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ABSTRACT

We present accretion-disk structure measurements from continuum lags in the Sloan Digital Sky Survey Reverber-
ation Mapping (SDSS-RM) project. Lags are measured using the JAVELIN software from the first-year SDSS-RM ¢
and ¢ photometry, resulting in well-defined lags for 95 quasars, 33 of which have lag SNR > 20. We also estimate
lags using the ICCF software and find consistent results, though with larger uncertainties. Accretion-disk structure is
fit using a Markov Chain Monte Carlo approach, parameterizing the measured continuum lags as a function of disk
size normalization, wavelength, black hole mass, and luminosity. In contrast with previous observations, our best-fit
disk sizes and color profiles are consistent (within 1.5 ¢) with the Shakura & Sunyaev (1973) analytic solution. We
also find that more massive quasars have larger accretion disks, similarly consistent with the analytic accretion-disk
model. The data are inconclusive on a correlation between disk size and continuum luminosity, with results that are
consistent with both no correlation and with the Shakura & Sunyaev (1973) expectation. The continuum lag fits have
a large excess dispersion, indicating that our measured lag errors are underestimated and/or our best-fit model may
be missing the effects of orientation, spin, and/or radiative efficiency. We demonstrate that fitting disk parameters
using only the highest-SNR lag measurements biases best-fit disk sizes to be larger than the disk sizes recovered using
a Bayesian approach on the full sample of well-defined lags.
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1. INTRODUCTION

Quasars are supermassive black holes (SMBHs) that
grow by rapid mass accretion. During the accretion
phase quasars glow with total luminosity Lpo = nM 2,
where 7 is the radiative efficiency, M = dM /dt is the
SMBH accretion rate, and c is the speed of light. The
foundational model for black hole accretion disks is the
thin-disk model of Shakura & Sunyaev (1973, hereafter
SS73). The SS73 disk model is an optically thick, geo-
metrically thin disk model where the local disk emission
corresponds to a series of black bodies at different radii.
The inner part of the accretion disk has hotter emission
whereas at the outer edge of the disk the emission is
cooler.

Even though the SS73 model has been widely used,
mounting observational and theoretical evidence shows
that the SS73 disk model breaks down in several ways.
Recent continuum reverberation mapping (RM) obser-
vations (Shappee et al. 2014; Fausnaugh et al. 2016,
2017; Jiang et al. 2017; Mudd et al. 2018) identified
discrepancies in the measured disk sizes from what is
expected by the SS73 model. This discrepancy is also
reported in micro-lensing observations of quasars (Mor-
gan et al. 2010; Blackburne et al. 2011; Motta et al.
2017).

Both theory and non-RM observations suggest that
black hole accretion structure depends on accretion rate
in ways that are not entirely predicted by the SS73
thin-disk model. Recent advances in simulations of
super-Eddington accretion disks predict dramatically
different emission and outflow properties compared to
the sub-Eddington SS73 analytic prescription (Sadowski
2014, 2016; McKinney et al. 2014; Jiang, Stone & Davis
2014, 2017, see also the analytic “slim” disk model
of Abramowicz et al. 1988). Observations of candi-
date super-Eddington quasars in X-ray (Desroches et
al. 2009), with broad-line kinematics (Du et al. 2015)
and spectral energy distribution (SED) fitting (Luo et
al. 2015) show similar evidence for slim accretions disks.
At low accretion rates, SED observations suggest that
accretion occurs in a hot, ionized, optically thin, radia-
tively inefficient accretion flow (RIAF) mode, although
the exact radiative efficiency is degenerate with the mass
accretion rate (Narayan & Yi 1994; Narayan & McClin-
tock 2008; Ho 2008; Trump et al. 2011; Elitzur et al.
2014). Additional theoretical work suggests that differ-
ent wind profiles can cause the disk structure and emis-
sion properties to differ from the SS73 model (Slone &
Netzer 2012; Laor & Davis 2014; Sun et al. 2018b).

Testing the connections between accretion-disk size,
Mgy and M may reveal whether the ratio of observa-
tional to theoretical disk sizes depends on Mpy and / or

accretion rate. These ideas have not yet been tested by
direct accretion-disk measurements, since previous re-
verberation mapping surveys provide measurements for
only small samples spanning a narrow range of black hole
mass and accretion rate estimates. The SS73 thin black-
body disk model predicts that the disk size, r = c7, at
rest-frame wavelength A depends on the black hole mass
Mgy and accretion rate M, both with a power-law index
of 1/3, as follows:
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The bulk of underlying accretion physical processes
occurs within light-years of the central black hole, which
cannot be spaitially resolved with current technology.
The RM method (Blandford & McKee 1982; Peter-
son 2004) is a powerful tool for investigating regions
where direct imaging cannot resolve structure. The RM
method substitutes high temporal resolution for high
spatial resolution, allowing us to probe regions that are
only light-days in extent. RM is enabled by the fact that
quasar luminosity is variable, and we observe physically
connected regions “reverberate” in response to the driv-
ing continuum. The variability signatures in high-energy
emission regions are thus repeated in lower-energy emis-
sion regions, with the signals delayed by the time re-
quired for the light to travel between the two regions'.
The RM technique is most frequently applied to measure
the time delay between variations in the observed-frame
optical continuum emission and the broad emission lines
emitted in the eponymous broad-line region. This time
delay yields the relative sizes of each of these regions.
Broad-line RM is currently the only method to robustly
measure SMBH mass in active galaxies beyond ~ 100
Mpc.

Continuum RM (Krolik et al. 1991; Fausnaugh et al.
2016) measures the variability of the continuum emission
at various wavelengths in response to the driving UV /X-
ray ionizing continuum. Measuring the variability in the
re-emitted continuum emission from the accretion disk
probe the accretion disk regions that emit black body
radiation. Continuum lags at different wavelengths, re-
sulting from the emission of hotter regions closer to the
black hole, and cooler more distant disk regions, can be

1 As is standard in reverberation mapping studies, we assume
a “lamp post” model where fluctuations are driven at the speed
of light (Cackett, Horne & Winkler 2007). Other mechanisms
for driving fluctuations with v < ¢, like sound waves, would im-
ply implausibly small disks. We also assume that the distance
between wavelength regions remains constant during luminosity
fluctuations, consistent with the relatively small (average ~8%)
rms variability of the continuum light curves.



used to measure disk sizes. In addition, by measuring
the response of the continuum emission from different
parts of the disk, one can map the temperature and
wavelength scaling of the accretion-disk structure.

Previous continuum RM campaigns have dedicated
many observations to interband optical monitoring
(Sergeev et al. 2005; Cackett, Horne & Winkler 2007)
and a few have even been extended to UV and soft/hard
X-ray (Wanders et al. 1997; Collier et al. 1998; Gehrels
et al. 2004; Shappee et al. 2014; McHardy et al. 2014;
Fausnaugh et al. 2016; Edelson et al. 2017; McHardy
et al. 2018). These previous results, based on cross-
correlation lag measurements, are consistent with the
T o r~3/* and thus 7 < A*/3 prediction of the SS73
model (although see also (Starkey et al. 2017)). Con-
tinuum RM observations also find a measured disk nor-
malization that is ~ 3-4 times larger than expected
(Edelson et al. 2015, 2017; Jiang et al. 2017; Fausnaugh
et al. 2016). This result is also in agreement with mi-
crolensing observations (Morgan et al. 2010; Blackburne
et al. 2011; Motta et al. 2017). Recently, Mudd et al.
(2018) report lag upper limits from the Dark Energy
Survey consistent with the SS73 model assuming mod-
erate to high accretion rates.

The inhomogeneous disk models explained by Dexter
& Agol (2011) incorporate temperature fluctuations in
Keplerian rotation disks that can produce larger disk
sizes; in addition this would solve the problem of quasar
variability that is not well understood in the context of
the SS73 model. However, previous studies have not
tested disk-structure dependency on Mpy and accre-
tion rate due to current data limited to low-luminosity
Seyfert galaxies. There are currently only seven Type 1
Seyfertt AGNs that have both continuum and emission-
line RM measurements, which together allow for both
direct Mgy and accretion-disk size measurements (Col-
lier et al. 1998; Edelson et al. 2015; Fausnaugh et al.
2016; Edelson et al. 2017; McHardy et al. 2018; Faus-
naugh et al. 2018).

We address this problem by performing a comprehen-
sive study of the physics of black hole accretion using
direct accretion-disk size and structure measurements
from the Sloan Digital Sky Survey Reverberation Map-
ping (SDSS-RM) project (Shen et al. 2015) between op-
tical ¢ and ¢ photometry bands. We connect the ob-
served accretion-disk structure with black hole mass and
accretion rate using our unique sample of quasars that
have well-measured BH masses from a previous SDSS-
RM BH mass study (Grier et al. 2017). This work is
complementary to Starkey et al. (in prep), which uses
a different methodology to similar measure continuum
lags from SDSS-RM quasars. Here we focus on measur-
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ing disk size, color profile, and disk dependence on mass
and luminosity using the JAVELIN software, which fits
reverberation lags using damped random walk (DRW)
model for the statistical behavior of lightcurve variabil-
ity. In contrast, Starkey et al. (in prep) uses the CREAM
software with models for both the driving lightcurve and
the disk reverberation response, fitting disk size, tem-
perature profile, and orientation. Section 2 describes
our sample chosen from the SDSS-RM dataset. Section
3 presents our procedure for lag identification, including
alias removal, outlier rejection and lag quality analysis.
In section 4 we discuss the necessary criteria for select-
ing physical lags corresponding to reverberating light
curves. Section 5 describes our use of computed lags
to fit a normalization of the accretion disk and link the
observed lags to mass and accretion rate correlations.
Throughout this work, we adopt a ACDM cosmology
with Q4 = 0.7, Qpy = 0.3, and h = 0.7.

2. DATA
2.1. SDSS-RM Survey

The Sloan Digital Sky Survey Reverberation Mapping
project (SDSS-RM) is a pioneering multi-object RM
campaign (Shen et al. 2015) that is simultaneously mon-
itoring a sample of 849 quasars in a single 7 deg? field
since 2014, the project began with SDSS-IIT (Eisenstein
et al. 2011). The selected RM sample is flux-limited to
ipsf = 21.7 with no additional cuts on variability am-
plitude or redshift of the quasars, dramatically expand-
ing the parameter space of spectroscopic, variability and
multi-wavelength properties of quasars with RM data
(Figure 1 of Shen et al. 2015). The main goal of SDSS-
RM is to measure lags for a range of emission lines and
measure black hole mass, as well as improving the es-
tablished radius-luminosity (R-L) relation (Kaspi et al.
2007; Bentz et al. 2013) that is currently well-calibrated
for Hf3 in a biased sample of nearby z < 0.3 quasars. Due
to the necessity of continuous observations in this survey,
coordinated monitoring by different SDSS-RM photom-
etry sites is essential to monitor quasar light variability.
Thus the SDSS-RM program is supported by ground-
based photometry from multiple facilities including the
Canada-France-Hawaii Telescope (CFHT) and Steward
Observatory Bok telescope. To date, SDSS-RM has re-
sulted in several studies of the variability and properties
of quasar emission lines (Sun et al. 2015; Denney et al.
2016a; Shen et al. 2016b; Denney et al. 2016b; Li et al.
2017; Sun et al. 2018a), broad absorption line variability
(Grier et al. 2016), the relationship between black hole
growth and host galaxy properties and broad emission-
line lags (Matsuoka et al. 2015; Shen et al. 2016a; Grier
et al. 2017).
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Figure 1. Top: The i-band magnitude and redshift of the
full SDSS-RM sample of 849 quasars (gray), along with the
parent sample of 222, z < 1.13 quasars used in this work
(red). Bottom: The bolometric luminosity and redshift of
the full SDSS-RM sample (gray) and z < 1.13 sample used
in this work (red). Bolometric luminosities are computed
using monochromatic bolometric corrections of 9.26, 5.15,
and 3.81 using the 5100A, 3000A , and 1350A luminosities
(Richards et al. 2006). Our SDSS-RM sample spans a broad
range of luminosity and redshift and is more representative of
the general quasar population than previous RM campaigns,
see also Figure 1 of Shen et al. (2015).

We here select the 222 quasars in SDSS-RM (see Fig-
ures 1 and 2) with z < 1 .13 previously studied for
broad-line RM and black hole mass, Mgy, estimates
Grier et al. (2017). Of the 222 quasars, 44 have reli-
able Mgy estimates from Grier et al. (2017), enabling
us to study the accretion-disk structure dependence on
black hole mass. The selected sample is unique since it
has well-measured BH masses and is suitable to study
accretion-disk properties based on continuum lag mea-
surements.

2.2. Spectroscopy

We use the Baryon Oscillation Spectroscopic Survey
(BOSS) spectrograph (Dawson et al. 2013; Smee et
al. 2013) covering wavelengths of 3650 — 10400 Awith
a spectral resolution of R ~ 2000, with the spectro-
graph is mounted on the 2.5 m SDSS telescope (Gunn
et al. 2006). Our study, uses the first year of SDSS-
RM spectroscopic observations, obtained during seven

].010 T T T T T
109 L g * % i
.‘.".’oil
s o
° I
3 108k !?:'. i
=
- i
7L % % % ]
10 % + + o Mgy SE full sample
. e Mgy RM full sample
; ®  Previous Work
0500 025 050 0.5 100
Redshift

Figure 2. The Mpn and redshift of our parent sample of
222 SDSS-RM quasars. Our sample is unique for accretion-
disk RM as it has a large number of reliable black hole mass
estimates: a total of 44 quasars in our sample have masses
from broad-line RM (red circles Shen et al. 2016a; Grier et
al. 2017). We supplement this data set with lower-precision
single-epoch mass estimates for an additional 178 quasars
(open symbols, from Shen et al. 2016a using the Vestergaard
& Peterson 2006 prescription). Filled squares show the lim-
ited number of previous measurements of both RM masses
and accretion-disk sizes in broad-line AGNs forNGC7469
(Collier et al. 1998), NGC 5548 (Fausnaugh et al. 2016),
MCG +08-11-011 and NGC 2617 (Fausnaugh et al. 2018)
and NGC 4151 (Edelson et al. 2017; McHardy et al. 2018)
NGC 4395 and NGC 4593 (McHardy et al. 2018) (NGC 4395
also has continuum RM measurements and a black hole mass
from broad-line RM, but its Mppn of 2 X 105M@ falls outside
the figure).

dark/grey observing windows in Jan - Jul 2014. Each
epoch has a typical depth of S/Ng2 > 20 (the average
extinction-corrected S/N? per pixel in g band evaluated
at gpst = 21.2) (Shen et al. 2015), with a total of 32
spectroscopic epochs separated by a median of 4 days,
with varying cadence depending on weather conditions
and scheduling constraints.

The spectroscopic data processing is initially pro-
cessed using the standard SDSS pipeline (Bolton et al.
2012) for flat-fielding, 1d extraction, wavelength calibra-
tion and a first pass at sky subtraction and flux calibra-
tion. SDSS-RM data are also processed with a second
round of sky subtraction and flux calibration using a
custom pipeline that uses position-dependent calibra-
tion vectors (see Shen et al. 2015) for details. Finally,
a software package called PrepSpec is used to model
the spectra and remove any remaining epoch-dependent
calibration errors. This step is implemented by fitting



a simple model for quasar spectra and considering a
wavelength-dependent and time-dependent component
to the continuum and a non-variable component to the
narrow emission line fluxes. See Shen et al. (2016a) for
details.

We measure synthetic photometry in the g and i-
bands by integrating the SED with the SDSS filter re-
sponse function (Fukugita et al. 1996; Doi et al. 2010)
and the flux errors. The synthetic flux error is computed
using the quadratic sum of errors in the measured SED,
errors in the shape of the response function and the er-
rors in PrepSpec calibration.

Following Grier et al. (2017) we excluded epoch 7
(MJD = 56713) out of the 32 available epochs because
it was taken under poor observing conditions, had sig-
nificantly lower S/N, and was frequently (>>1/3 of the
time) a >1o outlier compared to the other epochs. Fur-
thermore, to improve the overall quality of the obtained
continuum light curves, a small number of epochs (1%)
are rejected as outliers if offset from the median flux by
more than five times the normalized median absolute de-
viation (NMAD), this is implemented to mostly remove
data points where the fibers were incorrectly placed al-
tering the flux or dropped fibers.

2.3. Photometry

SDSS-RM is supported by ground-based photom-
etry from the 3.6m Canada-France-Hawaii Telescope
(CFHT) and the 2.5m Steward Observatory Bok tele-
scope. Between Jan and Jun 2014 the Bok/90 Prime
instrument (Williams et al. 2004) obtained 31 epochs
in g-band and 27 epochs in ¢-band during 60 observ-
ing nights in bright time. The CFHT MegaCam (Aune
et al. 2003) obtained 26 epochs in g and 20 epochs in
i-band.

The photometric light curves are computed using im-
age subtraction as implemented in the ISIS package
(Alard 2000). ISIS first creates a reference image using
the best seeing exposure, then matches the astrometry
of subsequent frames with different point-spread func-
tions (PSF). This step uses a least-squares fit to find
the optimal kernel between the reference image and the
target image while accounting for PSF variation in each
target image. The target image is then convolved and
subtracted from the reference image to produce the light
curves. The reference image and image subtraction is
performed for each individual telescope, filter, CCD and
field (Kinemuchi et al. 2018).

2.4. Light Curve Merging

The combined monitoring from the SDSS, Bok, and
CFHT telescopes provide a total of 88 epochs of g-
band photometry and 78 epochs of i-band photometry.
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The mean fractional variability is 8.4% in the g-band
and 7.3% in the i-band, in both cases calculated as
the maximum-likelihood intrinsic variability accounting
for observational uncertainties (following Almaini 2000;
Sun et al. 2015). However, combining the three light
curves is nontrivial, since each observatory has different
seeing conditions and calibration issues for each filter
response, telescope throughput and and any other site-
dependent calibration. We use the CREAM software (Con-
tinuum REprocessing AGN Markov Chain Monte Carlo;
Starkey et al. 2016) to inter-calibrate the lightcurves ob-
tained at different sites with the following model:

F,(t)=F+AFX(t), (2)

where the lightcurve shape X (¢) is normalized to (X) =
0 and (X?) = 1 so that F'()) is the mean and AF()) is
the rms flux of the lightcurve. CREAM uses a power-law
prior on the power spectrum of X (¢) (see Equation 8, 9
and 10 of Starkey et al. 2017) so that X (¢) by default
resembles the observed behavior of AGN lightcurves
(see Grier et al. 2017 for step-by-step description of the
lightcurve merging procedure). The fit allows F' and AF
to be different for the data from each site, while apply-
ing the same X (t) to all sites. The site-to-site differences
in F and AF then allow the data from each site to be
scaled and shifted and thereby effectively merged into
a single lightcurve dataset with a common photometric
calibration. This was done independently for the ¢ and
g photometry, thus defining a (slightly) different X (¢)
for each band.

3. CONTINUUM RM ANALYSIS

The SDSS-RM light curves are irregularly-sampled
due to weather conditions and constraints on telescope
allotted time; thus the RM analysis requires interpola-
tion between epochs. We use two approaches to interpo-
late and measure lags and uncertainties from the merged
light curves.

3.1. ICCF

Our first RM analysis methodology is the Interpolated
Cross Correlation Function (ICCF; Gaskell & Sparke
1986; Gaskell & Peterson 1987; White & Peterson 1994;
Peterson 2004) where observations from different epochs
are linearly interpolated to create an evenly sampled
grid and calculate the Pearson coeflicient r between the
two mean-subtracted light curves Sy (¢) and Sa(t). The
first light curve is then shifted by a time lag 7 and r is
re-measured. This step is repeated across the range of
allowed 7, thus constructing the cross correlation func-
tion. The same procedure is repeated by shifting the
other light curve by all 7 values, and the final correla-
tion function is averaged between the two. Determining
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Figure 3. Merged g and i-band lightcurves for RM 267 as
an example of the cadence and quality of our photometry.
Different symbols and colors indicate data from Bok (green)
and CFHT (blue) photometry and SDSS (red) spectroscopy.
Bold symbols indicate nightly averages of the individual ob-
servations shown by fainter symbols. Our quasars have a
total of 88 epochs in g and 78 epochs in ¢ spanning a total
of about 180 observed-frame days.

well-measured lags using the ICCF method is challeng-
ing considering the correlated errors associated with the
lightcurve interpolation. We estimate errors on the ICCF
lags using Monte Carlo (MC) iterations for flux resam-
pling and random subset selection (Peterson 2004), im-
plemented using the publicly available PyCCF software
(Sun, Grier, & Peterson 2018b). The flux in each point
is resampled by a Gaussian distribution determined by
its uncertainty, a random subset of epochs is chosen
(with replacement), and the lag is recomputed. Re-
peated MC is used to obtain cross-correlation peak dis-
tribution (CCPD). The centroid of the CCF is restricted
to the region where the CCF is above 80% fraction of the
peak; experimentation reveals that using the centroid of
the CCF rather than the CCF peak results in less biased
lags and yields higher precision in virial masses (Peter-
son 2004), we thus choose to work with cross-correlation
centroid distribution (CCCD).

We adopt a delay grid spanning +100 days with spac-
ing of half the mean of minimum separation between
observed epochs. This search baseline is roughly half
the total 180-day range of the SDSS-RM observations,
and effectively prevents matching non-overlapping fea-
tures between the light curves. We perform 5000 MC
iterations over the range of allowed 7 per light curve,
returning the CCCD for the lag centroid 7.en: and the

cross-correlation Pearson coefficient r at each time delay
within the the range.

Each of the ICCF MC realizations is tested for corre-
lation coefficient and significance of the lag and returns
a “failed peak” if significance criteria are not met (i.e.,
CCF peak is found to be on the upper or lower limit
of the delay grid or if the correlation coefficient is less
than 0.2 for data points within the centroid). Out of
the unique sample of 222 RM objects, RM173 showed
the most failed peak detection with only 37 successful
detected peaks out of 5000 MC realizations. We there-
fore exclude this quasar as its CCCD is not statistically
significant (We will shortly see that JAVELIN is also
unable to obtain the continuum model for RM 173). In
the rest of our sample ~ 30% of objects have all 5000
successful MC realizations and on average each object
has ~ 85% success rate.

3.2. JAVELIN

We also compute lags using the JAVELIN software (Zu
et al. 2011). JAVELIN assumes a damped random walk
(DRW) model to predict the lightcurves at unmeasured
times. Observations confirm that the DRW model is a
reasonable first-order description of quasar light curve
variability on timescales of 21 day, with variability am-
plitude and damping timescale? dependent on quasar
luminosity (Kelly et al.  2009; Koztowski et al. 2010;
MacLeod et al. 2010; Sun et al. 2018c). The DRW in
the continuum is first modeled by two priors to compute
the continuum light curve variability with the assump-
tion of covariance between times t; and ¢;:

< Sl(ti)sl(tj) >= o? (]. — ef‘tiftﬂ/‘rd) (3)

Here 74 is the damping timescale. This variability model
can be approximated as a double-power law, with a short
timescale (At < 74 rms of 04/2 At/74 (power spectrum
power-law of & = —2) and a long timescale rms of o
(a=0).

JAVELIN models the reverberation response ¥(7) as a
top-hat function centered at 7 with full width A7. The
reverberating light curve is then the “lagged” version
of the driving light curve smoothed and scaled by the
parameters of the top-hat function.

JAVELIN uses a two-step Markov Chain (MCMC) sim-
ulation (Zu et al. 2011). The first step analyzes the driv-

2 The typical damping timescale of a quasar in observed-frame
is ~ 1500 days (Kelly et al. 2009; MacLeod et al. 2012). Since our
monitoring duration is shorter than the DRW damping timescale,
our light curves are essentially modeled as a red-noise random
walk with no damping. We explicitly tested damping timescales
of 200-2000 days and found no significant differences in the best-fit
JAVELIN lags.



ing light curve by itself and obtains uncertainties and
posterior distributions for the DRW parameters 743 and
0. The second MCMC analysis determines the best-fit
transfer function centroid 7 and A7 based on the pos-
terior distribution from the isolated continuum in the
first MCMC, where each DRW parameter is the median
value with the Gaussian width chosen to match the up-
per and lower 1o confidence regions. This approach re-
sults in three new posteriors: mean lag 7 = (1; + 75)/2,
the width of the top-hat A7 = 73 — 73, and a scaling
coefficient A. The second MCMC process also updates
the posterior distribution for the DRW parameters 74
and o. JAVELIN is able to allow for all the parame-
ters of the DRW model and transfer function to vary
in the MCMC; however, we fix the damping time scale
Ta = 200 days. The assumed damping timescale does
not affect the model light curves so long as it is longer
than our 180-day monitoring duration. We similarly fix
the transfer function to have a width of A7 = 0.5 day,
after testing values between 0.25 and 1 day and find-
ing no significant differences in the measured lags. The
top-hat function used by JAVELIN is a simplification of
the more complicated transfer function likely to describe
accretion-disk reprocessing (see Starkey et al. 2016), but
is a reasonable approximation so long as the disk re-
sponse is short compared to the lag, and it has been
the common assumption of previous work to which we
make comparisons. The uncertainty of the DRW pa-
rameters is obtained based on the statistical confidence
limits from the posterior distribution. JAVELIN fails to
compute the continuum model for the RM 173 just as
the ICCF failed, and also fails to compute the continuum
model for RM 187 and RM 846. In the end we have 219
quasars that have computed JAVELIN lags.

We demonstrate continuum lag analysis results in Fig-
ure 4 for RM 267 for the g and ¢ band continuum model
using JAVELIN and ICCF. Similar figures for our full sam-
ple are provided as a Figure set.

3.3. Lag Identification Method

Identifying a well-measured lag from the methods de-
scribed in 3.1 and 3.2 requires additional checks to elim-
inate cases that appear to be unreliable or ambiguous.
Additionally, in many cases the CCCDs obtained from
our methods have multiple peaks that correspond to
aliases in the lags due to semi-repeating features in the
light curves. Also, it is not always clear if the initial re-
ported lag corresponds to genuine reverberation. We de-
vise a set of criteria to identify unambiguous lags, likely
to correspond to real reverberation, while rejecting less
reliable lags.

3.3.1. Alias Remowval
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As mentioned above, many of our quasars have CC-
CDs with multiple peaks, corresponding to competing
alternatives for the CCF lag. Some of these peaks occur
at the bounds of the time window (+ 100 days) and are
caused by numerical issues.

We assume a prior that lags are most likely to be de-
tected when the two light curves have maximal over-
lap. Conversely, if shifting epochs by a time delay re-
sults in zero overlapping data points between common
epochs then the probability of finding a lag will be zero.
We adopt the same weighting and alias removal scheme
as in Grier et al. (2017). The weight is defined as
P(r) = (N(1)/No)? ; with N(7) corresponding to the
number of overlapping epochs between the g light curve
and the 7 light curve shifted by lag 7, and Ny correspond-
ing to the maximum number of overlapping epochs from
g and ¢ light curves at zero time delay 7 = 0.

Our general framework for finding lags is based on
JAVELIN posterior distribution as CCCD. The CCCD
is weighted by P(7) to avoid alias lag solutions and
smoothed using a Gaussian filter with a width of five
days. The smoothing is used to identify peaks in the
weighted CCCD as well as the local minima around each
peak. The weighted, smoothed CCCD may contain mul-
tiple peaks with a high-significance peak accompanied
by multiple low-significance peaks. We compute the area
between consecutive local minima and identify the local
minima that contain the peak with the most area and
adopt the lag as the median of the un-smoothed CCCD
within the identified local minima. Furthermore, this
technique is helpful in identifying more plausible lags
for those CCCDs that show peaks on either ends of the
lag interval.

The lag uncertainty is computed as the mean absolute
deviation relative to the median, computed between the
local minima on either side of the peak.

3.3.2. BLR impact on Continuum Light Curves

The g and 4 photometric bands in our lightcurves
may include substantial flux from broad emission lines
in addition to the continuum emission. Considering
that BLR lags typically have longer timescales and show
smaller-amplitude variability compared to continuum
lags (MacLeod et al. 2012), BLR contamination may po-
tentially affect the observed time lag derived from the
continuum. We consider emission lines that could fall in
range of SDSS filters depending on the redshift of our
quasar sample: CIV ;| CIII, Mgll, HS and Ha at respec-
tively 1550, 1909, 2799, 4861, 6563 A in the rest frame.
We determined the broad-line contribution, fgir in each
as the ratio of emission-line equivalent width (Shen et
al. 2018) to the SDSS filter effective width (Fukugita et
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Figure 4. Top: Continuum g (blue) and i-band (red) light curves and errors for quasar RM ID 267 computed with JAVELIN.
For clarity, black points indicate the averages of data taken within a single night, although all lag analyses were performed on
the individual, non-averaged observations displayed by small grey points. The best-fit JAVELIN DRW models are shown by the
shaded lines in each panel. Bottom left: The cross correlation coefficient computed at each lag with its maximum identified by
a red horizontal line. Bottom center: Lag probability distribution computed by ICCF, with the local minima of the primary
peak indicated by gray shading, and the identified lag and £10 error indicated by the green dotted line and shading. Bottom
right Lag probability distribution computed by JAVELIN. The main lag and its +1o error are represented by the red dotted line
and shading. In both plots the Gaussian-smoothed curve represents the smoothed peak with 5-day standard deviation. The

complete figure set (219 images) is available on the online journal.

al. 1996). The contamination result for all of the objects
in our sample is illustrated in Figure 5.

3.4. Criteria

We require additional tests to identify if our com-
puted lag are statistically significant. One of the tools
on which we rely is the maximum cross correlation co-
efficient, mmnax, as a measure of correlation between the
g and i light curves. Visual inspection of the ¢ and
light curves and computed lag probability distributions
revealed that a threshold of r,., > 0.4 can eliminate
non-correlated light curves. Another tool used to iden-
tify the significance of the main peak is the fraction of
the probability distribution that lies within the primary
peak, hereafter referred to as “fcak”. We define fycqx as
the ratio of the weighted CCCD between the local min-

ima, used in the lag calculation to the the prior-weighted
CCCD across the full £100 day delay range. We accept
only peaks that carry more than 75% of the total pos-
terior probability (fpeax > 0.75) to obtain a sample of
well-measured lags from our quasar sample. We also
want to avoid lags that are contaminated by BLR emis-
sion lines, as discussed above in section 3.3.2. We thus
exclude any objects with emission-line contaminations
greater that 12.5%.

In summary, our criteria for accepting a lag as “well-
defined” lags are as follows:

® 'max > 0.4 : Minimum cross-correlation to con-
sider that corresponds to physical reverberation

® foeax > 75%: Threshold to reject ambiguous lags
with significant support for competing aliases
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Figure 5. Contamination by different broad emission
lines in the g-band (top) and i-band (bottom) photome-
try of our 222 quasars obtained from Shen et al. 2018
(in prep). Broad-line contamination, fsLr, is calculated as
EW(line) / FWHM(band). We require <12.5% broad-line
contamination for a “well-defined” photometric accretion-
disk lag. As shown in the bottom panel of Figure 6 few of
the quasars have more than 12.5% maximum contamination
in g and 7 band.

e fgLr < 12.5%: Minimal broad-line contribution
in both g and ¢ photometric light curves

Our final lag sample is reported in Table 1 for the first
10 of all the 95 quasars that satisfy the above criteria.
We also report redshifts (Shen et al. 2015), RM Mgy
and single-epoch Mpp from Grier et al. (2017), ALx3000
(Shen et al. 2015), and the observed-frame lag and un-
certainties using both ICCF and JAVELIN.

4. LAG RELIABILITY

The JAVELIN method produces a total of 95 “well-
defined” lags that satisfy the reliability criteria de-
fined in section 3.4. From the “well-defined” sample
of 95 continuum lags, we also construct a subsample
of 33 “high-SNR” lags that are 20 different from zero;
SNR(75av) = 2 in addition to meeting the criteria
listed in Section 3.4. Summarizing, we use the following
definitions for our main sample of “well-defined” lags
and the subsample of “high-SNR” lags:

o “well-defined” lags: rmax > 0.4, fpeak > 75% and
fBLR < 12.5%

o “high-SNR” lags: rmax > 0.4, fpeax > 75%,
fBLR < 12.5% and SNR(TJAV) >2
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Figure 6. Our three criteria for “well-defined” lags ver-
sus the computed JAVELIN lags for the our sample of 222
quasars (gray symbols). Quasars with “well-defined” lags
meeting our criteria are shown in open blue symbols and the
“high-SNR” lags that are 20 significant are shown in red.
Top: Maximum cross-correlation coefficient rmax from the g
and i-band light curves. The horizontal red dotted line indi-
cates the minimum 7max > 0.4 criterion required for a “well-
measured” lag. Middle: Fraction fpeax of the probability
distribution that lies within the primary peak, where the hor-
izontal red dotted line represents the minimum fpearx > 75%
“well-defined” lag criterion. Bottom: Maximum broad-line
contamination in each of g and ¢ bands. The dotted red hor-
izontal line indicates the maximum allowed broad-line con-
tamination for a “well-defined” lag, fsLr < 12.5%.

Due to the limits in the SDSS-RM survey our mea-
sured lags could impose selection bias: For example the
“high-SNR” lag sample includes only larger lags while
the “well-defined” lag sample may be more representa-
tive of the broader quasars population. We will discuss
this point in more detail in Appendix A.

One of the difficulties in reverberation mapping, par-
ticularly for monitoring surveys such as SDSS-RM, with
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relatively sparse cadence and non-negligible flux uncer-
tainties, is knowing if there is genuine reverberation
rather than a false detection caused by a chance similar-
ity between light curves. Chance similarities would cre-
ate equal number of positive and negative lags, while re-
verberation would produce only positive lags, with some
negative lags due to noise or sampling properties of light
curves. We investigate this issue with set of plots pre-
sented in Figure 6. Our lag-finding analysis and “well-
defined” lag criteria include no explicit or implicit pref-
erence for a positive lag from g to i-band. The high-SNR
sample has 33 positive lags and only 5 negative JAVELIN
lags, indicating that most objects have genuine reverber-
ation with a false positive rate (i.e., ratio of negative to
positive lag) of only 15%. The “well-defined” lag sam-
ple has 68 positive lags with 27 negative lags, similarly
showing a significant excess of positive lags. The larger
number of negative lags in the “well-defined” sample
is expected from the broad lag CCCDs of many of the
quasars.

We compare our two lag methodologies, ICCF and
JAVELIN, in Figure 7. Most sources have differences
between their ICCF and JAVELIN lags indicating that
the ICCF uncertainties are over estimated; < |(Tjqn —
Ticef)/Tjav] > = 1.29 and < |(Tjav — Ticef)/Tices| > =
0.41. When comparing the two methodologies, we note

that JAVELIN presents an empirically motivated model
for interpolating the light curve by explicitly assuming
that the power spectral density is a DRW model, while
implicitly assuming a prior that the two light curves
are reverberating. ICCF does not make this assumption,
and instead linearly interpolates between measurements
to describe the light curve. The broad agreement be-
tween JAVELIN and ICCF lags is expected given our rel-
atively short 4-day cadence and low quasar variability
observed on short timescales (e.g. MacLeod et al. 2012;
Mushotzky et al. 2011). Simulations also indicate that
JAVELIN and ICCF find similar and consistently reliable
lags (Zu et al. 2011; Li et al. 2019 in prep.) Appendix
B additionally tests the effects of unmeasured variabil-
ity between the observational cadence, and finds that
both JAVELIN and ICCF return statistically consistent
lags even if we assume implausible large short timescale
variability.

Visually inspecting the ICCF and JAVELIN results
shows that the two methods generally identify consistent
lags, although the computed uncertainties in the ICCF
method are larger than JAVELIN. Figure 7 illustrates the
general consistency in lag measurements between the
two methods, suggesting that JAVELIN’s model is not
introducing any unknown biases into our measurements
that are not also inherent to the ICCF method.

Table 1. “Well-defined” quasar sample information

RMID RA Dec Z log Mu log ALxso00 TICCF TIAV SNR(75av)
(deg) (deg) (Mo)*  (ergs™") (days) (days) °
016  214.0290 53.1583 0.848 9.0719:22 44.85 —3.767874 —4.01713] -3.07
017 213.3511 53.0908 0.456 8.9215-2% 44.16 2931321 5521182 3.30
029  213.2946 52.9640 0.816  7.72* 44.12 —1.00%335  0.3371%9 0.26
061  214.0000 52.7378 0.983  8.18* 44.44 —2.547578  10.011587 3.86
062  213.5737 53.4697 0.808  8.64* 44.25 1181588 0467158 0.27
078  212.9757 53.1887 0.581  8.88* 44.57 —0.11%393  3.575979 0.94
088  212.9657 52.8956 0.516  8.51* 44.25 —0.477795  —0.2570%% -0.34
101 213.0592 53.4296 0.458 7.267077 44.64 1547508 —3.8715 10 -0.75
102 213.4708 525790 0.860  8.23* 45.01 0917359 2517978 2.44
118 213.5533 52.5358 0.714  8.48" 45.12 0.907397  —0.48%0352 -0.99

%Single epoch masses are identified by * and are assumed to have an error of 0.4 dex.

bhe SNR is calculated accounting for the JAVELIN lag sign, if the lag is positive the SNR is positive, if the lag

is negative the SNR is negative.

NoTE—Table 1 is published in its entirety in the machine-readable format. A portion is shown here for guidance

regarding its form and content.

There is one additional object, RM 769, that has a
> 3o difference between lags from ICCF and JAVELIN.

It is the only object with an ICCF lag that has a “well-



defined” peak that differs by > 30. While inspecting
the RM 769 light curve we found that the DRW models
from JAVELIN are heavily influenced by a few flux mea-
surements that have significantly lower observational un-
certainties than the rest of the light curve. We experi-
mented and found that if we increase all the uncertain-
ties in the light curve by 3% the JAVELIN results change
dramatically and become consistent with the ICCF lag.
Due to this object’s small error, and more than 3o dif-
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ference from JAVELIN lag estimate we reject this object
from our sample.

Table 2 presents a comparison of our SDSS-RM study
with other multi-object continuum lag surveys. Our
study’s largest advantage is the availability of spectro-
scopic RM observations and resulting Mpy measure-
ments, enabling a comparison of disk size with black hole
mass. Further comparison of our measured accretion-
disk properties with previous work is presented in sec-
tion 5.1.

Table 2. Comparison with other multi-object continuum lag surveys

Survey Lags® Epochs® Cadence Duration Bands RM Mpgu®©
Pan-STARRS 39 373 3 day 3.3 years g,riz No
0zDES 15 30 7 days 1 season (180 days) g,r,i,z No
SDSS-RM 95 83 4 days 1 season (180 days) g,i Yes

%The number of reported lags for the main sample in Jiang et al. (2017); Mudd et al. (2018).

bMedian number of total epochs per band.

¢ Time-domain spectroscopic coverage available for RM Mgy measurements.

5. DISCUSSION

The photometric lags measured from SDSS-RM can
be employed to measure accretion-disk sizes across a
wide range of quasar properties. We use the SS73 model
as expressed in Equation (1), as a starting framework,
comparing our measured lags to the expectations of the
analytic thin-disk model.

We follow a Bayesian approach and fit accretion-disk
parameters using the full set of “well-defined” lags. Al-
though many of these lags have large error bars and are
consistent with zero, their distribution still carries valu-
able information. Appendix A also represents results
from fitting only the high-SNR lags, demonstrating that
restricting to positive lags results in biased accretion-
disk fits.

We use the Bayesian framework implemented in the
software package PyMC3 (Salvatier et al. 2016) * to fit
accretion disk parameters. To sample the posterior we
provide disk parameter priors as a normal distribution
centered at the expectation from SS73 model. We sam-
ple our MCMC fit with 40,000 steps, discard the first
20,000 steps as burn-in phase, and explicitly check the
Gelman-Rubin statistics (Gelman & Rubin 1992) for

3 Probabilistic programming
https://doi.org/10.7717 /peerj-cs.55

in Python wusing PyMC3

convergence diagnostic. All the lags are reported in the
observed-frame (i.e., T,p5) as we account for the effects
of wavelength redshift and time dilation in our analysis.

5.1. Disk Normalization

We start with the SS73 model presented in Equa-
tion (1) and compute each object’s individual accretion
disk size 1y following the equation for the SS73 model
observed-frame lag 7:

Ai

_ N ya/3
900021) (

#)4/3 (4)

Tss7s = 1o (1 +2) /3 |( 90004

We normalize wavelength by Ag = A/9000 A because
it was found to minimize the correlation between the
best-fit 79 and wavelength scaling 8 in Section 5.2.

For simplicity, we refer to each of the measured cr and
model-predicted crgg73 as a “disk size.” More precisely,
these quantities are the relative distances corresponding
to the differences between the characteristic lags from
each waveband.

The analytic disk normalization 7y is equal to:

1 ( 445G 4/3

1/3
4/3 N
T 62) X473 (9000.4)

TT0 — —
Cc

(Cbm

1/3
ez ) Mé{f ALxz000™®  (5)
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Figure 7. ICCF vs JAVELIN lags from our sample of “well-
defined” JAVELIN lags that meet the criteria outlined in Sec-
tion 3.4 (rmax>0.4, fpeak>0.75, fpr, <0.125). Lags that
additionally have |SNR(7)| >2 are illustrated by red solid
circles. The ICCF and JAVELIN methods find consistent lags,
although the ICCF method generally has larger error bars
due to its (simplistic and unrealistic) assumption of linear
interpolation between measured fluxes.

Here Mpy represents the BH mass from RM (Grier
et al. 2017) and single epoch measurements (Shen et
al. 2016b). When both RM and single-epoch masses
are available for a quasar, we use the RM mass. We
compute the Ly, using a bolometric luminosity cor-
rection Cpo; = 5.15 from Richards et al. (2006) for
ALx3000 as Lpol = Choi ALx3oo0- The quantity X ac-
counts for the relatively broad width of blackbody ra-
diation causing the response at a given wavelength to
arise from a range of radii in the disk, including smaller
radii where the blackbody radiation is proportional to
T on the Rayleigh-Jeans tail of the blackbody emission,
and larger radii where the increasing disk surface area
is offset by the exponential Wien cutoff. Given a T'(r)
profile and a wavelength A, the observed mean delay is
7 =r(\)/c where A = he/ X kT (r(\)). We follow previ-
ous work (Fausnaugh et al. 2016; Mudd et al. 2018) and
calculate X by assuming that r(\) is the flux-weighted
mean radius for emission at A from a face-on disk of pure
blackbody emission with T'(r) oc r~3/%, which yields
X = 2.49. Comptonization and other radiative trans-
fer effects may also affect the disk emission profile (e.g.,
Davis et al. 2005; Slone & Netzer 2012), potentially mak-
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Figure 8. Residual of 755 and SS73 lags. Here observed
lags for the “well-define” lag sample computed from JAVELIN
and model lags are obtained using Equation (4) based on
each object’s Mpy and Mpu. On average, the observed
lags are consistent with the SS73 model lags. But there is
considerable scatter, with only 36% of the observed lags lying
within 1o of the model lags.

ing X a function of radius (or wavelength). We adopt
the global blackbody assumption of X = 2.49 as a point
of comparison for comparing to the SS73 model, noting
that larger or smaller continuum lags may result from
non-blackbody radiative transfer effects in addition to
structural changes in the SS73 model.

In the following analysis we adopt n = 0.1, Cp; = 5.15
and X = 2.49 when we plot the SS73 model in Figures
9, 12, 13, 14.

Figure 8 shows a comparison of the observed lags 75y
with the analytic model lags 75573 calculated from Equa-
tion (4) and (5). On average, the observed disk sizes are
consistent with the SS73 model expectation (including
errors on Mgy and M ), However, there is large scat-
ter, with only 36% of the observed “well-defined” lags
lying within 1o of the model lags. The large scatter
might indicate that the JAVELIN lag uncertainties are
underestimated, or that there are additional important
parameters missing from Equations (4) and (5) such as
nonuniform efficiency or orientation. We discuss this
issue further in section 5.3.

We perform an initial fit to disk size by first allow-
ing the normalization 7y to be the only free parameter
and fixing 8 = 4/3. MCMC then samples the posterior
distribution of 7. Fitting only the disk normalization
based on all of the observed quasar lags in the
defined” sample results in a best-fit disk normalization
T0g=4/3 = 5.211‘81%3 days. This is consistent within 1.5 ¢
with the SS73 disk normalization, (r9) = 4.78 days,

well-



computed using Equation (5) for the mean (Mpy) =
8.19 Mg and (ALxz000) = 44.47 of our sample. We
compare our results to those from microlensing (Mor-
gan et al. 2010), and find that our lags are 3-4 times
larger than theirs, but this can be attributed to the fact
that they use X = 1 in Equations (5), so inflating the
SS73 disks of Morgan et al. (2010) by the X = 2.49
will give consistent results with the SS73 expectation
(see also Tie & Kochanek 2018). In contrast, Jiang et
al. (2017) find lags that are about 2-3 x larger than
SS73. However, the Jiang et al. (2017) lag sample, by
including only significant lags, is biased toward larger
lags and thus larger disk sizes. The implication of the
bias is less apparent in the recent work by (Mudd et
al. 2018) where they report consistent lags with SS73.
Our measured accretion-disk sizes are similar to those
found by Mudd et al. (2018), in that both our results
are broadly consistent with the SS73 model. However
our study has the additional advantage of Mgy esti-
mates from spectroscopic RM, which we use in Section
5.3 to model accretion-disk size as a function of black
hole mass and luminosity. In Appendix A, we discuss
the effects of observational bias on lag measurements
of multi-object quasar samples. Mixed results are re-
ported for more local quasars e.g., some report lags that
are too big (Fausnaugh et al. 2016, 2018; Edelson et al.
2015, 2017) and some report lags that are close to the
SS73 expectation McHardy et al. (2018). These results
may be due to local objects from the NGC-sample are
probing the biased tail of the quasar distribution.

5.2. Color Profile

The SS73 accretion disk model predicts a disk struc-
ture of T(R) o R3/*. We measure this temperature
profile using wavelength in Equation (6) with a disk size
that is characterized by a disk normalization 7y, wave-
length scaling 3, and quasar redshift z. In this context,
the observed continuum lags are described by:

Ai
9000 A

Ag

Tobs:TO(1+Z)(1_'6) ( )B_(QOOOA

¥l ®

Although we are only limited to g and ¢ bands in this
work, the redshift range of our quasars (0.116 < z <
1.128) provides a broad range of rest-frame wavelengths
to test 3, with the best-fit disk size and color profile
shown in Figure 9. The best-fit parameters and errors
are determined from the posterior distributions of the
MCMC nonlinear regression. We assume the likelihood
as a normal distribution, A/, centered at observed lags
and lag errors as standard deviation.

P<9|.T) = N(Tmodel|Tobs7 UTobs) (7)
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Figure 9. Observed lags versus (1+z), fitting a simple accre-
tion disk model with disk normalization 79 and wavelength
scaling 8 for our sample of “well-defined” lags. The red line
indicates the best-fit disk and the shaded grey region is the
propagated error in the best-fit model. The blue line and
blue-shaded region shows the SS73 disk model from Equa-
tion (4) and its propagated error with both disk size and
wavelength scaling as free parameters. We find a best fit
o = 5.38703% and B = 1.287035 consistent with the SS73
expectation.

Posterior distributions are shown in Figure 10: we find
70 = 5.381037 days and 8 = 1.287538.

Comparing best-fit 79 and color profile 8 to the SS73
model indicates that best-fit values are consistent with
the SS73 expectation for our sample of mean Mpy and
Lyo1. Our best-fit color-profile 3 is also consistent within
1o with previous results by Fausnaugh et al. (2016) and
Mudd et al. (2018); further comparison with Fausnaugh
et al. (2016) requires multi-band observations as we are
only comparing g and ¢ band here. For the remaining
portion of this work we will fix 8 to 4/3 in order to focus
on the accretion disk connections to Mpy and accretion
rate.

5.3. Connection to Mgy and ALx3000

Here we examine if our measured continuum lags de-
pend on Mé{f and M'/3 as indicated by the S$73 model.
Our 95 quasars in the “well-defined” lag sample have
reliable Mpy estimates using the RM technique for 30
of the quasars and single epoch mass measurements for
the remaining 65 quasars: see Table 1. To test for
connections to M , we use the observable monochro-
matic luminosity ALyx3000 as a proxy for M , related as
M = Lot /nc?, with Lyo; = 5.15XLg00- In this context,
the observed continuum lags are described by:
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Figure 10. Posterior distribution for disk normalization 7
and wavelength scaling 5. The shaded gray regions represent
the 1o uncertainty of each best-fit parameter and the red
dotted line indicates the SS73 expectation using the mean
Mpu and ALx3p00 of our quasar sample.
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We perform a new non-linear MCMC regression fit for
To/, v and 6. Here 79/ has a slightly different form from
the previous disk normalization due to different powers
in mass and luminosity (i.e., 7o/ = 70/ Mgz A L3000). We
fix 8 = 4/3 in Equation (8) and incorporate the mea-
surement uncertainties in Mpy reported by Grier et al.
(2017). The uncertainties in RM Mpyy include a 0.16 dex
intrinsic scatter, while for single epoch Mpy estimates
we assume a 0.4 dex intrinsic scatter (Vestergaard & Pe-
terson 2006; Shen et al. 2016a). We also incorporate the
measurement uncertainties while fitting to the observed
AL 3000. However the SS73 model predicts disk size as a
function of M rather than ALx3000, and there is a large
scatter between observed luminosity and accretion rate
due to uncertainties in bolometric correction and radia-
tive efficiency. This might effectively lead to a larger

scatter in the fit, which we measure in the regression fit
using an excess dispersion parameter o.

The result of our 3-parameter disk model to the “well-
defined” sample is illustrated in Figures 11 and 12.

With disk size parametrized as 7o/, Mg, and )‘L(/S\aooo
(Equation 8), we find best-fit 7o/ = 4.16713C days,
vy = 0317928 and 6 = 0.09%515. Both v and § param-
eters are poorly constrained, although the mass depen-
dence is > 1o different from zero and is fully consistent
with the SS73 expectation v = 1/3. Our fit indicates
that luminosity, ALx3000, on the other hand, is less nec-
essary for the fit, differing from the SS73 expectation
by 1.50. A more accurate measurement of Mgy could
improve the consistency (i.e., in Equation 1).

Our best-fit parameters include an intrinsic excess
dispersion of 2.8 days. This could indicate that the
JAVELIN lag errors are underestimated, although the
good agreement with ICCF lags in Figure 7 suggests
that this is unlikely. Alternatively, individual quasars
may have diverse disk emission profiles, with a range of
orientation and/or radiative transfer effects that change
the X factor in our parameterization (Hall, Sarrouh,
& Horne 2018). Some quasars may also have signifi-
cant continuum emission from a diffuse BLR component,
making the measured interband lags differ from pure ac-
cretion disk continuum emission (Cackett et al. 2018;
Edelson et al. 2019). A non-uniform bolometric correc-
tion or radiative efficiency might also lead to scatter in
our best-fit disk size as a function of monochromatic lu-
minosity (Equation (6)), although this would have to
be as large as 1.8 dex to explain the entirety of the ex-
cess scatter measured of dr/T = 1.35 in our regression
fit. Finally, it is possible that the SS73 model is a good
average description for quasar disks even as individual
objects have large variation in their disk structure not
captured by the model.

6. SUMMARY

We have used continuum RM to study the accretion
disks of 222 quasars from the SDSS-RM survey. The se-
lected sample has the advantage of reliable black hole
mass measurements from the first year of SDSS-RM
monitoring program (Grier et al. 2017). In this work,
we used photometric continuum light curves in g and
i-band to study the accretion disk size and structure of
quasars.

We used JAVELIN to compute lags between g and i-
band light curves for our 222 quasars. We applied sev-
eral different significance criteria to obtain a subset of
95 “well-defined” continuum lags.

Purely comparing our observed lags to those expected
from the SS73 model we find a mean deviation of 0.9
days larger than SS73 expectation with 36% of the “well-
defined” lags consistent within +1o0 of the SS73 model
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Figure 11. Posterior distribution of disk normalization and best-fit v (connection to Mpn) and ¢ (connections to ALx3000)
parameter in the disk model presented in Equation (8) with 8 = 4/3 for our sample of “well-defined” lags.

expectation. We perform non-linear MCMC regression
to fit our observed lags and compare them to standard
SS73 model. Our findings are as follows:

1. Disk size: Our best-fit disk normalization is con-
sistent with the theoretical value from SS73 within
1.5 ¢. This is in contrast to previous works; possi-
bly due to observational bias (as discussed in Ap-
pendix A).

2. Color profile: We find wavelength scaling f =
1.287020 consistent with the SS73 expectation

(ie., B = 4/3).

3. Mass and luminosity dependence: We assume disk

size T oc MY )\L‘S)\3000 and find best-fit mass depen-
dence v = 0.31753) consistent with expectations
from SS73 (i.e., 1/3). The best-fit ALx3000 depen-
dence is § = 0.09751 1.4 o consistent with the
SS73 expectation but also <1lo consistent with no
correlation between disk size and luminosity. Our
fits have a large excess dispersion of 2.8 days, indi-
cating a diversity of radiative efficiency, disk emis-
sion profiles, and/or disk structure in individual
quasars.
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T o 7o/ MV/\L‘;gOOO for our sample’s Mpu. Here moss73/ is computed from the SS73 theory for our sample’s mean redshift and
ALxs000- Right: Observed “well-defined” sample lags versus ALxso000. The best-fit model is shown with solid red line assuming
T o 7o/ MY AL 3000 for our sample’s ALxsooo. Here T/oss73 is computed from the SS73 theory for our sample’s mean redshift and
Mgu. In both panels, following our previous consistency-check in 5.2 to the SS73, we have assumed 8 = 4/3. The red shading
illustrates the propagated error associated with the best-fit parameters, 79, y,d and average error in Mgy for the plot in the left
and average error in ALx3000 for the plot in the right. The gray shading additionally includes the scatter contribution from the
excess dispersion o = 2.8 days. The blue dashed line illustrates the SS73 disk model as is presented in Equation (8) with v =§
= 1/3, with blue shading indicating the error contribution from the average Mpu uncertainty at left, and the average Mgy at
right (including 0.5 dex scatter for converting from ALx3000 t0 MBH).

Our new measurements represent a large advance over
previous work. The 95 SDSS-RM quasars with our new
continuum lags and previous broad-line lags (Grier et
al. 2017) represent a factor of ~ 5 increase over previous
samples, and also expands the sample of accretion-disk
size and black hole mass measurements by an order of
magnitude in redshift, mass, and luminosity. Our mea-
sured disk sizes are, on average, consistent with the SS73
analytic thin-disk model. But we also find a large range
of smaller and larger disk sizes in excess of the mea-
surement uncertainties. This motivates future work to
better measure bolometric luminosity and radiative ef-
ficiency (i.e., black hole spin) alongside accretion-disk
sizes.

Our work also advances the methodology for accretion-
disk size measurements from similar “industrial-scale”
multi-object reverberation projects beyond SDSS-RM.
In particular, we advocate a Bayesian approach to the
full sample of “well-defined” lag measurements, rather
than restricting analysis to a set of high-SNR lags that
are biased by limitations in survey cadence. SDSS-RM
is planned to continue in the 2020s with a factor of 5 in-
crease in survey area as part of the SDSS-V Black Hole
Mapper project (Kollmeier et al. 2017; Ivezi¢, Connolly,
& Juri¢ 2018). The Large Synoptic Survey Telescope
(LSST) will usher in an entirely new era of time-domain

quasar studies, making continuum reverberation map-

ping possible for thousands of quasars in its deep drilling
fields.
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APPENDIX

A. SELECTION BIAS

We take a Bayesian approach in Section 5 and fit all 95 quasars with “well-defined” lags (see Section 3.4), including
those that are consistent with zero lag. However, if we instead fit only the high-SNR lags (“well-defined” and lag SNR
> 20) we find disks that are ~ 3.2 times larger than SS73 and a nearly-flat color profile 5 = 0.4 shown in Figure 13.
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(4).

Additionally, we test for “well-defined” and positive lags and find disks that are ~2.5 times larger than expectation
by the SS73, see Figure 14.

The high-SNR sample is biased to large lags, as the SDSS-RM cadence (averaging 4 days) sets a minimum detectable
lag. This biases the disk fits to large values. Similar bias is likely to affect the main sample in (Jiang et al. 2017)
as they used only positive lags in their fits. We reproduce the same qualitative effects if we limit our sample to only
positive lags, see Figure 14.

Our larger “well-defined” lag sample, on the other hand, is not biased to large lags. Although the sample includes
many lags that are formally consistent with zero, the lags are more likely to be positive than negative, as shown in
Figure 6. This indicates that the lags are likely the result of genuine reverberation but are just smaller than detectable
by the SDSS-RM cadence (average of 4 days). In other words, the “well-defined” sample includes many lags that have
poor SNR but are constrained to be small. It is important to include such lags in the accretion-disk fits to avoid a
bias to large disk sizes.

B. INCREASED SHORT-TIMESCALE VARIABILITY

The SDSS-RM time monitoring observations (see Section 2) are limited by somewhat sparsely sampled data with
a median cadence of 4 days. Although the expected quasar variability on such short time scales is relatively low
(Mushotzky et al. 2011; MacLeod et al. 2012), our measured lags are fundamentally limited by the observational
cadence. Here we validate that quasar fluctuations on timesales shorter than our observation cadence do not affect
our lag measurements by constructing synthetic light curve that have extreme variability in between each measured
points.

To construct our new synthetic light curves, we take each consecutive measured flux pair f(¢;), f(¢;+1) and randomly
select an inter-point expectation flux f(t;11/2), where t;11/o = t; + (tiy1 — t;)/2, from the JAVELIN DRW model
normal distribution. We then increase (or decrease) each randomly-selected flux to a new flux f(t;11/2) +df, where
0f = 1/2(f(tiv1) — f(t:)), i.e., varying by half the difference between consecutive pairs of measured fluxes. This is
equivalent to a short-timescale variability PSD of & = —1: an extreme variability case compared to a DRW (a = —2)
and to the low measured short-timescale variability of o ~ —3 (Mushotzky et al. 2011). We also perturbed the new
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Figure 15. Top: Synthetic Continuum g (blue) and i-band (red) light curves with increased short timescale variability in
between observations. The inter-point variability was increased between each consecutive pair of observations. The inter-point
flux was randomly selected between consecutive observations using the Javelin DRW model normal distribution increased
(decreased) by half the difference of observation pair. Bottom: We find the same lag with both Javelin and ICCF methods.

inter-point flux by the average flux uncertainty of the measured surrounding flux pair. The final synthetic light curve
is then the combination of both the measured light curve and the new inter-point fluxes.

We build synthetic light curves for all of our targets in the “well-defined” sample and use JAVELIN to measure
lags as described in Section 3.3. We find that the synthetic light curves have lags that are statistically consistent
with the original lags measured from the observed lightcurves. Figure 15 illustrates the synthetic light curve with
extreme short-timescale variability” for RM 267 (the same target as Figure 4) and the measured JAVELIN and ICCF
lag probability distributions.
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