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Reconstruction, Analysis, and Segmentation of LA-ICP-MS Imaging 
Data using Python for the Identification of Sub-Organ Regions in 
Tissues 
Laura J. Castellanos-García,a S. Gokhan Elci a and Richard W. Vachet *a 

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging has been extensively used to determine 
the distributions of metals in biological tissues for a wide variety of applications. To be useful for identifying metal 
biodistributions, the acquired raw data needs to be reconstructed into a two-dimensional image. Several approaches have 
been developed for LA-ICP-MS image reconstruction, but less focus has been placed on software for more in-depth statistical 
processing of the imaging data. Yet, improved image processing can allow the biological ramifications of metal distributions 
in tissues to be better understood. In this work, we describe software written in Python that automatically reconstructs, 
analyzes, and segments images from LA-ICP-MS imaging data. Image segmentation is achieved using LA-ICP-MS signals from 
the biological metals Fe and Zn together with k-means clustering to automatically identify sub-organ regions in different 
tissues. Spatial awareness also can be incorporated into the images through a neighboring pixel evaluation that allows 
regions of interest to be identified that are at the limit of the LA-ICP-MS imaging resolution. The value of the described 
algorithms is demonstrated for LA-ICP-MS images of nanomaterial biodistributions. The developed image reconstruction 
and processing approach reveals that nanomaterials distribute in different sub-organ regions based on their chemical and 
physical properties, opening new possibilities for understanding the impact of such nanomaterials in vivo.

Introduction 
Laser ablation inductively-coupled plasma mass spectrometry 
(LA-ICP-MS) imaging is increasingly used for imaging metal 
distributions in biological tissues. Among metal imaging 
techniques, LA-ICP-MS is perhaps the most sensitive technique 
for elemental imaging with detection limits in the sub µg/g level, 
while providing multiplexed metal analysis with spatial 
resolutions in the 10 to 200 µm range.1–3 Imaging methods such 
as scanning electron microscopy with energy-dispersive X-ray 
analysis (SEM-EDX) and particle-induced X-ray emission (PIXE) 
offer better spatial resolution; however, they require laborious 
sample preparation, and their sensitivity is lower than LA-ICP-
MS.4 Synchrotron radiation X-ray fluorescence (SR-XRF) also 
offers better spatial resolution and has similar sensitivity to LA-
ICP-MS, but it requires access to a synchrotron facility, making 
it much less broadly applicable.5 Given its combination of 
sensitivity, multi-metal detection capability, and accessibility, 
LA-ICP-MS has been used broadly in applications that include 
analysis of metals in neurogenerative diseases like Alzheimer’s, 
Parkinson’s, and Wilson’s disease,6–8 detection of anti-cancer 
metallodrugs,9,10 studies of metalloproteins,11,12 and analysis of 
nanomaterials in biological tissues.13,14 Several reviews have 

detailed the development and use of LA-ICP-MS imaging for 
analysing biological tissues.1–4,15,16  

Obtaining site-specific information about metal 
distributions in LA-ICP-MS imaging requires images to be 
reconstructed from the metal ion signals. In contrast to more 
widely used matrix assisted laser desorption\ionization (MALDI) 
MS imaging, relatively few approaches have been described for 
image reconstruction and statistical analysis. The program 
IMAGENA, which was developed by Osterholt et al.,17 was one 
of the first software developed for visualizing LA-ICP-MS data. A 
similar program called HDIP18 was recently developed by 
Teledyne for image reconstruction of LA-ICP-MS images. While 
IMAGENA, HDIP, Iolite19 and its associated interfaces, such as 
monocle20 and biolite,21 are versatile tools for reconstructing 
images, they are not open source and offer minimal tools for 
the statistical analysis of the resulting images. In contrast, 
software such as LA-iMageS,22 MapIT!23 and iQuant224 are open 
source programs that enable image reconstruction from LA-ICP-
MS data via user-friendly graphical user interfaces, but they also 
have limited built-in statistical analysis tools. Other image 
reconstruction approaches, including those based on readily 
available software such as Microsoft Excel25 have also been 
described, although most have limited capability for the 
statistical analysis of the imaging data sets. For most existing 
software, image reconstruction is the principal aim. As the 
applicability of LA-ICP-MS grows, though, especially for 
applications such as nanomaterial-based drug delivery 
systems,13,26,27 more sophisticated image processing methods 
such as image segmentation for region of interest (ROI) analysis 
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or other statistical analysis methods are needed to extract more 
information from reconstructed images.28 Image segmentation, 
in particular, is valuable for characterizing analyte signals in 
histologically relevant regions of a tissue, so that the underlying 
biochemistry and biology can be better understood. Deeper 
biological insight into MALDI-MS imaging data has been 
achieved with image segmentation algorithms,29,30 but to our 
knowledge analogous approaches have not been readily 
adopted in LA-ICP-MS imaging methods. 

Here, we present an open source software written in Python 
for LA-ICP-MS imaging reconstruction that implements more 
advanced segmentation algorithms for classification of ROIs in 
LA-ICP-MS images. The use of Python for image analysis offers 
tremendous flexibility because of the numerous libraries 
accessible via the software for image visualization,31 matrix 
operations,32 statistical analysis,33 and even more complex tasks 
like multimodality imaging.34 Using code written in Python, we 
demonstrate that distinct sub-organ features can be 
automatically identified using different metal distributions to 
perform spatially aware segmentation analyses. As an 
application of these image segmentation approaches, we show 
that nanomaterials distribute in different sub-organ regions 
based on their chemical and physical properties. We believe the 
described software will benefit current and potential users of 
LA-ICP-MS imaging as it will make accessible more sophisticated 
image processing tools for more deeply understanding the 
biological ramifications of metal distributions in tissues.   

Materials and methods 
Nanomaterial synthesis 

Different nanomaterials, including gold nanoparticles, 
nanozymes, nanocapsules and bismuth sulfide nanorods (Fig. 
S1†), were provided by collaborators who synthesized them 
according to published protocols. Gold nanoparticles were 
synthesized according to the Brust-Schiffrin two phase 
method.35 Different ligand coatings, including ones with 
positively-charged (TTMA) and negatively-charged (TEGCOOH) 
functional groups were used.36 Nanozymes were synthesized 
using the method described by Rotello and co-workers.37,38 
Nanocapsule synthesis was performed according to the 
protocol described by Rotello and co-workers,39–41 and the 
bismuth sulfide nanorods were synthesized according to the 
method developed by Gendelman and co-workers.42 

Tissue Sections 

To obtain tissues for the imaging experiments involving gold 
nanoparticles, nanozymes and nanocapsules, female Balb/c 
mice (8-week-old) were injected with the nanomaterial of 
interest. After 24 h, the mouse tissues of interest were 
extracted, and flash frozen in liquid nitrogen and then kept at -
80 °C until used for MS imaging. All animal protocols involving 
the gold nanomaterials were approved by the UMass 
Institutional Animal Care and Use Committee (IACUC), which is 
guided by the U.S. Animal Welfare Act and U.S. Public Health 
Service Policy. For the imaging experiments involving bismuth 

sulfide nanorods, six mice were injected, and the mouse tissues 
were extracted after 48 h, flash frozen, and sent to the 
University of Massachusetts Amherst for sectioning. The 
animals in this case were housed at the University of Nebraska 
Medical Center (UNMC) laboratory animal facility in accordance 
with the Association for Assessment and Accreditation of 
Laboratory Animal Care guidance. The UNMC Institutional 
Animal Care and Use Committee approved the relevant animal 
protocols for these experiments, and these protocols were 
certified to have met the ethical guidelines of the National 
Institutes of Health for handling laboratory animals for 
research. In all cases, tissues were sliced at 20 µm using a LEICA 
CM1850 at -20˚C, and then deposited on regular glass slides. 
Hematoxylin and Eosin (H&E) staining on adjacent slices was 
performed using the Rapid Chrome frozen section staining kit 
(Thermo Fisher Scientific). 

LA-ICP-MS data acquisition 

LA-ICP-MS images were obtained on a CETAC LSX-213 G2 laser 
ablation system coupled with a Perkin Elmer NexION 300x ICP-
MS. Unless otherwise specified, the following laser parameters 
were used: 50 μm spot size, 15 μm/s scan rate, 3.65 J laser 
energy, 10 Hz laser frequency, and a 10 s of shutter delay, which 
allows for full ablation of the tissue. The He carrier gas from 
laser ablation system was set to 0.6 L/min. The ICP-MS 
parameters were the following: 0.7 L/min nebulizer argon flow 
rate, 16.5 L/min plasma argon flow rate, 1.4 L/min auxiliary 
argon flow rate, -1650 V analog stage voltage, and 1000 V pulse 
stage voltage. These parameters were optimized for 
nanoparticle analysis in tissue sections, based on previous 
work.14,43,44 Different elements, including 197Au, 209Bi, 57Fe, and 
66Zn, were detected with 50 ms dwell times. Image 
reconstruction and analysis was performed using a program 
written in Python that are further described below. Access to 
the scripts, examples and documentation can be found at: add 
github link. 

Normalization 

Normalization of the data allows the correction of tissue 
inhomogeneities during sample preparation and due to 
differences in mass ablation rates during laser ablation. 
Normalization of the tissues was performed using the Zn signals 
because we have empirically found that this element is 
relatively constant at the spatial resolutions and for the tissues 
used in this study (see Fig. S4). However, the user can perform 
normalization in the code using any desired element by simply 
specifying the element of interest as an input in the analysis 
workflow. Each of the studied metals (Au, Fe, and Bi) were 
divided by the Zn matrix in the Python script, on a pixel-by-pixel 
basis, using the NumPy library for matrix manipulations.32  

Image segmentation and k-means clustering 

A k-means clustering protocol was performed in Python, using 
the scikit-learn machine learning library.33 To do this, the image 
of interest was vectorized, and the clustering was performed 
over the flattened image, as shown in Fig. S2. The number of 
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clusters was specified as a parameter in the program. If the 
number of clusters were unknown, the ‘elbow method’ was 
used to estimate the number of clusters into which the data 
should be divided, as shown in Fig. S3.45 After k-means 
clustering was performed, the centroids of the clusters were 
calculated, the data was reshaped, and the labelled image was 
generated. The labelled image corresponds to an arbitrary 
mathematical label that marks a specific are of the tissue as a 
part of a cluster. 

Results and discussion 
Image reconstruction 

Generating an LA-ICP-MS image after data acquisition involves 
several data handling steps (Fig. 1). Because the metal signals 
are generated by scanning the laser in a line across the tissue, 
the continuously ablated and detected stream of material must 
be summed to generate an image pixel. To do this, the file that 
is generated for each ablation line, which contains all the metal 
intensity data, is subjected to a data reduction step (Step 2, Fig. 
1). This step uses the laser spot size and scan rate to define the 
number of ion intensity measurements that are summed to 
create a pixel. For example, if the laser spot size is 50 µm and 
the laser scan rate is 15 µm/s, data acquired over a 3.3 s period 
is summed to create a single pixel. The resulting collection of 
pixels that contains ion intensity information is then separated 
into a set of different data matrices that correspond to the 
number of different metals measured (Step 3, Fig. 1). Separate 
images for each metal can then be reconstructed using plotting 
tools such as Matplotlib to generate a 2D image for each of the 
studied metals (Step 4, Fig. 1).31 This image generation 
approach has been written in a Python program that allows 
automatic image reconstruction with few user inputs. Our 
approach generates image matrices that can be subsequently 
analyzed by the many Python statistical libraries that exist, such 
as SciPy46 and scikit-learn enabling us to automatically identify 
different tissue regions in LA-ICP-MS images. 
 
Tissue boundary identification  

The distribution of Zn signals from an imaging experiment can 
be used to delineate the edge of the tissue by differentiating the 
pixels that correspond to the tissue and those that correspond 
to the background. The procedure, illustrated in Fig. 2, requires 
measurements of background regions outside the tissue. In the 
first step of the procedure, the background Zn signal is 

calculated from any user-defined row or column in the imaging 
dataset. The row and column data are saved as two 
independent vectors, and the signal average and standard 
deviations in each case are calculated. The resulting average 
signals and standard deviations calculated are used to set the 
background value B. Each pixel in the entire image is then 

compared against the background and classified as tissue or 
background depending on whether its intensity is significantly 
different from the background signal, according to the equation 
in Fig. 2. From the classified image a background mask is 
generated in which tissue pixels are given a value of 1 and 
background pixels are 0. The approach used here is essentially 
a thresholding approach that is similar to that used by others,47 
and in principle any element could be used by the program to 
perform background subtraction. Defining the tissue boundary 
is necessary for performing various statistical analyses on the 
images (see below). 
 
Image Optimization 

In addition to helping define tissue boundaries, Zn signals can 
also help improve image quality in regions that are degraded by 
tissue inhomogeneities arising during sample preparation or 
from fluctuations in laser fluence or mass ablation rates. Zn is 
homogeneously distributed in many healthy tissues, such as 
liver, kidney and spleen, and in the tissues imaged in this work, 
Zn signals are empirically found to be homogeneously 
distributed as compared to other elements (Fig. S4).8 This 
relative homogeneity allows Zn to be used for normalization. It 
should be noted, however, that any element, such as carbon48 
or phosphorous15,49 could be used for normalization in the 
program. Fig. 3 shows two examples of the advantage of using 

Fig. 2. Tissue boundary detection is determined from a background signal calculation, 
statistical classification of pixels as background or tissue, and creation of a background 
mask. Scale bars correspond to 500 µm. 

Fig. 1. Process of image generation in LA-ICP-MS. Data is acquired, and then processed by data reduction and separation into data matrices for each metal (e.g. M1, M2, M3, etc.). 
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Zn signals for improving image quality. In Fig. 3a, wrinkling of 
the edges of a mouse spleen section causes the Au image to be 
poor throughout most of the tissue. When the Au intensity 
matrix is divided by the Zn matrix on a pixel-by-pixel basis, this 
normalization process improves the image by eliminating the 
zones with anomalously high overall Au signal that are caused 
by folding of the tissue edges. Similar improvements can be 
obtained for Fe images from a folded tissue (Fig. S5) and Au 
images from an experiment where the laser energy deviated 
during the experiment (Fig. 4b).   
 
Image segmentation for automatic sub-organ differentiation 

The distribution of Fe levels in a tissue depends on the blood 
flow to a specific sub-organ region and can be used to 
differentiate regions in various tissues.14,44,50 To distinguish sub-
organ regions, image segmentation was performed using k-
means clustering51 to partition areas of differential Fe 

composition. Fig. 4 shows H&E stained, optical and LA-ICP-MS 
images of liver and kidney sections from a mouse injected with 
TTMA and TEGCOOH Au nanoparticles (Fig. S1). While the areas 
of high blood flow (i.e. veins) are readily apparent from the H&E 
stained, optical, and Fe LA-ICP-MS images, image segmentation 
can be used to automatically identify these and other regions 
that are not as readily apparent. Using the Fe matrix as input, 
we performed k-means clustering with the number of clusters 
assigned as 3, based on the ‘elbow method’ (Fig. S3). When 
using k-means clustering, it is possible to effectively segment 
the image between background, low Fe (tissue), and high Fe 
(vein). Using image segmentation in this way allows one to 
determine the average signal of another metal in a given 
classified area. For example, the average Au signal can be 
determined in the three classified areas in liver and kidney 
sections from mice injected with TTMA (Fig. 4a) or TEGCOOH 
(Fig. 4b) Au nanoparticles. From the signal averages we can 
conclude that the Au nanoparticles accumulate differently in 
the liver and kidney. In the liver, we find more Au in the tissue 
than in the veins, and in the kidney, we find higher Au signal in 
the veins than in the rest of the tissue. Previous work by our 
group found that positively-charged nanoparticles like TTMA 
are readily cleared from circulation while negatively-charged 
nanoparticles like TEGCOOH circulate longer in the 
bloodstream44 which explains the differences in the 
nanoparticle concentrations in the veins of the two organs. This 
image segmentation approach allows this information to be 
automatically determined. 

The image segmentation method was also used to 
distinguish sub-organ regions of the spleen. The spleen tissue 
has a marked difference between the red pulp and white pulp 
in that each region fulfils a different biological role in this vital 
organ.50 The spleen red and white pulp can be differentiated by 
their Fe concentrations, as the red pulp has higher blood flow 
than the white pulp. An example Fe LA-ICP-MS image from a 

Fig. 3. Zn-based normalization improves LA-ICP-MS image quality. a) Image of a spleen 
tissue section from a mouse injected with gold nanocapsules (Fig. S1) that shows 
wrinkling of the edges of the tissue. b) Image of a spleen tissue section from a mouse 
injected with TTMA nanozymes (Fig. S1) that shows laser energy deviations. White scale 
bars in Au images correspond to 500 µm.  

Fig 4. H&E stained, optical, Fe LA-ICP-MS, and Au LA-ICP-MS images illustrating how k-means clustering can be used to automatically segment images into biologically relevant 
regions. a) Images and segmentation of images from a liver section from a mouse injected with TTMA Au nanoparticles (Fig. S1). b) Images and segmentation of images from a 
kidney section from a mouse injected with TEGCOOH Au nanoparticles (Fig. S1). Bar graphs show the average Au signal with standard deviations in each of the segmented areas. 
White scale bars in both Fe images correspond to 500 µm. The distributions of the Fe signals in different areas of the liver and kidney are found in Figure S6. 
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spleen section is shown in Fig. 5a, showing areas of high and low 
Fe concentrations. To differentiate the sub-organ areas, we 
performed k-means clustering in the same manner as before. 
Using the elbow method, three clusters are again identified, but 
using a k-means clustering of three does not allow an effective 
differentiation between the white pulp and the background 
primarily because of the spread of Fe signals in the red pulp 
exceeds the difference between the white pulp and background 
Fe signals (Fig. 5a, k-means = 3 image). To solve this issue and 
effectively differentiate the background and white pulp regions, 
we used a multi-metal segmentation strategy that is illustrated 
within the brackets of Fig. 5a. For this strategy, we choose a k-
means cluster value of 2 for the Fe image to differentiate two 
clusters, one exclusively for the red pulp and another for the 
white pulp and background. The white pulp and background are 
then differentiated in the k-means = 2 clustered image using the 
Zn signal and the background mask procedure illustrated in Fig. 
2. By conjugating the k-means = 2 clustered image and the 
background mask (Fig. 5a), we can generate a multi-metal 
segmented image with three distinctive areas: background, red 
pulp and white pulp. 

In addition to the distinct red and white pulp regions of the 
spleen, there is boundary region known as the marginal zone 
where the first steps of an immune response occur in this 
organ.44 Image segmentation alone makes it difficult to 
effectively differentiate the marginal zone because it does not 
have a distinct metal composition. Because the marginal zone 
surrounds each white pulp region and is approximately 50 µm 
in size,50 this region can be distinguished if spatial awareness is 
added to the segmented image. The k-means approach, 
however, is performed on a vectorized dataset and thus does 
not have spatial awareness.29,51 Spatial awareness can be added 
by considering the neighboring pixels around any particular 
pixel in the image by arbitrarily assigning values of 0, 1, and 2 to 
the background, red pulp, and white pulp pixels, respectively, 
that were identified via the multi-metal segmentation approach 
(see label image in Fig. 5b).  

To further classify distinct areas in the spleen, including the 
marginal zone, each pixel value or label (𝑃𝑃𝑛𝑛,𝑚𝑚) can be redefined 
as a weighted pixel (𝑊𝑊𝑊𝑊𝑛𝑛,𝑚𝑚) that is equal to the weighted 
average of its eight immediately neighboring pixels (see 
equation in Fig. 5b). In effect, we apply image filtering with a 

Fig. 5. Multimetal image segmentation and pixel evaluation for the differentiation of red pulp, white pulp, and marginal zones of spleen sections using LA-ICP-MS imaging. a) An Fe 
LA-ICP-MS image that is segmented using k-means = 3 does not allow the white pulp and background to be distinguished, but a k-means = 2 clustering and Zn-based background 
mask (B. Mask) determination (in brackets) produces a segmented image that accurately defines the red pulp, white pulp, and background. b) Neighboring pixel evaluation adds 
spatial awareness to the multimetal segmented image by redefining each labeled image pixel (𝑃𝑃𝑛𝑛,𝑚𝑚) to a weighted image pixel (𝑊𝑊𝑊𝑊𝑛𝑛,𝑚𝑚) using the indicated equation. The result is a 
weighted image that clearly defines the boundary between the red and white pulp, allowing differentiation of the marginal zone that separates the two regions. White scale bars in 
Fe image correspond to 500 µm.  
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linear filter to classify the boundary regions of the labeled 
image. After redefining the value of each pixel, we can then 
generate a weighted image that effectively distinguishes the 
marginal zone (in yellow) from the red and white pulp (see 
weighted image in Fig. 5b). Newly weighted values of 1.2-1.3 
correspond to the marginal zone, while lower and higher values 
correspond to the red and white pulp, respectively. This 
approach for distinguishing the red pulp, white pulp, and 
marginal zone can be validated by comparing an H&E stain of 
the spleen tissue with the resulting multi-metal segmented 
image (Fig. S7 and S8). The red and white pulp stain differently, 
and the overlaid images show excellent agreement despite the 
images coming from adjacent slices. It should also be noted that 
the neighboring pixel approach illustrated in Fig. 5b can also 
correct wrongly classified regions in segmented images of other 
tissues (see Fig. S9). 

Gold nanoparticle and bismuth sulfide nanorod distributions in 
spleen tissues  

The value of distinguishing the three different regions in the 
spleen using multi-metal segmentation and the neighboring 
pixel evaluation can be illustrated by considering LA-ICP-MS 
images of tissue slices from mice injected with Au nanoparticles 
or bismuth sulfide nanorods. The Fe and Zn images from LA-ICP-
MS imaging analysis of separate spleen tissues were used to 
segment the images into red pulp, white pulp, and background 
regions, and a neighboring pixel evaluation was used to further 
classify the marginal zone (Fig. 6). By averaging the Au (Fig. 6a) 
and Bi (Fig. 6b) signals in each of the identified regions, which 
can be facilitated by a series of spatial mask images (Fig. S11), 
we find that Au and Bi accumulate in distinctive patterns in the 
spleen. Au tends to accumulate more extensively in the red 
pulp, whereas Bi tends to accumulate to a greater extent in the 

marginal zone. This observation is particularly important 
because these Bi nanorods were designed specially to target the 
marginal zone of the spleen.52 

Conclusions 
We have developed software written in Python that can 
automatically reconstruct and segment images from LA-ICP-MS 
imaging data. This new software identifies sub-organ regions of 
interest with minimal user input and can find regions that might 
be missed by manual analysis. The image reconstruction 
program takes advantage of the capability of existing open 
source scientific libraries such as NumPy, Matplotlib, and Scikit-
learn for various numerical and statistical analyses. Our image 
reconstruction and analysis method represents the first open-
source software, to our knowledge, that can perform 
sophisticated manipulations automatically and directly on LA-
ICP-MS imaging data. Using this software, we demonstrate that 
segmentation of LA-ICP-MS images can be performed using a 
combination of Fe and Zn images, k-means clustering analysis, 
and neighboring-pixel evaluation to automatically classify sub-
organ regions in kidney, liver, and spleen tissues. The 
neighboring-pixel evaluation procedure introduces spatial 
awareness to the segmentation process that can correct for 
misclassified pixels and can classify boundary regions that are at 
the limit of the measurement resolution (e.g. marginal zone in 
the spleen). Using tissues from mice injected with different 
nanomaterials as examples, classification of different sub-organ 
regions reveals the value of our described approach. For 
example, we find that Bi sulfide nanorods accumulate more 
extensively than Au nanoparticles in the marginal zone as 
compared to other regions of the spleen. We believe that the 
described data reconstruction and image segmentation 

Fig. 6. Use of multi-metal segmentation and neighboring pixel evaluation to evaluate the distributions of a) Au nanoparticles and b) Bi sulfide nanorods in spleen tissues. Fe and Zn 
LA-ICP-MS images are used to perform multi-metal segmentation combined with a neighboring pixel evaluation approach to obtain a weighted image like that shown in Fig. 6. The 
weighted images allow a determination of the relative amount of each metal in the marginal zone, red pulp, and white pulp, as show in each bar graph. Error bars represent standard 
deviations. White scale bars in Fe image correspond to 500 µm. The distributions of Fe signals in different areas of the spleen tissue are found in Figure S10. 
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strategy that we have developed in Python will be beneficial to 
LA-ICP-MS imaging experts and non-experts alike. Moreover, 
the use of Python allows a wide array of other statistical 
methods to be applied to the data taken during an LA-ICP-MS 
imaging experiment. We envision future developments of the 
code that include the incorporation of standards into the 
workflow to allow for quantitative imaging, Pearson’s 
coefficient calculations for determining co-registration extents 
of different data channels, and outlier detection in ROIs.  
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