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Abstract— Mapping a desired 2D pattern onto a curved
surface has many applications. This includes motion planning
for mobile robots to perform coverage path planing (CPP),
robot end effector trajectory design for tasks such as printing,
depositing, wielding on a 3D surface. This problem becomes
more difficult if we want the mapped pattern to keep the
properties of the original pattern (i.e, least possible mapping
distortion), and pass over some desired points and/or remain
bounded in a specific region on the surface. In this paper, we
apply surface parametrization and mapping distortion analysis,
which is rarely used in robot motion planning works, to map
a pattern onto 3D surface. To meet additional goals such as
passing over certain points, a planar mapping determined by
constrained optimization is employed on the original pattern.
Our focus is on printing/depositing materials on curved sur-
faces, and simulations and experiments are provided to confirm
the performance of the approach.

I. INTRODUCTION

There are a number of tasks that require following a
desired trajectory along a curved surface. Applications for
mobile robots and UAVs include coverage path planning
(CPP) [1]–[3], agricultural field automation [4], vacuum
cleaning robots [5], lawn mowers [6], [7], etc. We are
particularly interested in printing or jetting materials onto
curved surfaces, with application in painting robots [8],
[9], printing antennas, depositing lines with desired width
[10] and automatic wound filling. Defining or mapping a
specific trajectory to curved surfaces is challenging, and this
challenge is increased when the trajectory must pass over
specific points and/or remain bounded in a desired region.

In this paper, we apply surface parametrization, planar
mapping and optimization to propose a novel approach to
solve this problem. Surface parametrization is a mapping
from a surface to the parametric domain. There has been
work in the image processing and computer graphics com-
munity for tasks such as surface parametrization, including
texture mapping modification, mesh editing [11] and com-
pletion [12]. However, the use of surface parametrization in
robot path planning remains limited. To our knowledge, there
is only one recent work considering surface parametrization
for motion planning [13]; this work focuses on surface pa-
rameterization for CPP, but the result considers only mapping
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the boustrophedon decomposition. Our work is capable of
mapping any parameterized 2D curve to a 3D quadric surface
and employs a different mapping approach compared to [13].
We also investigate different possible mappings to get the
minimum possible distortion, depending on the surface. In
addition, there is no surface decomposition/partitioning in
this work.

In this work, by applying surface parametrization and
minimizing map distortion, we map designed patterns in 2D
onto 3D quadric surfaces. This pattern can be arbitrary, but
it must be parametrized by one independent variable in a
continuous function. By applying an affine transformation on
the original 2D pattern, found via constrained optimization,
we meet additional goals such as visiting way points on the
surface and ensuring desired bounds for the pattern.

Surface parametrization can be considered as a mapping
from a surface to a parametric domain in lower dimensions.
This parametrization allows us to move from parameter
surface to a 3D space. Surfaces that are homomorphic to
a disk have a parameter space in the 2D plane. This concept
lets us map a pattern in 2D to a geometric shape in 3D space.
This projection might result in distortion in either angle or
area. As we want to follow the same pattern on the surface
as it is designed in 2D, isometric (length preserving) and
conformal (angle preservative) projections are desirable to
minimize distortion. This motion problem, constrained to
some conditions, can be also viewed as curve fitting on a
manifold, provided that there are enough desired 3D points
on the surface to determine the pattern.

The paper proceeds as follows. Section II presents
mathematical background about modeling, surface/curve
parametrization and differential geometry. Section III
presents how to map a planar patten onto a curved surface
with some conditions. In section IV, we apply curve fitting
method for a set of points on the manifold to generate a pat-
tern on a 3D surface. Simulations are presented throughout
Sections III and IV, and experiments using a 3D printer are
presented in Section V.

II. MATHEMATICAL PRELIMINARIES

A. Quadric Surfaces and Modeling

A surface S is the set of points [x, y, z] ∈ R3 that satisfy
an implicit equation of the form f(x, y, z) = 0 and can be
parametrized by two independent variables. In other words,
a surface is a deformed plane that is considered as a two
dimensional manifold.

In this work, we limit our consideration to surfaces that
can be categorized as orientable topological surfaces with
boundary. Thus, every point has an open neighborhood



homeomorphic to an open subset of the Euclidean plane.
Furthermore, the surface will admit a Riemannian metric. We
focus on quadric surfaces, which have the implicit function
of the form

Ax2 +By2 + Cz2 + 2Dxy + 2Exz + 2Fyz+

2Gx+ 2Hy + 2Iz + 2J = 0
(1)

where A, . . . , J are coefficients of the surface equation and
determine the geometric shape, location and orientation of
the quadric surfaces. Examples of quadric surfaces includes
spheres, ellipsoids and cones. Coefficient A, ..., J can either
be determined by the point clouds of the surface or geometric
characteristics like center, radius, axis. In this paper, we
assume the quadric surface model is given and it is in
standard form, which we will discuss in section III.C. In
case where quadric surfaces are not in standard equation,
coordinate transformation can be applied to convert them to
standard form.

B. Curve and Surface Parametrization

The map rs(u, v) = [x(u, v), y(u, v), z(u, v)] defines a
surface parametrization, where rs ∈ R3 and [u, v] ∈ R2. The
surface is defined by three functions x(u, v), y(u, v), z(u, v);
each is a function of two variables u and v. The image
of rc(θ) = [x(θ), y(θ), z(θ)] from parameter θ ∈ R to a
curve rc ∈ R3, is called curve parametrization. 2D curve
parametrization is written as rcp(θ) = [u(θ), v(θ)], where
rcp ∈ R2.

C. Differential Geometry Background

To be able to apply the usual notation of calculus on a
surface, we introduce the definition of a regular surface [14].
Consider a surface S ⊂ R3 with parametric representation

rs(u, v) = [x(u, v), y(u, v), z(u, v)] (2)

for points [u, v] in some domain in R2. This representation is
regular if for each p ∈ S, there exist a neighborhood V ⊂ R3

and a map rs : U → V ∩ S of an open set U ⊂ R2 onto
V ∩ S ⊂ R3 such that

1) x(u, v), y(u, v), z(u, v) have continuous partial deriva-
tives of all orders in U .

2) rs is a homeomorphism.
3) For each q ∈ U , the differential drs : R2 → R3 is

one-to-one.
Before proceeding, to be capable to calculate metric prop-
erties of a regular surface, the first fundamental form (I) is
introduced. It allows us to make measurements such as length
of curves, area of regions, angle between curves, etc. on the
surface. These measurements allow us to compare different
mappings. For example, a mapping from one surface to
another that preserves the length of curves between mapped
points is of interest.

Many properties of S are characterized by its first funda-
mental form. The arc length of a curve in R3 is equal to

ds2 = X1 ·X1(du)
2 + 2X1 ·X2dudv +X2 ·X2(dv)

2 (3)

where X1 = ∂rs/∂u, X2 = ∂rs/∂v. Encapsulating the
coefficients in a symmetric matrix I, we have

ds2 =
(
du dv

)
I

(
du
dv

)
(4)

where

I =

(
X1 ·X1 X1 ·X2

X2 ·X1 X2 ·X2

)
. (5)

In the following, we introduce useful mappings based on
discussion in [15].

D. Isometric Mapping

A mapping from metric space M to metric space N is
isometric or length-preserving if the length of any arc on N
is the same as that of its original on M .

Theorem 1. A mapping from surface S1 to S2 is considered
isometric if and only if there exist parametrization rs : U →
S1 ⊆ R3 and r′s : U → S2 ⊆ R3 with the same first
fundamental form, i.e

Irs = Ir′s . (6)

E. Conformal Mapping

A mapping from metric space S1 to S2 is conformal
or angle-preserving if it preserves local angles as well as
orientation. This mapping does not necessarily preserve size
or curvature.

Theorem 2. A mapping from surface S1 to S2 is conformal
or angle preserving if and only if there exist parametrization
rs : U → S1 ⊆ R3 and r′s : U → S2 ⊆ R3 with the first
fundamental forms are proportional, i.e

Ir = η Ir′ , (7)

for scalar function η 6= 0.

F. Equiareal Maps

A mapping from surface S1 to S2 is equiareal if it
preserves the area of any section.

Theorem 3. A mapping from S1 to S2 is equiareal if and
only if the determinant of the first fundamental forms are
equal, i.e. ∣∣Ir∣∣ = ∣∣Ir′ ∣∣ . (8)

Every isometric mapping is conformal and equiareal, and
every conformal and equiareal mapping is isometric. An
isometric mapping is ideal, because it preserves angles, areas,
and lengths. However, isometric mappings only exist for a
few surfaces.

Definition 1. A surface is called developable if it is smooth
and its Gaussian curvature is zero. In other words, it is a
surface that is obtained by deforming a plane without folding.
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Fig. 1. Different patterns on 2D plane

III. MAPPING 2D CURVES TO 3D SURFACE

Often the curve or path to be followed is first designed
on a planar surface and must be mapped to the 3D sur-
face. For example, back and forth motions (also known as
Boustrophedon or lawn-mower path [16]) and spirals are
common choices for coverage problems in the plane. In this
work, we are planning the path or trajectory, which can then
be carried out by any robot using the forward kinematics.
Successful path generation will require a mapping with the
least amount of distortion to preserve the properties of the
path. Given the implicit equation describing the surface, tools
of differential geometry can find a mapping between a curve
in the plane and a curve on the surface. The mapping rs
must have minimal distortion, so we will focus on isometric
mappings, which preserve length, and conformal mappings,
which preserve angles between any pair of arcs. Developable
surfaces, including planes, cylinders, tori and cones, admit an
isometric map. For nondevelopable surfaces, we will focus
on finding an alternative mapping. In this section, first, we
parametrize the planar curve (pattern) in 2D. Second, we ap-
ply a planar mapping consisting of an affine transformation.
The transformation parameters in the planar transformation
can be tuned via optimization to let the pattern fulfill more
tasks, such as passing over desired way points. Third, we
find an appropriate mapping from a plane to a given surface
with least amount of distortion.

A. Curve Parametrization

In this subsection, parametrization of some popular curve
patterns are introduced, where α, ω ∈ R are constant and
θ ∈ [b1, b2] ∈ R is parametrization variable.
Spiral: rcp(θ) = αθ[cos(ωθ), sin(ωθ)]
Square spiral: rcp(θ) = αθ[| cos(ωθ)| cos(ωθ) +
| sin(ωθ)| sin(ωθ), | cos(ωθ)| cos(ωθ)− | sin(ωθ)| sin(ωθ)]
Boustrophedon path: rcp(θ) = α[ωt, | cos(ωθ)| cos(ωθ) +
| sin(ωθ)| sin(ωθ)]
Rose: rcp(θ) = α[cos 2θ cos θ, cos 2θ sin θ].
Fig. 1 shows each aforementioned pattern.

B. Planar Mapping

We perform a planar mapping transformation via matrix
K ∈ R3×3 from the original parameterized curve rcp(θ), to
a new parametrized curve, rmp(θ) ∈ R2. This mapping can
be introduced in homogeneous coordinates as[

rmp(θ)
1

]
= K

[
rcp(θ)

1

]
K =

[
M T
0 1

] (9)

where M ∈ R2×2 accounts for transformations such as ro-
tation, scaling, shear, etc and T ∈ R2 represents translation.
The elements of K need to be optimized to satisfy extra
goals. This optimization is explained in section III.D. After
planar mapping, the next task is to map the planar mapped
pattern to a 3D surface with the least possible distortion.

C. Mapping from 2D to 3D

Let S be a surface in R3. It is desired to find a parametriza-
tion rs(u, v) : R2 → S ∈ R3 to map a 2D pattern onto a
surface with the least possible distortion. Here, we discuss
some famous quadric surfaces and how a 2D pattern can be
best mapped to them.

1) Cylinder: The cylinder with implicit function

x2 + y2 = a2 (10)

is a developable surface (zero Gauss curvature), and there is
an isometric map between the (u, v) plane and cylinder

rs(u, v) = [a cos v, a sin v, u] (11)

where a determines the cylinder radius.
2) Torus: The torus is not a quadric surface, but it does

have an implicit function and can be treated in our approach.
The equation in Cartesian coordinates for a torus symmetric
about z-axis is

(c−
√
x2 + y2)2 + z2 = a2 (12)

where r = c − a and R = c + a are the inner and outer
radii. The torus is also a developable surface, and there is
an isometric map between the (u, v) plane and torus as

rs(u, v) = [(c+ a cos v) cosu, (c+ a cos v) sinu, a sin v].
(13)

3) Paraboloid: The implicit function of a paraboloid with
z-axis as axis of symmetry and crossing [0, 0, 0] is

z =
x2

a2
+
y2

b2
(14)

where its cross section is an ellipse with a and b as
semi-major and semi-minor axes. The paraboloid is not a
developable surface. However, it can be parametrized as

rs(u, v) = [a
√
u cos(v), b

√
u sin(v), u]. (15)



4) Sphere: The implicit function of a sphere centered at
(0,0,0) with radius R in Cartesian coordinate is

x2 + y2 + z2 = R2. (16)

The sphere is not a developable surface, however, there is a
conformal mapping (Stereographic projection) as

rs(u, v) = [
2uR2

R2 + u2 + v2
,

2vR2

R2 + u2 + v2
,
u2 + v2 −R2

R2 + u2 + v2
R)].

(17)
The well-known spherical transformation

rs(u, v) = [a sinu sin v, a cosu sin v, a cos v] (18)

is neither conformal nor isometric.
5) Ellipsoid: The implicit function of the ellipsoid in a

Cartesian coordinate system is

x2

a2
+
y2

b2
+
z2

c2
= 1. (19)

There is a conformal map named Mercator given by

rs(u, v) = [a sech v cosu, b sech v sinu, c tanh v)]. (20)

6) Cone: An elliptic cone Cartesian coordinates function
is

x2

a2
+
y2

b2
= z2 (21)

which has a locally isometric surface parametrization

rs(u, v) = [au cos v, bu sin v, u]. (22)

D. Pattern Placement Via Optimization

In the previous section, we discussed the map of interest
that renders least amount of distortion from plane to an
specific surface. In addition to this goal, we want to place our
2D pattern on a desired location on the surface. For example,
we want the pattern to pass through a specific set of via
points on the surfaces or limit it in a box with boundaries.
To address this additional purpose, we optimize K in (9).
Before proceeding, we define r̂s by removing one element
of rs, depending on the objective function.

1) Pattern With Boundary: The goal in this case is to
locate the pattern inside some desired boundaries. Define
rmax, rmin ∈ R2 as the maximum and minimum desired
values of z and y respectively. We want max(r̂s(rmp(θ))) =
rmax, and min(r̂s(rmp(θ))) = rmin for any θ ∈ [b1, b2]. By
tuning K, the pattern rcp(θ) can be contracted/stretched or
shifted, sheared , translated, etc in the 2D by K such that
it lies on the desired place of the surface. The optimization
problem can be defined as follows

min(||K||2)
s.t :max(r̂s(rmp(θ)) = rmax

min(r̂s(rmp(θ)) = rmin.

(23)

Because the pattern is mapped on a surface, by confining
two dimensions, the third dimension would automatically
be confined based on the surface function. That is why
r̂s is used rather than rs in (23). In Fig. 2, we simulated

a pattern placement on a cylinder. The cylinder equation
is given in (10), with a = 1. The original pattern is a
spiral, with α = 1, ω = 2, θ ∈ [0, 6π] , and the mapping
from 2D to 3D , rs(u, v), is based on (11) with a = 1.
The desired limits are rmax = [zmax ymax] = [2 1] and
rmin = [zmin ymin] = [−1 0.5]. K is optimized in Matlab
using fmincon/fminsearch with different initial values that all
converge to the same final value. The results in Fig. 2 shows
a) spiral pattern is successfully mapped to the cylinder with
minimal distortion, b) the pattern after affine transformation,
rmp(θ), where K was optimized to locate the pattern inside
the boundary and c) ZY coordinates of the 3D pattern on the
cylinder. It can be observed that the max and min values are
the desired values.

We define three error metrics. The first two, Ei, Ec repre-
sents isometric and conformal mapping errors respectively.
They are given by

Ei=
n∑

i,j=1

(d(rs(rcp(θi)), rs(rcp(θj)))-d(rcp(θi), rcp(θj)))2

Ec=
n∑

i,j=1

(∠(rs(rcp(θi)), rs(rcp(θj)))-∠(rcp(θi), rcp(θj)))2.

(24)
where ∠ and d mean angle and arc length. Errors are
measured during optimization, Ei ≈ 10−7 cm, Ec ≈ 10−8

rad, which is close to zero as expected (because (11) is
an isometric and conformal parametrization). The condition
error which is sum of the squared error (SSE) of the
optimization constraints is Ecd ≈ 10−5 cm, as the tolerance
error for conditions in the fmincon algorithm was set to 10−5.

E. Pattern Constrained to Pass Through Way Points

Given a set of way points pi, i = 1, ..., n, on the surface,
we might wish that the mapped pattern should pass through
them. In other words, we not only want to impose the
pattern structure (designed in 2D) on the surface, but that
pattern should visit some check points on the 3D surface.
For example, these points can be some positions that a robot
needs to stop to collect some data, or to ensure that the robot
would avoid obstacles. The optimization algorithm can be
formulated as

min(||K||2)

s.t :
n∑

i=1

min(||rs(rmp(θ))− pi)||2) = 0.
(25)

Fig. 3 shows the pattern mapped to the paraboloid (14),
where a = b = 1. This pattern is square spiral, with
a = 1, ω = 5 and θ ∈ [0 4π]. The desired points to pass
are  1.64

−0.525
2.97

 1.63
0.543
2.98

  1.14
−0.034
1.3

 1
0.28
1

 .
Fig. 3 depicts a) spiral pattern successfully mapped onto a
paraboloid and passes through the desired way points with
calculated condition error Ecd ≈ 10−4cm, b) the square
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Fig. 2. Pattern placement of a spiral on a cylinder with boundary condition

spiral pattern after affine transformation, rmp(θ), and c) ZY
coordinates of the 3D pattern.

F. Pattern with Boundary to Pass Visiting Points

Here, we combine our previous objective function to
define our ultimate goal. The pattern max and min boundary
is set to a fixed desired value, and inside that boundary box,
our pattern should pass through desired points on the surface.
The optimization can be formulated as

min(||K||2)

s.t :

n∑
i=1

min(||rs(rmp(θ))− pi)||2) = 0

max(r̂s(rmp(θ)) = rmax

min(r̂s(rmp(θ)) = rmin.

(26)

We simulate a case where there is a cone based on (21),
with a = b = 1. A square spiral pattern with parameters
a = 1, ω = 5, and θ ∈ [0 4π] is defined. The task is to tune
K to let the pattern pass through the following points 2.16
−0.67
2.27

2.1570.907
2.34

 0.932
−0.544
1.08

 1.1550.393
1.22

1.6020.37
1.64

 1.558
−0.341
1.595


and the desired extremum values of the pattern are rmax =
[zmax ymax] = [2.8 1.4] and rmin = [zmin ymin] =
[1.07 − 0.67]. Fig. 4 shows a) pattern placement on the
cone that successfully visits all desired points b) square spiral
patten after the optimized affine transformation, and c) ZY
coordinates of the mapped pattern. It can be observed that
the max and min values are the same as the desired ones.
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Fig. 3. Pattern placement of a square spiral on a paraboloid with visiting
points condition
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Fig. 4. Pattern placement of a square spiral on a cone with boundary and
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Fig. 5. Curve fitting of rose shape points on a cone

Error value Ec ≈ 10−7 rad, Ei ≈ 10−6cm, as (22) is an
isometric and conformal parametrization. The condition error
is Ecd ≈ 10−3cm.

IV. CURVE FITTING ON A MANIFOLD

In this section, we no longer deal with an original pattern
in 2D. However, we are dealing directly with some points
on the manifold [17], and the task is to find a curve or
pattern which pass through the points. Let S be a two dimen-
sional manifold in R3, with implicit Cartesian coordinates
function f(x, y, z) = 0. This surface can be parametrized
S : (u, v) ∈ R2 → R3. As there is a mapping between
the surface and the (u, v) plane, the curve fitting problem
can be investigated in R2. For a set of points on the plane
P = {pi, i = 1, ..., n} ∈ (u, v), there is qi = S(pi), where
qi are 3D points on the manifold. A curve fitting algorithm
should find a curve on manifold to pass through qi. If the
points qi are given directly, we need to first compute the
corresponding point pi in (u, v) [18]. After generating pi,
the curve fitting problem is simplified to 2D, and a curve
rcp = [u(θ), v(θ)] can be approximated. As the manifold is
known, rs(u, v) = [x(u, v), y(u, v), z(u, v)] can be obtained.
In Fig. 5 a, one can see red points on the cone as qi. In b,
red dots are pi which are corresponding planar points of qi.
A cubic spline interpolation with end condition is applied to
obtain curve fitting on 2D (in blue). After the planar curve
fitting, the curve is mapped into the cone by rs(u, v). Both
shapes can be seen in part (c).

V. EXPERIMENTAL VALIDATION

We conducted a series of experiments mapping constrained
patterns onto a 3D surface to verify our approach. We used a

Fig. 6. Lulzbot Taz 5 3D printer

(a) fig 1 (b) fig 2
Fig. 7. Printing different constrained patterns on the sphere

Lulzbot Taz 5 3D printer (Fig. 6), which was mounted with
a 0.5mm nozzle, to create a 3D surface as well as deposit
polymer materials in the desired pattern. The surface was a
hemisphere developed in Creo Parametric, with a radius of
1.5 inches (38.1 mm), printed using clear ABS plastic. The
center of the sphere was known with respect to 3D printer’s
coordinate system.

We mapped a planar rose and spiral pattern onto the
sphere. Equation (17) is used for stereographic mapping, and
K was optimized to make the pattern to pass over desired
points. For the spiral pattern, the desired points are 2.7

−11.2
36.3

 9.24
−0.45
37

−0.447
37.5

 0
0

38.1

 .
For the rose, the way points are 1.78

−20.33
31.18

 18.715.87
32.67

−4.6119.46
32.4

−24.661.82
28.99

 .
After the 3D patterns were generated, we sampled 130

evenly spaced points on each pattern. These points were
used to generate g-code, which specifies locations for the
nozzle, along with specified extrusion and feed rates. Fig.7
shows the rose and spiral pattern on the sphere after printing.



Red squares represents desired points to be passed. It can be
observed that 3D patterns were successfully mapped onto the
sphere with minimal distortion. In addition, patterns passed
over the desired way points.

Note that the 3D printer maintains a constant orientation
of the nozzle downward, and the nozzle is notably wider
than the extrusion orifice. Therefore, while the portions
of the patterns near the side of the sphere were printed
correctly, they smeared in some points due to the contact by
the wide nozzle. This problem hinders us from conducting
experiments on the side of the sphere or on surfaces with
more curvature. This indicates that it is necessary to keep
the nozzle normal to the surface, which is an avenue of our
research using articulated robot arms [19].

VI. CONCLUSIONS AND FUTURE WORK

This paper investigated mapping a desired 2D pattern onto
a 3D curved surface with minimum distortion. Additional
goals were considered, such as ensuring the pattern passes
through specific way points on the surface and remains
bounded in a specific region. To address this problem, an
optimization-based planar transformation along with surface
parametrization are employed. Simulations and experiments
were presented for different patterns mapped to different
surfaces, which showed the performance of our approach.

This work fits into our larger goal of printing arbitrary
patterns onto arbitrary curved surfaces. There are several av-
enues of concurrent and future work. The methods presented
here will be extended to general smooth surfaces. We are
working on 3D vision methods to fit a surface to a given
object to plan trajectories. We are also developing motion
planning and control of deposition nozzles mounted on a
robot end effector to keep it normal with the surface, as
well as our past work on adaptive control to regulate the
flow/deposition rate to regulate line width and prevent drips.
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