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ABSTRACT

Hydraulic fracturing (or “fracking”) is a revolutionary well stim-
ulation technique for shale gas extraction, but has spawned con-
troversy in environmental contamination. If methane from gas
wells leaks extensively, this greenhouse gas can impact drinking
water wells and enhance global warming. Our work is motivated by
this heated debate on environmental issue and focuses on general
data analytical techniques to detect anomalous spatial data samples
(e.g., water samples related to potential leakages). Specifically, we
propose a spatial outlier detection method based on contextual
neighbors. Different from existing work, our approach utilizes both
spatial attributes and non-spatial contextual attributes to define
neighbors. We further use robust metric learning to combine dif-
ferent contextual attributes in order to find meaningful neighbors.
Our technique can be applied to any spatial dataset. Extensive
experimental results on five real-world datasets demonstrate the
effectiveness of our approach. We also show some interesting case
studies, including one case linking to leakage of a gas well.
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1 INTRODUCTION

Improvements in high volume hydraulic fracturing, i.e., “fracking”,
which allows the development of shale gas, have changed the energy
landscape. In 2000, only 1% of the natural gas production of U.S.
is from shale gas, but this ratio reached over 20% by 2010 [37].
The U.S. government predicts that shale gas will make up 46% of
U.S. natural gas production by 2035 [37]. However, fracking has
spawned controversy about potential impacts on water quality and
greenhouse gas emissions. Specifically, the most common water
quality problem related to fracking in the biggest shale gas play
(the Marcellus) is the escape of methane into surface and ground
waters. If gas well leakage is large enough, it will impact individual
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aquifers, including homeowner wells in addition to impacting the
rate of global warming [42].

Our work is motivated by this critical real-world environmen-
tal concern. Collaborating with geoscientists, we aim to detect
anomalous water samples with high methane values. Such anom-
alies could potentially help us identify gas well leakage. While we
have already published some preliminary results on searching for
anomalous areas [29], in this paper we aim to pinpoint individual
anomalous data samples. More generally, we tackle the problem of
spatial outlier detection with contexts.

Specifically, the input of our outlier detection problem is a spatial
dataset. For each data sample, we have a behavioral attribute (e.g.,
methane concentration in water), a sample location (i.e., GPS coordi-
nates), and a set of additional contextual attributes describing each
data sample (e.g., distance to the gas wells and nearby geological
features). Our goal is to detect the anomalous data samples.

In the literature, typical outlier detection methods define the
outliers as the samples that deviate significantly from the rest of
the samples [3, 12]. Our problem is different because we target at
the behavioral attribute (e.g., methane concentration in water sam-
ples) and are only interested in samples with unexpected high (or
low) behavioral attribute values compared with a context (samples
with similar contextual attributes). While we may directly identify
samples with extremely high behavior attribute values (ignoring
the contextual attributes), this will often provide trivial global out-
liers where the problems are already known (e.g., due to a known
serious well leakage). Geoscientists are more interested in detecting
non-trivial, local outliers for unknown leakage.

In order to detect anomalous behavioral attribute values with re-
spect to a specific context, a simple baseline is to learn a regression
model that predicts the behavioral attribute value using the con-
textual attributes as features. A data sample with observed value
deviating significantly from its predicted value is then regarded as
an outlier. However, in many real-world data, the contextual features
may not be informative enough to learn a reliable regression model.
For example, in our Water dataset, the methane concentration in
groundwater is essentially unpredictable because many determin-
ing factors are either unknown (e.g., underground geology) or not
well documented (e.g., anthropogenic activities like coal mining,
industrial waste, and old residential houses). Hence, the outliers
detected based on such a regression model may not be meaningful.

To overcome this difficulty, our intuition is to utilize the special
property of spatial data — “near things are more related than distant
things” [40]. We propose to use nearby data samples to identify



local outliers. While geo-coordinates have previously been used
in the literature of spatial outlier detection to find spatial neigh-
bors [35], existing studies have not exploited the additional contextual
features. For example, two water samples might be spatially close
but one is sampled from a swamp whereas the other one is sampled
from a residential house. Intuitively, such additional contextual in-
formation can help us better identify neighbors in order to support
outlier detection.

However, combining and utilizing all the contextual attributes
(including spatial attributes) for neighborhood discovery is a non-
trivial task, because the values of different contextual attributes
carry different meanings and have different scales. While existing
studies in contextual outlier detection all use Euclidean distance
to find neighbors [12, 30], we propose to use metric learning to
learn the distance metric. As metric learning enables us to assign
different weights to different attributes, the neighbors we find are
more meaningful. To the best of our knowledge, this is the first work
to use metric learning for outlier detection.

Meanwhile, to successfully detect outliers in a local neighbor-
hood, we are facing two additional challenges. First, since the dataset
contains outliers, the distance metric learned by traditional metric
learning methods may not be reliable. To address this challenge,
in this paper we propose a new robust metric learning method in
the regression setting. Second, current methods do not differentiate
the types of neighborhoods. Some neighborhoods are more consis-
tent, giving us more confidence to declare an outlier. Meanwhile,
some neighborhoods are highly heterogeneous and may not pro-
vide enough confidence for us to detect outliers. Therefore, we
further propose a method which incorporates a confidence score
for each neighborhood to detect outliers.

To verify the effectiveness of our proposed method, we conduct
extensive experiments on five real-world datasets and compare it
with nine existing outlier detection methods. Further, we show two
interesting case studies. We have successfully detected an abnormal
water sample with potential leakage problem, and we are planning
field trips to investigate it.

In summary, the key contributions of this paper are:

e We propose a local neighborhood-based method which combines
heterogeneous contextual attributes with learned distance met-
rics to detect outliers. To the best of our knowledge, we are the
first to apply metric learning techniques to outlier detection.

o We show how to address two challenging issues in the local
neighborhood-based outlier detection, namely, distance metric
learning with outliers and varying confidence levels in neighbor-
hoods.

e We conduct extensive experiments on real-world datasets to
demonstrate the effectiveness of our method. Interesting case
studies are reported, demonstrating the uses of our method in
real world scenarios including helping address a critical environ-
mental problem related to fast shale gas development.

The rest of the paper is organized as follows. Related studies
are first discussed in Section 2. Section 3 presents our problem
definitions. We describe our method in Section 4 and discuss the
experimental results in detail in Section 5. Finally, we conclude the
paper in Section 6.

2 RELATED WORK
2.1 Outlier detection

Typical outlier detection methods aim to find data samples that are
significantly different from other samples [12]. Classical methods
include local outlier factor method [10] and high dimensional outlier
detection [4]. However, such outlier detection methods do not
differentiate contextual attributes and behavioral attributes and
thus the outlier definition is quite different from ours.

Contextual outlier detection. Our outlier definition is similar
to the definition of contextual outlier in the literature [12, 30]. In
such problem settings, each data sample has contextual attributes
and behavior attributes. A typical method is to first fit a predictive
model using the contextual attributes as features and the behavioral
attributes as response [23, 36]. The outlier score of a data sample
is then calculated based on the predictive model. However, in real
world applications we may not be able to obtain a reliable model
due to missing contextual attributes (i.e., unknown factors).

Another group of methods first find the neighbors for each sam-
ple based on contextual attributes and then generate an estimation
of the behavioral attribute using the neighbors [30, 41]. Outlier
score is obtained by comparing the observed behavioral attribute
values with the estimations. But these methods simply use Eu-
clidean distance to combine different attributes. To handle hetero-
geneous attributes, in this paper we propose to use metric learning
to detect more meaningful neighbors.

There are also works which define the contextual neighbors in
graphs [20, 44] or multi-dimensional categorical data [39], but they
are different from the numerical data used in our paper.

Spatial outlier detection. Spatial outliers are the data samples
whose non-spatial attribute values are significantly different from
their spatial neighbors [35]. Different methods are proposed to find
spatial neighbors, e.g., kNN [14], Self-Organizing-Map [11], and
graph-based method [27, 32]. Then, different statistic measures are
applied to compare samples with their neighbors, e.g., Z-Score [5,
14], Mahalanobis distance [14], LOF-based measure [13, 24], and
GLS-SOD [15]. However, all these methods only consider spatial
information to find neighbors. We propose to further consider
additional contextual attributes to find more precise neighbors.

2.2 Metric learning

Metric learning is a useful technique to learn a meaningful dis-
tance measure based on the data. The methods can be divided to
unsupervised metric learning (e.g., Principle Component Analy-
sis) and supervised metric learning. We only focus on the latter,
which is more relevant to our problem. Typical metric learning
methods [8, 28, 46] take similar pairs and dissimilar pairs as input,
and learn a distance metric to make similar pairs closer to each
other and make dissimilar pairs further apart. [45] extends metric
learning to kNN kernel regression and learn the metric by mini-
mizing kNN regression error. Our work is the first to apply metric
learning to outlier detection problem.

Methods have been further proposed for robust metric learning.
But current studies all assume pairwise similarity information is
given [31, 43], or require discrete labels [19, 22]. Instead, we propose
a robust metric learning technique for kernel regression.



3 PROBLEM DEFINITION

Suppose that we have a spatial data set of n data points Z =
{z1,23, ...,z }. Each data point z; = (x;,y;) is composed of a con-
textual attribute vector x; € RY (including spatial coordinates) and
a behavioral attribute value y; € R. We will also use the nota-
tion X = {x1,x2,....,xn} and y = {y1,y2, ..., yn} to represent the
contextual attribute vector set and behavioral attribute value set
correspondingly. For simplicity, we only focus on the case that
there is just one behavioral attribute. But our work can be easily
extended to multiple behavioral attributes. We summarize the no-
tations in Table 1. We use bold lowercase letter a to represent a
vector and bold uppercase letter A to represent a matrix. For better
readability, we omit the transpose notation in writing z; = (x;, y;).

Table 1: Notation used for problem definition and method
description.

X; Contextual attribute vector of sample i

yi Behavioral attribute value of sample i

Ui Estimation of behavioral attribute value of sam-
plei

z; = (x;,y;) | Data point for sample i

Ci Local confidence in determining the outlier
score of sample i

Si Outlier score of sample i

N; The set of k-nearest contextual neighbors of
sample i

wij Weight for sample j in estimating the behavioral
attribute value of sample i

dij Distance between sample i and sample j

M Learned distance metric

A Distance metric projection matrix

Our problem can now be formulated as follows:

ProBLEM 1 (CONTEXTUAL OUTLIER DETECTION). Given data set
Z = {z1,2, ...,z }, we wish to assign an outlier score S; € [0, 1] to
each data point z;, using x; as contextual attributes and y; as the
behavioral attribute. Higher score indicates that this sample has a
higher probability to be an outlier.

In the context of Water dataset of methane measurements (refer
to Section 5 for detailed data description), for a data sample z;,
contextual attributes x; can include latitude, longitude, and distance
from the sample location to shale gas wells. Behavioral attribute y;
is the methane concentration measured from water samples.

In the context of a real estate dataset (refer to Zillow dataset in
Section 5), contextual attributes x; describe a real estate’s proper-
ties such as latitude, longitude, square feet, and year of built, and
behavioral attribute y; can be the sold price. We will use the Zillow
dataset as the illustrating example throughout the paper to explain
our method, because this dataset is easier to understand compared
with the Water dataset, which contains many geoscience terms.

4 CONTEXTUAL OUTLIER DETECTION

Given the corresponding contextual attributes, the most straightfor-
ward way to determine the abnormality of one behavioral attribute

value is to learn a regression model f : RY — R that predicts
the behavioral attribute value using the contextual attributes as
features: §j; = f(x;). Then, the outlier score can be defined as the
difference between the true response value y; and the prediction
;. However, this approach is subject to at least two major issues in
practice. First, the underlying relationship among the contextual
and behavioral attributes may be highly complicated, and there is
no evidence that such relationship can be captured by a global re-
gression model. Second, some indicative features could be missing
in real world datasets. For example, in Zillow dataset, we do not
have a quantitative measure on the interior decoration of the house
or the competitiveness of the local real estate market, thus it is hard
to predict an accurate price. Similarly in the Water dataset, factors
such as underground geology and anthropogenic activities are un-
known and thus it is hard to predict the methane concentrations in
groundwater.

4.1 Local Models

To address the aforementioned challenges, we make two key ob-
servations about the data. First, while it is often difficult to build a
global regression model, samples in a local neighborhood of the data
space may be well approximated by a local regression model. Second,
since we are focusing on spatial datasets, we can utilize the spatial
neighbors with similar contextual attributes to help us build a more
accurate model. According to the First Law of Geography by Waldo
Tobler [40], “everything is related to everything else, but near things
are more related than distant things”. Hence, we can assume that
data samples that are spatially close to each other should share
similar properties, even though some properties are not observed.
For example, in the Zillow dataset, it is reasonable to assume that
houses in same community have similar house properties. In the
Water dataset, groundwater samples collected at geographically
close locations should share similar underground geology.

The above observations motivate us to develop local models
which first find contextual neighbors for each data sample, and
then use the behavioral attributes of these neighbors to predict the
behavioral attribute value for that particular data sample. Specifi-
cally, we use the kNN kernel regression [45]:

. XjeN; Wijyj

0; = , oy

2jeN; Wij
where wj; is the Gaussian kernel weight

w ! e d?j (2)
- xp | ——Z
) O'\/E p o2

defined according to some distance measure d;; between any two
samples, and ¢ is the standard deviation of the distance distribution.
In addition, N; denotes the set of k-nearest contextual neighbors
of sample z;:

N; ={j: zj is among the samples with the k smallest d;;}. (3)

4.2 Robust Metric Learning for Contextual
Neighborhood Discovery

It is easy to see that our local method heavily depends on the
distance measure d;; for contextual neighborhood discovery. In
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Figure 1: Illustration of distance calculation on Zillow dataset using different distance metrics. The data points are projected
onto 2D dimension using MDS (Multidimensional Scaling). The color of the points represents the sold price of the houses.

practice, Euclidean distance metric is commonly used to combine
different features and compute d;;. However, there are several
important drawbacks of this standard metric. Specifically, in real
world scenarios, it is often the case that there are features with
totally different semantic meanings in a dataset. For example, in
Zillow dataset, geo-location (latitude and longitude), year of built,
and square feet all stand for very different aspects of the properties
of the house. When calculating the distance between two houses,
for example, it is non-trivial to combine spatial distance and the
time difference in year of built. Further, there may be features
which are not particularly relevant to the regression task, but the
Euclidean distance metric would assign them with the same weight
as other features.

Therefore, we propose to learn a more meaningful distance mea-
sure using metric learning. The intuition is to adjust the weight on
each dimension of features when calculating the distance between
samples, so that similar data points (in terms of label in classifica-
tion or response in regression) will become closer and dissimilar
samples will be pushed further away from each other.

Mathematically, the Mahalanobis distance between two data
points is defined as (following similar notations as in [45]):

©

where M can be any symmetric positive semi-definite matrix. The
matrix M can be further decomposed into the product of two ma-
trices [45]:

2 2 T
di; = lIxi — xjlly = lI(xi —x;)" M(x; — )],

=ATA, (5

where A € R4 can also be regarded as a projection matrix that
projects the original d-dimensional space onto a r-dimensional
space. Hence, we have

& = Ixi —x)TATAG - x)l = 1A —x)I%. (6)

Note that, by setting A = I, this distance metric degenerates to
Euclidean distance.

Therefore, the goal of metric learning for kernel regression [45]
is to learn the distance metric M (or equivalently projection matrix
A), so that the regression error can be minimized. Typically, the
quadratic regression loss is commonly used [45]:

L= Z(yi —§)?

™

Given the loss function, the projection matrix A can be learned by
a gradient decent algorithm [45]:
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4.2.1 Robust Metric Learning. In the literature, the projection
matrix A is learned with the assumption that the data samples are
free from corruptions. However, this is not the case for our outlier
detection problem. For example, in the Zillow dataset, the sold
price of some properties are actually the price of the real estate
lot, instead of the house. Therefore, their prices might look much
lower than expected. In Water dataset, some groundwater samples
may be polluted by shale gas leakage and hence have a very high
methane concentration, compared to nearby samples. As existing
metric learning methods also include these samples, the learned
matrix A could be significantly biased.

However, it is well known that the quadratic loss Eq. (7) is sen-
sitive to outliers [9]. Therefore, we replace it with £;-norm loss
and use the following loss function to approximate £1-norm loss in
order to make it convenient to do derivative calculation:

L= \i-9:)°+ ©
L
where ¢ is a small constant making the objective function differen-
tiable. In our experiments we set ¢ to 0.0001. The value of ¢ does
not influence the experimental results significantly.
Correspondingly, the new gradient can be derived as follows:

wij(xi = x;)(xi —x))".

—4AZ(yz yz)z \/T Wij

(10)

Example 4.1. We use the Zillow dataset to illustrate the effect of
the proposed robust metric learning. We inject 2% outliers into the
dataset (details about outlier injection can be found in Section 5.3.1).
The distribution of samples under different distance metrics are
shown in Figure 1. We observe that, in Figure 1(a), under Euclidean
distance, houses with high sold prices and low sold prices are mixed
together. Moving from Figure 1(a), (b) to (c), i.e., from Euclidean
distance, metric learning, to robust metric learning, houses with
different sold prices are more separated from each other, and houses



with similar sold prices are closer to each other. Therefore, the
distance metric between samples is better modeled.

Finally, we note that while we focus on contextual outlier detec-
tion in this paper, the proposed robust metric learning approach is
quite general and can be applied to many outlier detection methods,
such as distance based methods [7, 26], density-based methods [10],
kNN-based methods [30]. To the best of our knowledge, previous
outlier detection methods have never used metric learning to learn
the distance between samples. We are the first to apply metric
learning techniques to outlier detection.

4.3 Outlier Score with Local Confidence

After obtaining the behavioral attribute estimation g; for each data
sample, the outlier score can be simply defined as the difference
between ¢; and the groudtruth behavioral attribute y;:

S9 = lyi - Gil. (11)

However, in spatial datasets, such a definition ignores the het-
erogeneity inside regions. For example, in Zillow dataset, some
regions might be a mixture of houses in different styles and lev-
els, which makes the price in this region highly unpredictable (i.e.,
many houses have high S©). In this case, even if we find a house
whose true price deviates a lot from its estimation, we are not very
sure if this is a true outlier. Meanwhile, if we find such a house
in a region where the prices of most houses can be well estimated
(i.e., SO is low for most houses in that region), we have a higher
confidence that this house is an outlier.

Therefore, we further define the local confidence of the data
sample:

1

Ci= ———.
ZjENi SJG

(12)

Then, we define the outlier score with local confidence as follows:

G
. (13)
i T2 i= - G*
JEN; °j

Example 4.2. We use real examples in Zillow dataset to illustrate
the effect of considering the local confidence for defining the outlier
score. We show two houses in Figure 2. House 1 has a much higher
sold price ($715k) compared to its neighborhood (most are lower
than $300K). In addition, the global outlier score SC of House 1 is
relatively high (0.63). Considering the fact that all the houses in the
neighborhood has a global outlier score lower than 0.1, we have
more confidence to assign this house a high outlier score (0.93).

House 2 also has a very high sold price ($949k) compared to
its neighborhood. However, the house price in its neighborhood
varies from $15k to $90k, which indicates the houses in this region
are very heterogeneous. Consequently, houses in this region have
global outlier scores varying from 0 to 0.5. Therefore, although
House 2 has a global outlier score 0.43, we have little confidence to
detect it as an outlier. Considering the local confidence, we assign
it a lower outlier score 0.32.
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Figure 2: Illustration of defining outlier score with local con-
fidence on Zillow dataset. The data points are projected onto
2D dimension using MDS. The color of the points represents
the sold price, global outlier score S l.G, and outlier score with
local confidence S{‘ of the houses, respectively. The big dot
in the middle is the target house.

5 EXPERIMENT

In this section, we conduct experiments on five real datasets. We
show a comprehensive quantitative evaluation by comparing with
other methods and also show some interesting case studies. !

5.1 Datasets

All the five real datasets contain spatial information (i.e., latitude
and longitude) as part of the contextual attributes. The Water
dataset and Air dataset are provided by our collaborators in geo-
science and meteorology. The datasets report the methane concen-
trations in groundwater and in atmosphere and allow exploration
of the impacts of shale gas development. Zillow dataset, which
contains online real estate information, is collected from Zillow
API [25]. The other two datasets, E1 Nino and Hydro, are obtained
from UCI repository [2].

In order to construct the features for Water dataset and Air
dataset, we define the notation as in Table 2.

Table 2: Notation for feature construction in Water and Air
datasets.

ej Emission volume of source j
N? | Neighboring emission sources around sample i
w¢. | Weight for emission source j to sample i

d¢. | Distance vector from emission source j to sample i

u; | Wind vector at sample i

Water dataset [1]. This dataset contains 1,645 data samples of
methane concentration in groundwater in Pennsylvania. Detailed
description of this dataset can be found in [29]. According to the ge-
ologists, among all the factors that might lead to abnormal methane

1Code and data are available at the authors’ website.



concentration in the groundwater, gas wells (including conven-
tional gas wells and unconventional gas wells) and faults are be-
lieved to be the most important ones. Therefore, for each ground-
water sample, we construct 11 contextual attributes (i.e., features)
describing sampling location (latitude and longitude) and nearby
emission sources, including distances to nearest gas wells, density of
gas wells (Eq. (14)), emission intensity of gas wells (Eq. (15)), number
of gas wells in certain distance threshold, total emission volume of
gas wells in certain distance threshold, and distances to nearest faults.
The behavioral attribute is the methane concentration measured
in groundwater sample. The outliers found in this dataset could
potentially indicate shale gas leakage problem.

density of gas wells around sample i = Z wfj, (14)

JEN?

T . o e
emission intensity of gas wells around sample i = Z wijejs

JENf
(15)
where wfj = g(||dl.ej [|) is the Gaussian weight with (z = 0, 0 = 5km):
1 (d—p)?
9(d) = exp (——2 : (16)
oV2r o

Air dataset [38]. This dataset contains 34,100 data samples of the
methane concentration in the atmosphere collected in the New York
State and Pennsylvania. The detailed description of this dataset
can be found in [6]. According to the geologists, in addition to
the many natural emission sources, which are usually not well
documented, conventional gas wells, unconventional gas wells, in-
dustrial emissions and gas compressors are the major documented
emission sources that may contribute to the methane concentra-
tion change in the air. Meanwhile, the methane concentration is
strongly correlated to the meteorological features. Therefore, we
use 30 contextual attributes in this dataset, including sampling loca-
tion (latitude and longitude), sampling time, meteorological features,
geographical features, distances to emission sources, and source emis-
sion intensity considering wind speed and direction (Eq. (17)). Similar
to Water dataset, the behavioral attribute is methane concentration
measured in atmosphere.

emission intensity around sample i considering wind = Z wiej ej
JENf
17)
with
wi; = g(lldj;ll) - cos 0. (18)

Here, g(||c?fj |I) is the Gaussian weight with (z = 0,0 = y X ||4;||km),

y is a constant, and 6;; is the angle between #; and JZ

Zillow dataset [25]. This dataset contains 1,511 house selling
records in State College, Pennsylvania, from year 2014 to 2016.
The sold price ranges from $100,000 to $975,000. The contextual
attributes describing the real estate properties include latitude, lon-
gitude, square feet, year of built (7 attributes in total). We use the
most recent sold price as the behavioral attribute.

E1 Nino dataset [17]. This dataset contains 93,935 samples in the
equatorial Pacific. The contextual attributes are oceanographic and

surface meteorological variables (6 contextual attributes in total)
and the behavioral attribute is sea surface temperature.

Hydro dataset [34] contains 308 records describing the relation-
ship between the shape of a ship and the residuary resistance that
the ship bares in water. The longitudinal position of the buoy-
ancy and five shape parameters of the ship are used as contextual
attributes. The behavioral attribute is the residuary resistance.

5.2 Methods for Comparison

We compare the performance of our method, named MELODY
(MEtric Learning Outlier Detection), with following four categories
of outlier detection methods.

General outlier detection methods.

LOF [10] is one of the most frequently used outlier detection
methods. It finds local outliers by comparing the local reachability
density of each sample with its neighbors.

Contextual outlier detection methods.

CAD [36]: Conditional anomaly detection proposes to model the
data using Gaussian Mixture Models (GMM). A GMM U is used
to model contextual attributes, with U; representing the i-th com-
ponent. Another GMM V is used to model behavioral attributes,
with V; representing the j-th component. Then, a mapping function
p(V;|U;) is learned to give the probability that the behavioral at-
tribute of a sample is generated by V; given its contextual attributes
are generated by U;. The lower the probability that a sample is
generated by this model, the higher its outlier score is.

ROCOD [30]: Robust contextual outlier detection proposes to
simultaneously consider local and global effects in outlier detection.
Specifically, kNN regression is used to generate a local estimation
for each sample, and a ridge regression (ROCOD.RIDGE) or tree
regression (ROCOD.CART) is used to produce a global estimation
for each sample. These two estimations are then combined to gen-
erate a total estimation §; for the behavioral attribute value. The
outlier score is defined as |y; — 7;|.

Regression-based outlier detection methods.

LR: Linear regression. We use the contextual attributes as fea-
tures and the behavioral attribute as the response variable. Then,
the outlier score is defined as the absolute difference between the
groundtruth and the estimated response variable values: |y; — ;.

XGBOOST [16]: XGBOOST is a gradient tree boosting method
which achieves impressive accuracy in many classification and
regression tasks in practice. We apply the same setting as in LR to
learn the model. Parameters are selected based on cross-validation.

Spatial outlier detection methods. All these methods first use
spatial attributes to find neighbors for each sample. The difference
is that how they define outliers using neighbors.

ZS [35]: The spatial statistic S(x) is defined as the difference
between the behavioral attribute value y at location x and the
average behavioral attribute value of its neighbors. The outlier
score for the attribute is then defined as Z(x) = S(x;—;ﬂs, where pg
and o denote the mean and standard deviation of S(x), respectively.

SOD [14] uses all the other attributes (except spatial attributes)
as behavioral attributes. The behavioral attribute values for each
sample are estimated by taking the mean or median of its neighbors’



Table 3: Overall performance comparison in terms of AUC on all datasets. The best performance of the compared methods is
highlighted. Percentage in parenthesis is the relative improvement over the performance of the best baseline method.

Methods Datasets Zillow Water Air E1 Nino Hydro
LOF 0.159 0.071 0.024 0.616 0.422
CAD 0.354 0.110 0.244 0.439 0.146

ROCOD.CART 0.422 0.121 0.208 0.595 0.769
ROCOD.RIDGE 0.403 0.118 0.104 0.333 0.611
LR 0.389 0.114 0.057 0.285 0.770
XGBOOST 0.477 0.119 0.083 0.780 0.935
ZS 0.206 0.122 0.219 0.622 0.234
SOD 0.167 0.054 0.034 0.292 0.487
GLS-SOD 0.188 0.142 0.208 0.619 0.254
MELODY [ 0.687 (+44%) | 0.182 (+28%) [ 0.716 (+193%) | 0.970 (+24%) | 0.965 (+3.2%) |

attribute values. The outlier score is defined as the Mahalanobis dis-
tance between observed and estimated behavioral attribute values.

GLS-SOD [15] uses the same behavioral attribute as our method.
A local generalized least square regression model is used to model
the behavioral attribute value variation over the space. The outlier
scores are determined according to the standard estimated residuals.

5.3 Quantitative Evaluation

5.3.1 Experiment Setting. We use generated outliers in this sec-
tion for two reasons. First, it is extremely hard to find spatial
datasets with ground truth outliers. Second, typical outlier datasets
usually contain global outliers, which is different from the task
of detecting contextual outlier in this paper. Therefore, we follow
[30, 36] to generate outliers using a perturbation scheme. Specif-
ically, the original dataset (without perturbation) is assumed to
contain no outlier. To inject one outlier, we first randomly select
a sample z; = (x;,y;). Then, we randomly pick ks (set to 10 by de-
fault) samples from the dataset, and select the sample z; = (xj, y;)
with the maximum y value difference |y; —y;| from these ks samples.
Then we replace z; with z] = (x;, y;) in the dataset.

By default, the ratio of injected outliers p is set to 2% for Zillow,
Water, Air and E1 Nino datasets. For the Hydro dataset, we set
p = 5% due to the smaller dataset size. The number of contextual
neighbors kj in our method is fixed to 60. For all the experiments,
the results shown are the average of 20 runs of perturbation.

5.3.2  Evaluation Metrics. All the outlier methods output a full
list of samples ranked by their outlier scores in descending order.
We use Precision at K, Recall at K, and the Area Under the Curve
(AUC) of the Precision Recall Curve (PRC) as the evaluation metrics.
We use PRC instead of Receiver Operating Characteristic (ROC) be-
cause PRC provides a more informative evaluation of performance
of algorithms in skewed datasets [18]. Note that in our experiments,
the outlier samples only constitute a small portion of the dataset.

5.3.3  Overall Performance. We first compare MELODY with
other methods on Zillow dataset. We show the Precision at K and
Recall at K in Figure 3. The maximum K is set to 30 because the num-
ber of outliers is 30 in Zillow dataset. We observe that MELODY
achieves higher precision and recall than all other methods.

=-m ROCOD.CART e-e CAD 4--¢ XGBOOST Zs e-® GLS-SOD
A-A ROCOD.RIDGE *--% LR e--o LOF A--A SOD MELODY
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Figure 3: Performance comparison on Zillow dataset

Next, we show AUC values for all the methods on all datasets in
Table 3. As one can see, MELODY consistently performs the best
on all datasets. We further make several interesting observations
on the results. First, all the methods perform poorly (AUC < 0.2)
on Water dataset. To understand why this is the case, we show the
R? for XGBOOST and MELODY in Table 4. The results suggest that
Water dataset is indeed hard to model. Second, all other methods
perform poorly on Air dataset (with highest AUC as 0.244), whereas
MELODY is still very robust (with AUC as 0.776). We can also see
in Table 4 that the regression fitting of MELODY is much better
than XGBOOST on Air dataset. This indicates that it is necessary
to use neighbor-based method for regression and outlier detection.

Table 4: Regression fitting results (R?).

Method Zillow | Water | Air | E1 Nino | Hydro
XGBOOST 0.690 0.027 | -0.087 0.777 0.915
MELODY 0.715 0.091 0.646 0.947 0.955

5.3.4  Performance w.r.t. Outlier Ratio p. We next investigate the
performance of all methods w.r.t. the number of injected outliers.
As shown in Table 5, MELODY always performs the best among all
methods regardless of the outlier ratios. We also observe that, with
higher outlier ratios, the performance of all the methods are getting
better in terms of AUC. This is because, with a higher outlier ratio,



the top candidates detected by the methods are more likely to be
true outliers. In other words, all the methods will achieve higher
precision with the same recall when more outliers are injected into
the dataset. In the extreme case, if we set all the samples in the
dataset to be outliers, the precision will always be 1.0 for all recall
values, therefore the AUC value will also be 1.0.

Table 5: Performance w.r.t. outlier ratio p on Zillow dataset.
Results shown are AUC on Zillow dataset.

Method p=1% | p=2% | p=3% | p=4% | p=5%
LOF 0.123 | 0.159 | 0.196 | 0.219 | 0.245
CAD 0.310 | 0.354 | 0.368 | 0.376 | 0.406

ROCOD.CART | 0.304 | 0.422 | 0.514 | 0.552 | 0.616
ROCOD.RIDGE | 0.298 | 0.403 | 0.501 | 0.544 | 0.602

LR 0.288 | 0.389 | 0.482 | 0.522 | 0.584
XGBOOST 0.374 | 0.477 | 0.569 | 0.593 | 0.645

ZS 0.162 | 0.206 | 0.282 | 0.323 | 0.374

SOD 0.132 | 0.166 | 0.202 | 0.208 | 0.231
GLS-SOD 0.152 | 0.187 | 0.254 | 0.295 | 0.346
MELODY | 0.611 | 0.687 [ 0.703 | 0.750 | 0.771 |

5.3.5 Performance w.r.t. Perturbation Sampling Size k. Table 6
shows the performance of all methods w.r.t. perturbation sampling
size ks. As one can see, MELODY consistently outperforms other
methods. We also observe that, as ks increases, the performance of
all the methods is generally getting better. This is because, when
ks increases, more samples will be considered as candidates for
perturbation. Since we select the sample with the most different
behavioral attribute value, it is more likely to use an extreme value.
Consequently, the perturbed sample is more likely to be an obvious
outlier. In addition, we note that, our method MELODY is particu-
larly robust when the outliers are not obvious (i.e., with small kg
values). As shown in Table 6, the gap between MELODY and other
methods is much larger when k; is smaller.

Table 6: Performance w.r.t. Perturbation Sample Size k. Re-
sults shown are AUC on Zillow dataset. Relative improve-
ment over best baseline in parenthesis. Smaller ks values
mean less obvious outliers.

Methods ks=10 | ks=20 | kg=30 | ks=40 | ks=50
LOF 0.159 0.194 0.210 0.216 0.210
CAD 0.354 0.349 0.312 0.327 0.312

ROCOD.CART | 0.422 0.580 0.648 0.709 0.745

ROCOD.RIDGE | 0.403 0.556 0.634 0.686 0.718

LR 0.389 0.539 0.619 0.661 0.697
XGBOOST 0.477 0.626 0.718 0.771 0.804
ZS 0.207 0.345 0.420 0.488 0.521
SOD 0.167 0.219 0.250 0.263 0.290
GLS-SOD 0.187 0.317 0.403 0.468 0.501
0.687 0.766 0.824 0.848 0.866

MELODY | yuz) | (+22%) | (+15%) | (+10%) | (+7.7%)

5.3.6 Justification of Each Component in MELODY. We have
four components in MELODY. In this experiment, we verify the
effectiveness of each component. The four components include (1)
the use of contextual neighbors to estimate the behavioral attribute
(denoted as CN); (2) metric learning to assign weights on different
contextual attributes (denoted as M); (3) robust metric learning (de-
noted as RM); and (4) local confidence factor for outlier detection
(denoted as L). As shown in Table 7, improvement in outlier detec-
tion performance is indeed achieved by including each component
in our method.

Table 7: Performance comparison of adding each compo-
nent (CN: contextual neighbors, L: local confidence, M: met-
ric learning, RM: robust metric learning). Results shown are
AUC on Zillow dataset.

Components CN | CN+M | CN+RM | CN+RM+L
AUC 0.413 | 0.469 0.493 0.687

5.4 Parameter Sensitivity

The only parameter in MELODY is the number of contextual neigh-
bors, denoted as kp. In this section, we show how the outlier
detection performance is affected by this parameter. In Figure 4, we
can observe that AUC first increases and then decreases slowly as
kN increases. In the range of [30, 100], the performance is relatively
stable, hence MELODY is not very sensitive to the choice of k.
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Figure 4: Performance w.r.t. number of neighbors ky on
Zillow dataset.

5.5 Case Study

In this section, we show two case studies on Zillow dataset and
Water dataset, respectively. We use the original datasets without
injecting any outliers. We show the cases with top outlier scores
detected by MELODY. Maps are made from Google Maps [21].

5.5.1 Case study on Water Dataset. We show an interesting
case on Water dataset in Figure 5. This water sample has a higher
methane concentration compared to the “neighboring” samples.
This is an outlier that the geologists believe could be related to
methane leakage.

5.5.2  Case study on Zillow Dataset. Figure 6 shows a case study
on Zillow dataset. This is a neighborhood on the east side of Penn
State University in State College, PA. This house is similar to its
neighbors, but has a much higher sold price.
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Figure 5: Case study on Water dataset. In Figure 5(a), the
methane concentration of this sample ranks 66/1645 (top
4.0%) in the whole dataset (yellow dots and red dots), and
ranks 8/300 (top 2.6%) among the “neighboring” samples (red
dots). In Figure 5(b), we can observe that the detected outlier
(blue balloon) is only 1km downstream from a site where we
know that methane leaked into three homes (pink balloons)
along a branch of Sugar Run in Terry township [33]. The
methane concentration in the water of these sites is influ-
enced by the upstream gas wells.

6 CONCLUSION

Our work is motivated by the environmental concern caused by
shale gas development. We aim to detect outliers from spatial
dataset. Different from existing outlier detection methods, we pro-
pose a local neighborhood-based method by combining heteroge-
neous contextual attributes via robust metric learning. Extensive
experimental results demonstrate the effectiveness of our proposed
method. The proposed technique is being used to help geoscientists
locate potential environmental issues (e.g., gas well leakage).
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(d) Three houses that are very similar to the detected outlier

Figure 6: Case study on Zillow dataset. The detected outlier is similar to its neighbors in contextual attributes such as spatial
location, “square feet” and “lot square feet”, but its sold price is much higher. As shown in Figure 6(b), when we plot sold price
v.s. lot square feet for the entire dataset, this house does not appear to be an outlier, indicating that this outlier can not be
easily detected by global outlier detection methods (e.g., linear regression). By comparing it to the “neighboring” houses only,
MELODY successfully detect this outlier. Similar observations can be made in Figure 6(c) w.r.t. square feet. Figure 6(d) shows
that the three houses which are very close and similar to the detected outlier have much lower sold prices. In addition, the
Zestimate values provided by Zillow also suggest that this is an outlier ($234,056 Zestimate vs. $580,000 sold price).
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