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ABSTRACT

This paper shares results from surveys administered in spring
2018 to a nationally representative sample of nearly 300 U.S. high
school computer science teachers. It describes the nature of high
school computer science instruction and the extent to which
teacher background, classroom factors, and school context predict
the type of instruction students experience. Data from the study
were analyzed using path modeling—a form of regression
analysis that estimates both direct and indirect effects (i.e.,
through intermediary variables)—to examine relationships
between teacher, classroom, and school factors, and the extent to
which teachers (1) emphasize reform-oriented instructional
objectives (e.g., learning about real-life applications of computer
science) and (2) engage students in computer science practices
(e.g., recognizing and defining computational problems). Sample
findings include that students are most commonly engaged in
activities related to testing and refining computational artifacts,
but are less often engaged in aspects of computer science related
to end users (e.g., create a computational artifact to be used by
someone else). The path analysis highlights several factors that
are related to greater engagement of students in the computer
science practices, including teacher participation in professional
development and the use of coherent instructional materials.
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1 INTRODUCTION

National interest in providing computer science education at
the K-12 level has grown steadily since ACM founded the
Computer Science Teachers Association (CSTA) in 2004. This
trend is evident in SIGCSE conference sessions focused on K—12
education, President Obama’s Computer Science for All initiative,
the growth of online instruction and advocacy sites such as CS for
All and code.org, and the development of K—12 computer science
standards by CSTA and an increasing number of states. In this
paper, we present findings from a large nationally representative
survey of high school computer science teachers, a component of
the 2018 NSSME+ [3], that provide an answer to the following
research question:

What factors predict high school computer
science teachers’ classroom teaching practices?

2 BACKGROUND

Efforts to increase access to computer science instruction in
K-12 schools have identified a number of factors that affect the
ability of schools and teachers to offer high-quality learning
experiences. Although many studies of these issues are based on
relatively small samples, the findings echo those found in other
subjects such as science. Science education research has
illuminated many of the factors that influence classroom science
instruction. Research points to four broad categories of factors,
each with a robust research base: teacher attributes, instructional
resources, context-related factors, and inservice support. For
example, teacher attributes include various forms of teacher
knowledge (e.g., subject matter knowledge), teaching experience,
type of teacher preparation program completed, teacher grade
level, beliefs about teaching and learning. Several studies have
found correlations between teacher attributes and teaching
practice (e.g., Smith et al. [21]).


https://doi.org/10.1145/3328778.3366831
Permissions@acm.org
https://doi.org/10.1145/3328778.3366831
https://doi.org/10.1145/3328778.3366831

For example, Yadav, Gretter, Hambrusch, and Sands [25]
reported that computer science teachers, particularly those new to
the content area, lack both the computer science content
knowledge and pedagogical knowledge needed to teach computer
science effectively. Similarly in science, teacher subject matter
knowledge has been found to predict teaching practice (reviewed
in Abell [1]).

Teachers’ beliefs about how the subject matter can/should be
taught and in their own abilities to achieve successful student
learning outcomes also influence teaching practice (reviewed in
Jones and Carter [10]; see also Nespor [16]; Pajares [17]).
Pedagogical approaches are shaped by beliefs about what
constitutes effective instruction, which is informed by beliefs
about the nature of the discipline and goals of education.
Similarly, teaching reflects beliefs about learners in general and a
group of students in particular. Beliefs about one’s own ability to
successfully teach a subject (self-efficacy) also influence teaching
practice.

Access to instructional materials, including high-quality units
and lessons as well as assessment tools, also have been shown to
affect instruction (e.g., Yadav et al. [25]). Research about science
teaching has found that the quality of instruction may be
determined in large part by curriculum materials, particularly
when teachers enact lessons and units with high levels of fidelity
[23]. Availability of resources for lessons can create affordances
and constraints for classroom pedagogy, and may be important
determinants of what a science lesson entails (e.g., Johnson [9]).
Finally, access to technological resources such as computers can
impact science pedagogy (e.g., Lawless and Pellegrino [13]).

Professional development for teachers can also have a positive
effect on instruction. However, a number of studies indicate that
short-duration approaches typically have limited success (e.g.,
Dickinson and Caswell [7]). Other studies indicate that on-going,
content-focused, job-embedded experiences are much more likely
to have positive impacts (e.g., Supovitz and Turner [22];
Desimone et al. [5]; Luft [14]).

Teaching is also situated within larger contexts whose features
affect instruction. For example, policy considerations at the
school, district, state, and national levels have impacts on what is
and is not done in classrooms (e.g., Knapp & Plecki [11]; Shaver
et al. [20]).

3 METHODS

3.1 Study Design

The analyses presented in this paper use data from a nationally
representative survey of high school computer science teachers,
with a computer science course defined as one that teaches
programming or has programming as a prerequisite. The study,
conducted during the 2017-18 school year, is based on a national
probability sample of 2,000 schools and approximately 10,000
computer science, mathematics, and science teachers in grades K—
12. It includes public and private schools in the 50 states and the
District of Columbia. The sample was designed to yield national
estimates of course offerings and enrollment, teacher background

preparation, textbook wusage, instructional techniques, and
availability and use of facilities and equipment. Every eligible
school and teacher in the target population had a known, positive
probability of being sampled. A two-stage sample design was
utilized. First, a random sample of schools stratified by region of
the country, community type, and grades served was selected.
Second, a stratified random sample of teachers within schools that
agreed to participate was drawn. This sample design resulted in a
sample that is both nationally representative and that has
sufficient number of cases of various subgroups (e.g.,
race/ethnicity groups, SES) to allow the data to be disaggregated.

The sampling frame for the school sample was constructed
from the Common Core of Data and Private School Survey
databases—programs of the U.S. Department of Education’s
National Center for Education Statistics—which include school
name and address and information about the school needed for
stratification and sample selection. The sampling frame for the
teacher sample was constructed from lists provided by sample
schools, identifying current teachers and the specific computer
science, mathematics, and science subjects they were teaching.
Data collection concluded in July 2018. A total of 7,600 computer
science, mathematics, and science teachers in 1,273 schools
across the United States participated in this study, a response rate
of 78 percent. The data were cleaned (e.g., checked for
inconsistencies), and weights reflecting the complex sample
design were applied for statistical analyses.

The questionnaires were based on previously used surveys,
with new items developed and validated by expert review and
cognitive interviews [6]. The study collected a wide range of data
about computer science teachers, including teaching experience,
degrees earned, college-level computer science courses taken,
perceptions of pedagogical and content preparedness, beliefs
about teaching and learning, professional development
experiences, and adequacy of resources for instruction. In
addition, each teacher was asked about instruction (e.g.,
objectives, instructional practices) in a randomly sampled class. A
school-level survey gathered data such as computer science course
availability and demographics of the student body.

3.2 Analytic Approach

This paper provides nationally representative data about the
state of the computer science teaching force and instruction in the
U.S. It then describes an analysis examining how various teacher
and school characteristics relate to two teaching practice outcomes
measured on the teacher questionnaire. Each outcome was a
composite score' based on several related survey items. The first,
reform-oriented objectives, consists of six items that asked
teachers about the emphasis they place on different instructional

' Factor analysis was used to create several composite variables related

to key constructs measured on the questionnaires. Composite variables,
which are more reliable than individual survey items, were computed to
have a minimum possible value of 0 and a maximum possible value of

100. Definitions of all of the composite variables used in this study can

be found in the Report of the 2018 NSSME+ [3].



goals consistent with the vision for K—12 computer science
described in the K—12 Computer Science Framework [11]. The
second, engaging students in the practices of computer science,
includes 14 items associated with the practices described in the
Framework. The items comprising each composite follow.

Reform-Oriented Instructional Objectives Composite: By the end
of the course, how much emphasis will each of the following
student objectives receive? [Response options were: None,
Minimal, Moderate, Heavy]

e  Learning how to do computer science (e.g., breaking
problems into smaller parts, considering the needs of a
user, creating computational artifacts)

e  Understanding computer science concepts

e  Developing students’ confidence that they can
successfully pursue careers in computer science

e Increasing students’ interest in computer science

e  Learning how to develop computational solutions

e Learning about real-life applications of computer
science

Engaging Students in the Practices of Computer Science
Composite: How often do you have students do each of the
following in this class? [Response options were: Never, Rarely
(e.g., a few times a year), Sometimes (e.g., once or twice a month),
Often (e.g., once or twice a week), All or almost all lessons]

e  Create computational artifacts (e.g., programs,
simulations, visualizations, digital animations, robotic
systems, or apps)

e Write comments within code to document purposes or
features

e  Consider how a program they are creating can be
separated into modules/procedures/objects

e Identify and adapt existing code to solve a new
computational problem

e  Provide feedback on other students’ computational
products or designs

e  Systematically use test cases to verify program
performance and/or identify problems

e  Identify real-world problems that might be solved
computationally

e  Use computational methods to simulate events or
processes (e.g., rolling dice, supply and demand)

e  Explain computational solution strategies verbally or in
writing

e  Create instructions for an end-user explaining how to
use a computational artifact

e  Compare and contrast the strengths and limitations of
different representations such as flow charts, tables,
code, or pictures

e  Create a computational artifact designed to be used by
someone outside the class or other students

e  Get input on computational products or designs from
people with different perspectives

e Analyze datasets using a computer to detect patterns

Descriptive data about schools, teachers, and classes were
generated in WesVar v5.1 [24], using the Jacknife 2 replicate
method. In order to estimate the relationship between potential
predictors of classroom practice and the outcomes, a path analysis
[19] using maximum likelihood estimation was conducted using

MPlus v8.2 [15]. Path analysis is a form of regression analysis
that estimates both direct and indirect effects (i.e., through
intermediary variables) on an outcome. The reform-oriented
instructional objectives composite was regressed on a set of
independent variables concerning teacher attributes including
perceptions of preparedness, availability of instructional
resources, stakeholder support, and professional development
participation. The engaging students in the practices of computer
science composite was regressed on the same set of independent
variables, as well as the reform-oriented instructional objectives
composite. Prior to analysis, categorical variables in the model
were dummy coded and continuous variables checked for
normality (transformations were used if normality assumptions
were not met). In addition, correlations among the independent
variables were examined to guard against multicollinearity issues
(highly correlated variables were combined).

4 RESULTS

4.1 Descriptive Statistics

Tables 1-7 show descriptive statistics on the variables used in
the model. Because the analyses were conducted using design
weights that reflect sampling and subsequent non-response
adjustments, the results are nationally representative. The average
high school computer science teacher in the U.S. has about 6
years of experience teaching computer science and only one-
quarter hold a degree in computer science or computer science
education. Thus, it is not surprising that these teachers feel only
somewhat prepared when it comes to computer science
instruction, in terms of both content and pedagogy (average
perceptions of preparedness composite scores around 70). While
teachers hold strong reform-oriented teaching beliefs, belief in
more traditional instructional methods (e.g., providing students
with definitions of key vocabulary at the beginning of instruction)
is also prevalent. More than a third of teachers have had full-time
job experience in a computer science field prior to teaching. Over
half of high school computer science teachers have had more than
35 hours of computer science-related professional development in
the last three years.

Table 1: Descriptive Statistics on
Teacher-Level Continuous Independent Variables

Min | Max | Mean SD

Years of CS Teaching Experience 0 33 6.15 6.51
Perceptions of Preparedness

Content Preparedness 0 100 64.64 | 22.80
0 100 67.73 | 20.49
Implement Instruction in Unit 0 100 71.56 | 20.44

Traditional Teaching Beliefs 17 100 66.59 | 18.54

Pedagogical Preparedness

Reform-Oriented Teaching Beliefs 45 100 8222 | 11.34




Table 2: Descriptive Statistics on
Teacher-Level Categorical Independent Variables

Percent of Teachers
CS-Related Degree 25
Job Experience in a CS Field 35
Amount of CS PD in Last 3 Years
None 17
Less Than 35 Hours 28
35 or More Hours 55

High schools that offer computer science are typically located
in suburban or urban areas, and, on average, have an enrollment of
1,170 students. Roughly a third of students in these schools are
eligible for free/reduced-price lunch (FRL).

Table 5: Descriptive Statistics on
School-Level Continuous Independent Variables

Min Max Mean SD

Nearly half of high school computer science classes are
introductory programming classes and about a third are Advanced
Placement (AP) classes; the remainder are specialized or elective
courses that have programming as a prerequisite (e.g., robotics,
game development). On average, high school computer science
classes contain 16 students, and despite the fact that about half of
the student body comes from race/ethnicity groups historically
underrepresented in STEM (HUS), only 28 percent of computer
science students come from these groups.? In many classes, the
teacher feels strong control over the curriculum, which is reflected
in the instructional materials they use. In a large majority of
classes, teachers mainly use materials they developed or pulled
together from multiple sources; only 12 percent of classes use
existing curriculum packages.

Table 3: Descriptive Statistics on
Class-Level Continuous Independent Variables

School Size 70 4664 1170.35 832.01
Percent of Students Eligible
for FRL 0 100 32.09 29.09

Table 6: Descriptive Statistics on
School-Level Categorical Independent Variables

Percent of Schools
Community Type
Rural Area 17
Suburban Area 42
Urban Area 41
Public School 75
Block Scheduling 45

Min | Max Mean SD
Class Size 1 43 16.29 8.57
Percent HUS 0 100 28.33 30.08
Curriculum Control 0 100 78.41 23.98
Extent Computer Issues are
Problematic 0 100 14.69 22.61

Overall, scores on the reform-oriented instructional objectives
composite are fairly high, indicating that high school computer
science classes are likely to emphasize these objectives. However,
the mean score of 55.62 on the engaging students in the practices
of computer sciences composite indicates that, on average,
students are engaged in this set of activities relatively
infrequently. Further, the range and standard deviation indicate
that substantial variation exists among classes in this regard.

Table 7: Descriptive Statistics on Outcome Variables

Min | Max Mean SD

Table 4: Descriptive Statistics on
Class-Level Categorical Independent Variables

Reform-Oriented Instructional

Objectives 33 100 81.97 13.34
Engaging Students in the
Practices of CS 7 100 55.62 16.70

Percent of
Classes

Type of CS Course

Introductory 48

AP 35

Specialized/Elective 18
Prior Achievement Level of Students

Mostly Average/Mix of Levels 63

Mostly High Achievers 37
Type of Instructional Material Used

Mainly Curriculum Packages (e.g., commercially

published textbooks) 12
Mainly Materials Pulled Together on Their Own 41
Mix of Both 47

4.2 Path Analysis Results

The emphasis on reform-oriented objectives in high school
computer science classes is significantly related to several factors;
effect sizes® (in standard deviations) are shown in Table 8.
Teachers’ perceptions of preparedness to teach computer science
is the strongest predictor of an emphasis on reform-oriented
objectives, with an effect size of 0.415 standard deviations (in
other words, every 1 standard deviation increase in perceptions of
preparedness predicts a 0.415 standard deviation increase in the
outcome).

Includes students identified as American Indian or Alaskan Native,
Black or African American, Hispanic or Latino, or Native Hawaiian or
Other Pacific Islander.

* Because different studies may use different instruments or report

different kinds of scores, it is difficult to compare results across studies.
Effect sizes are used to report results that can be more easily compared
across studies. In addition, effect sizes take into account the amount of
variation in scores, aiding interpretation of results. Effect sizes of about
0.20 are typically considered small, 0.50 medium, and 0.80 large [4].



Teachers with more than 35 hours of computer science-related
professional development in the previous three years were also
more likely than those who had not participated in professional
development to emphasize these objectives. Classes consisting of
mostly high prior achievers and those with higher proportions of
students from race/ethnicity groups historically underrepresented
in STEM were also more likely to have an emphasis on these
objectives (though it is important to note that “higher” is a relative
term as most computer science classes have very few students
from these groups). Interestingly, classes in which teachers
reported having a full-time job in a computer science field prior to
teaching and classes in public schools were less likely to
emphasize these objectives.

Table 8: Effect Sizes for Reform-Oriented Objectives

Table 9: Effect Sizes for Engaging Students in CS Practices

1 D T
Teacher-Level Predictors
Perceptions of Preparedness 0.061* 0.199* 0.260
Traditional Teaching Beliefs 0.009 0.174* 0.183
Amount of CS PD in Last 3 Years
(vs. None)
Less Than 35 Hours 0.017 0.160 0.177
35 or More Hours 0.032 0.529* 0.561
Class-Level Predictors
Class size 0.020 0.187* 0.207
Type of Instructional Material Used
(vs. Mainly Materials Pulled
Together on Their Own)
Mainly Curriculum Packages
(e.g., commercially published
textbooks) 0.002 0.146* 0.148
Mix of Both -0.010 0.034 0.024
Reform-Oriented Instructional
Objectives N/A 0.146* 0.146
School-Level Predictors
Community Type (vs. Suburban)
Rural -0.007 0.201* 0.194
Urban -0.002 0.128 0.126
Block Scheduling -0.002 0.115* 0.113

Effect Size

Teacher-Level Predictors
Perceptions of Preparedness 0.415*
Amount of CS PD in Last 3 Years (vs. None)

Less Than 35 Hours 0.114

35 or More Hours 0.222%*
Job experience in a CS field -0.145*
Class-Level Predictors
Mostly High Prior Achievers (vs. Average) 0.170*
Percent HUS 0.130%*
School-Level Predictors
Public School -0.180*

* p<0.05

Table 9 shows the indirect (I)—through the objectives
outcome—, direct (D), and total (T) effect sizes for variables
predicting how frequently high school classes were engaged in
aspects of the computer science practices. (Total effects combine
the direct and indirect effects to provide an estimate of the entire
relationship between the independent variable and the outcome.)
Again, the effect sizes are measured in standard deviations of the
outcome.

Interestingly, participation in 35 or more hours of professional
development is, by far, the strongest predictor of this outcome,
with a total effect size of 0.561 standard deviations. Teachers’
perceptions of preparedness and class size were also positive
predictors of engagement with the computer science practices.
And consistent with previous research related to science and
mathematics instruction [2, 18], teachers who most often use
already developed instructional materials (e.g., commercially
published textbooks, self-paced online units) as the basis of
instruction tend to emphasize these practices more than teachers
who pull together their own instructional materials (e.g., findings
lessons online, writing their own lessons).

* p<0.05

5 DISCUSSION

There is growing momentum in many countries to expand
access to computer science in grades K—12, and the U.S. is no
exception. However, there has been a lack of large-scale studies
examining both the nature of instruction provided to students, and
the extent to which it aligns with standards, and the factors that
affect teachers’ pedagogical practices. Previous studies have
identified a number of these factors, though much of this research,
in computer science and other disciplines, is based upon small
sample sizes. The study from which this analysis stems is the first
to provide in-depth data about high school computer science
instruction in the U.S., the preparation and background of those
teaching it, and contextual factors that can affect the quality of
students’ learning opportunities. The analyses presented in this
paper, though not causal, both highlight several factors that relate
to the nature of instruction, including the strength of those
relationships, and suggest steps that can be taken to achieve the
vision of instruction laid out in the K—12 Computer Science
Framework [12].

Not surprisingly, teachers who feel better prepared to teach
computer science, both in terms of content and pedagogy, are
more likely to engage students in the computer science practices,
a finding consistent with research in other content areas. The
larger study from which the data used in these analyses come
indicates that many computer science teachers have limited
preparation to teach computer science, but that they are much
more likely to participate in professional development than their
mathematics and science teacher counterparts [3]. Thus, the strong
relationship between participation in professional development
and the outcomes used in these analyses point to the value of
investing in such experiences for computer science teachers.



Another important finding is that the type of instructional
materials used by teachers has a sizeable relationship with the
nature of instruction. Classes in which teachers mainly use
instructional units or a whole curriculum developed by others
(e.g., commercially published textbooks, self-paced online units)
are more likely to engage students in the practices of computer
science than those classes in which teachers are pulling together
instructional materials from a variety of sources and/or developing
their own. This finding parallels ones from mathematics and
science education research and point to the importance of
providing teachers with high-quality instructional materials. It
also illustrates an area of need as very few classes are based on
already developed instructional materials. Investing in the
development and dissemination of high-quality instructional
materials, and providing professional development to help
teachers understand the content and pedagogical storylines of the
materials, appears to be a reasonable strategy for increasing the
quality of computer science instruction at scale [8].

5.1 Suggestions for Future Research

A limitation of this study is that it draws solely on survey data.
Surveys are good for measuring how often teachers do things in
instruction, but do not provide a direct measure of the quality of
instruction. Consequently, the results presented here should be
interpreted as the extent students have opportunities to be engaged
in the practices of computer science, which are necessary, but not
sufficient, to ensure instruction is high quality. An important
focus for future research would be to examine the relationship
between the factors identified by this study and direct measures of
quality of instruction (based on observations, artifact analysis,
etc.).

Another limitation is that the analyses presented in this paper
are correlational, not causal. Future research could examine the
causality of the relationships described in this paper (e.g., via
randomized control trials).
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