers and the terrain their departure leaves behind.
The greatest changes were, in fact, noted in regions that had previously
been glaciated as these areas responded rapidly to increased water flow,
ground thaw, and the loss of stabilizing glacial ice. Overall, a mean
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decrease in elevation across the study site was recorded but, beyond
that, the changing face of a very dynamic region of the cryosphere was
captured by the biannual ALS collections.

3.3.3.2.4. Response to extreme events. Infrequent, large magnitude
events (e.g., floods, wildfires, rainstorms, etc.) can cause abrupt
changes inland and thus, are crucial for better understanding and
monitoring landscape evolution. Croke et al. (2013) assessed the basin
scale spatial patterns of erosion, deposition, and net volumetric change
in the Lockyer Creek catchment of SE Queensland as a result of
catastrophic flood event in 2011. A one-dimensional flow hydraulic
model, HEC-RAS, coupled with the DoD grid, was used to delineate five
major landforms (i.e., inner-channel bed, inner-channel bank, within-
channel bench, macro-channel bank, and floodplain) of the fluvial
morphology. The distribution of elevation changes suggested that a
large portion of the 100km? study area exhibited relatively low
magnitude change with a mean elevation change of 0.04m. The
ability to evaluate different landforms separately revealed a spatial
pattern of morphodynamics within and between these landforms. The
results indicated that only the within-channel benches and macro-
channels exhibit net erosion, whereas the inner-channel bed and banks
exhibit net deposition. These findings indicated sediment redistribution
to be the dominant process in the investigated area.

Lallias-Tacon et al. (2014) used repeat ALS data to evaluate mor-
phodynamics in a segment of a gravel-bed river channel near Digne-les-
Bains, France following a 14-year return period flood. Prior to the DEM
creation, the multi-temporal ALS data were aligned using ICP based on
stable surface features. To obtain the submerged topography of the
river channel, the water depths measured in-situ were subtracted from
the water surface elevations along the channel, which was manually
delineated on point density maps as outlined in Legleiter (2012). The
morphologic sediment budget was computed sequentially after each
processing step to assess their respective influence. The final DoD grid
clearly highlighted a lateral shift of the main and secondary channels
over the study period (Fig. 9). A large portion of the active channel,
except for some vegetated islands, had been reworked. Due to channel
avulsion in response to the flood, the braided channel pattern was
found to be highly disturbed.

Moretto et al. (2014) assessed the short-term morphodynamics
along three successive sub-reaches of the Brenta River, Italy caused by
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two major flood events in November and December of 2010. In an at-
tempt to describe the changes in fluvial morphology associated with the
flood events adequately, hybrid digital elevation models (hDEMs) were
created by merging ALS data (dry areas) with color bathymetry and
dGPS (wet areas) surveys. While all three sub-reaches exhibit net se-
diment loss, the volumes of sediment lost and gained were found to be
converging downstream. In support of this, the lowermost sub-reach
could be divided into an erosion-dominant upper portion and a de-
position-dominant lower portion. The DoD analysis suggested that
erosion in the two uppermost sub-reaches consistently occurred along
the main channels and that continuous erosion and deposition along the
main channel led to channel migration in the middle sub-reach. The
different spatial pattern of erosion and deposition between the analyzed
sub-reaches was attributed to their diverse morphologic characteristics
and differential sediment supply from upstream.

Repeat ALS data collections were used to evaluate morphodynamics
and estimate sediment budget in Blue Earth County, MN where the
occurrence of an extreme flood in 2010 caused landscape-scale changes
(Schaffrath et al., 2015). In addition, the effect of different DoD un-
certainty assessment approaches on a landscape-scale estimation of
sediment budget was evaluated. Consequently, volume change esti-
mates for Blue Earth County were made using three approaches: (i) no
thresholding, (i) spatially uniform thresholding, and (iii) spatially
variable thresholding. Although all three approaches indicated net se-
diment loss, the volume estimates were not similar. Estimates of erosion
and deposition obtained with no thresholding were significantly higher
than those obtained from the two thresholding approaches. The net
volumetric change, however, was grossly underestimated with the no
thresholding approach. In comparing the spatial patterns of morpho-
dynamics highlighted by these different uncertainty models to field
observations, results from the spatially variable model were found to be
in a closer agreement with in-situ observations. Applying the spatially
uniform uncertainty threshold was shown to produce inaccurate vo-
lume estimates; while real change along the main channel was elimi-
nated, erroneous change along the ravine slopes was incorrectly de-
tected.

Wicherski et al. (2017) used repeat ALS data coupled with in-situ
measurements to investigate morphodynamics along a floodplain of
Fourmille Creek, CO, which was devastated by a severe flood event in
2013 that followed a wildfire in 2010. The DoD highlighted areas of
deposition flanked by areas of erosion, sediment bypass, or mixed
erosion/deposition. The entire floodplain, however, was found to ex-
hibit net erosion and was lowered during the flood event by around
0.25 m. Comparisons with in-situ measurements revealed that net ero-
sion estimates derived from DoD analysis were typically higher. The
findings of this study demonstrated that long-duration flood events in
mountain streams can account for a large fraction of total sediment
transport.

Pelletier and Orem (2014) investigated the morphodynamics and
sediment yield associated with the 2011 Las Conchas wildfire and
subsequent rainstorm events. An automated method for computing the
net sediment volume exported through each pixel within the drainage
basin was proposed and evaluated. In an attempt to minimize the effect
of uncertainties in the data, a 0.3m threshold, chosen based on the
stated accuracy of the ALS data, was applied to the DoD grid. Sediment
volume was found to be proportional to the upstream contributing area,
whereas the average sediment yield (i.e. volume per unit contributing
area) was a power-law function of the average terrain slope and soil
burn severity class. Later on, multi-temporal ALS and TLS surveys were
used following the Las Conchas fire, NM, to monitor the post-fire
changes in erosion rates within two small watersheds (Orem and
Pelletier, 2015). Erosion rates in both study areas peaked after the fire
and then dropped off; however, local factors led to different drop off
responses in each area. Despite these variable responses, both study
areas took approximately one year to return to pre-fire erosion rates,
suggesting that the regional vegetation had sufficiently recovered
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within a year to once again become the dominant forcing for local
erosion rates.

Anderson et al. (2015) investigated the morphodynamics in the
Front Range of Colorado associated with a massive storm event. Using
repeat ALS data collected in 2010 and shortly after the storm in 2013, a
total of hundred and twenty mass movements triggered by the storm
were identified and the net volume changes in these movements were
estimated. The DoD results indicated that while the lowering depths
calculated as averages for basins that contained mass movements
ranged between 0.4cm and 0.5m, the area weighted averages for
crystalline and sedimentary regions were found to be 0.16 cm and
0.21 cm, respectively. Comparing the basin-averaged lowering depths
to the published long-term erosion rates suggested that the estimated
exhumation caused by these mass movements corresponds to hundreds
to thousands years of weathering products.

3.3.4. Landslides

Repeat ALS collections are frequently used to quickly and safely
detect and characterize mass wasting events (Bull et al., 2010; Burns
et al., 2010; Corsini et al., 2009; DeLong et al., 2012). The relatively
fine resolution offered by ALS can be used to isolate individual patches
of movement that are part of a larger landslide event when three or
more ALS collections are available. In heavily forested areas, ALS can
be used to locate landslide signals that might otherwise be difficult to
find (Burns et al., 2010).

Identifying landslides, particularly in forested regions with multiple,
smaller landslides, is challenging. One study conducted in Oregon
found that using repeat ALS to detect events improved detection rates
dramatically (Burns et al., 2010). ALS surveys were conducted in two
separate seasons to capture the forested region both with and without
foliage. The survey results were translated into DEMs and compared to
find landslides and quantify the amount of material lost to these events.
Nearly thirteen times the number of previously detected landslides
were located in the study region using ALS. However, the study re-
ported that thresholds needed to be applied to the difference between
the DEMs in order to remove the effects of seasonal variations and to
reduce the number of erroneous landslide identifications. The inherent
differences between the foliated and unfoliated ALS data also caused
problems when calculating the total material loss in the study area due
to landslides alone. Consequently, Burns et al. (2010) recommended
that ALS data should be collected in unfoliated conditions whenever
possible.

Beyond using DoD created from ALS to identify landslides, it is also
a commonly used technique to track landslide progress and quantify the
volume of material displaced in landslides. This technique was used in
Italy to track landslide progress in order to protect populations living in
the affected region (Corsini et al., 2009). The results of differencing
ALS-based DEMs in this study showed an order of magnitude less bias
than photogrammetric methods. However, the largest source of error in
the study came from the interpolation necessary to model the bed
structure below the landslide, which was not independently surveyed
before the start of the event. A typhoon in Taiwan in 2009 induced
widespread landslide activity, which would have been difficult, if not
impossible, to quantify using traditional field methods (Tseng et al.,
2013). In one part of the study area, over 75” of rainfall was recorded
over a 72h time period. Over three hundred landslides and their in-
itiating crown areas were mapping using the DoD method. Additionally,
a subsequent study examined the ongoing erosional effects following
the landslide events in Taiwan and showed that the landslides altered
the evolution of the valleys they occurred in, when compared to valleys
in the same region that did not experience landslides during the ty-
phoon (Tseng et al., 2015). A study conducted in Poland paired the DoD
approach with a machine learning algorithm designed to automatically
detect landslides (Pawluszek and Borkowski, 2017). Numerous char-
acteristics were tested to refine the machine learning approach and
each is documented in the original literature. Relief, offset, roughness,
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elevation, slope, and aspect were the descriptive variables determined
to have the most success in distinguishing landslides from the sur-
rounding terrain; however, the final automated product still included
misidentified terrain when compared to known landslide surfaces in the
region.

Landslides following an extreme rain event in Matata, New Zealand,
in 2005, were investigated using the DoD method, built on ALS data
(Bull et al., 2010). Identifying regions of greatest material loss and gain
was used to investigate landslide pathways. Landslide volumes attained
from the DoD method were found to be similar to those derived from
field measurements. However, post-event remediation work had al-
ready begun by the time that the second ALS flight was completed and
so not all of the landslide pathways could be cleanly captured as some
of the landslide remnants had been already altered. Erosion rates at an
ongoing landslide at Mill Gulch, CA, have been measured using DoD
from repeat ALS collections in 2003 and 2007 (DeLong et al., 2012).
Rather than working around vegetation issues, the ALS data was first
post-processed to only show bare-earth. The volume of displaced ma-
terial and the average, catchment-wide erosion rates were then calcu-
lated based on the bare-earth DEMs. The ALS derived erosion rates were
slightly higher than those calculated from cosmogenic radionuclide
dating within the catchment but both agreed within an order of mag-
nitude. Varying rates of erosion were noted around the catchment using
the DoD product, which represented an important precursor to using
repeat ALS data to derive non-uniform flow fields for mass wasting
events.

Four ALS surveys were conducted of a landslide in Montaguto, Italy,
and the product DEMs were used in a traditional DoD analysis to de-
termine erosion and accretion rates as well as to identify landslide
structures, such as cracks, folds, ridges, and grooves (Ventura et al.,
2011). Particular emphasis was put on defining the landslide extent in
each ALS data set and average velocities for both the crown and toe of
the landslide were developed by pairing the boundary data with long-
itudinal cross sections in both regions (Fig. 10). Repeat ALS data of the
Valoria earthflow in Italy was taken a step further and was actually
used, after being rasterized, to determine the variable flow field
throughout and across the periodically active flow (Daehne and Corsini,
2013). The technique they used, digital image correlation, is reliant on
certain features being preserved even as they move. In the rapidly, but
periodically, mobile Valoria earthflow, few features met the necessary
criteria but the study found that some feature characteristics, such as
slope gradient, were maintained from one activation to the next. The
authors do note that velocities determined in this way depict trends,
differentiating different flow regimes, rather than precise values. A
more traditional DoD analysis to calculate loss and gain of material in
different parts of the earthflow was also conducted. Three ALS surveys
in 2003, 2006, and 2007, as well as annual TLS surveys, were used to
capture the motion of a landslide in Doren, Austria (Ghuffar et al.,
2013). The angle flow algorithm, more commonly used in computer
science than Earth science, was used to map flow velocities. The tech-
nique pairs feature mapping with constraints on flow motion, which
were not known a priori in this study and were built from a coarse to
fine resolution assessment of varying DEM grid sizes. The results of this
method were compared to motion of reflectors in the landslide and
good agreement was found at nearly all of the reflector points, barring a
few outliers.

ALS data, orthophotographs, and field data were all used to assess
the effect of land cover on a forested and mountainous region of Austria
(Schmaltz et al., 2017). Land cover type, broken into three categories —
conifer, deciduous, and mixed, was considered in terms of both vege-
tation density and age. Despite the many variables considered in the
analysis, forest cover, regardless of type or age, had the most significant
effect on landslide susceptibility, with less vegetated regions experi-
encing more landslides than more vegetated regions. In a recently un-
glaciated region of Austria, multi-temporal ALS and TLS surveys were
taken from 2006 to 2014 to monitor geomorphic changes to the
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receding glacier and the rapidly changing, freshly exposed surround-
ings (Vehling et al., 2017). Stability was maintained in unglaciated
terrain for some time following its exposure as the ground itself re-
mained frozen. However, as increasing amounts of meltwater were
produced, the unglaciated terrain was observed to lose stability and
both rock flows and rock slides increased in energy and frequency.

Building on the routine use of DoD methods to ascertain standard
landslide parameters, Mora and Toth (2014) used this technique to
assess the landslide susceptibility of an area near Zanesville, OH. The
DoD results were used to isolate areas experiencing a high level of to-
pographic change and, when paired with topographic information such
as slope, landslide susceptible regions were identified. However, the
results of the study were not compared to actual landslide data in the
region after the fact, leaving the method somewhat untested.

4. Discussions and outlook

Connecting forest ecosystem processes or extreme events to carbon
fluxes, AGB dynamics plays an important role in predictive analytics
and management of terrestrial carbon (Hudak et al., 2012). With in-
creasing availability, increasing numbers of studies taking advantage of
repeat ALS data collections for estimating changes in AGB over time
have appeared in the literature. Furthermore, successful use of multi-
temporal ALS in biosphere is opening new opportunities in critical zone
research. Providing the unique opportunity to measure ecologic, geo-
morphologic, and hydrologic properties, repeat ALS data allow for the
monitoring of change in the geosphere, hydrosphere, and biosphere
simultaneously advancing the state of critical zone science (Harpold
et al., 2015). While multi-temporal ALS allows for modeling AGB
change, there are some uncertainties associated with the analyses. Two
approaches, i.e., direct and indirect, have been implemented in mod-
eling AGB change using repeat ALS data. The number of studies that
implemented the indirect modeling approach are relatively higher than
that of the direct approach but it is still unclear whether one approach
is superior to the other. While a few studies have sought to evaluate the
accuracies of the direct and indirect approaches in estimating AGB
change, the results are not conclusive due to the limited number of
studies and a consensus has yet to be built. To date, the validation of
AGB estimates and the accuracy assessment of change detection have
been commonly performed by comparing the lidar-derived estimates
with in-situ estimates. A few studies also used TLS-derived estimates
(e.g., Greaves et al., 2017; Li et al., 2015) for calibration and evaluation
of ALS-derived AGB estimates. Initial results suggest that TLS can po-
tentially provide ground-truth for calibrating ALS-derived AGB esti-
mates. Nevertheless, both studies emphasized the need for high-quality
in-situ data to establish the initial relationship between in-situ and TLS-
derived estimates. Increasing complexity of the architecture of an
ecosystem can lead to uncertainties in both in-situ and laser measure-
ments. A rigorous assessment of uncertainties in individual data col-
lections and accounting for them in AGB change detection analyses is
not trivial and thus, subject of continuous research.

Far from using similar techniques to measure similar metrics, the
wildfire community has used temporal ALS data to gauge fire severity
and recovery time based on variable burn rates between different tree
types and tree stress conditions, distance between tree canopies pre-
and post-fire, and rates of tree fall. One of the key challenges to using
ALS to study wildfires is the necessity for pre-event data, which can be
hard to justify since wildfire hazards can rarely be accurately predicted.
However, the forestry community uses ALS data extensively, providing
a potential wealth of pre-fire data. Improving data resolution through
the reduction of error and automating the detection of individual trees
in ALS data are two avenues that would be beneficial across the spec-
trum of wildfire approaches seen in the current research. Additionally,
no wildfire studies to date have taken advantage of multispectral lidar
(e.g., Fernandez-Diaz et al., 2016), despite the clear benefits of paring
traditional ALS data with Landsat spectral data. While multispectral
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Fig. 10. The vertical displacement in the Montaguto landslide for four different epochs. Figure originally from Ventura et al. (2011), used with permission.

lidar data is unlikely to replace Landsat data, it may provide com-
plementary information or be useful to fill in gaps where Landsat data is
either unavailable or does not have high enough resolution.

Since the polar regions and high mountainous terrain of the cryo-
sphere is typically difficult and hazardous, ALS offers key advantages,
whether studying glaciers or snow accumulation and melt. ALS pro-
vides a significantly higher resolution than satellite data and can cover
otherwise difficult to access areas more easily than ground-based
measurement techniques. While this is generally applicable to other
sub-disciplines as well, the short field season at the poles and in high
elevation environments, coupled with the freezing temperatures, makes
this especially impactful in the cryosphere. The most novel research in
cryosphere science is to utilize lidar data properties beyond elevation,
such as pulse return intensity. In an early study, ALS intensity data from
the Swiss Alps was used to classify different types of terrain and eval-
uate change over time (Fritzmann et al., 2011). The ALS instrument
used for the study operated at a single wavelength of 1064 pm and the
results of the ALS intensity classification were compared to those from a
classification of RGB orthophotographs. With increasing availability of
operational multispectral lidar systems, pulse return intensity from
additional wavelengths will likely to be more extensively used in
cryosphere studies to classify surface feature and spatiotemporal
change. A pilot study using multispectral ALS in Antarctica has de-
monstrated that pulse return intensity in different ALS wavelengths can
be used to automate the differentiation of ground cover types including
snow, ice, and bare earth (Okyay et al., 2018). Continued research in
this direction will resolve changes to the cryosphere beyond those we
are currently able to monitor and will inform our understanding of how
cryosphere environments are changing in a greater level of detail. An-
other emergent application of repeat ALS to cryosphere science is es-
timating snow water equivalent (SWE) from lidar-derived snow depths.
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As it plays a critical role in controlling the volume and timing of
snowmelt run-off, SWE is an important component of water resource
management. The spatial variability in SWE is controlled by snow depth
and snow density. While repeat ALS data have proven successful to
estimate the snow depth across large spatial extents (Deems et al.,
2013), coupling snow depth to SWE still remains a challenge. In order
to address the knowledge gap in measuring spatial distribution of SWE,
projects such as NASA Airborne Snow Observatory (ASO) and NASA
SnowEx have been initiated.

Though ALS is often ideal for quantifying changes to remote en-
vironments, volcanoes present an unusually challenging environment
for the collection and use of ALS data. Hazards at active volcanoes,
including turbulent plumes even during less spectacular eruptions, high
heat, and ash emissions, can complicate or preclude data collection. In
addition, the steep slopes of many volcanoes increase the error inherent
in ALS data. Resultantly, most of the repeat ALS surveys of volcanoes
compare eruptive products in quiescent periods. However, during
events like the 2018 fissure eruption at Kilauea, HI, ALS has the po-
tential to be immediately useful in an active and ongoing eruption
(USGS, 2018a,b). Effusive eruptions, like those commonplace to Ki-
lauea, can be mapped safely by ALS with careful preplanning and ALS
data can provide important, up to date information about lava flow rate
and extent. A novel application of repeat ALS to volcanology is mon-
itoring surface deformation caused by volcanic activity. A pilot study
investigated the use of temporally spaced ALS data collections for de-
tecting spatially distributed surface deformation around Yellowstone
Caldera (Fernandez Diaz et al., 2018). Repeat ALS has the potential to
bridge the gap between GPS and InSAR by detecting surface deforma-
tion more frequently across large spatial extents. However, subtle sur-
face deformation signals pose specific challenges to data registration
and accurate change estimation, particularly for noisy data collections.
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Error propagation and uncertainty analysis is a requirement in these
cases in order to be able to effectively separate signal from noise.
However, to date, the propagation of uncertainty into final point cloud
differences has received only limited attention (e.g., Hartzell et al.,
2015; Wheaton et al., 2010).

Measuring surface deformation caused by earthquakes is important
to determine the fault rupture geometry and to understand the me-
chanics of the earthquake. The expanded use of repeat ALS in mea-
suring near-field surface deformation has the potential to bridge the
observational gap between in-situ slip measurements and far-field de-
formation measurements from satellite data. To date, a wide variety of
methods have been adopted to quantify surface deformation using re-
peat ALS data. In fact, among the multi-temporal ALS applications in
Earth sciences, surface deformation studies are the most methodologi-
cally diversified. However, neither of these methods exploit the full
potential of ALS for detecting surface deformation since they either
assume rigid-body transformation (e.g., ICP and cross-correlation of
point clouds) or are not 3D by nature (e.g., DoD, COSI-Corr, and PIV).
Therefore, measuring non-rigid and fully 3D surface deformation re-
mains a challenge. Assessment of distributed inelastic deformation that
occurs adjacent to faults is of importance as it allows understanding of
near-field and off-fault deformation patterns as demonstrated in
Milliner et al. (2015, 2016) using image correlation. Although Scott
et al. (2018) demonstrated the use of repeat ALS data for evaluating
spatially distributed inelastic off-fault deformation and coseismic strain
field comparing discrete displacement discontinuity measurements, the
analysis is inherently limited by rigid-body assumption of ICP. Methods
that track individual features in the point cloud (DeLong et al., 2015;
Kusari et al., 2019), analogous to the use of persistent scatterers using
InSAR (Hooper et al., 2004), show promise for providing spatially
distributed estimates of deformation without assuming rigid body mo-
tion.

DoD has been, by far, the most commonly used method for evalu-
ating morphodynamics in ALS change detection studies across different
landscapes. With the expanding use of DoD for estimating volumetric
change caused by erosion-deposition processes, the awareness of the
need to assess DEM uncertainties has increased (Croke et al., 2013). The
findings reported in Schaffrath et al. (2015) highlighted the importance
of assessing DoD uncertainties as such, the calculated uncertainty was
almost as high as the estimated net volume change. Consequently,
numerous studies have implemented various methods for assessing the
DoD uncertainty (e.g., Jones et al., 2013; Obu et al., 2017; Croke et al.,
2013; Lallias-Tacon et al., 2014; Cavalli et al., 2017; Moretto et al.,
2014; Schaffrath et al., 2015). Nevertheless, considering the number of
DoD-based repeat ALS applications in the morphodynamics, the as-
sessment of DoD uncertainty has been very limited. Furthermore, while
a variety of approaches have been proposed and implemented, a con-
sensus has yet to be built as to how DoD uncertainties should be
quantified. While estimating and accounting for DoD uncertainties is
important in morphodynamics, a detailed discussion is not within the
scope of this paper. More detailed discussions can be found in a wide
body of existing literature (e.g., Brasington et al., 2000, 2003; Carley
et al., 2012; Fuller et al., 2003; Lane et al., 2003; Milan et al., 2007,
2011; Passalacqua et al., 2015; Vericat et al., 2017; Wheaton et al.,
2010).

Multi-temporal ALS is most commonly used in landslide studies to
produce DEMs that can be analyzed using straightforward differencing
methods, DoD for example, to track ground motion and sediment dis-
placement. This type of approach has already been shown to be more
successful in locating and tracking landslides than other types of remote
sensing approaches. However, as remote sensing data becomes in-
creasingly available and more groups are familiarized with the use of
ALS data, the applications for repeat ALS surveys of landslides are
growing rapidly and being used to characterize more dynamic aspects
of these events. Though many landslide studies focus on measuring the
volume of sediment transported in these events and the progression of
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the event boundaries, some repeat ALS surveys have also been used to
assess what parameters expedite or retard landslide progress. In parti-
cular, land cover and the availability of water can both affect landslide
probabilities (Schmaltz et al., 2017; Tseng et al., 2013, 2015; Vehling
et al., 2017). On the forefront of repeat ALS landslide research are the
efforts to automate the detection and tracking of these hazards; how-
ever, research in this vein is nascent and has not yet been widely suc-
cessful. Additionally, research into ways to more cleanly remove ve-
getation from landslide ALS data or to use vegetation to aid in the
tracking of landslides is both a key challenge in the community and a
necessary avenue for growth.

ALS change detection has undergone rapid adoption in the Earth
sciences and has begun to assist in unlocking fundamental science
questions related to dynamic Earth surface processes. Although sig-
nificant progress has been made in applying ALS data to change de-
tection, numerous approaches make fundamental assumptions that
limit the full potential of this data for detecting 3D change and mea-
suring deformation. For example, DoD is only 1D and neglects hor-
izontal change, COSI-Corr is 2D- neglecting vertical change, and PIV
can be 2.5D at best (e.g., Mukoyama, 2011). While ICP takes advantage
of 3D data, it works on the basis of a rigid-body transformation. A rigid
body transformation does not accurately model many natural phe-
nomena, which limits its use in some fields (Krishnan et al., 2013). For
instance, in neglecting inelastic strain caused by an earthquake or in-
ternal deformation of landslides and glacial flows, a rigid-body trans-
formation cannot provide a complete picture of the real change in 3D.
Consequently, neither of these approaches is able to fully capture most
Earth science processes, which tend to be non-rigid and fully three-
dimensional. There is however some emerging research on the use of
non-rigid deformation approaches, such as coherent point drift (CPD)
(Gadomski, 2016; Myronenko and Song, 2010), which uses a Gaussian
Mixture Model to allow deformation to the point cloud between epochs.
Alternative to measuring point cloud motion first, some research has
attempted to start by constraining change detection using a physics
based model of the process. Brooks et al. (2017) successfully used
mobile laser scanning offsets constrained with an elastic deformation
for the Napa Valley earthquake, but this coupling of models and 3D
estimated deformation is still an emerging area of research. Wu et al.
(2013) presented a multi-feature-based method that incorporates fea-
ture points, lines, and surface patches for robust co-registration of
multiple surface models. Initial results of this non-rigid-transformation
method showed its superiority over point-based methods and thus,
deserves further attention as to its potential for ALS change detection
studies. In addition, several other promising 3D point-based change
detection methods, such as octree-based comparison algorithms (Barber
et al., 2008; Girardeau-Montaut et al., 2005; Xu et al., 2015), 4-D fil-
tering and calibration technique (Kromer et al., 2015), and integrated
classification and change detection using machine learning (Tran et al.,
2018) have been proposed. While the majority of these algorithms were
developed for TLS, they can potentially be applied to repeat ALS data
collections as well.

Apart from the rigid body nature of the transformation, ICP also has
a few notable limitations in ALS change detection analysis. The per-
formance of ICP largely depends on local topographic relief and the
degree of alignment between pre- and post- event data when the
transformation is initialized. In the absence of sufficient topographic
structures, i.e., flat topography, a range of local transformations can
provide acceptable alignment between point clouds and result in
spurious change estimates (Scott et al., 2018). On the other hand, sig-
nificant changes to the landscape (e.g., surface rupture or substantial
erosion/deposition) also hamper the alignment between point clouds,
rendering the use of ICP becomes virtually impossible. Therefore, an
application-specific, optimal window size, which is a trade-off between
a large scale to include sufficient topographic relief for accurate
alignment and a small scale not to violate the rigid-body assumption,
should be defined (Nissen et al., 2012). Krishnan et al. (2013) presented
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a data-driven, iterative method to decide upon an appropriate window
size for ICP. However, to date, the window size selection for ICP in ALS
change detection studies has been rather arbitrary. To overcome some
of the shortcoming associated with ICP, numerous, more complex
adaptations of ICP have been proposed in the literature (Pomerleau
et al,, 2013). The method for treating outliers and penalizing the
transformation for misalignments are generally the fundamental dif-
ferences between ICP adaptations (Rusinkiewicz and Levoy, 2001).
Therefore, different adaptations of the algorithm may not converge to a
unique solution (change estimate) for the same paired lidar data
(Pomerleau et al., 2013; Rusinkiewicz and Levoy, 2001), which poses a
specific challenge as to which adaption should be preferred.

To date, most of the ALS change detection analysis has been per-
formed using derived surface models, mainly DEMs along with intensity
images to some extent, because such data are easier to process than 3D
point clouds. These surface models require interpolation of irregularly
spaced point data into regularly gridded data. However, the conversion
results in a loss of information and precision regardless of the inter-
polation method. Resultantly, the final product resolution will be lower
than the initial resolution of the point cloud. Furthermore, uncertainties
in the surface representation are introduced during the conversion
process (Passalacqua et al., 2015), which adversely affects the quality of
change detection analysis. A number of factors such as point density
and distribution, surface composition, topographic complexity, and
interpolation method can contribute to surface representation un-
certainty (Milan et al., 2011). However, the effect of surface re-
presentation uncertainty has not been extensively evaluated or dis-
cussed in ALS change detection studies. Nevertheless, with the
awareness of these limitations, the Earth science community has de-
monstrated an increasing interest in using spatially-explicit point data,
rather than gridded data products. So far, the most frequently im-
plemented point-based analysis method in ALS change detection has
been ICP. However, due to intrinsic limitations of the method, as dis-
cussed previously, ICP is not necessarily suitable for many Earth science
sub-disciplines. For instance, the rigid-body assumption has been pro-
hibitive in applying ICP for evaluating morphodynamics, particularly at
finer scale. As such, ICP has not been successfully utilized in evaluating
morphodynamics using repeat ALS so far, except for co-registration of
data collections based on supposedly stable target areas. Similarly, ICP
falls short of resolving 3D change in complex ecosystems and results in
spurious change estimates along fault scarps or across landslides caused
by seismic activity, where a simple vertical differencing has proven
successful (e.g., Nissen et al., 2014). As an alternative to grid-based
vertical differencing, Lague et al. (2013) introduced the Multi-scale
Model-to-Model Cloud Comparison (M3C2) algorithm which allows
direct differencing of point clouds and estimating vertical change
without losing spatially explicit information. While the M3C2 algorithm
was originally developed for TLS and successfully employed in several
applications, the use of the algorithm in ALS change detection has been
very limited and only one study has taken advantage of 3D point dif-
ferencing in evaluating morphodynamics using repeat ALS data to date
(Wagner et al., 2017).

The increasing interest in working directly with 3D point clouds,
coupled with ever-increasing point density, brings new challenges re-
garding optimal storage and organization of repeat ALS data. The state-
of-the-art concepts and techniques for managing massive point clouds
have been reviewed highlighting both current challenges and future
needs (Vo et al., 2016). Additionally, with increasing data volumes,
data processing and subsequent change detection analysis using high
density point clouds can become very computationally expensive. To
this end a few studies have sought to offer new insights and presented
promising results for efficient data processing and analysis to detect
changes in massive point clouds (Richter et al., 2013b; Richter and
Dollner, 2014). The continued improvements in laser scanning tech-
nology will likely lead to even larger data volumes and, thus, entail
methodological challenges in addition to management challenges (Rieg

20

Earth-Science Reviews 198 (2019) 102929

et al., 2014; Vericat et al., 2017). The use of multi-temporal ALS data
for change detection and monitoring purposes is, therefore, in need of
novel and computationally efficient processing algorithms that trans-
cend the ever-increasing volume and scale of laser scanning data
(Vericat et al., 2017).

While new models and techniques will ultimately improve the re-
sults of 3D change detection, there are also still improvements to be
made (a) providing the most accurate and consistent matches between
irregular 3D point clouds, and (b) rigorously quantifying the level of
uncertainty in the change detection estimates. Currently, change de-
tection methodology does not consider anything beyond the 3D loca-
tion of the points; information such as classification (ground, building,
tree etc.) and return intensity are generally neglected. However, using
hard target features, such as buildings, within the scene that can be
identified and matched between epochs, analogous to the use of per-
sistent scatterers in InSAR (e.g., Ferretti et al., 2004; Hooper et al.,
2004), could improve registration between scans, resulting in more
precise change detection estimates. Relatively few studies have taken
this approach but Ekhtari and Glennie (2017), using buildings to reg-
ister ALS data, and DeLong et al. (2015), using fence posts in TLS data,
have both shown that it can be successful. A more thorough in-
vestigation of automatically detecting, modeling, and matching features
in this way will more accurately constrain deformation in future stu-
dies.

Considering the number of repeat ALS change detection studies in
the broad field of Earth sciences, quantification of uncertainty in
change detection results has been very limited and typically restricted
to DoD analysis. One exception to this is Scott et al. (2018), which in-
troduces an empirical error metric, to evaluate the relative quality of
ICP displacement estimates. While individual DEM and propagated DoD
uncertainties have commonly been expressed as a single value for the
entire grid, these uncertainties are unlikely to be spatially uniform.
Estimating spatially variable DEM uncertainty, however, is not a trivial
task, particularly in the absence of high quality auxiliary data. Although
Wheaton et al. (2010) proposed a fuzzy inference system (FIS) in an
effort to fill this gap, this method has yet to be widely implemented in
ALS-change detection studies. Additionally, with increasing interest in
using 3D data, rather than derived gridded data products, assessment of
spatially variable uncertainty in point clouds has gained some traction.
Some initial work in this area has been presented in Hartzell et al.
(2015), for modeling snow volume uncertainty, and in Zhang et al.
(2015), for estimating earthquake deformation. However, the ap-
proaches used in both studies required detailed modeling of the laser
scanning equipment, scanning geometry, and raw observations which
would not be possible for many Earth science applications. This type of
rigorous error propagation will rely on ALS vendors providing estimates
of per point accuracy that can then be applied to the resultant change
detection estimates. Additionally, beyond point accuracy measures, a
study of the effect that filtering and gridding of the raw point cloud
observations have on the overall change detection accuracy would also
improve the quantification of uncertainty for a wide breadth of re-
search.

Although the cost of data acquisition is declining as ALS becomes
more pervasive, it is still expensive. Furthermore, the existence of pre-
and post-event ALS data is still uncommon for many isolated hazard
events, such as earthquakes, volcanic eruptions, wildfires, landslides,
etc. Consequently, data availability is still a major limitation for many
ALS change detection applications, particularly for large areal coverage
and continuous monitoring purposes. Nevertheless, projects like the
“B4”, which collected ALS data for the San Andreas fault (Bevis et al.,
2005) or similar projects in Japan acquired ALS data across the po-
tential epicentral regions of future earthquakes (Nissen et al., 2014)
demonstrate that repeat ALS data are increasingly being used as a
standard investigative tool. To date, the ALS data within the scope of
Earth sciences have traditionally been collected from either fixed-wing
aircrafts or helicopters, which adversely affect the cost and frequency of
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data collection. Compared to traditional ALS, UAVs could potentially
provide more flexibility in terms of flight frequency and design, and
lower acquisition cost at small spatial extents. However, until recently
the UAV-based lidar has lagged behind due mainly to low positional
accuracy, point density, and the limited range of light-weight systems.
Recent and rapid developments in sensor technology are beginning to
allow the implementation of miniaturized lidar systems capable of ac-
quiring quality data from UAVs. A recent pilot study has evaluated a
survey-grade, long-range UAV-based lidar system and provided valu-
able insight as to data calibration, processing, and analysis (Starek
et al., 2018). The experimental results presented in this study are pro-
mising and demonstrate the improvements in the new technology.
While it is currently in its infancy, the use of UAV-based lidar has a
great potential to open doors for new applications in airborne change
detection. For instance, UAV-based lidar would considerably lower the
risk of data collection in volcanic areas or around other hazard types
and would provide rapid response capabilities for many isolated events.
Nevertheless, considering the flight endurance, spatial coverage, and
superior sensor characteristics, traditional ALS data collected from
fixed-winged aircraft and helicopters will still be at the forefront of
change detection studies in near future.

5. Conclusions

Despite the increasing number of studies, ALS change detection
represents a small subset of lidar applications in the Earth sciences.
Currently, multi-temporal ALS data are primarily used in studies con-
cerning geomorphology and morphodynamics, landslide and earth-
quake surface displacement, and above-ground biomass dynamics.
They have also been used selectively in volcanology and cryosphere
science. Although significant progress has been made in applying ALS
data to change detection, numerous approaches make fundamental
assumptions that limit the use of this data for detecting fully 3D change
and thus, the full potential of repeat ALS in Earth sciences has yet to be
realized. The use of multi-temporal ALS data for change detection and
monitoring purposes is, therefore, in need of novel and computationally
efficient processing algorithms. In addition, the continued improve-
ments in lidar technology will likely lead to larger data volumes and,
thus, entail data management challenges. Currently, change detection
methodology does not consider anything beyond the 3D location of the
points; information such as classification and return intensity are gen-
erally neglected. Incorporating such information into change detection
analyses will potentially improve the applicability, quantitative accu-
racy, and informative value of ALS change detection. Quantification of
uncertainty in change detection results is also an area that requires
further attention, as it is vitally important to understanding what 3D
differences detected between epochs represent actual change as op-
posed to noise. The existence of pre- and post-event ALS data is still
uncommon for many isolated hazard events, such as earthquakes, vol-
canic eruptions, wildfires, landslides, etc. Consequently, data avail-
ability is still a major limitation for many ALS change detection ap-
plications. To date, a majority of the estimates of ALS change detection
result from the analysis of only two epochs of observations — often a
pre- and post-event dataset. With the increasing availability of low cost
lidar data, as well as 3D data derived from stereo photography, it would
appear that future studies could benefit from taking advantage of
multiple temporally spaced 3D datasets to both improve prediction and
drive down estimated error in a similar manner to that employed with
stacked radar interferograms. ALS has become increasingly integral to
change detection across the Earth sciences and this trend will continue
as repeat ALS data coverage becomes more widespread and accessible.
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