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Charge-dependent pair correlations relative to a third particle in p+Au and d+Au
collisions at RHIC
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Quark interactions with topological gluon configurations can induce chirality imbalance and local
parity violation in quantum chromodynamics. This can lead to electric charge separation along



the strong magnetic field in relativistic heavy-ion collisions — the chiral magnetic effect (CME). We
report measurements by the STAR collaboration of a CME-sensitive observable in p+Au and d+Au
collisions at 200 GeV, where the CME is not expected, using charge-dependent pair correlations rel-
ative to a third particle. We observe strong charge-dependent correlations similar to those measured
in heavy-ion collisions. This bears important implications for the interpretation of the heavy-ion

data.

PACS numbers: 25.75.-q, 25.75.Gz, 25.75.Ld

INTRODUCTION

In quantum chromodynamics, interactions of massless
quarks with fluctuating topological gluon fields are pre-
dicted to induce chirality imbalance and parity violation
in a local domain [1-3]. This chirality imbalance can
lead to an electric charge separation in the presence of a
strong magnetic field (BE’)7 a phenomenon known as the
chiral magnetic effect (CME) [4-9]. Such a strong B-
field may be available in relativistic heavy-ion collisions,
generated by the incoming protons at early times [8, 10].
Extensive theoretical and experimental efforts have been
devoted to the search for the CME-induced charge sepa-
ration along B in heavy-ion collisions [11-13].

The commonly used observable to search for charge
separation in heavy-ion collisions is the three-point az-
imuthal correlator [14],

v = cos(da + s — 2¢), (1)

where ¢, and ¢g are the azimuthal angles of particles «
and f3, respectively. In Eq. (1), ¢ is the azimuthal angle of
the impact parameter vector. In heavy-ion collisions, it is
called the reaction plane (spanned by the impact param-
eter direction and the beam). It is often approximated by
the second order harmonic participant plane (¢2) [15, 16],
constructed experimentally by the event plane measured
from final state particle azimuthal distribution. To mea-
sure the +y, instead of using the event plane, the three-
particle correlator method is often used [14, 17, 18]:

v = (cos(¢a + bp — 2¢C)>/U2,Ca (2)

where ¢, is the azimuthal angle of a third, charge-
inclusive particle ¢ which serves as a measure of the .
The imprecision in determining the 1 by a single particle
is corrected by a resolution factor, equal to the second-
order Fourier coefficient of particle ¢’s azimuthal distri-
bution, vy ., also known as the elliptic flow [19]. In order
to remove the charge independent background [17, 18],
such as that due to momentum conservation, the corre-
lation difference variable is used,

Ay =08 — 788, (3)

where vog stands for the correlation of opposite-sign
(OS) pairs (o and S have opposite-sign electric charges)
and ~sg for that of the same-sign (SS) pairs (« and
have same-sign electric charge).

Significant A~ is indeed observed in heavy-ion colli-
sions at RHIC [17, 18, 20, 21], and at LHC [22-25]. How-
ever, a decisive answer regarding the existence, or not, of
the CME is still under debate. The main difficulty in
interpreting the A~y observable as originated from the
CME is the possibility of significant charge-dependent
background contributions, such as those from resonance
decays [14, 26-30]. This is because the A~ variable is am-
biguous between an OS pair from the CME back-to-back
perpendicular to 1o (charge separation) and an OS pair
from a resonance decay along - (charge conservation).
There are more particles/resonances along the ¢ (or the
particle ¢) direction than perpendicular to it, an effect
quantified by the elliptical anisotropy parameter vg yes..
Equation (2) is valid and Ay would be a good measure
of the CME only under the assumption that all particles
(including the CME-related particles) are correlated to
a global plane 19, but intrinsically uncorrelated among
themselves. When « and S are intrinsically correlated,
then A~y would contain a background (A~pikged), arising
from the coupling of this elliptical anisotropy and the
intrinsic decay correlation and is expected to take the
following form [14, 26, 30]:

A’kagd X <COS(¢O¢ + (bﬁ - 2¢res.)>v2,res. . (4)

Other possible backgrounds include three-particle non-
flow correlations, where the correlation of particle «, g
with particle ¢ is also of nonflow nature. Moreover, the
estimate of vy . via two-particle correlations may also be
affected by short-range nonflow correlations. These ef-
fects are likely dominant for very low multiplicity events
because they are not sufficiently diluted by multiplicity
combinatorics. Nevertheless, the factorization relation in
Eq. (2) is still expected to approximately hold, regardless
of the nature of the background correlations [31].

In non-central heavy-ion collisions, the participant
plane, although fluctuating [16], is generally aligned with
the reaction plane, thus generally perpendicular to B. In
proton-nucleus collisions, however, the participant plane
is determined purely by geometry fluctuations, and thus
is essentially uncorrelated with the impact parameter
or the B direction [24, 32, 33]. A recent study, con-
sidering the fluctuating size of the proton, suggests a
small but non-zero correlation [33]. Therefore, CME-
induced A~y with respect to the s is significantly sup-
pressed in proton-nucleus collisions compared to possi-
ble signals from heavy-ion collisions [33]. Background



correlations aforementioned is expected to be present in
proton-nucleus collisions as well. These correlations are
propagated to the three-particle correlator via correla-
tions with respect to particle ¢, not directly to the impact
parameter or the B direction. Thus, the backgrounds in
proton-nucleus collisions contribute in a similar fashion
as those in heavy-ion collisions. Indeed, a large A~y sig-
nal was observed in p+Pb collisions at the LHC, similar
to that in Pb+Pb collisions. This challenged the CME
interpretation of the heavy-ion data [24].

It is possible that the CME would decrease as collision
energy increases, due to the more rapidly decaying B at
higher energies [8, 34]. Hence, the similarity between
p+Pb and Pb+Pb collisions at /sy = 5.02 TeV at the
LHC may be expected, and the situation at RHIC could
be different [11]. Here we report Ay measurements by
the STAR experiment at RHIC in small-system p+Au
and d+Au collisions at /syn = 200 GeV.

EXPERIMENT AND DATA ANALYSIS

The data reported here were taken by the STAR ex-
periment in 2003 (d+Au) and 2015 (p+Au). The STAR
experiment apparatus is described elsewhere [35]. Mini-
mum bias (MB) triggers were used for both data taking
periods. For d+Au [36], the MB trigger required at least
one beam-rapidity neutron in the Zero Degree Calorime-
ter (ZDC) [37] in the Au beam direction. For p+Au, the
MB trigger data used in this analysis was defined as a
coincidence between the two Vertex Position Detectors
(VPDs) [38].

The detectors relevant to this analysis are the cylindri-
cal Time Projection Chamber (TPC) [39, 40] residing in-
side an approximately uniform magnetic field of 0.5 Tesla
along the beam direction (z). Charged particles travers-
ing the chamber ionize the TPC gas. The ionization elec-
trons drift towards the TPC endcaps in a uniform electric
field, provided by the high voltage on the TPC central
membrane. The avalanche electrons are collected by the
pad planes, and together with the drift time information,
provide three-dimensional space points of the ionization
called “hits”.

Trajectories are reconstructed from those hits; at least
10 hits are required for a valid track. The interaction’s
primary vertex is reconstructed from charged particle
tracks. Tracks with the distance of closest approach
(DCA) to the primary vertex within 3 cm are consid-
ered primary tracks. The data are reported as a function
of the efficiency corrected charged particle multiplicity
density dNg,/dn at mid-rapidity [41]. The efficiency is
estimated via the STAR standard embedding procedure,
which is ~ 93% in p+Au and d+Au collisions.

In this analysis, events with primary vertices within
30 cm in p+Au (50 cm in d+Au) longitudinally and 2 cm
in p+Au (3.5 cm in d+Au) transversaly from the geomet-

rical center of the TPC are used. To ensure high quality
of primary particles, further selections are applied to re-
quire tracks with at least 20 hits and DCA less than 2 cm.
Split tracks are removed by requiring the number of hits
over the maximum number of possible hits to be greater
than 0.52 [42]. In the p+Au analysis, where VPD de-
tectors and Time-of-Filght (TOF) detector [43] are avail-
able, the primary vertex is required to match with the
VPD’s measured vertex within 6 cm, and primary tracks
are required to match with the TOF detector in order to
reduce the pile-up tracks.

Tracks in the full TPC acceptance (|| < 1, reducing
to |n] < 0.9 in case of TOF matched tracks in p+Au)
with transverse momentum pr from 0.2 to 2.0 GeV/c2
are used for all three particles in the three-particle cor-
relator of Eq. (2). The cumulant method is used to com-
pute v, where the calculation loops over the o and (8
particles, and the particle ¢ is handled by the cumulant
of the remaining particles except o and 3. No n gap is
applied between any pair among the three particles as in
Refs. [17, 18]. The v, . is obtained by the two-particle cu-
mulant [44]. To gauge the nonflow effects, various n gaps
of 0, 0.5, 1.0 and 1.4 are applied. The ppr-dependent TPC
tracking efficiency is not corrected for the v correlator as
in Refs. [17, 18], and this effect is included in the system-
atic uncertainties. The detector non-uniform azimuthal
acceptance effect is corrected by the recentering method
as a function of pr [45, 46].

SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are estimated as follows.
The required minimum number of points is varied from
20 to 25. The DCA of tracks is varied from 2 cm to
1 and 3 cm. The pr range of the particle ¢ is varied
from 0.2-2 GeV/c to 0.2-5 GeV /c. The difference between
the results from events with positive and negative recon-
structed z coordinate of primary vertex is ~ 2%. The
pr-dependent TPC tracking efficiency correction intro-
duces a ~ 1% difference. pp-independent azimuthal non-
uniformity recentering correction is also studied. The
TOF detector acceptance is limited to |n| < 0.9, and
this causes a ~ —6% (single sided) effect in p+Au. The
systematic uncertainties obtained by various cuts and
sources are added in quadrature. These are plotted in
the figures as brackets. The horizontal brackets indicate
the systematic uncertainty of the dN,/dn. The vertical
brackets indicate the systematic uncertainty of the cor-
relator. Total systematic uncertainty of the Ay is ~ 9%
in p+Au and in d4+Au (Table I). Total systematic uncer-
tainty of the dN¢,/dn is ~ 15% in p+Au and is ~ 7% in
d+Au.



source p+Au|d+Au
dca & nHits +5% | £8%
pr(c) +0% | +1%
V. +£2% | £2%
pr-dependent efficiency +1% | +1%

pr-independent non-uniformity | +5% | +4%
TOF acceptance —6% -
total % | £9%

TABLE I. The systematic uncertainties of the A~y correlator
in p+Au and in d+Au collisions.

RESULTS AND DISCUSSIONS

Figure 1 shows the yss and yps results as functions
of multiplicity in p+Au and d+Au collisions at /s =
200 GeV. For comparison, the corresponding Au+Au re-
sults [17, 18, 20] are also shown. The dashed lines repre-
sent the results with vy . using different n gaps of 0, 0.5
and 1.4 in p+Au and d+Au collisions. The results with
vy, using 1 gaps of 1.0 in p+Au and d+Au collisions are
plotted as solid lines. The results show that the varia-
tion from different 7 gaps is large but tends to converge
towards high multiplicity. The ~gs and yog results seem
to follow a decreasing trend with increasing multiplicity
in all systems.

e OS Sss 1
o p+Au b
O = d+Au
o e Au+Au (Y2004) 1

Au+Au (Y2007) 1

p+Au d+Au n
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FIG. 1. The vss and vos correlators in p+Au and d+Au
collisions as a function of multiplicity, compared to those in
Au+Au collisions [17, 18, 20]. Particles «, 3, and c are all from
the full TPC |n| < 1; no n gap is applied. The va . is obtained
by two-particle cumulants with 1 gap of 1.0; results with 7
gaps of 0, 0.5 and 1.4 are shown as dashed lines. Statistical
errors are shown by the vertical bars and systematic uncer-
tainties are shown by the vertical brackets. The horizontal
brackets indicate the systematic uncertainty of the dNen/dn.

Figure 2 shows A~y as a function of multiplicity in
p+Au and d+Au collisions, and, for comparison, in
Au+Au collisions [17, 18, 20]. The A~y decreases with
increasing multiplicity in both systems. Large A~y val-

ues are observed in p+Au and d+Au collisions, compa-
rable to the peripheral Au+Au collision data at simi-
lar multiplicities. Our new p+Au and d+Au measure-
ments demonstrate that background contributions could
produce magnitudes of the Ay correlator comparable to
what has been observed in Au+Au data, and thus offer a
possible alternative explanation of the A~y measurements
in Au+Au collisions without invoking CME interpreta-
tion.

(%))
(%))
>
1 0.01 Anin v2{2}: 0 |
8 i Aninv,{2}:0.5 -
>~ —— —— Aninv{2}:1.0 ]
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mp+Au e d+Au
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FIG. 2. The A~ correlator in p+Au and d+Au collisions
as a function of multiplicity, compared to that in Au+Au
collisions [17, 18, 20]. The difference measures the charge-
dependent correlations. The data points connected by solid
lines are measured using An gap of 1.0 in v2{2}. Dashed lines
represent the results using v . with n gaps of 0, 0.5 and 1.4.

If indeed dominated by background contributions, the
A~ may be proportional to the average vo of the back-
ground sources, as represented by Eq. (4). The vy of
the background sources likely scale with the vy of the
final-state particles that are measured. The background
should also be proportional to the number of background
sources, and because A+ is a pair-wise average, the back-
ground is also inversely proportional to the total number
of pairs. As the number of background sources likely
scales with dN.y,/dn, thus A~y approximately scales with
vy/dNep/dn. To gain more insight, a scaled Ay observ-
able is introduced:

A"}/s,caled = APY X dNCh/dn/UQ . (5)

Since in our analysis there is no distinction between parti-
cles «, 8 and ¢ except the electric charge, the vo in Eq. (5)
is the same as vo .. Figure 3 shows the measured vy by
the two-particle cumulant method with various n gaps as
a function of multiplicity in p4+Au, d+Au collisions, to-
gether with results from Au+Au [17, 18] collisions. The
results show that v2{2} is large in p+Au and d+Au col-
lisions, and comparable to Au+Au results. HIJING [47]
simulation studies of p+Au and d+Au collisions suggest



significant contribution of nonflow correlations to vy at
very low multiplicities. Evidence of contribution to wvs
from collective flow has also been observed at RHIC and
the LHC from long-range particle correlations in small
systems, especially at higher multiplicity [48-52].

~ T T
AN - p+Au d+Au
‘;CJ\I [ VSN 200Gev 7T T Aninv {2} 0
e Aninv, {2}:0.5 1
0.1 S — — Minv{2:10
T Aninv 2y 14 |
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10 0
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FIG. 3. The measured two-particle cumulant v2{2} with n
gap of 1.0 as a function of multiplicity in p+Au and d+Au
collisions, compared to that in Au+Au collisions [17, 18]. The
data points connected by solid lines are measured using An
gap of 1.0 in v2{2}. Results with 1 gaps of 0, 0.5 and 1.4 are
shown in dash lines.

Figure 4 shows the scaled observable A~gcalea as a
function of multiplicity in p+Au and d+Au collisions,
and compares to that in Au+Au collisions. Results with
different 7 gaps for vy . are also shown. The Avscaled
in p+Au and d+Au collisions are similar to that in
Au+Au collisions. For both small-system and heavy-
ion collisions, the A~gscaleq is approximately constant
over dN.,/dn, although within large systematic uncer-
tainties. Since p+Au and d+Au results are dominated
by background contributions, the approximate dNg, /dn-
independent A~gcaleq Over the wide range of multiplicity
in Au+Au collisions is consistent with the background
scenario. Future measurements with larger n gaps, espe-
cially utilizing upgraded forward detectors, have the po-
tential to significantly suppress short-range background
correlations. Those studies will help further to under-
stand the background behavior and differentiate it from
the possible CME signal.

CONCLUSIONS

Experimental measurements of A+ in heavy—ion colli-
sions suffer from major backgrounds. It is expected that
the A~y correlator from small-system p+Au and d+Au
collisions will be dominated by background correlations,
as CME-induced contributions would be strongly sup-
pressed due to the random orientations of the magnetic

p+Au d+Au

------------ Aninv.{2}: 0 ]
““““““““ Aninv {2}:0.5 |

—— —— Anin v2{2}: 1.0 |

Anin v2{2}: 1.4 1

2; \'syn = 200 GeV

Ay X chh/dn/vz{Z}

o Au+Au (Y2004) |
Au+Au (Y2007) 1
10 10°

dN,,/dn

FIG. 4. The Ay x dNen/dn/v2 in p+Au and d+Au collisions
as a function of multiplicity, compared to that in Au+Au
collisions [17, 18, 20]. The data points connected by solid
lines are measured using An gap of 1.0 in v2{2}. Dashed
lines represent the results using v2,. with n gaps of 0, 0.5 and
1.4.

field and the participant plane. We reported here mea-
surements of large Ay magnitudes in p+Au and d+Au
collisions, comparable to the values previously reported
for peripheral Au+Au collisions at similar multiplicities
(dNen/dn). This is similar to the observation at the
LHC, where a large A~ signal is observed in p+Pb col-
lisions and is comparable to that in Pb+Pb collisions.
The scaled quantity, Ay X dN,/dn/ve, is approximately
constant over dNg,/dn for each of the collision systems
studied, a result expected if background sources domi-
nate. Our new p+Au and d+Au measurements, where
CME contribution is negligible, demonstrate that back-
ground contributions could produce magnitudes of the
A~y correlator comparable to what has been observed in
Au+Au data. These backgrounds come from particle
correlations (such as resonance decays) that are propa-
gated to the A~ observable through correlations to the
third particle ¢. Our results, while they do not rule out
the CME, offer a possible alternative explanation of the
A~ measurements in Au+Au collisions without invok-
ing CME interpretation. New observables [53] and more
differential measurements [54, 55] are needed to under-
stand the nature of backgrounds and extract any part
of the correlations that may be from the CME. Isobaric
collisions taken at RHIC [56] will further help elucidate
the respective CME and background contributions.
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