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Reconstruction, Analysis, and Segmentation of LA-ICP-MS Imaging
Data using Python for the Identification of Sub-Organ Regions in
Tissues

Laura J. Castellanos-Garcia,? S. Gokhan Elci? and Richard W. Vachet *2

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging has been extensively used to determine
the distributions of metals in biological tissues for a wide variety of applications. To be useful for identifying metal
biodistributions, the acquired raw data needs to be reconstructed into a two-dimensional image. Several approaches have
been developed for LA-ICP-MS image reconstruction, but less focus has been placed on software for more in-depth statistical
processing of the imaging data. Yet, improved image processing can allow the biological ramifications of metal distributions
in tissues to be better understood. In this work, we describe software written in Python that automatically reconstructs,
analyzes, and segments images from LA-ICP-MS imaging data. Image segmentation is achieved using LA-ICP-MS signals from
the biological metals Fe and Zn together with k-means clustering to automatically identify sub-organ regions in different
tissues. Spatial awareness also can be incorporated into the images through a neighboring pixel evaluation that allows
regions of interest to be identified that are at the limit of the LA-ICP-MS imaging resolution. The value of the described
algorithms is demonstrated for LA-ICP-MS images of nanomaterial biodistributions. The developed image reconstruction
and processing approach reveals that nanomaterials distribute in different sub-organ regions based on their chemical and

physical properties, opening new possibilities for understanding the impact of such nanomaterials in vivo.

Introduction

Laser ablation inductively-coupled plasma mass spectrometry
(LA-ICP-MS) imaging is increasingly used for imaging metal
distributions in biological tissues. Among metal imaging
techniques, LA-ICP-MS is perhaps the most sensitive technique
for elemental imaging with detection limits in the sub ug/g level,
while providing multiplexed metal analysis with spatial
resolutions in the 10 to 200 um range.'3 Imaging methods such
as scanning electron microscopy with energy-dispersive X-ray
analysis (SEM-EDX) and particle-induced X-ray emission (PIXE)
offer better spatial resolution; however, they require laborious
sample preparation, and their sensitivity is lower than LA-ICP-
MS.# Synchrotron radiation X-ray fluorescence (SR-XRF) also
offers better spatial resolution and has similar sensitivity to LA-
ICP-MS, but it requires access to a synchrotron facility, making
it much less broadly applicable.” Given its combination of
sensitivity, multi-metal detection capability, and accessibility,
LA-ICP-MS has been used broadly in applications that include
analysis of metals in neurogenerative diseases like Alzheimer’s,
Parkinson’s, and Wilson’s disease,®2 detection of anti-cancer
metallodrugs,®° studies of metalloproteins,*1? and analysis of
nanomaterials in biological tissues.'>'* Several reviews have
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detailed the development and use of LA-ICP-MS imaging for
analysing biological tissues.}™*1>16
Obtaining  site-specific  information
distributions in LA-ICP-MS imaging requires images to be
reconstructed from the metal ion signals. In contrast to more
widely used matrix assisted laser desorption\ionization (MALDI)
MS imaging, relatively few approaches have been described for
image reconstruction and statistical analysis. The program
IMAGENA, which was developed by Osterholt et al.,*” was one
of the first software developed for visualizing LA-ICP-MS data. A
similar program called HDIP'® was recently developed by
Teledyne for image reconstruction of LA-ICP-MS images. While
IMAGENA, HDIP, lolite!® and its associated interfaces, such as
monocle?® and biolite,?! are versatile tools for reconstructing
images, they are not open source and offer minimal tools for
the statistical analysis of the resulting images. In contrast,
software such as LA-iMageS,??> MapIT!%3 and iQuant22* are open
source programs that enable image reconstruction from LA-ICP-
MS data via user-friendly graphical user interfaces, but they also
have limited built-in statistical analysis tools. Other image
reconstruction approaches, including those based on readily
available software such as Microsoft Excel®® have also been
described, although most have limited capability for the
statistical analysis of the imaging data sets. For most existing
software, image reconstruction is the principal aim. As the
applicability of LA-ICP-MS grows, though, especially for
applications such as nanomaterial-based drug delivery
systems, 32627 more sophisticated image processing methods
such as image segmentation for region of interest (ROI) analysis
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or other statistical analysis methods are needed to extract more
information from reconstructed images.?® Image segmentation,
in particular, is valuable for characterizing analyte signals in
histologically relevant regions of a tissue, so that the underlying
biochemistry and biology can be better understood. Deeper
biological insight into MALDI-MS imaging data has been
achieved with image segmentation algorithms,?%3° but to our
knowledge analogous approaches have not been readily
adopted in LA-ICP-MS imaging methods.

Here, we present an open source software written in Python
for LA-ICP-MS imaging reconstruction that implements more
advanced segmentation algorithms for classification of ROls in
LA-ICP-MS images. The use of Python for image analysis offers
tremendous flexibility because of the numerous libraries
accessible via the software for image visualization,3! matrix
operations,3? statistical analysis,®3 and even more complex tasks
like multimodality imaging.3* Using code written in Python, we
demonstrate that distinct sub-organ features can be
automatically identified using different metal distributions to
perform spatially aware segmentation analyses. As an
application of these image segmentation approaches, we show
that nanomaterials distribute in different sub-organ regions
based on their chemical and physical properties. We believe the
described software will benefit current and potential users of
LA-ICP-MS imaging as it will make accessible more sophisticated
image processing tools for more deeply understanding the
biological ramifications of metal distributions in tissues.

Materials and methods
Nanomaterial synthesis

Different nanomaterials, including gold nanoparticles,
nanozymes, nanocapsules and bismuth sulfide nanorods (Fig.
S1t), were provided by collaborators who synthesized them
according to published protocols. Gold nanoparticles were
synthesized according to the Brust-Schiffrin two phase
method.3> Different ligand coatings, including ones with
positively-charged (TTMA) and negatively-charged (TEGCOOH)
functional groups were used.?®* Nanozymes were synthesized
using the method described by Rotello and co-workers.37:38
Nanocapsule synthesis was performed according to the
protocol described by Rotello and co-workers,3*! and the
bismuth sulfide nanorods were synthesized according to the
method developed by Gendelman and co-workers.*?

Tissue Sections

To obtain tissues for the imaging experiments involving gold
nanoparticles, nanozymes and nanocapsules, female Balb/c
mice (8-week-old) were injected with the nanomaterial of
interest. After 24 h, the mouse tissues of interest were
extracted, and flash frozen in liquid nitrogen and then kept at -
80 °C until used for MS imaging. All animal protocols involving
the gold nanomaterials were approved by the UMass
Institutional Animal Care and Use Committee (IACUC), which is
guided by the U.S. Animal Welfare Act and U.S. Public Health
Service Policy. For the imaging experiments involving bismuth
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sulfide nanorods, six mice were injected, and the mouse tissues
were extracted after 48 h, flash frozen, and sent to the
University of Massachusetts Amherst for sectioning. The
animals in this case were housed at the University of Nebraska
Medical Center (UNMC) laboratory animal facility in accordance
with the Association for Assessment and Accreditation of
Laboratory Animal Care guidance. The UNMC Institutional
Animal Care and Use Committee approved the relevant animal
protocols for these experiments, and these protocols were
certified to have met the ethical guidelines of the National
Institutes of Health for handling laboratory animals for
research. In all cases, tissues were sliced at 20 um using a LEICA
CM1850 at -20°C, and then deposited on regular glass slides.
Hematoxylin and Eosin (H&E) staining on adjacent slices was
performed using the Rapid Chrome frozen section staining kit
(Thermo Fisher Scientific).

LA-ICP-MS data acquisition

LA-ICP-MS images were obtained on a CETAC LSX-213 G2 laser
ablation system coupled with a Perkin EImer NexION 300x ICP-
MS. Unless otherwise specified, the following laser parameters
were used: 50 um spot size, 15 um/s scan rate, 3.65 J laser
energy, 10 Hz laser frequency, and a 10 s of shutter delay, which
allows for full ablation of the tissue. The He carrier gas from
laser ablation system was set to 0.6 L/min. The ICP-MS
parameters were the following: 0.7 L/min nebulizer argon flow
rate, 16.5 L/min plasma argon flow rate, 1.4 L/min auxiliary
argon flow rate, -1650 V analog stage voltage, and 1000 V pulse
stage voltage. These parameters were optimized for
nanoparticle analysis in tissue sections, based on previous
work.1#43.44 Different elements, including *’Au, 2°°Bi, >’Fe, and
%67n, Image
reconstruction and analysis was performed using a program
written in Python that are further described below. Access to
the scripts, examples and documentation can be found at: add

github link.

were detected with 50 ms dwell times.

Normalization

Normalization of the data allows the correction of tissue
inhomogeneities during sample preparation and due to
differences in mass ablation rates during laser ablation.
Normalization of the tissues was performed using the Zn signals
because we have empirically found that this element is
relatively constant at the spatial resolutions and for the tissues
used in this study (see Fig. S4). However, the user can perform
normalization in the code using any desired element by simply
specifying the element of interest as an input in the analysis
workflow. Each of the studied metals (Au, Fe, and Bi) were
divided by the Zn matrix in the Python script, on a pixel-by-pixel
basis, using the NumPy library for matrix manipulations.3?

Image segmentation and k-means clustering

A k-means clustering protocol was performed in Python, using
the scikit-learn machine learning library.33 To do this, the image
of interest was vectorized, and the clustering was performed
over the flattened image, as shown in Fig. S2. The number of
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Fig. 1. Process of image generation in LA-ICP-MS. Data is acquired, and then processed by data reduction and separation into data matrices for each metal (e.g. M1, M2, M3, etc.).

clusters was specified as a parameter in the program. If the
number of clusters were unknown, the ‘elbow method’ was
used to estimate the number of clusters into which the data
should be divided, as shown in Fig. S3.*> After k-means
clustering was performed, the centroids of the clusters were
calculated, the data was reshaped, and the labelled image was
generated. The labelled image corresponds to an arbitrary
mathematical label that marks a specific are of the tissue as a
part of a cluster.

Results and discussion
Image reconstruction

Generating an LA-ICP-MS image after data acquisition involves
several data handling steps (Fig. 1). Because the metal signals
are generated by scanning the laser in a line across the tissue,
the continuously ablated and detected stream of material must
be summed to generate an image pixel. To do this, the file that
is generated for each ablation line, which contains all the metal
intensity data, is subjected to a data reduction step (Step 2, Fig.
1). This step uses the laser spot size and scan rate to define the
number of ion intensity measurements that are summed to
create a pixel. For example, if the laser spot size is 50 pum and
the laser scan rate is 15 um/s, data acquired over a 3.3 s period
is summed to create a single pixel. The resulting collection of
pixels that contains ion intensity information is then separated
into a set of different data matrices that correspond to the
number of different metals measured (Step 3, Fig. 1). Separate
images for each metal can then be reconstructed using plotting
tools such as Matplotlib to generate a 2D image for each of the
studied metals (Step 4, Fig. 1).3! This image generation
approach has been written in a Python program that allows
automatic image reconstruction with few user inputs. Our
approach generates image matrices that can be subsequently
analyzed by the many Python statistical libraries that exist, such
as SciPy* and scikit-learn enabling us to automatically identify
different tissue regions in LA-ICP-MS images.

Tissue boundary identification

The distribution of Zn signals from an imaging experiment can
be used to delineate the edge of the tissue by differentiating the
pixels that correspond to the tissue and those that correspond
to the background. The procedure, illustrated in Fig. 2, requires
measurements of background regions outside the tissue. In the
first step of the procedure, the background Zn signal is

This journal is © The Royal Society of Chemistry 20xx
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calculated from any user-defined row or column in the imaging
dataset. The row and column data are saved as two
independent vectors, and the signal average and standard
deviations in each case are calculated. The resulting average
signals and standard deviations calculated are used to set the
background value B. Each pixel in the entire image is then
Fig. 2. Tissue boundary detection is determined from a background signal calculation,
statistical classification of pixels as background or tissue, and creation of a background
mask. Scale bars correspond to 500 um.

compared against the background and classified as tissue or
background depending on whether its intensity is significantly
different from the background signal, according to the equation
in Fig. 2. From the classified image a background mask is
generated in which tissue pixels are given a value of 1 and
background pixels are 0. The approach used here is essentially
a thresholding approach that is similar to that used by others,*’
and in principle any element could be used by the program to
perform background subtraction. Defining the tissue boundary
is necessary for performing various statistical analyses on the
images (see below).

Image Optimization

In addition to helping define tissue boundaries, Zn signals can
also help improve image quality in regions that are degraded by
tissue inhomogeneities arising during sample preparation or
from fluctuations in laser fluence or mass ablation rates. Zn is
homogeneously distributed in many healthy tissues, such as
liver, kidney and spleen, and in the tissues imaged in this work,
Zn signals are empirically found to be homogeneously
distributed as compared to other elements (Fig. S4).2 This
relative homogeneity allows Zn to be used for normalization. It
should be noted, however, that any element, such as carbon*®
or phosphorous®>*? could be used for normalization in the
program. Fig. 3 shows two examples of the advantage of using
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Fig. 3. Zn-based normalization improves LA-ICP-MS image quality. a) Image of a spleen
tissue section from a mouse injected with gold nanocapsules (Fig. S1) that shows
wrinkling of the edges of the tissue. b) Image of a spleen tissue section from a mouse
injected with TTMA nanozymes (Fig. S1) that shows laser energy deviations. White scale
bars in Au images correspond to 500 pm.

Zn signals for improving image quality. In Fig. 3a, wrinkling of
the edges of a mouse spleen section causes the Au image to be
poor throughout most of the tissue. When the Au intensity
matrix is divided by the Zn matrix on a pixel-by-pixel basis, this
normalization process improves the image by eliminating the
zones with anomalously high overall Au signal that are caused
by folding of the tissue edges. Similar improvements can be
obtained for Fe images from a folded tissue (Fig. S5) and Au
images from an experiment where the laser energy deviated
during the experiment (Fig. 4b).

Image segmentation for automatic sub-organ differentiation

The distribution of Fe levels in a tissue depends on the blood
flow to a specific sub-organ region and can be used to
differentiate regions in various tissues.'*4*30 To distinguish sub-
organ regions, image segmentation was performed using k-
means clustering®® to partition areas of differential Fe
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composition. Fig. 4 shows H&E stained, optical and LA-ICP-MS
images of liver and kidney sections from a mouse injected with
TTMA and TEGCOOH Au nanoparticles (Fig. S1). While the areas
of high blood flow (i.e. veins) are readily apparent from the H&E
stained, optical, and Fe LA-ICP-MS images, image segmentation
can be used to automatically identify these and other regions
that are not as readily apparent. Using the Fe matrix as input,
we performed k-means clustering with the number of clusters
assigned as 3, based on the ‘elbow method’ (Fig. S3). When
using k-means clustering, it is possible to effectively segment
the image between background, low Fe (tissue), and high Fe
(vein). Using image segmentation in this way allows one to
determine the average signal of another metal in a given
classified area. For example, the average Au signal can be
determined in the three classified areas in liver and kidney
sections from mice injected with TTMA (Fig. 4a) or TEGCOOH
(Fig. 4b) Au nanoparticles. From the signal averages we can
conclude that the Au nanoparticles accumulate differently in
the liver and kidney. In the liver, we find more Au in the tissue
than in the veins, and in the kidney, we find higher Au signal in
the veins than in the rest of the tissue. Previous work by our
group found that positively-charged nanoparticles like TTMA
are readily cleared from circulation while negatively-charged
nanoparticles like TEGCOOH circulate longer in the
which explains the differences in the
nanoparticle concentrations in the veins of the two organs. This
image segmentation approach allows this information to be
automatically determined.

The image segmentation method was also used to
distinguish sub-organ regions of the spleen. The spleen tissue
has a marked difference between the red pulp and white pulp
in that each region fulfils a different biological role in this vital
organ.”® The spleen red and white pulp can be differentiated by
their Fe concentrations, as the red pulp has higher blood flow
than the white pulp. An example Fe LA-ICP-MS image from a
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Fig 4. H&E stained, optical, Fe LA-ICP-MS, and Au LA-ICP-MS images illustrating how k-means clustering can be used to automatically segment images into biologically relevant

regions. a) Images and segmentation of images from a liver section from a mouse injected with TTMA Au nanoparticles (Fig. S1). b) Images and segmentation of images from a

kidney section from a mouse injected with TEGCOOH Au nanoparticles (Fig. S1). Bar graphs show the average Au signal with standard deviations in each of the segmented areas.
White scale bars in both Fe images correspond to 500 um. The distributions of the Fe signals in different areas of the liver and kidney are found in Figure S6.
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Fig. 5. Multimetal image segmentation and pixel evaluation for the differentiation of red pulp, white pulp, and marginal zones of spleen sections using LA-ICP-MS imaging. a) An Fe

LA-ICP-MS image that is segmented using k-means = 3 does not allow the white pulp and background to be distinguished, but a k-means = 2 clustering and Zn-based background
mask (B. Mask) determination (in brackets) produces a segmented image that accurately defines the red pulp, white pulp, and background. b) Neighboring pixel evaluation adds

spatial awareness to the multimetal segmented image by redefining each labeled image pixel (P, ;) to a weighted image pixel (WP, ,,) using the indicated equation. The result is a

weighted image that clearly defines the boundary between the red and white pulp, allowing differentiation of the marginal zone that separates the two regions. White scale bars in

Fe image correspond to 500 um.

spleen section is shown in Fig. 5a, showing areas of high and low
Fe concentrations. To differentiate the sub-organ areas, we
performed k-means clustering in the same manner as before.
Using the elbow method, three clusters are again identified, but
using a k-means clustering of three does not allow an effective
differentiation between the white pulp and the background
primarily because of the spread of Fe signals in the red pulp
exceeds the difference between the white pulp and background
Fe signals (Fig. 5a, k-means = 3 image). To solve this issue and
effectively differentiate the background and white pulp regions,
we used a multi-metal segmentation strategy that is illustrated
within the brackets of Fig. 5a. For this strategy, we choose a k-
means cluster value of 2 for the Fe image to differentiate two
clusters, one exclusively for the red pulp and another for the
white pulp and background. The white pulp and background are
then differentiated in the k-means = 2 clustered image using the
Zn signal and the background mask procedure illustrated in Fig.
2. By conjugating the k-means = 2 clustered image and the
background mask (Fig. 5a), we can generate a multi-metal
segmented image with three distinctive areas: background, red
pulp and white pulp.

This journal is © The Royal Society of Chemistry 20xx

In addition to the distinct red and white pulp regions of the
spleen, there is boundary region known as the marginal zone
where the first steps of an immune response occur in this
organ.** Image segmentation alone makes it difficult to
effectively differentiate the marginal zone because it does not
have a distinct metal composition. Because the marginal zone
surrounds each white pulp region and is approximately 50 um
in size,*0 this region can be distinguished if spatial awareness is
added to the segmented image. The k-means approach,
however, is performed on a vectorized dataset and thus does
not have spatial awareness.?®51 Spatial awareness can be added
by considering the neighboring pixels around any particular
pixel in the image by arbitrarily assigning values of 0, 1, and 2 to
the background, red pulp, and white pulp pixels, respectively,
that were identified via the multi-metal segmentation approach
(see label image in Fig. 5b).

To further classify distinct areas in the spleen, including the
marginal zone, each pixel value or label (P, ,,,) can be redefined
as a weighted pixel (WP, ,,) that is equal to the weighted
average of its eight immediately neighboring pixels (see
equation in Fig. 5b). In effect, we apply image filtering with a
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Fig. 6. Use of multi-metal segmentation and neighboring pixel evaluation to evaluate the distributions of a) Au nanoparticles and b) Bi sulfide nanorods in spleen tissues. Fe and Zn

LA-ICP-MS images are used to perform multi-metal segmentation combined with a neighboring pixel evaluation approach to obtain a weighted image like that shown in Fig. 6. The
weighted images allow a determination of the relative amount of each metal in the marginal zone, red pulp, and white pulp, as show in each bar graph. Error bars represent standard

deviations. White scale bars in Fe image correspond to 500 um. The distributions of Fe signals in different areas of the spleen tissue are found in Figure S10.

linear filter to classify the boundary regions of the labeled
image. After redefining the value of each pixel, we can then
generate a weighted image that effectively distinguishes the
marginal zone (in yellow) from the red and white pulp (see
weighted image in Fig. 5b). Newly weighted values of 1.2-1.3
correspond to the marginal zone, while lower and higher values
correspond to the red and white pulp, respectively. This
approach for distinguishing the red pulp, white pulp, and
marginal zone can be validated by comparing an H&E stain of
the spleen tissue with the resulting multi-metal segmented
image (Fig. S7 and S8). The red and white pulp stain differently,
and the overlaid images show excellent agreement despite the
images coming from adjacent slices. It should also be noted that
the neighboring pixel approach illustrated in Fig. 5b can also
correct wrongly classified regions in segmented images of other
tissues (see Fig. S9).

Gold nanoparticle and bismuth sulfide nanorod distributions in
spleen tissues

The value of distinguishing the three different regions in the
spleen using multi-metal segmentation and the neighboring
pixel evaluation can be illustrated by considering LA-ICP-MS
images of tissue slices from mice injected with Au nanoparticles
or bismuth sulfide nanorods. The Fe and Zn images from LA-ICP-
MS imaging analysis of separate spleen tissues were used to
segment the images into red pulp, white pulp, and background
regions, and a neighboring pixel evaluation was used to further
classify the marginal zone (Fig. 6). By averaging the Au (Fig. 6a)
and Bi (Fig. 6b) signals in each of the identified regions, which
can be facilitated by a series of spatial mask images (Fig. S11),
we find that Au and Bi accumulate in distinctive patterns in the
spleen. Au tends to accumulate more extensively in the red
pulp, whereas Bi tends to accumulate to a greater extent in the
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marginal zone. This observation is particularly important
because these Bi nanorods were designed specially to target the

marginal zone of the spleen.>?

Conclusions

We have developed software written in Python that can
automatically reconstruct and segment images from LA-ICP-MS
imaging data. This new software identifies sub-organ regions of
interest with minimal user input and can find regions that might
be missed by manual analysis. The image reconstruction
program takes advantage of the capability of existing open
source scientific libraries such as NumPy, Matplotlib, and Scikit-
learn for various numerical and statistical analyses. Our image
reconstruction and analysis method represents the first open-
source software, to our knowledge, that can perform
sophisticated manipulations automatically and directly on LA-
ICP-MS imaging data. Using this software, we demonstrate that
segmentation of LA-ICP-MS images can be performed using a
combination of Fe and Zn images, k-means clustering analysis,
and neighboring-pixel evaluation to automatically classify sub-
organ regions in kidney, liver, and spleen tissues. The
neighboring-pixel evaluation procedure introduces spatial
awareness to the segmentation process that can correct for
misclassified pixels and can classify boundary regions that are at
the limit of the measurement resolution (e.g. marginal zone in
the spleen). Using tissues from mice injected with different
nanomaterials as examples, classification of different sub-organ
regions reveals the value of our described approach. For
example, we find that Bi sulfide nanorods accumulate more
extensively than Au nanoparticles in the marginal zone as
compared to other regions of the spleen. We believe that the
described data reconstruction and image segmentation

This journal is © The Royal Society of Chemistry 20xx



strategy that we have developed in Python will be beneficial to
LA-ICP-MS imaging experts and non-experts alike. Moreover,
the use of Python allows a wide array of other statistical
methods to be applied to the data taken during an LA-ICP-MS
imaging experiment. We envision future developments of the
code that include the incorporation of standards into the
workflow to allow for quantitative imaging, Pearson’s
coefficient calculations for determining co-registration extents
of different data channels, and outlier detection in ROls.
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