
1 
 

Controlling antiferromagnetic domains in patterned La0.7Sr0.3FeO3 thin films 

Michael S. Lee1, Peifen Lyu1, Rajesh V. Chopdekar1,2, Andreas Scholl2, Scott T. Retterer3, and Yayoi 

Takamura1,* 
1 Department of Materials Science and Engineering, University of California, Davis, Davis, CA, USA, 
95616 
2 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 94703 
3 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 
37831 

 

Abstract 

Transition metal oxide thin films and heterostructures are promising platforms to achieve full control 

of the antiferromagnetic (AFM) domain structure in patterned features as needed for AFM spintronic 

devices. In this work, soft x-ray photoemission electron microscopy was utilized to image AFM 

domains in micromagnets patterned into La0.7Sr0.3FeO3 (LSFO) thin films and La0.7Sr0.3MnO3 

(LSMO)/LSFO superlattices. A delicate balance exists between magnetocrystalline anisotropy, shape 

anisotropy, and exchange interactions such that the AFM domain structure can be controlled using 

parameters such as LSFO and LSMO layer thickness, micromagnet shape, and temperature. In LSFO 

thin films, shape anisotropy gains importance only in micromagnets where at least one extended edge 

is aligned parallel to an AFM easy axis. In contrast, in the limit of ultrathin LSFO layers in the 

LSMO/LSFO superlattice, shape anisotropy effects dominate such the AFM spin axes at micromagnet 

edges can be aligned along any in-plane crystallographic direction.  

 

*corresponding author: ytakamura@ucdavis.edu  
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Introduction 

The burgeoning field of antiferromagnetic (AFM) spintronics has received a surge of interest after 

recent groundbreaking results such as the successful experimental demonstration of electrical switching 

and readout of AFM CuMnAs between stable configurations using an applied current.[1] Until that time, 

the net zero magnetization of AFM materials limited their applications, primarily due to the difficulty 

to probe their magnetic properties, and their relative insensitivity to applied magnetic fields. However, 

these apparent disadvantages can also be considered as advantages for AFM device applications as they 

result in the stability of the AFM state to applied magnetic fields and ensure that no stray fields are 

generated from AFM features.[2-5] Furthermore, theoretical predictions show that AFM materials may 

enable fundamentally faster device operation compared to comparable ferromagnetic (FM) materials 

due to high-frequency magnons.[6-8]  

 

The use of transition metal oxides for AFM spintronics is appealing because their functional properties 

can be sensitively manipulated by a variety of external stimuli such as lattice strains, optical illumination, 

or applied magnetic or electric fields.[9] Furthermore, modern film growth techniques offer the ability 

to control chemical composition and thickness of layers with atomic level precision enabling the 

synthesis of complex epitaxial heterostructures which harness interfacial coupling interactions. For 

example, the family of Sr-doped lanthanum ferrites (i.e. La1-xSrxFeO3) are G-type AFM insulators and 

the Néel temperature, TN, decreases with increasing Sr-doping level, x. When grown epitaxially on 

SrTiO3 (STO) substrates, La1-xSrxFeO3 thin films exist under a small compressive strain and exhibit four 

types of AFM domains where their spin axes cant out-of-plane by ~ 30  with an in-plane projection 

along the <100> substrate directions.[10-12] While the locations of AFM domains typically occur 

stochastically, largely influenced by the presence of defects with pin the locations of domain walls,[13] 

the nature of AFM domains in La1-xSrxFeO3 thin films can be modified using exchange interactions with 

adjacent FM layers. For example, the (001) interface between La1-xSrxFeO3 and La1-xSrxMnO3 layers 

was shown to display spin-flop coupling characterized by a direct correlation between the FM and AFM 

domains with a perpendicular alignment between the FM and AFM spin axes.[10, 14-18] For a [6 u.c. 

La0.7Sr0.3MnO3 (LSMO)][6 u.c. La0.7Sr0.3FeO3 (LSFO)]10 superlattice, the AFM spin axes was confined 

to lie within the plane of the film along the <100> substrate directions, rather than canting out-of-plane. 
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Additionally, the AFM spin axes could be rotated within the film plane with a moderate value of applied 

magnetic field (H=0.3 T) through a torque from the FM LSMO layer.[19] This spin-flop coupling was 

only observed for a small range of La1-xSrxFeO3 thicknesses, as the La1-xSrxFeO3 layer loses its AFM 

properties below a critical thickness around three unit cells, while the La1-xSrxFeO3 anisotropy 

dominates over the spin-flop coupling for thicknesses greater than 18 unit cells.[20] Similarly, the 

direction of the AFM spin axes in the La1-xSrxFeO3 layers was found to depend sensitively on the layer 

thickness.[10, 21] In other work, canted FM moments were observed on the LaFeO3 layer of 

LSMO/LaFeO3/LSMO heterostructures with an antiparallel orientation to the LSMO magnetization, 

which strongly impacted the tunneling magnetoresistance.[22]  

 

Due to the lack of magnetostatic energy in AFM materials from the absence of magnetic dipoles 

terminating on the surfaces of features, micro-/nanoscale patterning of AFM materials are not expected 

to exhibit any shape anisotropy effects.[23, 24] However, shape anisotropy effects are theoretically 

predicted to result from magnetoelastic forces and surface magnetic anisotropy,[25, 26] and have indeed 

been observed in in single-crystalline NiO/Fe and CoO/Fe discs through imprinting from the FM Fe 

layer[27] as well as La1-xSrxFeO3 and La1-xSrxFeO3/LSMO micro-/nanoscale features that were defined 

using an Ar+ ion implantation-based patterning technique.[17, 21, 28-34] This technique results in 

magnetic islands embedded within a non-magnetic matrix, and it is postulated that these edge effects 

result from a lateral compressive strain imposed onto the magnetic islands from the surrounding 

matrix.[35] Soft x-ray photoemission electron microscopy (X-PEEM) remains one of the few imaging 

techniques capable of directly imaging AFM domains in thin films by taking advantage of the x-ray 

magnetic linear dichroism (XMLD) effect. In this work, we performed a detailed investigation of the 

competing interactions of shape anisotropy and AFM magnetocrystalline anisotropy effects by imaging 

the AFM domains using X-PEEM for a wide range of patterned samples and La0.7Sr0.3FeO3 (LSFO) 

layer thickness ranging from 6 to 90 unit cells. In the ultrathin limit, LSFO layers with six unit cell 

thickness were confined between LSMO layers with six unit cells thickness, repeated 10 times in a 

superlattice structure (i.e. [6 u.c. LSMO][6 u.c. LSFO]10 superlattice). Due to interfacial charge 

transfer,[36] the Curie temperature, TC, of the LSMO layer is reduced to ~50 K, while the LSFO Néel 

temperature, TN, is increased above 400 K.[19] Taking advantage of the disparate critical temperatures, 
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we can directly compare the AFM domain structure ultrathin LSFO layers separated by, paramagnetic 

spacer layers imaged at 105 K or 300 K, to the same ultrathin LSFO layers which experience spin-flop 

coupling with FM LSMO layers at 36 K. This ability to readily control the AFM domain structure is 

imperative for the implementation of AFM spintronic devices. 

 

Methods 

The LSFO film and LSMO/LSFO superlattice were deposited epitaxially on (001)-oriented 0.1% Nb-

doped STO substrates by pulsed laser deposition. A KrF (248 nm) laser was operated at a frequency of 

10 Hz and an energy density of approximately 1 J/cm2 while the substrate was heated to 700C in an 

oxygen atmosphere of 200 mTorr. The sample was cooled in 300 Torr O2 in order to ensure proper 

oxygen stoichiometry in the layers. X-ray diffraction and resonant x-ray reflectivity measurements 

confirm the high degree of crystallinity of the epitaxial films, and their individual layer thicknesses. 

The patterned micromagnets were defined using an electron-beam lithography-deposited Cr hard mask, 

with a subsequent Ar+ flood ion implantation (50 keV implant energy and 1x1015 cm-2 dose) to locally 

modify the structural order throughout the film thickness in the regions not protected by the mask.[28, 

29] This technique creates magnetically active islands of arbitrary shape and size embedded in the 

implanted/non-magnetic matrix. 

 

The AFM domain images were obtained using X-PEEM performed using the PEEM3 microscope at 

beamline 11.0.1 at the Advanced Light Source.[37] Due to the finite electron escape depth of the 

secondary electrons imaged in the PEEM3 microscope, the imaging is limited to the top 5-10 nm of the 

sample surface,[38] however, prior measurements on LSMO/LSFO heterostructures showed excellent 

agreement between the surface and bulk properties.[16, 20] AFM domain contrast results from the 

XMLD signal at the Fe L-edge. The measurement geometry is shown in Fig. 1(a) where the linearly 

polarized x-rays were incident upon the sample at a grazing incident angle of 30  and a series of images 

were acquired from the same sample location while the x-ray E-vector was rotated from p- to s-

polarization in increments of 10  (or 30  in the case of triangle and pentagon shapes). The linear 

polarization angle, , was defined to be 0  (90 ) for p- (s-) polarized x-rays, respectively, where for s-

polarization, the E-vector lies in the plane of the sample, and for p-polarization, the E-vector cants out-
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of-plane by 30 . The XMLD intensity can be expressed by Equation 1, where a and b are constants, L 

is the AFM moment, and θ is the angle between L and the E-vector of the linearly polarized x-rays [39]. 

I(θ) = a + b(3 cos2 θ - 1) <L2>              EQN (1) 

For LSFO, the XMLD spectra is characterized by positive/negative features at the A/B multiplet 

features of the Fe L3 and L2 edges.[39] AFM domain images were calculated using an asymmetry 

operation between two X-PEEM images, each normalized by an image taken at a pre-edge energy, 

collected with a given  value and x-ray energies corresponding to the Fe L2 A/B multiplet features. The 

asymmetry operation effectively eliminates image contrast due to local topographical and work function 

differences, leaving only the AFM contributions. The intensity of each pixel in the domain image was 

extracted as a function of  angle and its AFM domain orientation was assigned by comparison to 

calculated XMLD intensity curves using Equation 1 for various AFM spin axis orientations and the 

known experimental geometry.[10, 21, 32] This process was performed for two sample orientations 

relative to the incident x-rays (i.e. with the projection of the x-rays along the in-plane <100> and <110> 

substrate directions).  

 

FM domain contrast from the LSMO sublayers results from x-ray magnetic circular dichroism (XMCD) 

at the Mn L3,2 absorption edge, where the contrast intensity is proportional to the cosine of the angle 

between local FM moment orientation and the incident x-ray helicity vector. An asymmetry operation 

was performed using normalized images acquired using right/left circularly polarized x-rays at the x-

ray energy corresponding to the maximum XMCD at the Mn L3 absorption edge.  

 

A variety of shapes were utilized to capture the balance between shape and magnetocrystalline 

anisotropies of the LSFO micromagnets. Two types of squares were investigated with an edge length of 

2 µm which were aligned along either the in-plane <100> and <110> substrate directions. Circles were 

defined with a diameter of 2 µm while triangles and pentagons had a height of 2 m. Each shape was 

repeated 225 times on the sample with nine micromagnets imaged at a resolution adequate for the 

XMLD analysis. Only a single micromagnet is shown for each shape, but they are representative of all 

micromagnets studied.  

 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
06

22
8



6 
 

Results and Discussion  

Fig. S1 shows Fe edge XMLD-PEEM images acquired at 300 K as a function of  for a representative 

square LSFO micromagnet with its edges along the in-plane <100> substrate directions. For each image, 

regions of white, grey, and black contrast can be observed, and each region possesses its own unique  

dependence. For example, the domain at the left of the micromagnet has dark contrast for  = 0  and 

becomes progressively brighter as  increases. In contrast, the domain along the bottom edge of the 

square has a broad minimum in contrast for  ~ 60 . The XMLD image with β = 60 ° provides the 

largest domain contrast between domain types and will be used as the representative image for the other 

micromagnet shapes. Fig. 1(b) plots the collective  dependence of each pixel in the series of images 

shown in Fig. S1. Four distinct trends can be observed, corresponding to four types of AFM domains 

which differ by the orientation of the AFM spin axis. The error bars correspond to the standard deviation 

of all pixels within a domain type.  

 

 

Figure 1. Analysis of AFM domain images at 300 K for square LSFO micromagnets with edges along the <100> 

substrate directions and x-rays incident parallel to the [100] substrate direction. (a) XMLD measurement geometry. 

(b) Experimental (symbols) and calculated (solid line) Fe XMLD intensity vs. β for the four AFM domains. The 

error bars correspond to the standard deviation of all pixels within a domain type. (c) AFM domain map of the 
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same micromagnet as in Fig. S1. (d) Schematic of the four AFM domains in which their spin axes have an in-

plane projection along the <100> substrate directions and a canting angle of 35 ° +/- 5 °. 

 

The assignment of the AFM spin axis in each domain was performed by matching the experimental 

XMLD intensity vs.  curve to calculated XMLD curves taking into account the measurement geometry 

and a known AFM spin axis orientation. Each pixel in the XMLD-PEEM images was assigned to a 

domain type and an AFM domain map was constructed as shown in Fig. 1(c). For the analysis, results 

from unpatterned La1-xSrxFeO3 thin films were used as a starting point, where the AFM spin axes were 

found to cant out-of-plane by 30  with the in-plane projection along the <100> substrate directions.[10-

12, 24] In this case, the XMLD intensity of the four AFM domains was best fit with an out-of-plane 

canting angle of 35 ° +/- 5 ° relative to the sample surface. The center of all the patterned micromagnets 

show a random pattern of the four domain types with ~0.3 µm diameter, however they all show a 

preferential edge alignment of the AFM spin axis within ~0.3 µm of the perimeter such that the spin 

axis lies perpendicular to the edge of the micromagnet (see schematic in Fig. 1(d)). Furthermore, the 

domain walls tend to be pinned at the corners of the micromagnets. Confirmation of the AFM spin axis 

orientations was obtained by rotating the LSFO micromagnets relative to the x-ray propagation 

direction so that the x-rays were incident parallel to the in-plane [110] substrate direction while the 

edges remain oriented parallel to the in-plane <100> substrate directions. A good fit between the 

experimental and calculated XMLD vs.  curves was obtained using the same AFM spin axis model 

and this measurement geometry (see Figure S2). 

 

Figure 2. (a) – (e) Fe XMLD-PEEM images at 300 K for  = 60° and (f) – (j) AFM domain maps of LSFO 
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micromagnets with varying shapes. Colors are as defined in Fig. 1 and denote the four types of AFM domains in 

which their spin axes have an in-plane projection along the <100> directions and a canting angle of 35 ° +/- 5 °. 

 

In order to separate the effect of shape anisotropy from magnetocrystalline anisotropy, LSFO 

micromagnets of varying shape were investigated, including triangle, square (edges parallel to in-plane 

<110> substrate directions), pentagon, and circle shapes. Figure 2 shows Fe XMLD-PEEM images for 

 = 60  and AFM domain maps while Fig. S3 shows the associated XMLD intensity vs.  curves for 

these shapes. Pixel-by-pixel analysis identifies the same four types of AFM domains in which their spin 

axis cant out-of-plane by 35° +/- 5° with their in-plane projections along the <100> substrate directions. 

The general location of each type of domain remains the same regardless of the shape and uniformly 

for the nine micromagnets images at high resolution, with the green/blue domains at the top/bottom of 

micromagnets, and the red/magenta domains on the left/right sides. Furthermore, in comparing the 

triangle, square with edges along the <110> substrate directions, and pentagon micromagnets with three, 

four, and five corners, respectively, a trend of increasing complex domain structure can be observed 

with increasing number of corners. The triangle is formed primarily of only three domains (green, red, 

and blue) which originate at the edges of the micromagnet and propagate almost throughout the entire 

volume. This behavior remains regardless of whether one of the edges lies along the [100] or [010] 

substrate direction. In contrast, the volume of the pentagon and circle micromagnets are composed 

almost exclusively by the smaller 0.3 µm diameter domains in a random fashion. These results suggest 

that a delicate balance exists between shape anisotropy and magnetocrystalline anisotropy in these 

micromagnets with 2 µm dimensions. Magnetocrystalline anisotropy dominates in the center of the 

micromagnets regardless of shape and the AFM easy spin axes have their projections along the <100> 

substrate directions. Magnetocrystalline anisotropy also dominates for shapes with proportionally fewer 

edges aligned parallel to the easy axes (pentagons, circles, and squares with edges along the <110> 

substrate directions). Shape-dependent edge effects only become important when at least one of 

extended edges of the micromagnets are aligned parallel to an easy axis (triangles and squares with 

edges along the <100> substrate directions).  

 

The types of AFM domains observed in the patterned micromagnets was modified by the confinement 
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of ultrathin LSFO layers between paramagnetic LSMO spacer layers at temperature above TC and below 

TN. Images were captured at both 105 K and 300 K with similar results at both temperatures. Figure S4 

shows the series of Fe edge XMLD-PEEM images at both temperatures as a function of  for a 

representative square LSFO/LSMO micromagnet with its edges along the in-plane <100> substrate 

directions. Unlike the case of the LSFO micromagnet, the strongest domain contrast is observed for  

= 90  and it slowly decreases as  decreases such that almost no domain contrast can be observed for 

 = 0 . As the x-ray E-vector lies completely in plane for  = 90 , these images are most sensitive to 

in-plane AFM spin axes with the brightest and darkest regions corresponding to [100]  and [010] 

domains, respectively. Furthermore, the absence of any domain contrast for  = 0  suggests that no out-

of-plane component exists in this type of micromagnet. The pixel-by-pixel analysis in Fig. 3 at 105 K 

(Fig. S5 at 300 K) confirms that only two types of AFM domains exist and that they are confined to lie 

completely in-plane along the [100] and [010] substrates directions, corresponding to the magenta 

and green domains in the domain maps, respectively. This orientation of the AFM spin axes agrees with 

unpatterned LSMO/LSFO superlattices with equivalent layer thicknesses.[10, 16] The location of the 

domains are such that the AFM spin axis lies perpendicular to the edges of the micromagnets and these 

edge domains extend into the interior of the micromagnet such that it is composed of only two domains 

of each type. A few pixels shown in grey, do not conform to the expected  dependence of these domains. 

These pixels are predominantly located at the boundaries between domains, and therefore constitute the 

domain walls. The measured domain wall width is 0.15-0.2 µm, which is close to the PEEM3 

microscope spatial resolution for this type of sample, and therefore the XMLD intensity vs.  spectra 

for those pixels cannot be accurately modeled. 
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Figure 3: Analysis of AFM domain images at 105 K for square LSMO/LSFO micromagnets with edges along the 

<100> substrate directions and x-rays incident parallel to the [100] substrate direction. (a) Fe XMLD-PEEM image 

with  = 90. (b) AFM domain map where the arrows denote the orientation of the AFM spin axis along the in-

plane [100] and [010] substrate directions. The grey pixels at the domain walls display a  dependence distinct 

from either of the two domains. (c) Experimental (symbols) and calculated (solid line) XMLD intensity vs. β 

curves for the two AFM domains.  

 

Alternative micromagnet shapes were also investigated in the LSMO/LSFO superlattice to separate the 

effect of shape anisotropy and magnetocrystalline anisotropy. Fig. 4 shows the results from the domain 

analysis for circle and square micromagnets with edges along the <110> substrate directions, shapes 

which do not have edges aligned parallel to the AFM easy axes. The analysis of these micromagnets 

shows nearly all pixels in the micromagnets can be categorized as one of four distinct domains with 

their AFM spin aligned along either the in-plane [100], [010], [110], or [11̅0] substrate directions, 

with some ambiguity in domain assignment at domain walls. For both shapes, the interior of the 

micromagnets consist of irregular shaped domains with their spin axes aligned along the [100] and 

[010] substrate directions, consistent with magnetocrystalline anisotropy. These domains appear with 

strong dark/bright contrast in the Fe edge XMLD-PEEM images with  = 90  shown in Fig. 4. However, 

the micromagnet perimeter uniformly appears with grey contrast within 0.30 µm of the edge of the 

micromagnet (Fig. S6). The pixel-by-pixel analysis for two sample orientations with the x-ray incident 

along the [100] and [110] substrate directions (Fig. 4 and Fig. S7, respectively) shows that these 

perimeter regions correspond to [110] and [11̅0] domains such that the AFM spin axes are always 

oriented perpendicular to the edges. These domains extend across the entire 2 µm edge of the square 

micromagnet and the domain walls are pinned at the corners. While this type of AFM domain pattern 

has also been observed in spin-flop coupled system when a thick LSMO layer displayed a FM Landau 

state [30], in this case, no Fe or Mn XMCD was observed at 300 K for any shape. For the circle 

micromagnet, the domains near the edge appear less abrupt, represented by the speckled nature of the 

AFM domain map in Fig. 4(e) constructed with the simple assumption of four AFM domain types. Fig. 

S8 shows that the intensity of the Fe XMLD-PEEM image with  = 90  around the circumference of 

the circle micromagnet follows a cos2() dependence which is consistent with a gradual rotation of the 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
06

22
8



11 
 

AFM spin axis to maintain a perpendicular alignment with the micromagnet edge. If clear domains were 

present, abrupt changes in XMLD intensity would be observed as a function of angle.  

 

 

Therefore, despite the fact that shape anisotropy driven by magnetostatic effects are not expected in 

AFM domains, LSFO micromagnets patterned into an LSFO thin film and LSMO/LSFO superlattice 

display clear shape anisotropy effects. For the 90 u.c LSFO thin film, these effects dominate in shapes 

with fewer corners where at least one extended edge lies parallel to the AFM easy axis such that 

extended domains form along the micromagnet perimeter with their spin axes oriented perpendicular to 

the edge. Away from the perimeter (distances < 0.30 µm) and in shapes with edges not aligned with the 

AFM easy axis, magnetocrystalline anisotropy dominates with the formation of small AFM domains. 

The magnetic easy axes cant out-of-plane by 35° +/- 5° with their in-plane projections along the <100> 

substrate directions, consistent with previous measurements on unpatterned La1-xSrxFeO3 thin films. 

[10-12, 24] Confinement of an ultrathin LSFO layer in an LSMO/LSFO superlattice forces the magnetic 

easy axis to lie completely in-plane along the <100> substrate directions, and it enables shape anisotropy 

effects to dominate over magnetocrystalline anisotropy near the micromagnet edges as AFM spin axes 

align along any in-plane direction to satisfy a perpendicular orientation to the edge.  
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Figure 4. (a) and (d) Fe XMLD-PEEM images at 105 K for  = 90° of LSMO/LSFO micromagnets with varying 

shapes, (b) and (e) AFM domain maps where the arrows denote the orientation of the AFM spin axis, and 

experimental (filled symbols) and calculated (open symbols) XMLD intensity vs. β curves for (c) square 

micromagnets with edges along <110> substrate directions and (f) circle micromagnets. 

 

 

Cooling the patterned LSMO/LSFO superlattice below the TC of the LSMO layers allows the impact of 

exchange interactions between AFM and FM layers to be investigated. Fig. 5 compares the Fe XMLD 

with  = 90  and Mn XMCD images obtained simultaneous from the same micromagnets at 36 K. The 

location of a dominant dark AFM domain is outlined with white dashed lines in all images for 

comparison. Regardless of shape, each dark AFM domain (with [010] AFM spin axis orientation) 

corresponds to small FM domains with dark/bright contrast (with [010] and [01̅0] FM magnetization 

orientations), while each bright AFM domain (with [01̅0] AFM spin axis orientation) corresponds to 

FM domains with grey contrast (with [100] and [1̅00] FM magnetization orientations). These domain 

orientations are consistent with a perpendicular relationship of the AFM spin axis and FM magnetization 

expected for a spin-flop coupled system. The small FM domains (0.1-0.3 µm in size) are consistent with 

X-PEEM images from 6-10 u.c. thick LSMO layers in unpatterned LSMO/LSFO superlattices and 
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LSMO/LaFeO3 bilayers.[16, 17] The small domain size and much weaker Mn XMCD intensity likely 

arise from the ultrathin thickness, and prevents them from displaying prominent shape anisotropy 

effects. In contrast, micromagnets patterned in a 20 or 90 u.c. LSMO/10 u.c. LaFeO3 bilayers displayed 

FM Landau patterns and a direct correlation between the FM and AFM domains.[17, 30] In those cases, 

the thicker LSMO layer dominated the FM and AFM domain patterns at low temperatures through spin-

flop coupling, such that a reorientation of the AFM domain structure occurred above and below TC of 

the FM layer. In the patterned LSMO/LSFO superlattice, the AFM domains do not show any major 

changes between 300 K and 36 K besides the finer, stochastic details of the domain wall positions in 

the interior of the micromagnets (see Fig. S9). The thickness of the perimeter domains which maintain 

a perpendicular alignment with the micromagnet edge remains constant at ~0.30 µm regardless of 

measurement temperature crystallographic orientation and aspect ratio (Fig. S9). It is postulated that 

this perimeter region may be influence by the lateral strain imposed from the non-magnetic ion 

implanted matrix. In patterned LSMO micromagnets, this lateral strain was found to influence the 

magnitude of the FM magnetocrystalline anisotropy constant of the micromagnet perimeter.[35] Finally, 

the XMLD intensity vs.  curves show the same trends, suggesting that the LSFO layer dominates the 

formation of AFM and FM domains as the temperature is decreased below TC of the FM layer. It should 

be noted that the lateral straggle from the Ar+ ion implantation process used for patterning in this work 

is predicted to only extend 0.03 µm away from the edge of the Cr hard mask, eliminating it as a dominant 

source for the observed edge effects.   

 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
06

22
8



14 
 

.  

Figure 5: (a) Fe XMLD-PEEM with  = 90  and (b) Mn XMCD-PEEM images at 36 K from LSMO/LSFO 

micromagnets with varying shape showing the correlation between AFM and FM domains. Dashed lines denote 

the perimeter of AFM domains in the Fe-XMLD images and the corresponding area in the Mn-XMCD images. 

Arrows indicate the orientation of the magnetic spin axes of each domain. 

 

Conclusions 

In summary, the effect of shape anisotropy on the AFM domain structure of micromagnets patterned 

into an LSFO thin film and LSMO/LSFO superlattice has been investigated using XMLD-PEEM 

microscopy. Only by capturing a series of images as a function of the polarization angle, , ideally for 

two sample orientations, can the orientation of the AFM spin axis be fully determined. In LSFO thin 

films, four types of AFM domains exist with their spin axes canted out-of-plane by 35° +/- 5° with an 

in-plane projections along the <100> substrate directions. In micromagnets, magnetocrystalline 

anisotropy dominates for shapes with proportionally fewer edges aligned parallel to the easy axes while 

shape anisotropy gains importance when at least one extended edge of the micromagnet is aligned 

parallel to an AFM easy axis. In the limit of ultrathin LSFO layers in a LSMO/LSFO superlattice, the 
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AFM easy axis become the in-plane [100] and [010] substrate directions, and shape anisotropy effects 

dominate such that the orientation of pattern edges can be used to select specific AFM spin axes 

orientations parallel to any crystallographic direction. Therefore, due to this delicate balance between 

shape anisotropy, magnetocrystalline anisotropy, and exchange interactions, the AFM domain structure 

in LSFO micromagnets can be designed and manipulated for advanced AFM spintronic applications 

using parameters such as LSFO and LSMO layer thickness, micromagnet shape, and temperature. 

 

Supplementary Materials 

See supplementary materials for additional X-PEEM images from the LSFO thin films and 

LSMO/LSFO superlattices.  
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