Polarization of $\Lambda(\bar{\Lambda})$ hyperons along the beam direction in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$

J. Adam, ${ }^{13}$ L. Adamczyk, ${ }^{2}$ J. R. Adams, ${ }^{37}$ J. K. Adkins, ${ }^{28}$ G. Agakishiev, ${ }^{26}$ M. M. Aggarwal, ${ }^{39}$ Z. Ahammed, ${ }^{59}$ I. Alekseev, ${ }^{3,33}$ D. M. Anderson, ${ }^{53}$ R. Aoyama, ${ }^{56}$ A. Aparin, ${ }^{26}$ D. Arkhipkin, ${ }^{6}$ E. C. Aschenauer, ${ }^{6}$ M. U. Ashraf, ${ }^{55}$ F. Atetalla, ${ }^{27}$ A. Attri, ${ }^{39}$ G. S. Averichev, ${ }^{26}$ V. Bairathi, ${ }^{34}$ K. Barish, ${ }^{10}$ A. J. Bassill, ${ }^{10}$ A. Behera, ${ }^{51}$ R. Bellwied, ${ }^{20}$ A. Bhasin, ${ }^{25}$ A. K. Bhati, ${ }^{39}$ J. Bielcik, ${ }^{14}$ J. Bielcikova, ${ }^{36}$ L. C. Bland, ${ }^{6}$ I. G. Bordyuzhin, ${ }^{3}$ J. D. Brandenburg, ${ }^{48,6}$ A. V. Brandin, ${ }^{33}$ J. Bryslawskyj, ${ }^{10}$ I. Bunzarov, ${ }^{26}$ J. Butterworth, ${ }^{44}$ H. Caines, ${ }^{62}$ M. Calderón de la Barca Sánchez, ${ }^{8}$ D. Cebra, ${ }^{8}$ I. Chakaberia, ${ }^{27,6}$ P. Chaloupka, ${ }^{14}$ B. K. Chan, ${ }^{9}$ F-H. Chang, ${ }^{35}$ Z. Chang, ${ }^{6}$ N. Chankova-Bunzarova, ${ }^{26}$
A. Chatterjee, ${ }^{59}$ S. Chattopadhyay, ${ }^{59}$ J. H. Chen, ${ }^{18}$ X. Chen, ${ }^{47}$ J. Cheng, ${ }^{55}$ M. Cherney, ${ }^{13}$ W. Christie, ${ }^{6}$ H. J. Crawford, ${ }^{7}$ M. Csanád, ${ }^{16}$ S. Das, ${ }^{11}$ T. G. Dedovich, ${ }^{26}$ I. M. Deppner, ${ }^{19}$ A. A. Derevschikov, ${ }^{41}$ L. Didenko, ${ }^{6}$ C. Dilks, ${ }^{40}$ X. Dong, ${ }^{29}$ J. L. Drachenberg, ${ }^{1}$ J. C. Dunlop, ${ }^{6}$ T. Edmonds, ${ }^{42}$ N. Elsey, ${ }^{61}$ J. Engelage, ${ }^{7}$ G. Eppley, ${ }^{44}$ R. Esha, ${ }^{51}$ S. Esumi, ${ }^{56}$ O. Evdokimov, ${ }^{12}$ J. Ewigleben, ${ }^{30}$ O. Eyser, ${ }^{6}$ R. Fatemi, ${ }^{28}$ S. Fazio, ${ }^{6}$ P. Federic,,${ }^{36}$ J. Fedorisin, ${ }^{26}$ Y. Feng, ${ }^{42}$ P. Filip, ${ }^{26}$ E. Finch, ${ }^{50}$ Y. Fisyak, ${ }^{6}$ L. Fulek, ${ }^{2}$ C. A. Gagliardi, ${ }^{53}$ T. Galatyuk, ${ }^{15}$ F. Geurts, ${ }^{44}$ A. Gibson, ${ }^{58}$ K. Gopal, ${ }^{22}$ D. Grosnick, ${ }^{58}$ A. Gupta, ${ }^{25}$ W. Guryn, ${ }^{6}$ A. I. Hamad, ${ }^{27}$ A. Hamed, ${ }^{5}$ J. W. Harris, ${ }^{62}$ L. He, ${ }^{42}$ S. Heppelmann, ${ }^{8}$ S. Heppelmann, ${ }^{40}$ N. Herrmann, ${ }^{19}$ L. Holub, ${ }^{14}$ Y. Hong, ${ }^{29}$ S. Horvat, ${ }^{62}$ B. Huang, ${ }^{12}$ H. Z. Huang, ${ }^{9}$ S. L. Huang, ${ }^{51}$ T. Huang, ${ }^{35}$ X. Huang, ${ }^{55}$ T. J. Humanic, ${ }^{37}$ P. Huo, ${ }^{51}$ G. Igo, ${ }^{9}$ W. W. Jacobs, ${ }^{23}$ C. Jena, ${ }^{22}$ A. Jentsch, ${ }^{54}$ Y. JI, ${ }^{47}$ J. Jia, ${ }^{6,51}$ K. Jiang, ${ }^{47}$ S. Jowzaee, ${ }^{61}$ X. Ju, ${ }^{47}$ E. G. Judd, ${ }^{7}$ S. Kabana, ${ }^{27}$ S. Kagamaster, ${ }^{30}$ D. Kalinkin, ${ }^{23}$ K. Kang, ${ }^{55}$ D. Kapukchyan, ${ }^{10}$ K. Kauder, ${ }^{6}$ H. W. Ke, ${ }^{6}$ D. Keane, ${ }^{27}$ A. Kechechyan, ${ }^{26}$ M. Kelsey, ${ }^{29}$ Y. V. Khyzhniak, ${ }^{33}$ D. P. Kikoła, ${ }^{60}$ C. Kim, ${ }^{10}$ T. A. Kinghorn, ${ }^{8}$ I. Kisel, ${ }^{17}$ A. Kisiel, ${ }^{60}$ M. Kocan, ${ }^{14}$ L. Kochenda, ${ }^{33}$ L. K. Kosarzewski, ${ }^{14}$ L. Kramarik, ${ }^{14}$ P. Kravtsov, ${ }^{33}$ K. Krueger, ${ }^{4}$ N. Kulathunga Mudiyanselage, ${ }^{20}$ L. Kumar, ${ }^{39}$ R. Kunnawalkam Elayavalli, ${ }^{61}$ J. H. Kwasizur, ${ }^{23}$ R. Lacey, ${ }^{51}$ J. M. Landgraf, ${ }^{6}$ J. Lauret, ${ }^{6}$ A. Lebedev, ${ }^{6}$ R. Lednicky, ${ }^{26}$ J. H. Lee, ${ }^{6}$ C. Li, ${ }^{47}$ W. Li, ${ }^{49}$ W. Li, ${ }^{44}$ X. Li,,${ }^{47}$ Y. Li, ${ }^{55}$ Y. Liang, ${ }^{27}$ R. Licenik, ${ }^{14}$ T. Lin, ${ }^{53}$ A. Lipiec, ${ }^{60}$ M. A. Lisa, ${ }^{37}$ F. Liu, ${ }^{11}$ H. Liu, ${ }^{23}$ P. Liu, ${ }^{51}$ P. Liu, ${ }^{49}$ T. Liu, ${ }^{62}$ X. Liu, ${ }^{37}$ Y. Liu, ${ }^{53}$ Z. Liu, ${ }^{47}$ T. Ljubicic, ${ }^{6}$ W. J. Llope, ${ }^{61}$ M. Lomnitz, ${ }^{29}$ R. S. Longacre, ${ }^{6}$ S. Luo, ${ }^{12}$ X. Luo, ${ }^{11}$ G. L. Ma, ${ }^{49}$ L. Ma, ${ }^{18}$ R. Ma, ${ }^{6}$ Y. G. Ma, ${ }^{49}$ N. Magdy, ${ }^{12}$ R. Majka, ${ }^{62}$ D. Mallick, ${ }^{34}$ S. Margetis, ${ }^{27}$ C. Markert, ${ }^{54}$ H. S. Matis, ${ }^{29}$ O. Matonoha, ${ }^{14}$ J. A. Mazer, ${ }^{45}$ K. Meehan, ${ }^{8}$ J. C. Mei, ${ }^{48}$ N. G. Minaev, ${ }^{41}$ S. Mioduszewski, ${ }^{53}$ D. Mishra, ${ }^{34}$ B. Mohanty, ${ }^{34}$ M. M. Mondal, ${ }^{24}$ I. Mooney, ${ }^{61}$ Z. Moravcova, ${ }^{14}$ D. A. Morozov, ${ }^{41}$ Md. Nasim, ${ }^{9}$ K. Nayak, ${ }^{11}$ J. M. Nelson, ${ }^{7}$ D. B. Nemes, ${ }^{62}$ M. Nie, ${ }^{48}$ G. Nigmatkulov, ${ }^{33}$ T. Niida, ${ }^{61}$ L. V. Nogach, ${ }^{41}$ T. Nonaka, ${ }^{11}$ G. Odyniec, ${ }^{29}$ A. Ogawa, ${ }^{6}$ K. Oh, ${ }^{43}$ S. Oh, ${ }^{62}$ V. A. Okorokov, ${ }^{33}$ B. S. Page, ${ }^{6}$ R. Pak, ${ }^{6}$ Y. Panebratsev, ${ }^{26}$ B. Pawlik,,${ }^{38}$
D. Pawlowska,,60 H. Pei, ${ }^{11}$ C. Perkins, ${ }^{7}$ R. L. Pintér, ${ }^{16}$ J. Pluta, ${ }^{60}$ J. Porter, ${ }^{29}$ M. Posik,,${ }^{52}$ N. K. Pruthi, ${ }^{39}$ M. Przybycien, ${ }^{2}$ J. Putschke, ${ }^{61}$ A. Quintero, ${ }^{52}$ S. K. Radhakrishnan, ${ }^{29}$ S. Ramachandran, ${ }^{28}$ R. L. Ray, ${ }^{54}$ R. Reed, ${ }^{30}$ H. G. Ritter, ${ }^{29}$ J. B. Roberts, ${ }^{44}$ O. V. Rogachevskiy, ${ }^{26}$ J. L. Romero, ${ }^{8}$ L. Ruan, ${ }^{6}$ J. Rusnak, ${ }^{36}$ O. Rusnakova, ${ }^{14}$ N. R. Sahoo, ${ }^{48}$ P. K. Sahu, ${ }^{24}$ S. Salur, ${ }^{45}$ J. Sandweiss, ${ }^{62}$ J. Schambach, ${ }^{54}$ W. B. Schmidke, ${ }^{6}$ N. Schmitz, ${ }^{31}$ B. R. Schweid, ${ }^{51}$ F. Seck, ${ }^{15}$ J. Seger, ${ }^{13}$ M. Sergeeva, ${ }^{9}$ R. Seto, ${ }^{10}$ P. Seyboth, ${ }^{31}$ N. Shah, ${ }^{49}$ E. Shahaliev, ${ }^{26}$ P. V. Shanmuganathan, ${ }^{30}$ M. Shao, ${ }^{47}$ F. Shen, ${ }^{48}$ W. Q. Shen, ${ }^{49}$ S. S. Shi, ${ }^{11}$ Q. Y. Shou, ${ }^{49}$ E. P. Sichtermann, ${ }^{29}$ S. Siejka, ${ }^{60}$ R. Sikora, ${ }^{2}$ M. Simko, ${ }^{36}$ J. Singh, ${ }^{39}$ S. Singha, ${ }^{27}$ D. Smirnov, ${ }^{6}$ N. Smirnov, ${ }^{62}$ W. Solyst, ${ }^{23}$ P. Sorensen, ${ }^{6}$ H. M. Spinka, ${ }^{4}$ B. Srivastava, ${ }^{42}$ T. D. S. Stanislaus, ${ }^{58}$ M. Stefaniak, ${ }^{60}$ D. J. Stewart, ${ }^{62}$ M. Strikhanov, ${ }^{33}$ B. Stringfellow, ${ }^{42}$ A. A. P. Suaide, ${ }^{46}$ T. Sugiura, ${ }^{56}$ M. Sumbera, ${ }^{36}$ B. Summa, ${ }^{40}$ X. M. Sun, ${ }^{11}$ Y. Sun, ${ }^{47}$ Y. Sun, ${ }^{21}$
B. Surrow, ${ }^{52}$ D. N. Svirida, ${ }^{3}$ P. Szymanski, ${ }^{60}$ A. H. Tang, ${ }^{6}$ Z. Tang, ${ }^{47}$ A. Taranenko, ${ }^{33}$ T. Tarnowsky, ${ }^{32}$ J. H. Thomas, ${ }^{29}$ A. R. Timmins, ${ }^{20}$ D. Tlusty, ${ }^{13}$ T. Todoroki, ${ }^{6}$ M. Tokarev, ${ }^{26}$ C. A. Tomkiel, ${ }^{30}$ S. Trentalange, ${ }^{9}$ R. E. Tribble, ${ }^{53}$ P. Tribedy, ${ }^{6}$ S. K. Tripathy, ${ }^{24}$ O. D. Tsai, ${ }^{9}$ B. Tu, ${ }^{11}$ Z. Tu, ${ }^{6}$ T. Ullrich, ${ }^{6}$ D. G. Underwood, ${ }^{4}$ I. Upsal, ${ }^{48,6}$ G. Van Buren, ${ }^{6}$ J. Vanek, ${ }^{36}$ A. N. Vasiliev, ${ }^{41}$ I. Vassiliev, ${ }^{17}$ F. Videbæk, ${ }^{6}$ S. Vokal, ${ }^{26}$ S. A. Voloshin, ${ }^{61}$ F. Wang, ${ }^{42}$ G. Wang, ${ }^{9}$ P. Wang, ${ }^{47}$ Y. Wang, ${ }^{11}$ Y. Wang, ${ }^{55}$ J. C. Webb, ${ }^{6}$ L. Wen, ${ }^{9}$ G. D. Westfall, ${ }^{32}$ H. Wieman, ${ }^{29}$ S. W. Wissink, ${ }^{23}$ R. Witt, ${ }^{57}$ Y. Wu, ${ }^{27}$ Z. G. Xiao, ${ }^{55}$ G. Xie, ${ }^{12}$ W. Xie, ${ }^{42}$ H. Xu, ${ }^{21}$ N. Xu, ${ }^{29}$ Q. H. Xu, ${ }^{48}$ Y. F. Xu, ${ }^{49}$ Z. Xu, ${ }^{6}$ C. Yang, ${ }^{48}$ Q. Yang, ${ }^{48}$ S. Yang, ${ }^{6}$ Y. Yang, ${ }^{35}$ Z. Yang, ${ }^{11}$ Z. Ye, ${ }^{44}$ Z. Ye, ${ }^{12}$ L. Yi, ${ }^{48}$ K. Yip, ${ }^{6}$ I. -K. Yoo, ${ }^{43}$ H. Zbroszczyk, ${ }^{60}$ W. Zha, ${ }^{47}$ D. Zhang, ${ }^{11}$ L. Zhang, ${ }^{11}$ S. Zhang, ${ }^{47}$ S. Zhang, ${ }^{49}$ X. P. Zhang, ${ }^{55}$ Y. Zhang, ${ }^{47}$ Z. Zhang, ${ }^{49}$ J. Zhao, ${ }^{42}$ C. Zhong, ${ }^{49}$ C. Zhou, ${ }^{49}$ X. Zhu, ${ }^{55}$ Z. Zhu, ${ }^{48}$ M. Zurek, ${ }^{29}$ and M. Zyzak ${ }^{17}$

[^0]
(Dated: May 29, 2019)
The $\Lambda(\bar{\Lambda})$ hyperon polarization along the beam direction has been measured for the first time in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. The polarization dependence on the hyperons' emission angle relative to the second-order event plane exhibits a sine modulation, indicating a quadrupole pattern

Abstract

of the vorticity component along the beam direction. The polarization is found to increase in more peripheral collisions, and shows no strong transverse momentum $\left(p_{T}\right)$ dependence at $p_{T}>1 \mathrm{GeV} / c$. The magnitude of the signal is about five times smaller than those predicted by hydrodynamic and multiphase transport models; the observed phase of the emission angle dependence is also opposite to these model predictions. In contrast, blast-wave model calculations reproduce the modulation phase measured in the data and capture the centrality and transverse momentum dependence of the signal once the model is required to reproduce the azimuthal dependence of the Gaussian source radii measured via the Hanbury-Brown and Twiss intensity interferometry technique.

PACS numbers: 25.75.-q, 25.75.Ld

The properties of deconfined partonic matter, the quark-gluon plasma, have been explored in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) [14] and the Large Hadron Collider [5-7]. The matter created in non-central heavy-ion collisions should exhibit rotational motion in order to conserve the initial angular momentum carried by the two colliding nuclei. The direction of the angular momentum is perpendicular to the reaction plane, as defined by incoming beam and the impact parameter vector. It was predicted $[8,9]$ that such a spinning motion of the matter would lead to a net spin polarization of particles produced in the collisions due to spin-orbit coupling. Hyperons are natural candidates to explore this phenomenon since in the parity violating weak decays of the hyperons the momentum vector of the decay baryon is highly correlated with the hyperon spin. In such decays the angular distribution of the daughter baryons is given by:

$$
\begin{equation*}
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} P_{H} \cos \theta^{*} \tag{1}
\end{equation*}
$$

where α_{H} is the hyperon decay parameter, P_{H} is the hyperon polarization, and θ^{*} is the angle between the polarization vector and the direction of the daughter baryon momentum in the hyperon rest frame.

The Solenoidal Tracker at RHIC (STAR) Collaboration has observed positive polarizations of Λ hyperons along the orbital angular momentum in $\mathrm{Au}+\mathrm{Au}$ collisions for collision energies of $\sqrt{s_{N N}}=7.7-200 \mathrm{GeV}[10,11]$. This polarization is evidence for the creation of the most vortical fluid ever observed, with vorticities of the order of $\omega \sim 10^{22} s^{-1}$. These results open new opportunities for a better understanding of the dynamics and properties of the matter created in heavy-ion collisions.

The spin polarization of hyperons along the orbital angular momentum of the entire system is referred to as the global polarization, meaning a net spin alignment along a globally defined direction. However, the vorticity and, consequently, the particle polarization may vary for different regions of the fluid due to anisotropic flow, energy deposits from jet quenching, density fluctuations, etc. The detailed structure of the vorticity fields may be complicated and the resulting particle polarization can depend on the particle transverse momentum and the azimuthal angle relative to the reaction plane, or even exhibit toroidal structures [12-15].

Anisotropic flow, characterized by the Fourier coefficients of the particle azimuthal distribution in the transverse plane, has been extensively studied in heavy-ion collisions and was found to be well described by hydrodynamic calculations $[16,17]$. Nontrivial velocity fields describing transverse anisotropic flow should lead to a vorticity component along the beam direction dependent on the azimuthal angle relative to the reaction plane $[13,14]$. The observation of the large second-order coefficients, a.k.a. elliptic flow, in mid-central collisions indicates significantly stronger expansion in the reaction plane direction compared to that out-of-plane, which might lead to a quadrupole structure in the z-component of vorticity as illustrated in Fig. 1. Experimental measurements of such a component are the main goal of this analysis.

The beam direction component of the polarization arising from vorticity due to elliptic flow is expected to be more sensitive to later times from flow development in the system evolution [18], unlike the global polarization that originates mostly from the initial velocity fields. It might also have different sensitivity to the relaxation time needed for the conversion of the vorticity into particle polarization. Therefore, it is of great interest to study the polarization along the beam direction for further understanding of the role of the vorticity in heavy-ion collisions and possibly to answer these questions. In this Letter, we report the beam direction component of polarization for Λ and $\bar{\Lambda}$ hyperons in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=$ 200 GeV . The results are presented as functions of the collision centrality and hyperons' transverse momentum $\left(p_{T}\right)$.

The dataset for this analysis was collected in 2014 by the STAR detector during the period of $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Charged-particle tracks were measured in the time projection chamber (TPC) [19], which covers the full azimuth and a pseudorapidity range of $-1<\eta<1$. The collision vertices were reconstructed using the measured charged-particle tracks. Events were selected to have the collision vertex position within 6 cm of the center of the TPC in the beam direction and within 2 cm in the radial direction with respect to the beam center. In addition, the difference between the vertex positions along the beam direction determined by the TPC and the vertex position detectors (VPD) [20] located at forward and backward rapidities $(4.24<|\eta|<5.1)$ was

FIG. 1. (Color online) A sketch illustrating the system created in a non-central heavy-ion collision viewed in the transverse plane ($x-y$), showing stronger in-plane expansion (solid arrows) and expected vorticities (open arrows). In this figure the colliding beams are oriented along the z -axis and the $\mathrm{x}-\mathrm{z}$ plane defines the reaction plane. See text for explanations of ϕ_{s} and ϕ_{b}.
required to be less than 3 cm to suppress pileup events. These selection criteria yielded about one billion minimum bias events, where the minimum bias trigger required hits of both VPDs and the zero-degree calorimeters [21] located at $|\eta|>6.3$.

The collision centrality was determined from the measured multiplicity of charged particles within $|\eta|<0.5$ and a Monte-Carlo Glauber simulation [22]. The secondorder event plane $\left(\Psi_{2}\right)$ as an experimental estimate of the reaction plane was determined by the charged-particle tracks within the transverse momentum range of $0.15<$ $p_{T}<2 \mathrm{GeV} / c$ and $0.1<|\eta|<1$:

$$
\begin{equation*}
\Psi_{2}^{\mathrm{obs}}=\tan ^{-1}\left(\sum_{i} w_{i} \sin \left(2 \phi_{i}\right) / \sum_{i} w_{i} \cos \left(2 \phi_{i}\right)\right) \tag{2}
\end{equation*}
$$

where ϕ_{i} and w_{i} are the azimuthal angle and p_{T} of the $i^{\text {th }}$ particle in the event. The resolution of the measured plane $\Psi_{2}^{\text {obs }}$ defined as $\operatorname{Res}\left(\Psi_{2}\right)=\left\langle\cos 2\left(\Psi_{2}^{\text {obs }}-\Psi_{2}\right)\right\rangle$ was estimated with the two-subevent method [23], where the two subevents were taken from $0.1<|\eta|<1$. In mid-central collisions the event plane resolution peaks at ~ 0.76.

Charged-particle tracks reconstructed with the TPC were selected to have good quality by requiring the following conditions. The number of hit points used in the track reconstruction was required to be larger than 15 . The ratio of the number of hit points used to the maximum possible number of TPC space points for that trajectory was required to be larger than 0.52 . Tracks within $0.15<p_{T}<10 \mathrm{GeV} / c$ and $|\eta|<1$ that passed through the track selections above were used to reconstruct Λ hyperons. In order to reconstruct Λ and $\bar{\Lambda}$, the decay channels of $\Lambda \rightarrow p+\pi^{-}$and $\bar{\Lambda} \rightarrow \bar{p}+\pi^{+}$, corresponding to $(63.9 \pm 0.5) \%$ of all decays [24], were utilized. The ionization energy loss $d E / d x$ in the TPC and the time of flight
information of the particles from the time-of-flight detector [25] were used to select daughter pions and protons. Cuts on decay topology, such as a distance of the closest approach (DCA) between the trajectory of $\Lambda(\bar{\Lambda})$ candidates and the primary vertex, DCA between the two daughters, and decay length of $\Lambda(\bar{\Lambda})$ candidates were applied to reduce the combinatoric background. Additional details about the $\Lambda(\bar{\Lambda})$ reconstruction can be found in Ref. [11].

The longitudinal component of the polarization can be measured by projecting the polarization onto the beam direction:

$$
\begin{equation*}
P_{z}=\frac{\left\langle\cos \theta_{p}^{*}\right\rangle}{\alpha_{H}\left\langle\cos ^{2} \theta_{p}^{*}\right\rangle}, \tag{3}
\end{equation*}
$$

where $\theta_{\underline{p}}^{*}$ is the polar angle of the daughter proton in the $\Lambda(\bar{\Lambda})$ rest frame and \rangle represents an average over $\Lambda(\bar{\Lambda})$ candidates in an event and then an average over all events. The decay parameter α_{H} is set to be $\alpha_{\Lambda}=$ $-\alpha_{\bar{\Lambda}}=0.642 \pm 0.013[24,26]$. If the detector has perfect acceptance and efficiency, $\left\langle\cos ^{2} \theta_{p}^{*}\right\rangle$ leads to $1 / 3$. In this study $\left\langle\cos ^{2} \theta_{p}^{*}\right\rangle$ was extracted from the data in order to account for pseudorapidity dependent detector acceptance effects. This term was found to be close to $1 / 3$ for all centralities but showed a systematic decrease for lower track p_{T}. To extract the signal $\left\langle\cos \theta_{p}^{*}\right\rangle$, two techniques were used: the event plane method and the invariant mass method as described in Ref. [11]. In the event plane method, $\left\langle\cos \theta_{p}^{*}\right\rangle$ was measured as a function of azimuthal angle of $\Lambda(\bar{\Lambda})$ relative to Ψ_{2}. The average polarization along the beam direction is expected to be zero due to symmetry. Effects due to detector acceptance and inefficiencies are removed by subtracting the azimuthal average of $\left\langle\cos \theta_{p}^{*}\right\rangle$ from each azimuthal bin i of Λ azimuthal angle: $\left\langle\cos \theta_{p}^{*}\right\rangle_{i}^{\text {sub }}=\left\langle\cos \theta_{p}^{*}\right\rangle_{i}-\sum_{i}^{\mathrm{n}_{\mathrm{bin}}}\left\langle\cos \theta_{p}^{*}\right\rangle_{i} / \mathrm{n}_{\mathrm{bin}}$.

Figure 2 shows $\left\langle\cos \theta_{p}^{*}\right\rangle^{\text {sub }}$ of Λ and $\bar{\Lambda}$ as a function of azimuthal angle relative to Ψ_{2} for the $20 \%-60 \%$ centrality bin. The solid lines indicate the fit results to the function $p_{0}+2 p_{1} \sin \left(2 \phi-2 \Psi_{2}\right)$, where p_{0} and p_{1} are fit parameters. The data are consistent with a sine structure for both Λ and $\bar{\Lambda}$ as expected from the elliptic flow. In the invariant mass method, the second-order Fourier sine coefficient of $P_{z}, p_{1}=\left\langle P_{z} \sin \left(2 \phi-2 \Psi_{2}\right)\right\rangle$, was measured as a function of the invariant mass. Following the same procedure as described in Ref. [11], the sine coefficient was directly extracted. The extracted coefficient in both methods was divided by $\operatorname{Res}\left(\Psi_{2}\right)$ to account for the finite event plane resolution. The invariant mass method was used to calculate the sine coefficient of P_{z} and the event plane method was used to cross-check and provide an estimate of the systematic uncertainty.

The systematic uncertainties were estimated by variation of the topological cuts $(<2 \%)$, comparing the results from two methods for signal extraction (5\%) as mentioned above, using different subevents $(-1<\eta<-0.5$

FIG. 2. (Color online) $\left\langle\cos \theta_{p}^{*}\right\rangle$ of Λ and $\bar{\Lambda}$ hyperons as a function of azimuthal angle ϕ relative to the second-order event plane Ψ_{2} for $20 \%-60 \%$ centrality bin in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Open boxes show the systematic uncertainties and $\left\rangle^{\text {sub }}\right.$ denotes the subtraction of the acceptance effect (see text). Solid lines show the fit with the sine function shown inside the figure. Note that the data are not corrected for the event plane resolution.
and $0.5<\eta<1$) for Ψ_{2} determination ($<11 \%$), and estimates of the possible background contribution to the signal (4.3%). The numbers are for mid-central collisions. Also the uncertainty from the decay parameter is accounted for (2% for Λ and 9.6% for $\bar{\Lambda}$, see Ref. [11] for the detail). We further studied the effect of a possible self-correlation between the particles used for the $\Lambda(\bar{\Lambda})$ reconstruction and the event plane by explicitly removing the daughter particles from the event plane calculation in Eq. (2). There was no significant difference between the results. The Λ and $\bar{\Lambda}$ reconstruction efficiencies were estimated using GEANT [28] simulations of the STAR detector [19]. The correction is found to lower mean values of the P_{z} sine coefficient by $\sim 10 \%$ in peripheral collisions and increases up to $\sim 50 \%$ in central collisions, although the variations are within statistical uncertainties. No significant difference was observed between Λ and $\bar{\Lambda}$ as expected. Therefore, results from both samples were combined to reduce statistical uncertainties.

Figure 3 presents the centrality dependence of the second Fourier sine coefficient $\left\langle P_{z} \sin \left(2 \phi-2 \Psi_{2}\right)\right\rangle$. The increase of the signal with decreasing centrality is likely due to increasing elliptic flow contributions in peripheral collisions. We note that, unlike elliptic flow, the polarization does disappear in the most central collisions, where the elliptic flow is still significant due to initial density fluctuations. Because of large uncertainties in periph-

FIG. 3. (Color online) The second Fourier sine coefficient of the polarization of Λ and $\bar{\Lambda}$ along the beam direction as a function of the collision centrality in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Open boxes show the systematic uncertainties. Dotted line shows the AMPT calculation [27] scaled by 0.2 (no p_{T} selection). Solid and dot-dashed lines with the bands show the blast-wave (BW) model calculation for $p_{T}=1$ GeV / c with Λ mass (see text for details).
eral collisions, it is not clear whether the signal continues to increase or levels off. The results are compared to a multiphase transport (AMPT) model [27] as shown with the dotted line. The AMPT model predicts the opposite phase of the modulations and overestimates the magnitude. The blast-wave model study is discussed later.

Since the elliptic flow also depends on p_{T} as well as on the centrality, the polarization may have p_{T} dependence. Figure 4 shows the sine coefficients of P_{z} as a function of the hyperon transverse momentum. No significant p_{T} dependence is observed for $p_{T}>1 \mathrm{GeV} / c$, and the statistical precision of the single data point for $p_{T}<1 \mathrm{GeV} / c$ is not enough to allow for definitive conclusions about the low p_{T} dependence. In the hydrodynamic model calculation [14], the sine coefficient of P_{z} increases in magnitude with p_{T} but shows the opposite sign to the data.

As shown in Figs. 3 and 4, the hydrodynamic and AMPT models predict the opposite sign in the sine coefficient of the polarization and their magnitudes differ from the data roughly by a factor of 5 . The reason of this sign difference is under discussion in the community. However, the sign change may be due to the relation between azimuthal anisotropy and spatial anisotropy at freeze-out [13]. There could be contributions from the kinematic vorticity originating from the elliptic flow as well as from the temporal gradient of temperatures at the time of hadronization [14]. A recent calculation us-

FIG. 4. (Color online) The second Fourier sine coefficient of the longitudinal polarization of Λ and $\bar{\Lambda}$ hyperons as a function of p_{T} for $20 \%-60 \%$ centrality bin in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Open boxes show the systematic uncertainties. Magenta dashed line shows the hydrodynamic model calculation [14] scaled by 0.2 . Solid and dot-dashed lines with the bands show the blast-wave (BW) model calculations with Λ mass.
ing the chiral kinetic approach predicts the same sign as the data [29]. The model accounts for the transverse component of the vorticity, resulting in axial charge currents. Note that both the hydrodynamic and transport models calculate local vorticity at freeze-out and convert it to the polarization assuming local thermal equilibrium of the spin degrees of freedom, while the chiral kinetic approach takes into account nonequilibrium effects but does not consider a contribution from the temperature gradient which is a main source of P_{z} in the hydrodynamic model.

These models indicate that the contribution from the kinematic vorticity to P_{z} is negligible or opposite in the sign to the naive expectation from the elliptic flow. In order to estimate the contribution from the kinematic vorticity we employed the blast-wave model (BW) [30-32]. Following Ref. [32] we parameterize the system velocity field at freeze-out with temperature (T) and transverse flow rapidity (ρ) defined as $\rho=\tilde{r}\left[\rho_{0}+\rho_{2} \cos \left(2 \phi_{b}\right)\right]$. Here ρ_{0} and ρ_{2} are the maximal radial expansion rapidity and its azimuthal modulation, \tilde{r} is the relative distance to the edge of the source, and ϕ_{b} defines the direction of the local velocity as indicated in Fig. 1. The source shape, assumed to be elliptical in the transverse plane, is parameterized by the R_{y} and R_{x} radii. Boost invariance is assumed. Two fits to the data are performed: in one only spectra and elliptic flow of π, K, and $\mathrm{p}(\bar{p})$ are fit; the sec-
ond fit [33] also includes azimuthal-angle-dependence of the pion Gaussian source radii at freeze-out as measured via Hanbury-Brown and Twiss (HBT) intensity interferometry. The average longitudinal vorticity is calculated according to the following formula:

$$
\begin{align*}
\left\langle\omega_{z} \sin (2 \phi)\right\rangle & =\frac{\int d \phi_{s} \int r d r I_{2}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right) \omega_{z} \sin \left(2 \phi_{b}\right)}{\int d \phi_{s} \int r d r I_{0}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right)}(4) \\
\omega_{z} & =\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right) \tag{5}
\end{align*}
$$

where the integration is over the transverse crosssectional area of the source, u_{μ} is a four-vector of the local flow velocity [32], ϕ_{s} is the azimuth of the production point (see Fig. 1 for the relation to ϕ_{b}), $\alpha_{t}=p_{T} / T \sinh \rho$, $\beta_{t}=m_{T} / T \cosh \rho ; I_{n}$ and K_{1} are the modified Bessel functions. Assuming a local thermal equilibrium, the longitudinal component of the polarization is estimated as $P_{z} \approx \omega_{z} /(2 T)$. The uncertainties shown for the BW model calculations corresponds to 1σ variation in the model parameters. See Ref. [34] for more details.

The BW calculations are compared to the data in Figs. 3 and 4. From central to mid-central collisions both BW calculations show positive sine coefficients which are compatible in both sign and magnitude to the measurement, although the BW model is based on a very simple picture of the freeze-out condition. It was shown in Ref. [13] that the vorticity in the BW model has the effects of the velocity field anisotropy $\left(\rho_{2} / \rho_{0}\right)$ and the spacial source anisotropy $\left(R_{y} / R_{x}\right)$ contributing with opposite signs, which can explain a strong sensitivity of the BW model predictions in the peripheral collisions to the inclusions of the HBT radii.

We have presented the first measurements of the longitudinal component of the polarization for Λ and $\bar{\Lambda}$ hyperons in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$. Finite signals of a quadrupole modulation of both Λ and $\bar{\Lambda}$ polarization along the beam direction are observed and found to be qualitatively consistent with the expectation from the vorticity component along the beam direction due to the elliptic flow. The results exhibit a strong centrality dependence with increasing magnitude as the collision centrality becomes more peripheral. No significant p_{T} dependence is observed above $p_{T}>1 \mathrm{GeV} / c$. A drop-off of the signal is hinted at for $p_{T}<1 \mathrm{GeV} / c$. The data were compared to calculations from hydrodynamic and AMPT models, both of which show the opposite phase of the modulation and overpredict the magnitude of the polarization. This might indicate incomplete thermal equilibration of the spin degrees of freedom for the beam direction component of the vorticity/polarization, as it develops later in time compared to the global polarization. On the other hand, the blast-wave model calculations are much closer to the data, even more so when the azimuthally sensitive HBT results along with the p_{T} spectra and v_{2} are included in the model fit. The blastwave model predicts the correct phase of P_{z} modulation
and a similar p_{T} dependence; the version with HBT radii included in the fit also reasonably describes the centrality dependence. These results together with the results of the global polarization may provide information on the relaxation time needed to convert the vorticity to particle polarization. Further theoretical and experimental studies are needed for better understanding.

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, the Ministry of Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office (FK-123824), New National Excellency Programme of the Hungarian Ministry of Human Capacities (UNKP-18-4), Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, RosAtom of Russia and German Bundesministerium fur Bildung, Wissenschaft, Forschung and Technologie (BMBF) and the Helmholtz Association.
[1] J. Adams et al. (STAR Collaboration), "Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions," Nucl. Phys. A 757, 102 (2005).
[2] K. Adcox et al. (PHENIX Collaboration), "Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration," Nucl. Phys. A 757, 184 (2005).
[3] B. B. Back et al. (PHOBOS Collaboration), "The PHOBOS Perspective on Discoveries at RHIC," Nucl. Phys. A 757, 28 (2005).
[4] l. Arsene et al. (BRAHMS Collaboration), "Quark Gluon Plasma and Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment," Nucl. Phys. A 757, 1 (2005).
[5] K. Aamodt et al. (ALICE Collaboration), "Suppression of charged particle production at large transverse momentum in central $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76$ TeV," Phys. Lett. B 696, 30-39 (2011).
[6] S. Chatrchyan et al. (CMS Collaboration), "Observation and studies of jet quenching in PbPb collisions at $\sqrt{s_{N N}}$ $=2.76 \mathrm{TeV}$," Phys. Rev. C 84, 024906 (2011).
[7] G. Aad et al. (ATLAS Collaboration), "Observation of a centrality-dependent dijet asymmetry in lead-lead colli-
sions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ with the ATLAS detector at the LHC," Phys. Rev. Lett. 105, 252303 (2010).
[8] Z. T. Liang and X. N. Wang, "Globally Polarized QuarkGluon Plasma in Noncentral A+A Collisions," Phys. Rev. Lett. 94, 102301 (2005), [Erratum: Phys. Rev. Lett. 96, 039901 (2006)].
[9] S. A. Voloshin, "Polarized secondary particles in unpolarized high energy hadron-hadron collisions?" (2004), arXiv:nucl-th/0410089 [nucl-th].
[10] L. Adamczyk et al. (STAR Collaboration), "Global Λ hyperon polarization in nuclear collisions," Nature 548, 62 (2017).
[11] J. Adam et al. (STAR Collaboration), "Global polarization of Λ hyperons in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200$ GeV," Phys. Rev. C 98, 014910 (2018).
[12] B. Betz, M. Gyulassy, and G. Torrieri, "Polarization probes of vorticity in heavy ion collisions," Phys. Rev. C 76, 044901 (2007).
[13] S. A. Voloshin, "Vorticity and particle polarization in heavy ion collisions (experimental perspective)," 17th International Conference on Strangeness in Quark Matter (SQM 2017) Utrecht, the Netherlands, July 10-15, 2017, (2017), 10.1051/epjconf/201817107002, [EPJ Web Conf.17,10700(2018)].
[14] F. Becattini and Iu. Karpenko, "Collective longitudinal polarization in relativistic heavy-ion collisions at very high energy," Phys. Rev. Lett. 120, 012302 (2018).
[15] L.-G. Pang, H. Petersen, Q. Wang, and X.-N. Wang, "Vortical Fluid and Λ Spin Correlations in High-Energy Heavy-Ion Collisions," Phys. Rev. Lett. 117, 192301 (2016).
[16] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, "Collective phenomena in non-central nuclear collisions," Landolt-Bornstein 23, 293 (2010).
[17] U. Heinz and R. Snellings, "Collective flow and viscosity in relativistic heavy-ion collisions," Ann. Rev. Nucl. Part. Sci. 63, 123 (2013).
[18] D. Teaney and L. Yan, "Triangularity and dipole asymmetry in relativistic heavy ion collisions," Phys. Rev. C 83, 064904 (2011).
[19] M. Anderson et al., "The STAR time projection chamber: A unique tool for studying high multiplicity events at RHIC," Nucl. Instrum. Meth. A 499, 659 (2003).
[20] W. J. Llope et al., "The STAR Vertex Position Detector," Nucl. Instrum. Meth. A 759, 23 (2014).
[21] C. Adler, A. Denisov, E. Garcia, M. Murray, H. Strobele, and S. White, "The RHIC zero degree calorimeters," Nucl. Instrum. Meth. A 461, 337 (2001).
[22] L. Adamczyk et al. (STAR Collaboration), "Inclusive charged hadron elliptic flow in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}$ $=7.7-39 \mathrm{GeV}$," Phys. Rev. C 86, 054908 (2012).
[23] A. M. Poskanzer and S. A. Voloshin, "Methods for analyzing anisotropic flow in relativistic nuclear collisions," Phys. Rev. C 58, 1671 (1998).
[24] C. Patrignani et al. (Particle Data Group), "Review of Particle Physics," Chin. Phys. C 40, 100001 (2016).
[25] W. J. Llope, "Multigap RPCs in the STAR experiment at RHIC," Nucl. Instrum. Meth. A 661, S110 (2012).
[26] Recent studies [35, 36] show $12 \%-17 \%$ higher α_{Λ} than Ref. [24]. Therefore the measured polarization could be smaller by that amount.
[27] X.-L. Xia, H. Li, Z.-B. Tang, and Q. Wang, "Probing vorticity structure in heavy-ion collisions by local Λ polarization," Phys. Rev. C 98, 024905 (2018).
[28] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, "GEANT3," (1987).
[29] Y. Sun and C. M. Ko, "Azimuthal angle dependence of the longitudinal spin polarization in relativistic heavy ion collisions," Phys. Rev. C99, 011903 (2019).
[30] E. Schnedermann, J. Sollfrank, and U. W. Heinz, "Thermal phenomenology of hadrons from $200 \mathrm{~A} \mathrm{GeV} \mathrm{S}+\mathrm{S}$ collisions," Phys. Rev. C 48, 2462 (1993).
[31] C. Adler et al. (STAR Collaboration), "Identified particle elliptic flow in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=130 \mathrm{GeV}$," Phys. Rev. Lett. 87, 182301 (2001).
[32] F. Retiere and M. A. Lisa, "Observable implications of geometrical and dynamical aspects of freeze-out in heavy
ion collisions," Phys. Rev. C 70, 044907 (2004).
[33] J. Adams et al. (STAR Collaboration), "Pion interferometry in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$," Phys. Rev. C 71, 044906 (2005).
[34] A. Dobrin, R. Bertens, T. Niida, and S. A. Voloshin, in preparation.
[35] M. Ablikim et al. (BESIII Collaboration), "Polarization and Entanglement in Baryon-Antibaryon Pair Production in Electron-Positron Annihilation," Nature Physics (2019), 10.1038/s41567-019-0494-8.
[36] D. G. Ireland, M. Dring, D. I. Glazier, J. Haidenbauer, M. Mai, R. Murray-Smith, and D. Rnchen, "Kaon Photoproduction and the Λ Decay Parameter $\alpha_{-}, "$ (2019), arXiv:1904.07616.

[^0]: ${ }^{1}$ Abilene Christian University, Abilene, Texas 79699
 ${ }^{2}$ AGH University of Science and Technology, FPACS, Cracow 30-059, Poland
 ${ }^{3}$ Alikhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia

