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ABSTRACT

Although the application of deep learning to automatic speech
recognition (ASR) has resulted in dramatic reductions in
word error rate for languages with abundant training data,
ASR for languages with few resources has yet to benefit
from deep learning to the same extent. In this paper, we
investigate various methods of acoustic modeling and data
augmentation with the goal of improving the accuracy of a
deep learning ASR framework for a low-resource language
with a high baseline word error rate. We compare several
methods of generating synthetic acoustic training data via
voice transformation and signal distortion, and we explore
several strategies for integrating this data into the acoustic
training pipeline. We evaluate our methods on an indigenous
language of North America with minimal training resources.
We show that training initially via transfer learning from
an existing high-resource language acoustic model, refining
weights using a heavily concentrated synthetic dataset, and
finally fine-tuning to the target language using limited syn-
thetic data reduces WER by 15% over just transfer learning
using deep recurrent methods. Further, we show improve-
ments over traditional frameworks by 19% using a similar
multistage training with deep convolutional approaches.

Index Terms— speech recognition, deep learning, data
augmentation, low-resource languages

1. INTRODUCTION

The use of deep neural networks in acoustic modeling for
automatic speech recognition (ASR) has resulted in remark-
able accuracy gains for English, Mandarin, and other high-
resource languages [1, 2, 3, 4, 5]. These methods, however,
require very large amounts of training data in order to yield
improvements on this scale. Deep learning ASR systems
for languages with very limited training resources typically
must incorporate additional training resources, such as cross-
lingual acoustic models or in-domain synthetic acoustic data,
to begin to approach the word error rates found using tradi-
tional hidden Markov model (HMM) and Gaussian mixture
model (GMM) ASR frameworks.

Some of the most successful methods for adapting deep
learning ASR to low-resource scenarios have relied on cross-

Fig. 1. Multistage training of DeepSpeech using transfer
learning with heavily augmented samples followed by retrain-
ing with no augmentation.

lingual or multilingual transfer learning, in which a pre-
trained acoustic model for a language with abundant training
data is used to initialize the weights of the acoustic model for
a language with limited data [6, 7, 8].

In this paper, we explore several methods of synthetic
acoustic data augmentation within both recurrent and convo-
lutional deep learning ASR frameworks for a low-resource
language in order to complement and supplement the use of
transfer learning. Previous work has shown that simple aug-
mentation methods relying on speech signal distortion (e.g.,
shifting F0, adding background noise) results in WER reduc-
tions for resource constrained ASR systems [9, 10, 11, 12, 8].
Here, we compare simple data augmentation techniques to
more complex approaches in which new synthetic audio data
is generated from the existing acoustic training data using
voice conversion. We use a very small set of transcribed
recordings (10 hours) of the Seneca language, a critically en-
dangered, morphologically complex, low-resource language
of North America. We investigate novel ways of incorporat-
ing this synthetic data into both recurrent and convolutional
acoustic training pipelines. We find that some, but not all, of
our augmentation methods yield substantial improvements in
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ASR accuracy over two baseline deep ASR models that do
not rely on data augmentation. We also find that convolu-
tional approaches have both computational and accuracy ad-
vantages over their recurrent counterparts. Our work demon-
strates that even languages with scarce training resources can
benefit from the use of deep learning ASR methods.

The main contributions of this work are: 1) A novel deep
learning approach for resource-constrained ASR using mul-
tiple stage learning; 2) A demonstration that deep learning
ASR methods can achieve results superior to those of tradi-
tional HMM/GMM methods, even in the absence of abundant
training data; and 3) A transcribed corpus of 12 hours of the
Seneca language, a critically endangered language spoken in
Canada and New York State.

2. BACKGROUND

Given sufficient in-domain monolingual training data, deep
neural network methods for ASR generally outperform tradi-
tional methods relying on HMMs and GMMs, often by very
wide margins [1, 13, 2, 14, 3, 15, 16, 5, 17]. These approaches
typically use RNNs to convert variable length audio wave seg-
ments or spectrograms to text at the phone or character level.
Methods that produce characters, such as DeepSpeech [14],
currently use Connectionist Temporal Classification (CTC) to
reduce streams of characters to plausible words. These words
are then optionally passed through a language model to yield
sequences of attested words. Because of the limitations of
CTC, Battenberg et al. [15] and others utilize sequence-to-
sequence models which first encode an entire sequence, then
decode one character at a time until the end of the utterance.

Despite deep RNNs success in ASR and other sequence
modelling tasks, these networks cannot easily take advantage
of parallelization on modern hardware since the output of an
RNN cell at each timestep depends on the operation from the
previous timestep, leading to longer training times. Rather
than use recurrent layers, there have been several architec-
tures relying on convolution [18, 19, 20] to capture temporal
dependencies. These techniques improve the training speed
of sequence-related tasks while still delivering competitive
performance. In particular, Liptchinsky et al. [20] achieves
the same performance on the LibriSpeech clean test set as the
best recurrent model ([14]) despite using an order of magni-
tude less data.

Some early approaches for adapting deep learning models
to low-resource scenarios focused on changes to the model
architecture [21, 9, 6], but greater success was often found
in model adaptation in the form of transfer learning from a
model built using data from one or more resource-rich lan-
guages [9, 22, 23]. The introduction of synthetic data into the
training corpus has also been found to yield improvements in
true low-resource, artificially low-resource, and resource-rich
conditions [9, 10, 11, 12]. Jimerson et al. [8] showed that
simple augmentation methods such as adding noise, modify-

ing f0, changing speaking rate, and other distortions resulted
in WER reductions for an ASR system trained on less than
two hours of audio. Similar techniques have also been used
to improve dysarthric speech recognition [24].

Another approach to augmenting the acoustic training
data is to synthesize new versions of existing data using voice
conversion. Much of the recent work in this area derives from
work in generating synthetic images. Generative Adversarial
Network (GAN) [25] architectures have proven successful in
generating synthetic images that mimic the distribution of in-
put data [25, 26, 27, 28]. Chang et al. [27] used GANs along
with reinforcement learning to generate augmented sentences
with code switching between English and Taiwanese. Choi
et al. [28] perform many-to-many style transformations of
input images from one domain to another while keeping other
characteristics, such as object shape, the same. Kameoka et
al. [29] applied the architecture proposed in [28] to acous-
tic features to perform many-to-many voice conversion in
an architecture called StarGAN-VC. Since StarGAN-VC re-
quires only a few minutes of non-parallel, unlabeled speeches
from each speaker, we find the architecture a good fit for
low-resourced language voice conversion.

Hsu et al. [30] proposed a different method to perform
non-parallel voice conversion by combining a variational au-
toencoder with a Wasserstein GAN. This architecture (VAW-
GAN) uses a conditional variational autoencoder (C-VAE)
to model the acoustic features of speech from each speaker
and a Wasserstein GAN to synthesize speeches from a dif-
ferent speaker. By using a Wasserstein GAN instead of a
vanilla GAN, this architecture produces sharper, more struc-
tured spectral envelopes compared to similar methods dis-
cussed in Hsu et al. [31], among others.

3. DATA

We perform our experiments on Seneca, a morphologically
complex and endangered language of North America, spoken
as a first language by roughly 50 individuals and as a sec-
ond language by a few hundred others. The available audio
recordings consist of roughly 720 minutes of spontaneous,
naturalistic speech produced by eleven adult speakers, eight
male and three female. All speakers are first-language Seneca
speakers whose second language is English, and all eleven
are middle-aged or elderly. Recordings were made over many
years under a variety of conditions, yielding a diverse range
of audio quality. Details of the training data can be found in
the Supplementary Material.

4. METHOD

4.1. Acoustic modeling

We built several different baseline models using three dif-
ferent ASR frameworks. One model uses the GMM/HMM
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framework implemented in the Kaldi1 toolkit; two models
use the DNN-RNN framework of DeepSpeech2 [2]; and two
models use a simplified 1D gated convolutional neural net-
work from a model proposed by Liptchinsky et al. [20].

Kaldi: The first baseline model (“Baseline: Kaldi”) uses the
traditional HMM/GMM framework provided by Kaldi, with
a triphone model, a trigram KenLM [32] language model, and
the parameter settings recommended in the Kaldi tutorial.

DeepSpeech: The DeepSpeech model consists of a five-layer
recurrent neural network with Long-Short Term Memory
(LSTM) cells. The first, second, third and fifth layers of the
neural network are fully connected, while the fourth layer is a
bi-directional recurrent layer. All layers contain 2048 hidden
units and are followed by a dropout layer of 0.2. Raw audio
input is partitioned into windows of length 20msec strided by
10msec. These raw inputs are converted to 13 MFCCs, along
with the deltas and delta-deltas, in preparation for the first
layer of the neural network. To train the model, CTC loss
[33] was used.

mini-GCNN: The mini-GCNN architecture we used (Sup-
plementary Material, Fig. 2a) was a modification from the
model described in Liptchinsky et al. [20]. The original
model consists of 17 Gated Linear Unit (GLU) blocks, with
kernel size increasing from 3 to 21 and number of filters in-
creasing from 100 to 375. These GLU blocks are followed
by a 1× 1 GLU block with a depth of 1000 to mimic a
fully-connected layer. To obtain character probability at each
timestep, another 1× 1 convolution layer is used, followed
by log-softmax activation function. To speed up training time
and simplify the network to suit the volume of data available,
we removed GLU blocks with kernel size greater than 8 but
kept the block with kernel size of 21 to retain the ability to
capture long temporal dependency. Additionally, we added
a GLU block with kernel size of 13 before the GLU block
with kernel size of 3 to improve medium-range temporal
dependency. More details are in the Supplimentary Material.

Within DeepSpeech and mini-GCNN frameworks, we
establish two baseline models for each architecture. The
first models (“Baseline: DeepSpeech” and “Baseline: mini-
GCNN”) were trained using random weight initialization and
the unaugmented 600 minutes of Seneca data. Using transfer
learning, the second models (“Baseline: DeepSpeech w/TL”
and “Baseline mini-GCNN w/TL”) were initialized using
weights from a model trained on English only, using the 960-
hour LibriSpeech corpus [34]. The final fully-connected layer
in DeepSpeech and the final convolution layer in mini-GCNN
were replaced to match the number of tokens in the Seneca
alphabet. The models with transfer learning were then trained
on the unaugmented 600 minutes of Seneca data.

1http://kaldi-asr.org/doc/
2https://github.com/mozilla/DeepSpeech/tree/v0.3.0

4.2. Multistage transfer learning

We implement a multistage transfer learning strategy in con-
junction with data augmentation as described in the Supple-
mentary Materials Section 8.3. The following training pro-
cedure is carried out for each of the three data augmentation
methods. Figure 1 shows the overall architecture.

In the first stage, a DeepSpeech or mini-GCNN model is
trained on 960-hour of LibriSpeech English corpus, with ran-
domized initial weights. The DeepSpeech model was trained
with learning rate of 0.001, and the mini-GCNN model was
trained with learning rate of 0.0003. The models are trained
for 75 epochs, with the best models saved to initialize weights
in later stage. The best models were determined by word-
error rate on the LibriSpeech validation set.

In the second stage, the weights of a second DeepSpeech
or mini-GCNN model are initialized using the weights from
the best English models obtained in the first stage. The train-
ing data from this second model includes the original unal-
tered 10-hour Seneca dataset as well as up to a 10× augmen-
tation of each utterance using one of the three data augmen-
tation methods: speed and pitch modification (Augment10),
voice conversion via StarGAN-VC, or voice conversion via
VAWGAN. This model is trained until convergence on the
training dataset. For DeepSpeech, we used learning rate of
0.001. For the mini-GCNN model, we used learning rate of
0.0003.

The motivation for the final stage is that the augmented
data often contains heavy digital artifacts. Since the amount
of augmented data is significantly higher than the amount of
original data, the networks trained on augmented and orig-
inal data might be skewed towards improving performance
on augmented data. However, it is hoped that the network
can still learn valuable representation with augmented data,
which will allow the final network trained on original data to
perform better.

In the final stage, the weights of the third DeepSpeech or
mini-GCNN model are initialized using the final weights from
the second model. The training data for the third models in-
cludes only the original 10 hours of unaltered Seneca dataset
with no augmented data. Models in this fine-tuning stage are
trained until convergence on the training dataset. For Deep-
Speech, we used 0.0001 learning rate. For mini-GCNN, we
used 0.00003 learning rate.

5. RESULTS

Table 1 shows the performance across all methods evaluat-
ing using both word error rate (WER) and character error rate
(CER). For each acoustic model, we evaluate with: (1) no lan-
guage model (NO LM); (2) the trigram word-level language
model described in Supplementary Material (W/LM). We re-
place all WER values greater than 1.0 with the value 1.0 indi-
cating that little or no correct output was produced.
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DS (NO LM) DS (W/LM) m-GCNN (NO LM) m-GCNN (W/LM)
WER CER WER CER WER CER WER CER

Baseline: no TL, no Aug 1.000 0.891 0.970 0.872 0.839 0.365 0.426 0.257
Baseline: + TL, no Aug 0.859 0.436 0.727 0.409 0.766 0.299 0.350 0.186
Augment10 Stage2 1.000 0.716 0.975 0.698 0.702 0.266 0.372 0.184
Augment10 Stage3 0.850 0.427 0.693 0.421 0.686 0.256 0.364 0.179
VAWGAN Stage 2 1.000 0.753 1.174 0.702 0.750 0.296 0.381 0.207
VAWGAN Stage 3 0.904 0.468 0.800 0.444 0.710 0.271 0.354 0.177
StarGAN-VC Stage 2 0.911 0.497 0.790 0.474 0.817 0.364 0.488 0.311
StarGAN-VC Stage 3 0.722 0.364 0.571 0.333 0.691 0.263 0.343 0.173

Table 1. WER (word error rate) and CER (character error rate) for various transfer learning (TL) and augmentation strategies
(rows) vs. DeepSpeech (DS) and mini-GCNN (m-GCNN) with and without a trigram language model. Kaldi with the same
language model gives a WER/CER of 0.530/0.307.

We see that for DeepSpeech, the baseline model us-
ing only the 10 hours of unaugmented Seneca data yields a
WER greater than 1.0, meaning it yielded little or no cor-
rect output. Applying a language model slightly reduces
both WER and CER. With transfer learning from an acoustic
model pre-trained on English data, we see more promising
results, particularly when a language model is applied. All
Stage 2 models, which were trained with both augmented
and unaugmented data, produce error rates similar to those of
the Seneca-only baseline. The most promising DeepSpeech
results are those of the Stage 3 data augmentation models,
particularly StarGAN-VC and Augment10, both of which
improve substantially over the baseline model using transfer
learning, especially when a language model is used during
decoding. We see that the StarGAN-VC model yields a
40-point improvement over the Seneca-only baseline Deep-
Speech model and a 15-point improvement over the transfer
learning baseline model. While this model approaches the
Kaldi model, it still does not perform as well as the tradi-
tional GMM/HMM approach.

The baseline mini-GCNN acoustic model, trained on only
the 10 hours of Seneca data with no transfer learning or
data augmentation, yields a substantially lower WER than
that achieved by the baseline DeepSpeech model. Decoding
with the n-gram language model results in a further 10-point
improvement in WER over the baseline Kaldi model. With
transfer learning from a pre-trained English model and a
language model, we see a additional 7.6-point improvement
in WER. While all augmentation methods show improve-
ment over Kaldi model and the baseline mini-GCNN model
without transfer learning, we do not see as large reductions
in WER from data augmentation with mini-GCNN as we
do with DeepSpeech. The stage 3 mini-GCNN model with
StarGAN-VC augmentation shows the best WER at 0.343.

The superiority of mini-GCNN over DeepSpeech might
be attributable to the smaller number of parameters in the
model miniGCNN model. The DeepSpeech model has over
45 million parameters, compared to 4 million parameters in

the mini-GCNN model. While a model with more parameters
can learn more complex functions and relationships, train-
ing such a model requires more data. Additionally, the GLU
blocks in mini-GCNN allows the model to learn the impor-
tance of each feature map, which improves the gradient flow
as well as the ability of the model to extract useful informa-
tion from each block.

6. CONCLUSIONS

In this paper, we proposed a multistage deep learning ap-
proach for low-resource ASR which uses both transfer learn-
ing and data augmentation via speech signal distortion and
voice conversion. We show that transfer learning and data
augmentation independently contribute to meaningful reduc-
tions in word error rate. In addition, the weak results after
the second stage of training with augmented data indicate that
the final fine-tuning stage, in which augmented models are re-
trained using only unaugmented data, is a crucial component
of the training procedure.
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8. SUPPLEMENTARY MATERIAL

8.1. Seneca dataset details

Twelve hours of recordings were transcribed using Seneca’s
current orthographic conventions and segmented at the ut-
terance level by second-language Seneca speakers. Because
Seneca orthography is quite reliably phonemic, with few
ambiguous character-to-phone and phone-to-character map-
pings, we choose to treat characters as phones.

The transcribed audio data was partitioned into a 10-hour
training set and a 2-hour test set as follows. Using the ut-
terance boundaries provided in the reference transcripts, we
randomly selected individual utterances from the full corpus
of twelve hours until we had compiled ten hours of audio
for training. The remaining two hours comprise the test set.
We deliberately selected utterances in a random fashion in or-
der to maximize diversity of gender, age, dialect, voice qual-
ity, and content (e.g., narrative vs. conversation) of both the
training and test sets and to avoid overfitting to any particular
speaker or speaker characteristic. We note that selecting the
test data in this way has the effect that certain speakers ap-
pear in both the testing and training data, a compromise we
are obliged to make given the very small number of available
speakers of the language.

Approximately six hours of the audio data consists of
casual conversations between one of the authors and a Seneca
elder dealing with current events, the weather, and anec-
dotes from the elder’s childhood. The remaining audio data
was collected from a variety of other speakers and consists
of community narratives and information about the natural
world. In addition to transcriptions of this audio (roughly
35,000 words), the text data used to train the language model
includes an additional 6000 words of previously transcribed
texts for which there are no corresponding audio recordings.

8.2. Mini-GCNN details

Fig. 2b shows the architecture of each GLU block. Each
block consists of two 1D convolutions of the same kernel size
and depth. One of the convolution outputs (Conv A) is used
to extract features from the input, while the other convolu-
tion output (Conv B) is passed through a sigmoid activation
function and then multiplied element-wise to act as a gating
mechanism. This gating mechanism allows the network to
learn which feature is important and should be passed on to
the next layer, which help improve gradient flow. Dropout
layers of 0.25 is used after each GLU block for regularization.
While the original GCNN network is trained with MFSC as
input, we decided to go with MFCC instead. Similar to the
DeepSpeech model, the input MFCCs are obtained from win-
dow size of 20msec and strided by 10msec, and CTC loss was
used to train the network.

Fig. 2. a) The mini-GCNN architecture used was modified
from the architecture used for WSJ described in [20]. We
removed layers with kernel size greater than 8 to simplify the
network and speed up training. For each block, k is the kernel
size, and d is the depth given to the GLU. b) The architecture
of each GLU block, where k is kernel size, d is convolution
depth of an operation, and D is the convolution depth given
to the GLU. All convolutions have stride of 1 and paddings to
maintain the same sequence length

.

8.2.1. Training details

All DeepSpeech models were trained with 0.001 learning rate
using Adam optimizer until training loss converges. All mini-
GCNN models were trained with 0.0003 learning rate using
Adam optimizer until training loss converges. For all models,
the parameters for the Adam optimizer are: β1 = 0.9, β2 =
0.99, and ε = 1e− 8.

8.3. Data augmentation models

Signal distortion: Jimerson et al. [8] explored data augmen-
tation via distortion of the speech signal, in which they added
to the training corpus copies of the existing audio data that
were modified to adjust F0 and speaking rate or to include
background noise. Here we focus on modifying pitch and
speaking rate using PSOLA. For pitch augmentation, the F0
of the speech signal was varied in fractions of octaves ranging
from 0.10 to 0.30 with a step size of 0.05. Speaking rate was
adjusted by re-sampling the audio at multiples of the sam-
pling frequency of the utterance ranging from 0.75 to 1.25
with a step size of 0.05. Each utterance in the training corpus
was distorted 10 times with parameters randomly chosen and
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added to the existing training corpus, resulting in an addi-
tional 6000 minutes of audio data.

Voice conversion: The StarGAN-VC model [29] modi-
fies the image-based StarGAN [28] to acoustic features to
perform many-to-many voice conversions. StarGAN [28]
implements a cycleGAN [26] architecture with an additional
domain classifier, where the speaker identity was used as the
domain. The VAWGAN model [30] is a two-stage framework
developed for non-parallel corpus voice conversion. The first
stage converts input audio to a phonetic content vector using a
speaker-independent encoder. The second stage then converts
the phonetic content vector to audio with the other speaker’s
characteristics by combining the phonetic content vector with
a speaker representation input. To improve the output quality,
a Wasserstein GAN was added after the decoder stage.

For each of the voice conversion methods, we selected
the three speakers with the largest volume of labelled data:
Speaker A (94 minutes), Speaker B (250 minutes), and
Speaker C (156 minutes). Since StarGAN-VC enables many-
to-many voice conversion, only one StarGAN-VC model was
trained to perform voice conversion among the three speakers.
The StarGAN-VC model was trained for a total of 500,000
iterations, with sample outputs taken at every 50,000 itera-
tions to subjectively determine whether the model produced
intelligible utterances. A total of six VAWGAN models were
trained to perform voice conversion among the three speakers
since VAWGAN only allows for one-to-one voice conversion.
Each VAWGAN model was trained for 100 epochs, with sam-
ples taken every 10 epochs to determine whether synthesized
utterances were intelligible. The trained StarGAN-VC and
VAWGAN models were then used to convert utterances from
each of the three speakers to the other two. From the original
500 minutes of audio produced by Speakers A, B, and C,
we obtained 1000 minutes of synthetic data for each voice
conversion model.

Figure 3 shows the mel-spectrogram of an unaltered
Seneca utterance along with its corresponding synthetically
generated spectrograms for randomly chosen speed and pitch
distortions, as well as the StarGAN-VC and VAWGAN aug-
mentation methods. The two voice conversion methods syn-
thesize the utterance from speaker A as if it were spoken by
speaker B. The peak locations in the two voice conversion
methods are maintained, but the signature characteristics of
the voice are transformed.

8.4. Language modeling

To each of our acoustic models, we apply two different lan-
guage model configurations: no language model and a word-
level trigram language model. The n-gram language model
is trained on the transcripts of the 600 minutes of acoustic
training (roughly 35,000 words) as well as an addition 6500
words of Seneca text created for language learning purposes,

Fig. 3. Mel-spectrograms of a randomly selected utterance.
The original utterance (mean F0=153, duration=2048msec)
is on the left, while the various augmentation methods,
counter-clockwise from top left are: pitch modification (mean
F0=179), speaking rate modification (duration=3132msec),
VAWGAN, and StarGAN-VC.

produced originally as written text, or transcribed by previous
researchers from recordings that are no longer available. The
n-gram model was created with KenLM [32] using modified
Kneser-Ney smoothing, no pruning, and an n-gram order of 3.

8.5. Discussion of Results

We performed experiments on both recurrent and convolution
acoustic models and found that convolutional methods are not
only more compute-efficient but also yield lower word and
character error rates. Unsurprisingly, we found that using n-
gram language models during decoding results in large gains
in accuracy, regardless of the acoustic model used. Our aug-
mentation model using StarGAN-VC with recurrent acous-
tic models yields results approaching traditional GMM/HMM
methods, which have generally outperformed deep learning
approaches when training resources are very limited. Per-
haps more significant is our finding that convolutional acous-
tic modeling approaches perform better than traditional ap-
proaches regardless of the augmentation technique used. In
our future work, we plan to explore the utility of the mini-
GCNN framework in other low-resource scenarios in order to
test the limits of data scarcity and to determine whether the
utility of this approach is dependent on specific typological
characteristics.

Our three data augmentation methods yield varying re-
sults. This suggests that there is potential utility in combining
all three augmentation models, either sequentially or collec-
tively, an approach we will explore for future work. We also
plan to build Seneca speech synthesis models in order to gen-
erate new Seneca audio from the Seneca text data for which
there are no corresponding recordings. Finally, we hope to be
able to use transfer learning to leverage a much larger corpus
of recordings of Mohawk, a language very closely related to
Seneca that is more widely spoken.
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Unlike many languages that are considered “low-resource”,
such as Vietnamese or Haitian Creole, Seneca has essentially
no written text for training language models beyond what we
already included in our models. In addition, Seneca has an
unusually complex morphology, which makes it very diffi-
cult to provide good vocabulary coverage, resulting in very
high out-of-vocabulary rates. To address these challenges,
we are investigating the feasibility of data augmentation in
the language model. Our current work focuses on generat-
ing synthetic text data from both deep and n-gram character,
word, and morph language models, and determining the best
way to incorporate these language models into decoding. We
anticipate our research will enable low and high-resource
languages alike, to take advantage of the recent ASR gains
afforded by deep methods.
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