INTEGRATING TEMPORAL INFORMATION TO SPATIAL INFORMATION
IN A NEURAL CIRCUIT

BRABEEBA WANG, NANCY LYNCH

ABSTRACT. In this paper, we consider a network of spiking neurons with a deterministic synchro-
nous firing rule at discrete time. We propose three problems — “first consecutive spikes counting”,
“total spikes counting” and “k-spikes temporal to spatial encoding” — to model how brains extract
temporal information into spatial information from different neural codings. For a max input length
T, we design three networks that solve these three problems with matching lower bounds in both
time O(T) and number of neurons O(log T') in all three questions.

1. INTRODUCTION

Algorithms in the brain are inherently distributed. Although each neuron has relatively sim-
ple dynamics, as a distributed system, a network of neurons shows strong computational power.
There have been many attempts to model the brain computationally. At a single-neuron level,
theoretical neuroscientists were able to model the dynamics of a single neuron to high accuracy
with the Hodgkin-Huxley model [HH52]. At a circuit level, to make the analysis tractable, neuro-
scientists approximated detailed dynamics of neurons with simplified models such as the nonlinear
integrate-and-fire model [FTHvVBO03] and the spiking response model [WWvJ97]. Recently, Lynch
et al. used stochastic neurons firing at discrete time to solve problems such as winner-take-all and
similarity testing [LMP17a, LMP17b]. These models vary in their assumptions about spike/rate
code, deterministic/stochastic response, and continuous/discrete time. In this paper, we consider a
network of spiking neurons with a deterministic synchronous firing rule in discrete time to simplify
the analysis and focus on the computational principles.

One of the most important questions in neuroscience is how humans integrate information over
time. Sensory inputs such as visual and auditory stimulus are inherently temporal; however, brains
are able to integrate the temporal information to a single concept, such as a moving object in a
visual scene, or an entity in a sentence. There are two kinds of neuronal codings: rate coding and
temporal coding. Rate coding is a neural coding scheme assuming most of the information is coded
in the firing rate of the neurons. It is most commonly seen in muscle in which the higher firing rates
of motor neurons correspond to higher intensity in muscle contraction [AZ26]. On the other hand,
rate coding cannot be the only neural coding brains employ. A fly is known to react to new stimuli
and change its direction of flight within 30-40 ms. There is simply not enough time for neurons to
compute averages [RWdRvSB96]. Therefore, neuroscientists propose the idea of temporal coding,
assuming the information is coded in the specific temporal firing patterns. One of the popular
temporal codings is the first-to-spike coding. It has been shown that the timing of the first spike
encodes most information of an image in retinal cells [GMO08]. We propose three toy problems to
model how brains extract information from different coding. “First consecutive spikes counting”
(FCSC) counts the first consecutive interval of spikes, which is equivalent to counting the distance
between the first two spikes, a prevalent neural coding scheme in sensory cortex. “Total spikes
counting” (TSC) counts the number of the spikes over an arbitrary interval, which is an example
of rate coding. Lastly, “k-spikes temporal to spatial encoding” (kSTS) is a generalization of “first
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consecutive spikes counting” and an example of temporal coding. In particular, TSC contains an
interesting difficulty: there are conflicting objectives between maintaining the count when no spike
arrives and updating the count when a spike arrives. To overcome this difficulty, we allow the
network to enter an unstable intermediate state which carries the information of the count. The
intermediate state then converges to a stable state that represents the count after a computation
step without inputs. Hitron and Parter, in a newly-submitted paper [HP19], propose a different
solution to our TSC problem.

In this paper, we design three networks that solve the above three problems by translating
temporal information into spatial information with matching lower bounds in both time O(T') and
number of neurons O(logT') for all three questions.

2. PROBLEM STATEMENTS/GOALS

In this section, we cover the model definition and the following three problems: first consecutive
spikes counting (FCSC), total spikes counting (TSC) and k-spikes temporal to spatial encoding
(kSTS). In particular, we will use FCSC networks as subroutines on a kSTS network.

2.1. Model. In this paper, we consider a network of spiking neurons with deterministic synchro-
nous firing at discrete times. Formally, a neuron = consists of the following data with ¢ > 1

q:(t) — (—)( Z wyxy(tfl) _ bw)
yeEP,

where 2® is the indicator function of neuron z firing at time ¢, by, is the threshold (bias) of neuron 7,
P, is the set of presynaptic neurons of i, wy, is the strength of connection from neuron y to neuron
x and © is a nonlinear function. Here we take © as the Heaviside function given by ©(z) = 1 if
z >0 and 0 otherwise. At t =0, we let (%) = 0 if z is not one of the input neurons.

2.2. First consecutive spikes counting (FCSC). Given an input neuron x and the max input
length T', we consider any input firing sequence such that ©® = 0 for all ¢ > T". Define L, in terms
of this firing sequence as follows: if z(!) = 1 for some ¢, then there must exist integers £, L such that
2@ =0 forall t,t <, #+) =1 for all i,0 < i < L and 2("*) = 0. Define L, = L. (i.e. L is the
length of the first consecutive spikes interval in the sequence.) Otherwise, that is if z(*) = 0 for all
t > 0, then define L, = 0.

Let {y; }o<i<m be m output neurons. Then we say a network of neurons solves FCSC in time ¢/
with m’ neurons if there exists an injective function F : {0,--- ,n} — {0,1}™ such that y() = F(L,)
for all t,z,t >t and the network has m’ neurons.

2.3. Total spikes counting (TSC). Given an input neuron z and the max input length 7', we
consider any input firing sequence such that z® = 0 for all ¢ > T. Define L, = I{t : z® =1,0<
t < T'}| as the total number of spikes in the sequence. Let {y;}o<i<m be m output neurons. Then
we say a network of neurons solves TSC in time ¢’ with m’ neurons if there exists an injective
function F : {0,--- ,n} — {0,1}™ such that y®) = F(L,) for all t,z,t > t' and the network has m/
neurons.

2.4. k-spikes Temporal to Spatial Encoding. Given an input neuron z and the max input
length T', we consider any input firing sequence such that z(!) = 0 for all t > T and |[{t : z® =
1,0 <t < T} = k (i.e, there are spikes at k distinct time points). We also assume that there
is a designated x.,q neuron that fires at time 7' to notify the network that the input ends. Let
{yi}o<i<m be m output neurons. Denote the set of input temporal signals of max input length T
with k distinct 1 as St ;. Then we say a network of neurons solves kSTS in time ' with m’ neurons
if there exists an injective function F': Sy, — {0,1}™ such that y) = F(x) for all t,z,t > t' and
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the network has m’ neurons.

Our contributions in this paper are to design networks that solve these three problems respec-
tively with matching lower bounds.

Theorem 2.1. There exists a network with O(logT) neurons that solves FCSC problem in T + 1
time.

Theorem 2.2. There exists a network with O(logT) neurons that solves TSC problem in T + 1
time.

Theorem 2.3. There exists a network with O(klogT) neurons that solves kSTS problem in T + 1
time.

It is easy to see that we also have the corresponding information-theoretical lower bound all
being Q(log T") if we treat k as a constant.

3. TECHNICAL CONTRIBUTION AND COMPARISON

The main technical difficulty in this paper arises from TSC problem. To count the total number
of spikes in an arbitrary interval requires persistence of neurons without external spikes. Since
each spike is transient, ideally we want to toggle neural representation of a count to another count
without delays. However, persistence of neurons and toggles without delays are conflicting objec-
tives; persistence of neurons stabilizes the network while toggling without delays changes the firing
patterns of the network. For example, we can use self-inhibition loop to count mod2 but if we
use self inhibition to count mod 2, the neuron cannot maintain the count during intervals with no
inputs. In fact, we can show that it is impossible to solve the problem in T time with only O(logT")
neurons. Our main technical novelty is to circumvent this difficulty by allowing the network to
enter an unstable intermediate state that still stores the information of the count when the spikes
arrive; however, the network will converge to a clean state that according to binary representation
after one step of computation without external signals, and this clean state is stable in an arbitrary
interval with no input.

In this paper, we have shown that networks of neurons are capable of integrating temporal in-
formation to solve three different tasks with temporal inputs efficiently. Our paper follows similar
approaches to Lynch [LMP17a, LMP17b, LM18] by treating neurons as static circuits to explore the
computational power of neural circuits. There are three noteworthy points about our model. First,
instead of a stochastic model, we use a deterministic one. However, it should be noted that all the re-
sults in this paper would still hold under the randomized model of Lynch [LMP17a, LMP17b, LM18|
with high probability. Second, we use a model which resets the potential at every round. Therefore,
to retain temporal information, many self-excitation connections are employed in our networks. At
the other extreme, we can have a model in which the potential does not decay from past rounds. In
that model, temporal information can be stored in potentials, but it might require different mech-
anisms to translate the information from potentials to spikes. The two models thus can lead to
different possible computational principles in brains. Third, we used a discrete time model instead
of a continuous time model, which would be more biologically plausible. However, this might not
be a concern since we can use Maass’s synchronization module [Maa96] to simulate our discrete
time model from a continuous time model.

This paper mainly deals with the exact versions of the problems. One possible extension is
to consider the approximate versions of the problems. By introducing noise into our models, we
might be able to solve the approximate versions of the problems more efficiently. For example, for



4

BRABEEBA WANG, NANCY LYNCH

approximate counting, we aim to output some firing patterns corresponding to a number X such

that

PX - X|>eX) <6

is small. The lower bound for this question is Q(loglog T') and finding a matching upper bound can
be an interesting future direction. However, approximate versions of the questions are tricky with
temporal inputs because the network inevitably reuses random bits if they are stored inside the
weights. A possible approach is to use a small number of random bits to generate a large family of
k-wise independent random functions within neurons.
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