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ABSTRACT: A Rh-catalyzed chelation assisted C6-selective C—H activation/alkylation of 2-pyridones with readily available alkyl
carboxylic acids or anhydrides is introduced. The reaction proceeds via substrate decarbonylation. This approach merges C-H func-
tionalization with readily available anhydrides, allowing for the efficient synthesis of various Cé6-alkylated 2-pyridones with good

functional group tolerance.

The 2-pyridone motif is found in numerous bioactive natural
products and synthetic compounds (Figure 1) and plays an im-
portant role in their bioactivity.! Accordingly, there is a long-
standing interest in development of efficient methods for their
synthesis.> Among approaches to functionalized 2-pyridones,
the elaboration of the parent heterocycle is efficient and fre-
quently adopted. Early studies focused on transition-metal cat-
alyzed cross-coupling reactions of halogenated 2-pyridones to
access functionalized derivatives.> More recently, catalytic C—
H functionalizations with transition metals at the C3, C4, C5
and C6 positions*” have gained traction.® In particular, ad-
vances in the transition-metal catalyzed C6-selective C-H al-
kylation of 2-pyridones (Scheme 1a) have been reported.” Na-
kao®® and Cramer’** reported direct C6-alkylation of 2-pyrido-
nes with alkene substrates under Ni/Al cooperative catalysis.
Notably, easily attachable and detachable pyridine-based di-
recting groups on the nitrogen of the 2-pyridone facilitated
metal catalyzed C-H alkylation (Ni, Mn, Rh and Co).7¢7% m
Using this strategy, researchers conducted the C—H activa-
tion/functionalization with diazomalonates,’® alkyl trifluorobo-
rates,’® 3-bromo-2,2- difluoropropene,’ alkenes,’®!
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Figure 1. Biologically active 2-pyridones.

Scheme 1. Catalytic direct C—H alkylation of 2-pyridones at
C6 position

(a) Previous works: C6-H alkylation of 2-pyridones under Ni, Mn or Rh catalysis
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(c) This work: Rh(l)-catalyzed decarbonylative C6-H alkylation of 2-pyridones with alkyl carboxylic acids
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methyleneoxetanones,”™ allenes,” a-carbonyl sulfoxonium
ylides,” 2-carboxyl allylic alcohols’™ and both enones and alde-
hydes™ coupling partners at C6. Despite these advances, there
remains room for improvement in terms of catalytic efficiency,
substrate scope, availability of the alkylation reagents and func-
tional group tolerance.



The availability, stability, diversity and low cost of alkyl car-
boxylic acids has resulted in their widespread use.’ Since the
pioneering work of Minisci, the decarboxylative alkylation of
heteroarene C—H bonds with alkyl carboxylic acids has been a
topic of sustained interest.!®!! These reactions exhibit substrate-
controlled site selectivity. Transition metal catalysis with di-
recting groups, however, enable greater C—H selectivity and
functionalization.!? The first chelation-assisted alkylation of N-
pyrimidyl indolines, 2-phenylpyridines, and azobenzenes with
alkyl carboxylic acids via decarboxylation was achieved by
Jain’s group using a Pd(II)-catalyst. The catalyst loading, ex-
cessive oxidant and narrow scope of alkyl carboxylic acid cou-
pling partner left room for improvement.'* Shi and Sun and their
coworkers, as well as our team, recently disclosed Rh(I)-cata-
lyzed chelation-assisted decarbonylative C-H alkylation of
pyridyl-substituted arenes, cyclic enamines and indoles with al-
kyl anhydrides in the absence of added oxidant (Scheme 1b).!4*
¢ The alkyl anhydride partners were conveniently generated
from carboxylic acids. In one example, Shi and coworkers real-
ized the Rh(I)-catalyzed directed C7-selective decarbonylative
methylation of indoles using acetic anhydride as the methyl
group source.'* This procedure was incompatible with other al-
kyl anhydrides, possibly due to B -hydride elimination. We re-
cently achieved the Rh(I)-catalyzed regioselective and stereose-
lective Co-alkenylation of 1-(2-pyridyl)-2-pyridones with
alkenyl and conjugated polyenyl carboxylic acids.”™ We next
envisage that 1-(2-pyridyl)-2-pyridones might undergo Rh(I)-
catalyzed decarbonylative C6-alkylation with alkyl carboxylic
acids or anhydrides. Such a method could offer facile access to
6-alkylated 2-pyridones. Herein we describe development of a
selective Cé6-alkylation of 1-(2-pyridyl)-2-pyridones that pro-
ceeds in high yields with a wide substrate scope and good func-
tional group tolerance (Scheme 1c).

Considering the importance of methylation reactions in me-
dicinal chemistry,’> the methylation of 1-(2-pyridyl)-2-pyri-
done (1a) with acetic anhydride (2a) was selected for the iden-
tification of the optimal alkylation conditions (Table 1). By
evaluating different parameters, the optimal reaction conditions
were [Rh(CO),Cl], (2 mol %) in 1,4-dioxane at 130 °C for 8 h,
leading to product 6-ethyl-2H-[1,2'-bipyridin]-2-one (3aa) in
92% isolated yield (Table 1, entry 1). Other frequently em-
ployed Rh(I) complexes proved to be ineffective (entries 2 and
3). Using [Rh(CO),Cl], and switching solvents from 1,4-diox-
ane to DCE, toluene or PhCl resulted in lower yields (14-33%,
entries 4-6). Lowering the reaction temperature to 120 °C or
halving the catalyst loading decreased the yield of 3aa by over
20% (Table 1, entries 7 and 8). Not surprisingly, control exper-
iments in the absence of [Rh(CO),Cl], did not provide 3aa (en-
try 9). Notably, using free 2-pyridone or 2-pyridone substrates
bearing other substituents on the nitrogen (Me, Bn, Ph, 2-py-
rimidyl, Ac, Piv or Ts) did not form coupling products, high-
lighting the importance of the 2-pyridyl directing group under
these conditions (see Supporting Information, Table S3).

While alkyl carboxylic anhydrides are potentially useful
starting materials for alkylation reactions, there are drawbacks
to their use. These include 1) they are rarely commercially
available, 2) they are hydrolytically unstable, and 3) their prep-
aration and isolation is often tedious and/or employs corrosive
or toxic reagents. To circumvent these shortcomings, research-
ers have used carboxylic acids in combination with in situ acti-
vation.!*!¢ For our chemistry, we explored the feasibility of in
situ formation of acetic anhydride from acetic acid and several
activators. Among activators tested (Table 1, entries 10-12),
commercially available Piv,O proved the best choice (Table 1,
entry 11). Interestingly, the combination of Boc,0O, PivOH and

AcOH also performed very well, affording 3aa in 91% yield
(Table 1, entry 13). In view of the high price of Piv,O, the com-
bination of Boc,O and PivOH was used moving forward.

Table 1. Optimization of reaction conditions”
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0" N 'H roso  [RN(CONCI, (2 mol %) 07 "N "Me
+ C:
Z N >~ 1 4-dioxane, 130 °C, air, 8 h 2
1a 2a 3aa

entry deviation yield of 3aa (%)®
none 92

2 [Rh(COD)CI]; instead of 20
[Rh(CO),CI],

3 [Rh(COD),]OTf instead of 57
[Rh(CO).Cl]>

4 DCE as the solvent 14

5 toluene as the solvent 33

6 PhCl as the solvent 21

7 Reaction temperature 120 °C 73

8 [Rh(CO),Cl]> (1 mol %) 54

9 without [Rh(CO),Cl], 0

10¢ In situ generation of anhydride 30
from PivCl and AcOH

11¢ In situ generation of anhydride 90
from Piv,0 and AcOH

12¢ In situ generation of anhydride 39
from Boc,O and AcOH

13ed In situ generation of anhydride 91

from Boc,0, PivOH and AcOH

“General reaction conditions: 1a (0.2 mmol), 2a (0.22 mmol),
[Rh(CO),Cl]> (2 mol %), 1,4-dioxane (2.0 mL), 130 °C, 8 h. *I-
solated yield. cAcOH (0.22 mmol) and activator (0.24 mmol) and
were employed. YAcOH (0.22 mmol), Boc,O (0.24 mmol) and
PivOH (0.24 mmol) were employed.

We next proceeded to explore the methylation of a series of
2-pyridones with 2a. As illustrated in Scheme 2, a range of 3-
and 4-substituted 2-pyridones (1b-11) bearing electron-rich and
electron-deficient groups underwent smooth methylation to de-
liver products 3ba—3la in 81-92% yields. The structure of 3ga
was confirmed by single-crystal X-ray diffraction (CCDC
1834644, Scheme 2). Importantly, a variety of functional
groups (OBn, F, Cl, Br, CF3;, CN and CO,Me) were tolerated.
Despite the steric hindrance, the 5-substituted 2-pyridones
(Im-1q) delivered products 3ma—3qa in 54-86% yield. In
these reactions, electron-rich 2-pyridones generally exhibited
slightly better yields. Furthermore, the disubstituted 2-pyrido-
nes 1r-1s) provided products 3ra—3sa in 72 and 81% yields. It
is noteworthy that installation of substituents on the pyridyl di-
recting group did not affect the methylation, and products 3ta—
3va were obtained in 85-89% yields. The versatility of this sys-
tem was further reflected by the methylation of 3-(pyridin-2-
yl)quinazolin-4(3H)-one (1w), 1-(pyridin-2-yl)quinolin-4(1H)-
one (1x) and 4H-[1,2'-bipyridin]-4-one (1y) in 71-82% yields.

Scheme 2. Direct Methylation of 2-Pyridones with 2a%*
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“Reaction Conditions: 1la (0.2 mmol), 2a (0.22 mmol),
[Rh(CO)2Cl1]2 (2.0 mol %), 1,4-dioxane (3.0 mL), 130 °C, 8 h,
in air. ’Isolated yield.

As shown in Scheme 3, several commercially available alkyl
carboxylic anhydrides including propionic anhydride (2b), bu-
tyric anhydride (2¢), valeric anhydride (2d), hexanoic anhy-
dride (2e) and isovaleric anhydride (2f) reacted effectively with
1a to afford Cé6-alkylated products 3ab—3af in 90-92% yields.
The high yields indicate that B -hydride elimination does not
compete with reductive elimination (see mechanistic discussion
below).

Scheme 3. Direct Alkylation of 1a with Alkyl Carboxylic
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We next turned our attention to reactions of aliphatic acids
with 1a in the presence of Boc,O and PivOH (Scheme 4). Re-
gardless of the alkyl chain length, aliphatic acids 2g-21 coupled
efficiently with 1a in 78-91% yields. Sensitive functional
groups, such as halogen (2m, 2n), ketone (20-2q), nitrile (2r),
and ester (2s—2t), were compatible with the reaction conditions,
leading to Co-alkylated 2-pyridones 3am-3at in 61-87%
yields. Alkene-containing carboxylic acids 2u-2x gave 3au—
3ax in 53-82% yields, leaving the alkene intact. Moreover, sub-
jecting dehydrocholic acid (2y) to 1a delivered product 3ay in
68% yield, highlighting the applicability of this method to late-
stage functionalization of complex molecules.

To demonstrate the utility of our catalytic system, secondary
alkyl carboxylic acids were examined (Scheme 4). The cyclic
acids (4a—4e) with 3—6 membered rings reacted smoothly with
1a, affording Saa—Sae (71-88% yield). For Sae, the stereo-
chemistry of the major diastercomer was trans by 'H NMR
(trans : cis =9 : 1). Tetrahydropyran-4-carboxylic acid (4f) and
N-Boc-piperidine-4-carboxylic acid (4g) coupled, albeit in re-
duced yield (59 and 41%, respectively). The biologically rele-
vant complex molecule, 3-keto-4-etiocholenic acid (4h), re-
acted to furnish Sah in 50% yield.

Scheme 4. Direct Alkylation of 1a with Alkyl Carboxylic Ac-
ids«?
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[Rh(CO)2Cl]2 (2.0 mol %), Boc20 (0.24 mmol), PivOH (0.24
mmol), and 1,4-dioxane (3.0 mL), 130 °C, 8 h, in air. *Isolated
yield.

To demonstrate the synthetic utility, gram-scale reactions of
1a with 2a and 2k were performed, affording 3aa and 3ak in 88
and 82% yields, respectively (Scheme 5a). Derivatizations of
Cé6-alkylated 2-pyridone products were then explored. It was
found that 3aa underwent hydrogenation to give 6 in 85% yield.
Removal of the 2-pyridyl directing group from 3aa by the
“quaternization and alcoholysis™’*%¢ furnished the free 2-pyri-
done derivative 7 in 68% yield.

To gain insight into the reaction mechanism, a series of ex-
periments were performed. First, analyzing the head gas of the
reaction mixtures with [Rh(CO),Cl], or [Rh(COD),]OTf (GC-
TDC) confirmed CO byproducts, supporting a decarbonylation
step (see SI for details). H/D scrambling experiments were per-
formed by conducting the reaction in the presence of D,O

Scheme 5. Synthetic Applications
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both with and in the absence of acetic anhydride (2a). The ob-
servation of deuterium in the recovered starting material of both
reactions suggested that the C-H activation is reversible
(Scheme 6a). A kinetic isotope effect (KIE) of 2.3+0.1 was ob-
served from the parallel reactions between 1a or [D;]-1a with
2a (Scheme 6b), implying that the Rh-catalyzed C—H bond
cleavage was involved in the turnover-limiting step.

Scheme 6. Mechanistic Studies
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On the basis of the aforementioned results and previous re-
ports,'*7 a plausible mechanism is proposed (Scheme 7). The
reaction likely starts with dissociation of [Rh(CO),Cl], in the
presence of coordinating solvent or the pyridine containing sub-
strate (both denoted as S) with the formation of the monomer A
[(S)Rh(CO),Cl]. Meanwhile, the acid reacts with Boc,O and
PivOH to generate the alkyl anhydride (either the symmetrical
anhydride or the mixed anhydride with pivalic acid), which un-
dergoes oxidative addition to Rh(I) A to give the Rh(III) inter-
mediate B. Ligand exchange (for S = solvent) leads to C with
the bound substrate. Subsequently, a concerted metalation
deprotonation (CMD) by the carboxylate ligand via transition
state D generates acid and the cyclometallated species E with
the key Rh—C bond. The liberated acid from this step can react
with Boc,O or an anhydride intermediate (such as Piv,0) to
generate an anhydride poised to reenter the catalytic cycle. In-
termediate E is envisioned to undergo loss of coordinated CO
and then deinsertion of the acyl to afford the Rh-alkyl interme-
diate F. Reductive elimination of F regenerates Rh(I) with the
pyridine bound product G. Finally, G undergoes exchange with
the solvent or additional substrate to release the product and
close the catalytic cycle. We favor this mechanism over initial
oxidative addition of the 2-pyridone substrate to Rh(I) to give a
Rh(IIT) intermediate because subsequent oxidative addition of
the anhydride would give Rh(V), which is an unusual oxidation
state for rhodium in such systems.

Scheme 7. Plausible Mechanism
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In summary, an efficient protocol for Rh-catalyzed chelation-
assisted regioselective C6—H bond alkylation of 2-pyridones
with abundant and inexpensive alkyl carboxylic acids or anhy-
drides is introduced. This protocol provides efficient access to
Cé6-alkylated 2-pyridones, including those that are difficult to
prepare with conventional methods. The utility of this reaction
was demonstrated in drug synthesis and late-stage functionali-
zation of complex molecules. The operational simplicity, broad
scope, high functional-group compatibility and ease of scalabil-
ity make this reaction a practical and attractive alternative to the
currently known methods for 2-pyridone alkylation.
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