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ABSTRACT 

This paper shares results from surveys administered in spring 

2018 to a nationally representative sample of nearly 300 U.S. high 

school computer science teachers. It describes the nature of high 

school computer science instruction and the extent to which 

teacher background, classroom factors, and school context predict 

the type of instruction students experience. Data from the study 

were analyzed using path modeling—a form of regression 

analysis that estimates both direct and indirect effects (i.e., 

through intermediary variables)—to examine relationships 

between teacher, classroom, and school factors, and the extent to 

which teachers (1) emphasize reform-oriented instructional 

objectives (e.g., learning about real-life applications of computer 

science) and (2) engage students in computer science practices 

(e.g., recognizing and defining computational problems). Sample 

findings include that students are most commonly engaged in 

activities related to testing and refining computational artifacts, 

but are less often engaged in aspects of computer science related 

to end users (e.g., create a computational artifact to be used by 

someone else). The path analysis highlights several factors that 

are related to greater engagement of students in the computer 

science practices, including teacher participation in professional 

development and the use of coherent instructional materials. 
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1 INTRODUCTION 

National interest in providing computer science education at 

the K–12 level has grown steadily since ACM founded the 

Computer Science Teachers Association (CSTA) in 2004. This 

trend is evident in SIGCSE conference sessions focused on K–12 

education, President Obama’s Computer Science for All initiative, 

the growth of online instruction and advocacy sites such as CS for 

All and code.org, and the development of K–12 computer science 

standards by CSTA and an increasing number of states. In this 

paper, we present findings from a large nationally representative 

survey of high school computer science teachers, a component of 

the 2018 NSSME+ [3], that provide an answer to the following 

research question:  

What factors predict high school computer  

science teachers’ classroom teaching practices? 

2 BACKGROUND 

Efforts to increase access to computer science instruction in 

K–12 schools have identified a number of factors that affect the 

ability of schools and teachers to offer high-quality learning 

experiences. Although many studies of these issues are based on 

relatively small samples, the findings echo those found in other 

subjects such as science. Science education research has 

illuminated many of the factors that influence classroom science 

instruction. Research points to four broad categories of factors, 

each with a robust research base: teacher attributes, instructional 

resources, context-related factors, and inservice support. For 

example, teacher attributes include various forms of teacher 

knowledge (e.g., subject matter knowledge), teaching experience, 

type of teacher preparation program completed, teacher grade 

level, beliefs about teaching and learning. Several studies have 

found correlations between teacher attributes and teaching 

practice (e.g., Smith et al. [21]).  
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For example, Yadav, Gretter, Hambrusch, and Sands [25] 

reported that computer science teachers, particularly those new to 

the content area, lack both the computer science content 

knowledge and pedagogical knowledge needed to teach computer 

science effectively. Similarly in science, teacher subject matter 

knowledge has been found to predict teaching practice (reviewed 

in Abell [1]). 

Teachers’ beliefs about how the subject matter can/should be 

taught and in their own abilities to achieve successful student 

learning outcomes also influence teaching practice (reviewed in 

Jones and Carter [10]; see also Nespor [16]; Pajares [17]). 

Pedagogical approaches are shaped by beliefs about what 

constitutes effective instruction, which is informed by beliefs 

about the nature of the discipline and goals of education. 

Similarly, teaching reflects beliefs about learners in general and a 

group of students in particular. Beliefs about one’s own ability to 

successfully teach a subject (self-efficacy) also influence teaching 

practice. 

Access to instructional materials, including high-quality units 

and lessons as well as assessment tools, also have been shown to 

affect instruction (e.g., Yadav et al. [25]). Research about science 

teaching has found that the quality of instruction may be 

determined in large part by curriculum materials, particularly 

when teachers enact lessons and units with high levels of fidelity 

[23]. Availability of resources for lessons can create affordances 

and constraints for classroom pedagogy, and may be important 

determinants of what a science lesson entails (e.g., Johnson [9]). 

Finally, access to technological resources such as computers can 

impact science pedagogy (e.g., Lawless and Pellegrino [13]).  

Professional development for teachers can also have a positive 

effect on instruction. However, a number of studies indicate that 

short-duration approaches typically have limited success (e.g., 

Dickinson and Caswell [7]). Other studies indicate that on-going, 

content-focused, job-embedded experiences are much more likely 

to have positive impacts (e.g., Supovitz and Turner [22]; 

Desimone et al. [5]; Luft [14]).  

Teaching is also situated within larger contexts whose features 

affect instruction. For example, policy considerations at the 

school, district, state, and national levels have impacts on what is 

and is not done in classrooms (e.g., Knapp & Plecki [11]; Shaver 

et al. [20]). 

3 METHODS 

3.1 Study Design 

The analyses presented in this paper use data from a nationally 

representative survey of high school computer science teachers, 

with a computer science course defined as one that teaches 

programming or has programming as a prerequisite. The study, 

conducted during the 2017–18 school year, is based on a national 

probability sample of 2,000 schools and approximately 10,000 

computer science, mathematics, and science teachers in grades K–

12.  It includes public and private schools in the 50 states and the 

District of Columbia. The sample was designed to yield national 

estimates of course offerings and enrollment, teacher background 

preparation, textbook usage, instructional techniques, and 

availability and use of facilities and equipment. Every eligible 

school and teacher in the target population had a known, positive 

probability of being sampled. A two-stage sample design was 

utilized. First, a random sample of schools stratified by region of 

the country, community type, and grades served was selected. 

Second, a stratified random sample of teachers within schools that 

agreed to participate was drawn. This sample design resulted in a 

sample that is both nationally representative and that has 

sufficient number of cases of various subgroups (e.g., 

race/ethnicity groups, SES) to allow the data to be disaggregated.  

The sampling frame for the school sample was constructed 

from the Common Core of Data and Private School Survey 

databases—programs of the U.S. Department of Education’s 

National Center for Education Statistics—which include school 

name and address and information about the school needed for 

stratification and sample selection. The sampling frame for the 

teacher sample was constructed from lists provided by sample 

schools, identifying current teachers and the specific computer 

science, mathematics, and science subjects they were teaching. 

Data collection concluded in July 2018. A total of 7,600 computer 

science, mathematics, and science teachers in 1,273 schools 

across the United States participated in this study, a response rate 

of 78 percent. The data were cleaned (e.g., checked for 

inconsistencies), and weights reflecting the complex sample 

design were applied for statistical analyses.  

The questionnaires were based on previously used surveys, 

with new items developed and validated by expert review and 

cognitive interviews [6]. The study collected a wide range of data 

about computer science teachers, including teaching experience, 

degrees earned, college-level computer science courses taken, 

perceptions of pedagogical and content preparedness, beliefs 

about teaching and learning, professional development 

experiences, and adequacy of resources for instruction. In 

addition, each teacher was asked about instruction (e.g., 

objectives, instructional practices) in a randomly sampled class. A 

school-level survey gathered data such as computer science course 

availability and demographics of the student body.  

3.2 Analytic Approach 

This paper provides nationally representative data about the 

state of the computer science teaching force and instruction in the 

U.S. It then describes an analysis examining how various teacher 

and school characteristics relate to two teaching practice outcomes 

measured on the teacher questionnaire. Each outcome was a 

composite score1 based on several related survey items. The first, 

reform-oriented objectives, consists of six items that asked 

teachers about the emphasis they place on different instructional 

 
1 Factor analysis was used to create several composite variables related 

to key constructs measured on the questionnaires. Composite variables, 

which are more reliable than individual survey items, were computed to 

have a minimum possible value of 0 and a maximum possible value of 
100. Definitions of all of the composite variables used in this study can 

be found in the Report of the 2018 NSSME+ [3].  



  

 

 

goals consistent with the vision for K–12 computer science 

described in the K–12 Computer Science Framework [11]. The 

second, engaging students in the practices of computer science, 

includes 14 items associated with the practices described in the 

Framework. The items comprising each composite follow. 

Reform-Oriented Instructional Objectives Composite: By the end 

of the course, how much emphasis will each of the following 

student objectives receive? [Response options were: None, 

Minimal, Moderate, Heavy] 

 Learning how to do computer science (e.g., breaking 

problems into smaller parts, considering the needs of a 

user, creating computational artifacts) 

 Understanding computer science concepts 

 Developing students’ confidence that they can 

successfully pursue careers in computer science 

 Increasing students’ interest in computer science 

 Learning how to develop computational solutions 

 Learning about real-life applications of computer 

science 

Engaging Students in the Practices of Computer Science 

Composite: How often do you have students do each of the 

following in this class? [Response options were: Never, Rarely 

(e.g., a few times a year), Sometimes (e.g., once or twice a month), 

Often (e.g., once or twice a week), All or almost all lessons] 

 Create computational artifacts (e.g., programs, 

simulations, visualizations, digital animations, robotic 

systems, or apps) 

 Write comments within code to document purposes or 

features 

 Consider how a program they are creating can be 

separated into modules/procedures/objects 

 Identify and adapt existing code to solve a new 

computational problem 

 Provide feedback on other students’ computational 

products or designs 

 Systematically use test cases to verify program 

performance and/or identify problems 

 Identify real-world problems that might be solved 

computationally 

 Use computational methods to simulate events or 

processes (e.g., rolling dice, supply and demand) 

 Explain computational solution strategies verbally or in 

writing 

 Create instructions for an end-user explaining how to 

use a computational artifact 

 Compare and contrast the strengths and limitations of 

different representations such as flow charts, tables, 

code, or pictures 

 Create a computational artifact designed to be used by 

someone outside the class or other students 

 Get input on computational products or designs from 

people with different perspectives 

 Analyze datasets using a computer to detect patterns 

Descriptive data about schools, teachers, and classes were 

generated in WesVar v5.1 [24], using the Jacknife 2 replicate 

method. In order to estimate the relationship between potential 

predictors of classroom practice and the outcomes, a path analysis 

[19] using maximum likelihood estimation was conducted using 

MPlus v8.2 [15]. Path analysis is a form of regression analysis 

that estimates both direct and indirect effects (i.e., through 

intermediary variables) on an outcome. The reform-oriented 

instructional objectives composite was regressed on a set of 

independent variables concerning teacher attributes including 

perceptions of preparedness, availability of instructional 

resources, stakeholder support, and professional development 

participation. The engaging students in the practices of computer 

science composite was regressed on the same set of independent 

variables, as well as the reform-oriented instructional objectives 

composite. Prior to analysis, categorical variables in the model 

were dummy coded and continuous variables checked for 

normality (transformations were used if normality assumptions 

were not met). In addition, correlations among the independent 

variables were examined to guard against multicollinearity issues 

(highly correlated variables were combined).   

4 RESULTS 

4.1 Descriptive Statistics 

Tables 1–7 show descriptive statistics on the variables used in 

the model. Because the analyses were conducted using design 

weights that reflect sampling and subsequent non-response 

adjustments, the results are nationally representative. The average 

high school computer science teacher in the U.S. has about 6 

years of experience teaching computer science and only one-

quarter hold a degree in computer science or computer science 

education. Thus, it is not surprising that these teachers feel only 

somewhat prepared when it comes to computer science 

instruction, in terms of both content and pedagogy (average 

perceptions of preparedness composite scores around 70). While 

teachers hold strong reform-oriented teaching beliefs, belief in 

more traditional instructional methods (e.g., providing students 

with definitions of key vocabulary at the beginning of instruction) 

is also prevalent. More than a third of teachers have had full-time 

job experience in a computer science field prior to teaching. Over 

half of high school computer science teachers have had more than 

35 hours of computer science-related professional development in 

the last three years. 

Table 1: Descriptive Statistics on  

Teacher-Level Continuous Independent Variables 

 Min Max Mean SD 

Years of CS Teaching Experience 0 33 6.15 6.51 

Perceptions of Preparedness     

Content Preparedness 0 100 64.64 22.80 

Pedagogical Preparedness 0 100 67.73 20.49 

Implement Instruction in Unit 0 100 71.56 20.44 

Traditional Teaching Beliefs 17 100 66.59 18.54 

Reform-Oriented Teaching Beliefs 45 100 82.22 11.34 



  

 

 

Table 2: Descriptive Statistics on  

Teacher-Level Categorical Independent Variables 

 Percent of Teachers 

CS-Related Degree  25 

Job Experience in a CS Field  35 

Amount of CS PD in Last 3 Years   

None 17 

Less Than 35 Hours 28 

35 or More Hours 55 

Nearly half of high school computer science classes are 

introductory programming classes and about a third are Advanced 

Placement (AP) classes; the remainder are specialized or elective 

courses that have programming as a prerequisite (e.g., robotics, 

game development). On average, high school computer science 

classes contain 16 students, and despite the fact that about half of 

the student body comes from race/ethnicity groups historically 

underrepresented in STEM (HUS), only 28 percent of computer 

science students come from these groups.2 In many classes, the 

teacher feels strong control over the curriculum, which is reflected 

in the instructional materials they use. In a large majority of 

classes, teachers mainly use materials they developed or pulled 

together from multiple sources; only 12 percent of classes use 

existing curriculum packages. 

Table 3: Descriptive Statistics on  

Class-Level Continuous Independent Variables 

 Min Max Mean SD 

Class Size 1 43 16.29 8.57 

Percent HUS 0 100 28.33 30.08 

Curriculum Control 0 100 78.41 23.98 

Extent Computer Issues are 

Problematic 0 100 14.69 22.61 

 Table 4: Descriptive Statistics on  

Class-Level Categorical Independent Variables 

 

Percent of 

Classes 

Type of CS Course  

Introductory 48 

AP  35 

Specialized/Elective  18 

Prior Achievement Level of Students  

Mostly Average/Mix of Levels 63 

Mostly High Achievers 37 

Type of Instructional Material Used  

Mainly Curriculum Packages (e.g., commercially 

published textbooks) 12 

Mainly Materials Pulled Together on Their Own 41 

Mix of Both 47 

 
2 Includes students identified as American Indian or Alaskan Native, 

Black or African American, Hispanic or Latino, or Native Hawaiian or 

Other Pacific Islander. 

High schools that offer computer science are typically located 

in suburban or urban areas, and, on average, have an enrollment of 

1,170 students. Roughly a third of students in these schools are 

eligible for free/reduced-price lunch (FRL). 

Table 5: Descriptive Statistics on  

School-Level Continuous Independent Variables 

 Min Max Mean SD 

School Size 70 4664 1170.35 832.01 

Percent of Students Eligible 

for FRL 0 100 32.09 29.09 

Table 6: Descriptive Statistics on  

School-Level Categorical Independent Variables 

 Percent of Schools 

Community Type  

Rural Area 17 

Suburban Area 42 

Urban Area 41 

Public School 75 

Block Scheduling 45 

Overall, scores on the reform-oriented instructional objectives 

composite are fairly high, indicating that high school computer 

science classes are likely to emphasize these objectives. However, 

the mean score of 55.62 on the engaging students in the practices 

of computer sciences composite indicates that, on average, 

students are engaged in this set of activities relatively 

infrequently. Further, the range and standard deviation indicate 

that substantial variation exists among classes in this regard. 

Table 7: Descriptive Statistics on Outcome Variables 

 Min Max Mean SD 

Reform-Oriented Instructional 

Objectives 33 100 81.97 13.34 

Engaging Students in the 

Practices of CS 7 100 55.62 16.70 

4.2 Path Analysis Results 

The emphasis on reform-oriented objectives in high school 

computer science classes is significantly related to several factors; 

effect sizes 3  (in standard deviations) are shown in Table 8. 

Teachers’ perceptions of preparedness to teach computer science 

is the strongest predictor of an emphasis on reform-oriented 

objectives, with an effect size of 0.415 standard deviations (in 

other words, every 1 standard deviation increase in perceptions of 

preparedness predicts a 0.415 standard deviation increase in the 

outcome).  

 

 
3 Because different studies may use different instruments or report 

different kinds of scores, it is difficult to compare results across studies. 

Effect sizes are used to report results that can be more easily compared 

across studies. In addition, effect sizes take into account the amount of 
variation in scores, aiding interpretation of results. Effect sizes of about 

0.20 are typically considered small, 0.50 medium, and 0.80 large [4].  



  

 

 

Teachers with more than 35 hours of computer science-related 

professional development in the previous three years were also 

more likely than those who had not participated in professional 

development to emphasize these objectives. Classes consisting of 

mostly high prior achievers and those with higher proportions of 

students from race/ethnicity groups historically underrepresented 

in STEM were also more likely to have an emphasis on these 

objectives (though it is important to note that “higher” is a relative 

term as most computer science classes have very few students 

from these groups). Interestingly, classes in which teachers 

reported having a full-time job in a computer science field prior to 

teaching and classes in public schools were less likely to 

emphasize these objectives.  

Table 8: Effect Sizes for Reform-Oriented Objectives 

 Effect Size 

Teacher-Level Predictors  

Perceptions of Preparedness 0.415* 

Amount of CS PD in Last 3 Years (vs. None)   

Less Than 35 Hours 0.114 

35 or More Hours 0.222* 

Job experience in a CS field  -0.145* 

Class-Level Predictors  

Mostly High Prior Achievers (vs. Average) 0.170* 

Percent HUS 0.130* 

School-Level Predictors  

Public School -0.180* 

* p < 0.05 

Table 9 shows the indirect (I)—through the objectives 

outcome—, direct (D), and total (T) effect sizes for variables 

predicting how frequently high school classes were engaged in 

aspects of the computer science practices. (Total effects combine 

the direct and indirect effects to provide an estimate of the entire 

relationship between the independent variable and the outcome.) 

Again, the effect sizes are measured in standard deviations of the 

outcome. 

Interestingly, participation in 35 or more hours of professional 

development is, by far, the strongest predictor of this outcome, 

with a total effect size of 0.561 standard deviations. Teachers’ 

perceptions of preparedness and class size were also positive 

predictors of engagement with the computer science practices. 

And consistent with previous research related to science and 

mathematics instruction [2, 18], teachers who most often use 

already developed instructional materials (e.g., commercially 

published textbooks, self-paced online units) as the basis of 

instruction tend to emphasize these practices more than teachers 

who pull together their own instructional materials (e.g., findings 

lessons online, writing their own lessons). 

Table 9: Effect Sizes for Engaging Students in CS Practices 

 I D T 

Teacher-Level Predictors    

Perceptions of Preparedness 0.061* 0.199* 0.260 

Traditional Teaching Beliefs 0.009 0.174* 0.183 

Amount of CS PD in Last 3 Years 

(vs. None)     

Less Than 35 Hours 0.017 0.160 0.177 

35 or More Hours 0.032 0.529* 0.561 

Class-Level Predictors    

Class size 0.020 0.187* 0.207 

Type of Instructional Material Used 

(vs. Mainly Materials Pulled 

Together on Their Own)    

Mainly Curriculum Packages 

(e.g., commercially published 

textbooks) 0.002 0.146* 0.148 

Mix of Both -0.010 0.034 0.024 

Reform-Oriented Instructional 

Objectives N/A 0.146* 0.146 

School-Level Predictors    

Community Type (vs. Suburban)    

Rural  -0.007 0.201* 0.194 

Urban  -0.002 0.128 0.126 

Block Scheduling -0.002 0.115* 0.113 

* p < 0.05 

5 DISCUSSION 

There is growing momentum in many countries to expand 

access to computer science in grades K–12, and the U.S. is no 

exception. However, there has been a lack of large-scale studies 

examining both the nature of instruction provided to students, and 

the extent to which it aligns with standards, and the factors that 

affect teachers’ pedagogical practices. Previous studies have 

identified a number of these factors, though much of this research, 

in computer science and other disciplines, is based upon small 

sample sizes. The study from which this analysis stems is the first 

to provide in-depth data about high school computer science 

instruction in the U.S., the preparation and background of those 

teaching it, and contextual factors that can affect the quality of 

students’ learning opportunities. The analyses presented in this 

paper, though not causal, both highlight several factors that relate 

to the nature of instruction, including the strength of those 

relationships, and suggest steps that can be taken to achieve the 

vision of instruction laid out in the K–12 Computer Science 

Framework [12]. 

Not surprisingly, teachers who feel better prepared to teach 

computer science, both in terms of content and pedagogy, are 

more likely to engage students in the computer science practices, 

a finding consistent with research in other content areas. The 

larger study from which the data used in these analyses come 

indicates that many computer science teachers have limited 

preparation to teach computer science, but that they are much 

more likely to participate in professional development than their 

mathematics and science teacher counterparts [3]. Thus, the strong 

relationship between participation in professional development 

and the outcomes used in these analyses point to the value of 

investing in such experiences for computer science teachers.  



  

 

 

Another important finding is that the type of instructional 

materials used by teachers has a sizeable relationship with the 

nature of instruction. Classes in which teachers mainly use 

instructional units or a whole curriculum developed by others 

(e.g., commercially published textbooks, self-paced online units) 

are more likely to engage students in the practices of computer 

science than those classes in which teachers are pulling together 

instructional materials from a variety of sources and/or developing 

their own. This finding parallels ones from mathematics and 

science education research and point to the importance of 

providing teachers with high-quality instructional materials. It 

also illustrates an area of need as very few classes are based on 

already developed instructional materials. Investing in the 

development and dissemination of high-quality instructional 

materials, and providing professional development to help 

teachers understand the content and pedagogical storylines of the 

materials, appears to be a reasonable strategy for increasing the 

quality of computer science instruction at scale [8]. 

5.1 Suggestions for Future Research 

A limitation of this study is that it draws solely on survey data. 

Surveys are good for measuring how often teachers do things in 

instruction, but do not provide a direct measure of the quality of 

instruction. Consequently, the results presented here should be 

interpreted as the extent students have opportunities to be engaged 

in the practices of computer science, which are necessary, but not 

sufficient, to ensure instruction is high quality. An important 

focus for future research would be to examine the relationship 

between the factors identified by this study and direct measures of 

quality of instruction (based on observations, artifact analysis, 

etc.). 

Another limitation is that the analyses presented in this paper 

are correlational, not causal. Future research could examine the 

causality of the relationships described in this paper (e.g., via 

randomized control trials). 
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