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ABSTRACT

We consider multi-armed bandit problems in social groups wherein
each individual has bounded memory and shares the common goal
of learning the best arm/option. We say an individual learns the
best option if eventually (as t — o) it pulls only the arm with the
highest expected reward. While this goal is provably impossible for
an isolated individual due to bounded memory, we show that, in
social groups, this goal can be achieved easily with the aid of social
persuasion (i.e.,, communication) as long as the communication
networks/graphs satisfy some mild conditions. In this work, we
model and analyze a type of learning dynamics which are well-
observed in social groups. Specifically, under the learning dynamics
of interest, an individual sequentially decides on which arm to pull
next based on not only its private reward feedback but also the
suggestion provided by a randomly chosen neighbor. To deal with
the interplay between the randomness in the rewards and in the
social interaction, we employ the mean-field approximation method.
Considering the possibility that the individuals in the networks
may not be exchangeable when the communication networks are
not cliques, we go beyond the classic mean-field techniques and
apply a refined version of mean-field approximation. Notably, our
results hold even if the communication graphs are highly sparse.
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1 INTRODUCTION

Individuals often need to make a sequence of decisions among a
fixed finite set of options (alternatives), whose rewards/payoffs can
be regarded as stochastic, for example:
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e Human society: In many economic situations, individuals
need to make a sequence of decisions among multiple op-
tions, such as when purchasing perishable products [3] and
when designing financial portfolios [14]. In the former case,
the options can be the product of the same kind from dif-
ferent sellers. In the latter, the options are different possible
portfolios.

e Social insect colonies: Foraging and house-hunting are two
fundamental problems in social insect colonies, and both of
them have inspired counterpart algorithms in robotics [10].
During foraging, each ant/bee repeatedly refines its foraging
areas to improve harvesting efficiency. House-hunting refers
to the collective decision process in which the entire social
group collectively identifies a high-quality site to immigrate
to. For the success of house-hunting, individuals repeatedly
scout and evaluate multiple candidate sites, and exchange
information with each other to reach a collective decision.

Many of these sequential decision problems can be cast as multi-
armed bandit problems [1, 4, 7]. These have been studied intensively
in the centralized setting, where there is only one player in the
system, under different notions of performance metrics such as
pseudo-regret, expected regret, simple regret, etc. [1, 4, 4, 7, 8, 12].
Specifically, a K-armed bandit problem is defined by the reward pro-
cesses of individual arms/options (Rk,i ti € Z+) fork=1,--- K,
where Ry ; is the reward of the i~th pull of arm k. At each stage, a
player chooses one arm to pull and obtains some observable pay-
off/reward generated by the chosen arm. In the most basic formula-
tion the reward process (Rk, il € Z+) of each option is stochastic
and successive pulls of arm k yield i.i.d. rewards Ry 1,Rg 2, .
Both asymptotically optimal algorithms and efficient finite-time
order optimal algorithms have been proposed [1, 4, 12, 13]. These
algorithms typically have some non-trivial requirements on indi-
viduals’ memorization capabilities. For example, upper confidence
bound (UCB) algorithm requires an individual to memorize the
cumulative rewards of each arm he has obtained so far, the number
of pulls of each arm, and the total number of pulls [1, 12]. Although
this is not a memory-demanding requirement, nevertheless, this
requirement cannot be perfectly fulfilled even by humans, let alone
by social insects, due to bounded rationality of humans, and limited
memory and inaccurate computation of social insects. In human
society, when a customer is making a purchase decision of perish-
able products, he may recall only the brand of product that he is
satisfied with in his most recent purchase. Similarly, in ant colonies,
during house-hunting, an ant can memorize only a few recently
visited sites.
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In this paper, we capture the above memory constraints by as-
suming an individual has only bounded/finite memory. The prob-
lem of multi-armed bandits with finite memory constraint has been
proposed by Robbins [12] and attracted some research attention
[5, 6, 15]. The subtleties and pitfalls in making a good definition
of memory were not identified until Cover’s work [5, 6]. We use
the memory assumptions specified in [5], which require that an
individual’s history be summarized by a finite-valued memory. We
say an individual learns the best option if eventually (as t — co) it
pulls only the arm with the highest expected reward.

For an isolated individual, learning the best option is provably
impossible [5].! Nevertheless, successful learning is still often ob-
served in social groups such as human society [3], social insect
colonies [9] and swarm robotics [10]. This may be because in social
groups individuals inevitably interact with others. In particular, in
social groups individuals are able to, and tend to, take advantage
of others’ experience through observing their neighbors [2, 11].
Intuitively, it appears that as a result of this social interaction, the
memory of each individual is “amplified”, and this amplified shared
memory is sufficient for the entire social group to collaboratively
learn the best option.

Approach and key contributions: In this paper, we rigorously
show that the above intuition is correct with a focus on the impact of
the graph structures on the performance of collaboratively learning.
Concretely, we assume time is continuous and each individual
has an independent Poisson clock with common rate. When an
individual’s local clock ticks, it attempts to perform an update
immediately via two steps:

(1) Sampling: If the individual does not have any preference
over the K arms yet, then:

(a) With probability i € [0,1], the individual pulls one of the
K arms uniformly at random (uniform sampling).

(b) With probability 1—y, the individual chooses one neighbor
uniformly at random, and pulls the arm suggested by the
chosen neighbor (peer recommendation); pulls no arm if
the chosen neighbor does not have any preference over
the K arms yet.

else The individual chooses one neighbor uniformly at ran-
dom, and pulls the arm suggested by the chosen neighbor
(peer recommendation); pulls no arm if the chosen neighbor
does not have any preference over the K arms yet.

(2) Adopting: If a reward is obtained by pulling the chosen
arm, then the individual updates its preference to this arm.

Note that if the awake individual pulls no arm, it will not get a
reward; thus, its preference is unchanged.

A key analytical challenge of our learning dynamics is to deal
with the interplay of the randomness in the rewards and that in
the social interaction. Comparing to the case when the communica-
tion graphs are cliques, this interplay is significantly complicated
by the lack of exchangeability among the individuals on general
communication graphs. Observing this, we go beyond the classic
mean-field techniques and apply a refined version of mean-field
approximation:

1A less restricted memory constraint — stochastic fading memory - is considered in
[16], wherein similar negative results when memory decays fast are obtained.

e Using coupling we show that, if the communication graph
is connected and is either regular or has doubly-stochastic
degree-weighted adjacency matrix, with probability — 1 as
the social group size N — oo, every individual in the social
group learns the best option.

o If the minimum degree of the graph diverges as N — oo,
over an arbitrary but given finite time horizon, the sample
paths describing the opinion evolutions of the individuals
are asymptotically independent. In addition, the proportions
of the population with different opinions converge to the
unique solution of a system of ODEs. Interestingly, the ob-
tained system of ODEs are invariant to the structures of the
communication graphs. In the solution of the obtained ODEs,
the proportion of the population holding the correct opinion
converges to 1 exponentially fast in time.

Notably, our results hold even if the communication graphs are
highly sparse.
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