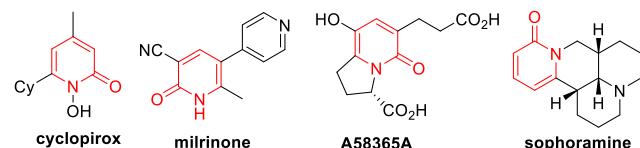

Rh(I)-catalyzed C6-selective Decarbonylative Alkylation of 2-Pyridones with Alkyl Carboxylic Acids and Anhydrides

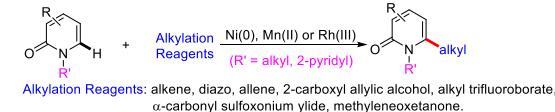
Haoqiang Zhao^{a,c}, Xin Xu^a, Haiyang Yu^a, Bohan Li^a, Xingyu Xu^a, Huanrong Li^a, Lijin Xu^{a,*}, Qinghua Fan^{b,*} and Patrick J. Walsh^{c,*}

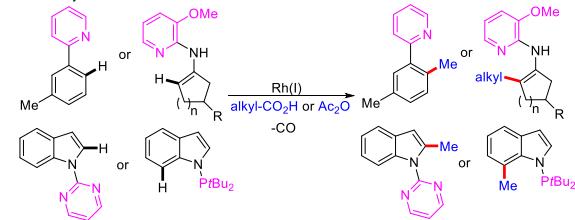
^aDepartment of Chemistry, Renmin University of China, Beijing 100872, China.


^bBeijing National Laboratory for Molecular Sciences and Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

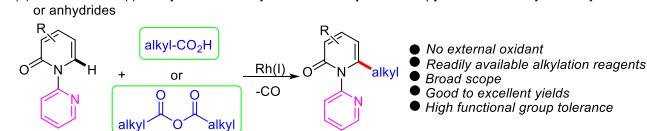
^cRoy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.

ABSTRACT: A Rh-catalyzed chelation assisted C6-selective C–H activation/alkylation of 2-pyridones with readily available alkyl carboxylic acids or anhydrides is introduced. The reaction proceeds via substrate decarbonylation. This approach merges C–H functionalization with readily available anhydrides, allowing for the efficient synthesis of various C6-alkylated 2-pyridones with good functional group tolerance.


The 2-pyridone motif is found in numerous bioactive natural products and synthetic compounds (**Figure 1**) and plays an important role in their bioactivity.¹ Accordingly, there is a long-standing interest in development of efficient methods for their synthesis.² Among approaches to functionalized 2-pyridones, the elaboration of the parent heterocycle is efficient and frequently adopted. Early studies focused on transition-metal catalyzed cross-coupling reactions of halogenated 2-pyridones to access functionalized derivatives.³ More recently, catalytic C–H functionalizations with transition metals at the C3, C4, C5 and C6 positions^{4–7} have gained traction.⁸ In particular, advances in the transition-metal catalyzed C6-selective C–H alkylation of 2-pyridones (**Scheme 1a**) have been reported.⁷ Nakao^{7a,b} and Cramer^{7c,k} reported direct C6-alkylation of 2-pyridones with alkene substrates under Ni/Al cooperative catalysis. Notably, easily attachable and detachable pyridine-based directing groups on the nitrogen of the 2-pyridone facilitated metal catalyzed C–H alkylation (Ni, Mn, Rh and Co).^{7d–7k, 7m} Using this strategy, researchers conducted the C–H activation/functionalization with diazomalonates,^{7d} alkyl trifluoroborates,^{7e} 3-bromo-2,2-difluoropropene,^{7f} alkenes,^{7g,l}


Figure 1. Biologically active 2-pyridones.

Scheme 1. Catalytic direct C–H alkylation of 2-pyridones at C6 position

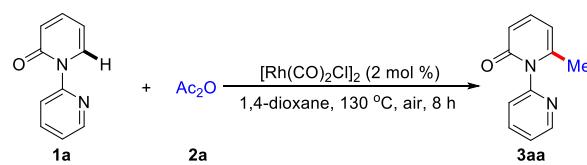

(a) Previous works: C6-H alkylation of 2-pyridones under Ni, Mn or Rh catalysis

(b) Previous works: Rh(I)-catalyzed decarbonylative C–H alkylation with alkyl carboxylic acids or anhydrides

(c) This work: Rh(I)-catalyzed decarbonylative C6-H alkylation of 2-pyridones with alkyl carboxylic acids or anhydrides

methyleneoxtanones,^{7h} alkenes,⁷ⁱ α -carbonyl sulfoxonium ylides,^{7j} 2-carboxyl allylic alcohols^{7k} and both enones and aldehydes^{7m} coupling partners at C6. Despite these advances, there remains room for improvement in terms of catalytic efficiency, substrate scope, availability of the alkylation reagents and functional group tolerance.

The availability, stability, diversity and low cost of alkyl carboxylic acids has resulted in their widespread use.⁹ Since the pioneering work of Minisci, the decarboxylative alkylation of heteroarene C–H bonds with alkyl carboxylic acids has been a topic of sustained interest.^{10,11} These reactions exhibit substrate-controlled site selectivity. Transition metal catalysis with directing groups, however, enable greater C–H selectivity and functionalization.¹² The first chelation-assisted alkylation of *N*-pyrimidyl indolines, 2-phenylpyridines, and azobenzenes with alkyl carboxylic acids via decarboxylation was achieved by Jain's group using a Pd(II)-catalyst. The catalyst loading, excessive oxidant and narrow scope of alkyl carboxylic acid coupling partner left room for improvement.¹³ Shi and Sun and their coworkers, as well as our team, recently disclosed Rh(I)-catalyzed chelation-assisted decarbonylative C–H alkylation of pyridyl-substituted arenes, cyclic enamines and indoles with alkyl anhydrides in the absence of added oxidant (**Scheme 1b**).^{14a}

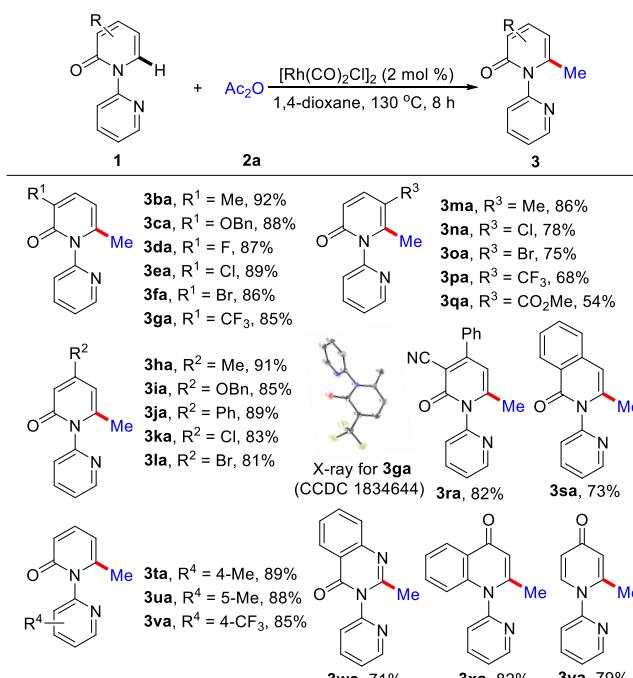

^c The alkyl anhydride partners were conveniently generated from carboxylic acids. In one example, Shi and coworkers realized the Rh(I)-catalyzed directed C7-selective decarbonylative methylation of indoles using acetic anhydride as the methyl group source.^{14d} This procedure was incompatible with other alkyl anhydrides, possibly due to β -hydride elimination. We recently achieved the Rh(I)-catalyzed regioselective and stereoselective C6-alkenylation of 1-(2-pyridyl)-2-pyridones with alkenyl and conjugated polyenyl carboxylic acids.⁷ⁿ We next envisage that 1-(2-pyridyl)-2-pyridones might undergo Rh(I)-catalyzed decarbonylative C6-alkylation with alkyl carboxylic acids or anhydrides. Such a method could offer facile access to 6-alkylated 2-pyridones. Herein we describe development of a selective C6-alkylation of 1-(2-pyridyl)-2-pyridones that proceeds in high yields with a wide substrate scope and good functional group tolerance (**Scheme 1c**).

Considering the importance of methylation reactions in medicinal chemistry,¹⁵ the methylation of 1-(2-pyridyl)-2-pyridone (**1a**) with acetic anhydride (**2a**) was selected for the identification of the optimal alkylation conditions (Table 1). By evaluating different parameters, the optimal reaction conditions were $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ (2 mol %) in 1,4-dioxane at 130 °C for 8 h, leading to product 6-ethyl-2*H*-[1,2'-bipyridin]-2-one (**3aa**) in 92% isolated yield (Table 1, entry 1). Other frequently employed Rh(I) complexes proved to be ineffective (entries 2 and 3). Using $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ and switching solvents from 1,4-dioxane to DCE, toluene or PhCl resulted in lower yields (14–33%, entries 4–6). Lowering the reaction temperature to 120 °C or halving the catalyst loading decreased the yield of **3aa** by over 20% (Table 1, entries 7 and 8). Not surprisingly, control experiments in the absence of $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ did not provide **3aa** (entry 9). Notably, using free 2-pyridone or 2-pyridone substrates bearing other substituents on the nitrogen (Me, Bn, Ph, 2-pyrimidyl, Ac, Piv or Ts) did not form coupling products, highlighting the importance of the 2-pyridyl directing group under these conditions (see Supporting Information, Table S3).

While alkyl carboxylic anhydrides are potentially useful starting materials for alkylation reactions, there are drawbacks to their use. These include 1) they are rarely commercially available, 2) they are hydrolytically unstable, and 3) their preparation and isolation is often tedious and/or employs corrosive or toxic reagents. To circumvent these shortcomings, researchers have used carboxylic acids in combination with in situ activation.^{14,16} For our chemistry, we explored the feasibility of in situ formation of acetic anhydride from acetic acid and several activators. Among activators tested (Table 1, entries 10–12), commercially available Piv₂O proved the best choice (Table 1, entry 11). Interestingly, the combination of Boc₂O, PivOH and

AcOH also performed very well, affording **3aa** in 91% yield (Table 1, entry 13). In view of the high price of Piv₂O, the combination of Boc₂O and PivOH was used moving forward.

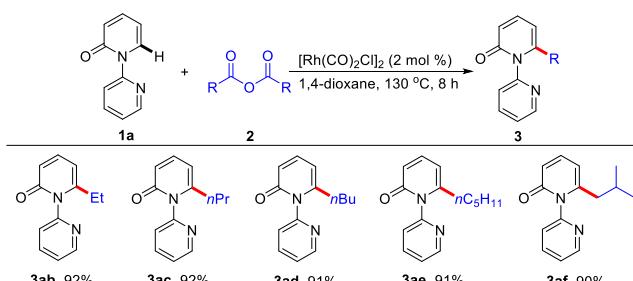
Table 1. Optimization of reaction conditions^a



entry	deviation	yield of 3aa (%) ^b
1	none	92
2	$[\text{Rh}(\text{COD})\text{Cl}]_2$ instead of $[\text{Rh}(\text{CO})_2\text{Cl}]_2$	22
3	$[\text{Rh}(\text{COD})_2\text{OTf}]$ instead of $[\text{Rh}(\text{CO})_2\text{Cl}]_2$	57
4	DCE as the solvent	14
5	toluene as the solvent	33
6	PhCl as the solvent	21
7	Reaction temperature 120 °C	73
8	$[\text{Rh}(\text{CO})_2\text{Cl}]_2$ (1 mol %)	54
9	without $[\text{Rh}(\text{CO})_2\text{Cl}]_2$	0
10 ^c	In situ generation of anhydride from PivCl and AcOH	32
11 ^c	In situ generation of anhydride from Piv ₂ O and AcOH	90
12 ^c	In situ generation of anhydride from Boc ₂ O and AcOH	39
13 ^{c,d}	In situ generation of anhydride from Boc ₂ O, PivOH and AcOH	91

^aGeneral reaction conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ (2 mol %), 1,4-dioxane (2.0 mL), 130 °C, 8 h. ^bIsolated yield. ^cAcOH (0.22 mmol) and activator (0.24 mmol) and were employed. ^dAcOH (0.22 mmol), Boc₂O (0.24 mmol) and PivOH (0.24 mmol) were employed.

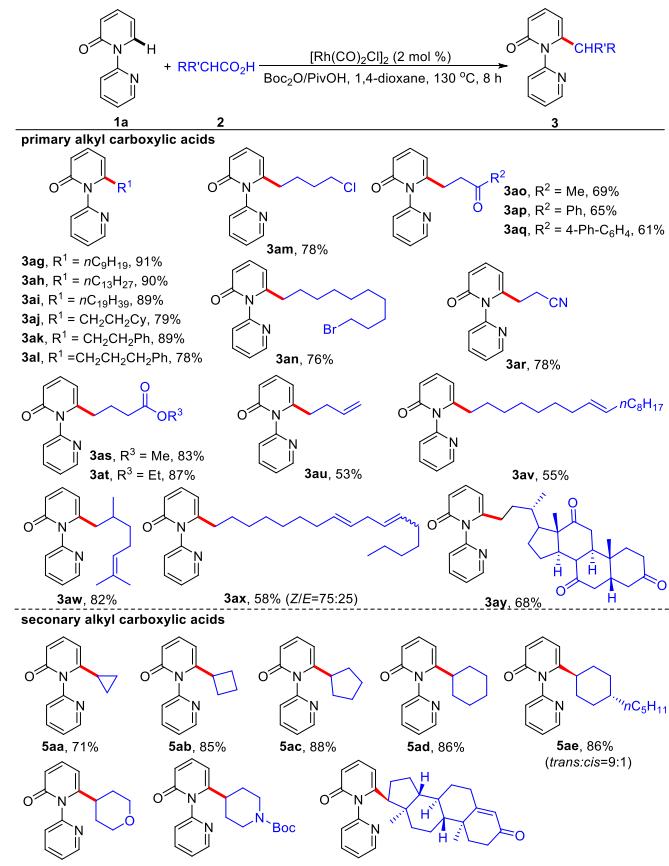
We next proceeded to explore the methylation of a series of 2-pyridones with **2a**. As illustrated in **Scheme 2**, a range of 3- and 4-substituted 2-pyridones (**1b–1l**) bearing electron-rich and electron-deficient groups underwent smooth methylation to deliver products **3ba–3la** in 81–92% yields. The structure of **3ga** was confirmed by single-crystal X-ray diffraction (CCDC 1834644, Scheme 2). Importantly, a variety of functional groups (OBn, F, Cl, Br, CF₃, CN and CO₂Me) were tolerated. Despite the steric hindrance, the 5-substituted 2-pyridones (**1m–1q**) delivered products **3ma–3qa** in 54–86% yield. In these reactions, electron-rich 2-pyridones generally exhibited slightly better yields. Furthermore, the disubstituted 2-pyridones **1r–1s** provided products **3ra–3sa** in 72 and 81% yields. It is noteworthy that installation of substituents on the pyridyl directing group did not affect the methylation, and products **3ta–3va** were obtained in 85–89% yields. The versatility of this system was further reflected by the methylation of 3-(pyridin-2-yl)quinazolin-4(3*H*)-one (**1w**), 1-(pyridin-2-yl)quinolin-4(1*H*)-one (**1x**) and 4*H*-[1,2'-bipyridin]-4-one (**1y**) in 71–82% yields.


Scheme 2. Direct Methylation of 2-Pyridones with **2a^{a,b}**

^aReaction Conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ (2.0 mol %), 1,4-dioxane (3.0 mL), 130 °C, 8 h, in air. ^bIsolated yield.

As shown in **Scheme 3**, several commercially available alkyl carboxylic anhydrides including propionic anhydride (**2b**), butyric anhydride (**2c**), valeric anhydride (**2d**), hexanoic anhydride (**2e**) and isovaleric anhydride (**2f**) reacted effectively with **1a** to afford C6-alkylated products **3ab**–**3af** in 90–92% yields. The high yields indicate that β -hydride elimination does not compete with reductive elimination (see mechanistic discussion below).

Scheme 3. Direct Alkylation of **1a** with Alkyl Carboxylic Anhydrides ^{a,b}

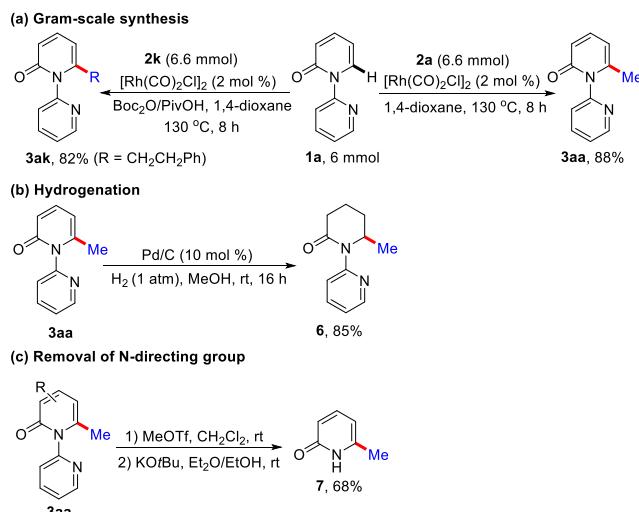


^aReaction Conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ (2.0 mol %), Boc₂O (0.24 mmol), PivOH (0.24 mmol), and 1,4-dioxane (3.0 mL), 130 °C, 8 h, in air. ^bIsolated yield.

We next turned our attention to reactions of aliphatic acids with **1a** in the presence of Boc₂O and PivOH (**Scheme 4**). Regardless of the alkyl chain length, aliphatic acids **2g**–**2l** coupled efficiently with **1a** in 78–91% yields. Sensitive functional groups, such as halogen (**2m**, **2n**), ketone (**2o**–**2q**), nitrile (**2r**), and ester (**2s**–**2t**), were compatible with the reaction conditions, leading to C6-alkylated 2-pyridones **3am**–**3at** in 61–87% yields. Alkene-containing carboxylic acids **2u**–**2x** gave **3au**–**3ax** in 53–82% yields, leaving the alkene intact. Moreover, subjecting dehydrocholic acid (**2y**) to **1a** delivered product **3ay** in 68% yield, highlighting the applicability of this method to late-stage functionalization of complex molecules.

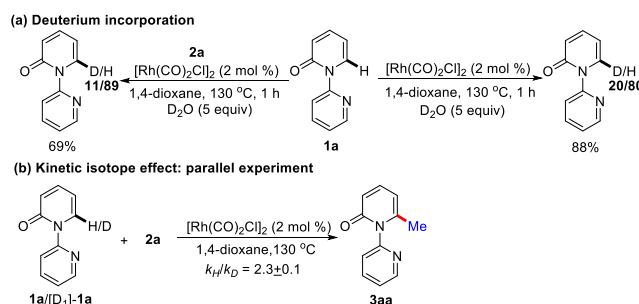
To demonstrate the utility of our catalytic system, secondary alkyl carboxylic acids were examined (**Scheme 4**). The cyclic acids (**4a**–**4e**) with 3–6 membered rings reacted smoothly with **1a**, affording **5aa**–**5ae** (71–88% yield). For **5ae**, the stereochemistry of the major diastereomer was *trans* by ¹H NMR (*trans* : *cis* = 9 : 1). Tetrahydropyran-4-carboxylic acid (**4f**) and *N*-Boc-piperidine-4-carboxylic acid (**4g**) coupled, albeit in reduced yield (59 and 41%, respectively). The biologically relevant complex molecule, 3-keto-4-etoicholenic acid (**4h**), reacted to furnish **5ah** in 50% yield.

Scheme 4. Direct Alkylation of **1a** with Alkyl Carboxylic Acids ^{a,b}

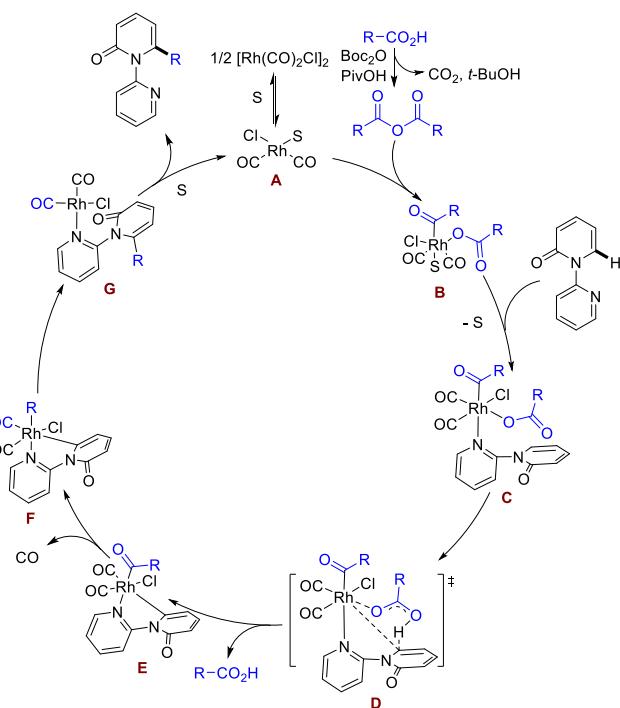


^aReaction Conditions: **1a** (0.2 mmol), **2a** (0.22 mmol), $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ (2.0 mol %), Boc₂O (0.24 mmol), PivOH (0.24 mmol), and 1,4-dioxane (3.0 mL), 130 °C, 8 h, in air. ^bIsolated yield.

To demonstrate the synthetic utility, gram-scale reactions of **1a** with **2a** and **2k** were performed, affording **3aa** and **3ak** in 88 and 82% yields, respectively (**Scheme 5a**). Derivatizations of C6-alkylated 2-pyridone products were then explored. It was found that **3aa** underwent hydrogenation to give **6** in 85% yield. Removal of the 2-pyridyl directing group from **3aa** by the “quaternization and alcoholysis”^{7a,8c} furnished the free 2-pyridone derivative **7** in 68% yield.


To gain insight into the reaction mechanism, a series of experiments were performed. First, analyzing the head gas of the reaction mixtures with $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ or $[\text{Rh}(\text{COD})_2]\text{OTf}$ (GC-TDC) confirmed CO byproducts, supporting a decarbonylation step (see SI for details). H/D scrambling experiments were performed by conducting the reaction in the presence of D₂O

Scheme 5. Synthetic Applications


both with and in the absence of acetic anhydride (**2a**). The observation of deuterium in the recovered starting material of both reactions suggested that the C–H activation is reversible (**Scheme 6a**). A kinetic isotope effect (KIE) of 2.3 ± 0.1 was observed from the parallel reactions between **1a** or [D_1]-**1a** with **2a** (**Scheme 6b**), implying that the Rh-catalyzed C–H bond cleavage was involved in the turnover-limiting step.

Scheme 6. Mechanistic Studies

On the basis of the aforementioned results and previous reports,^{14,17} a plausible mechanism is proposed (**Scheme 7**). The reaction likely starts with dissociation of $[\text{Rh}(\text{CO})_2\text{Cl}]_2$ in the presence of coordinating solvent or the pyridine containing substrate (both denoted as S) with the formation of the monomer **A** ($(\text{S})\text{Rh}(\text{CO})_2\text{Cl}$). Meanwhile, the acid reacts with Boc_2O and PivOH to generate the alkyl anhydride (either the symmetrical anhydride or the mixed anhydride with pivalic acid), which undergoes oxidative addition to $\text{Rh}(\text{I})$ **A** to give the $\text{Rh}(\text{III})$ intermediate **B**. Ligand exchange (for $\text{S} = \text{solvent}$) leads to **C** with the bound substrate. Subsequently, a concerted metalation deprotonation (CMD) by the carboxylate ligand via transition state **D** generates acid and the cyclometallated species **E** with the key $\text{Rh}-\text{C}$ bond. The liberated acid from this step can react with Boc_2O or an anhydride intermediate (such as Piv_2O) to generate an anhydride poised to reenter the catalytic cycle. Intermediate **E** is envisioned to undergo loss of coordinated CO and then deinsertion of the acyl to afford the Rh -alkyl intermediate **F**. Reductive elimination of **F** regenerates $\text{Rh}(\text{I})$ with the pyridine bound product **G**. Finally, **G** undergoes exchange with the solvent or additional substrate to release the product and close the catalytic cycle. We favor this mechanism over initial oxidative addition of the 2-pyridone substrate to $\text{Rh}(\text{I})$ to give a $\text{Rh}(\text{III})$ intermediate because subsequent oxidative addition of the anhydride would give $\text{Rh}(\text{V})$, which is an unusual oxidation state for rhodium in such systems.

Scheme 7. Plausible Mechanism

In summary, an efficient protocol for Rh-catalyzed chelation-assisted regioselective C6–H bond alkylation of 2-pyridones with abundant and inexpensive alkyl carboxylic acids or anhydrides is introduced. This protocol provides efficient access to C6-alkylated 2-pyridones, including those that are difficult to prepare with conventional methods. The utility of this reaction was demonstrated in drug synthesis and late-stage functionalization of complex molecules. The operational simplicity, broad scope, high functional-group compatibility and ease of scalability make this reaction a practical and attractive alternative to the currently known methods for 2-pyridone alkylation.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Details of the experimental procedures, compound characterization data for all new compounds, NMR spectra, and X-ray crystallographic analysis for compound **3ga**.

FAIR Data is available as Supporting Information for Publication and includes the primary NMR FID files for compounds **3aa**–**8**.

AUTHOR INFORMATION

Corresponding Author

*E-mail: 20050062@ruc.edu.cn

*E-mail: fanqh@iccas.ac.cn

*E-mail: pwalsh@sas.upenn.edu

Author Contributions

HZ and XX contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We acknowledge the Program for China Scholarship Council (201806360122), National Natural Science Foundation of China (21372258) for financial support. P.J.W. thanks the US National Science Foundation (1902509).

REFERENCES

(1) (a) Jessen, H. J.; Gademann, K. 4-Hydroxy-2-pyridone Alkaloids: Structures and Synthetic Approaches. *Nat. Prod. Rep.* **2010**, *27*, 1168-1185. (b) Heeb, S.; Fletcher, M. P.; Chhabra, S. R.; Diggle, S. P.; Williams, P.; Câmara, M. Quinolones: From Antibiotics to Autoinducers. *FEMS Microbiol. Rev.* **2011**, *35*, 247-274. (c) Schröder, P.; Förster, T.; Kleine, S.; Becker, C.; Richters, A.; Ziegler, S.; Rauh, D.; Kumar, K.; Waldmann, H. Neuritogenic Militarinone Inspired 4-Hydroxypyridones Target the Stress Pathway Kinase MAP4K4. *Angew. Chem. Int. Ed.* **2015**, *54*, 12398-12401. (d) Wong, P. L.; Moeller, K. D. Anodic amide oxidations: total syntheses of (-)-A58365A and (+/-)-A58365B. *J. Am. Chem. Soc.* **1993**, *115*, 11434-11445. (e) Kelly, T. R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. Synthesis of (+/-)-fredericamycin A. *J. Am. Chem. Soc.* **1988**, *110*, 6471-6480. (f) Monti, D.; Saccomani, L.; Chetoni, P.; Burgalassi, S.; Tampucci, S.; Maillard, F. Validation of bovine hoof slices as a model for infected human toenails: in vitro ciclopirox transungual permeation. *Br. J. Dermatol.* **2011**, *165*, 99-105. (g) Santhosh, K.; Elkhatib, O.; Nollette, N.; Outbih, O.; Halayko, A.; Dakshinamurti, S. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes. *Br. J. Pharmacol.* **2011**, *163*, 1223-1236.

(2) Torres, M.; Gil, S.; Parra, M. New synthetic methods to 2-pyridone rings. *Curr. Org. Chem.* **2005**, *9*, 1757-1779

(3) (a) Conreaux, D.; Bossharth, E.; Monteiro, N.; Desbordes, P.; Vors, J.-P.; Balme, G. Flexible Strategy for Differentially 3, 5-Disubstituted 4-Oxypyridin-2 (1 H)-ones Based on Site-Selective Pd-Catalyzed Cross-Coupling Reactions. *Org. Lett.* **2007**, *9*, 271-274. (b) Conreaux, D.; Belot, S.; Desbordes, P.; Monteiro, N.; Balme, G. Et3N-Induced Demethylation- Annulation of 3-Alkynyl-4-methoxy-2-pyridones and Structurally Related Compounds in the Synthesis of Furan-Fused Heterocycles. *J. Org. Chem.* **2008**, *73*, 8619-8622. (c) Bengtsson, C.; Almqvist, F. Regioselective halogenations and subsequent Suzuki- Miyaura coupling onto bicyclic 2-pyridones. *J. Org. Chem.* **2010**, *75*, 972-975 (d) Litchfield, J.; Sharma, R.; Atkinson, K.; Filipski, K. J.; Wright, S. W.; Pfefferkorn, J. A.; Tan, B.; Kosa, R. E.; Stevens, B.; Tu, M.; Kalgutkar, A. S. Intrinsic Electrophilicity of the 4-Methylsulfonyl-2-pyridone Scaffold in Glucokinase Activators: Role of Glutathione-S-Transferases and in Vivo Quantitation of a Glutathione Conjugate in Rats. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 6262-6267. (e) Chou, S.-S. P.; Chung, Y.-C.; Chen, P.-A.; Chiang, S.-L.; Wu, C.-J. Synthetic applications of sulfur-substituted indolizidines and quinolizidines. *J. Org. Chem.* **2011**, *76*, 692-695. (f) McElhinny, C. J. Jr.; Carroll, F. I.; Lewin, A. H. A Practical, Laboratory-Scale Synthesis of Perampanel. *Synthesis* **2012**, *44*, 57-62.

(4) For C3-selective C-H functionalization, see: (a) Nakatani, A.; Hirano, K.; Satoh, T.; Miura, M. Nickel-Catalyzed Direct Alkylation of Heterocycles with α -Bromo Carbonyl Compounds: C3-Selective Functionalization of 2-Pyridones. *Chem. Eur. J.* **2013**, *19*, 7691-7695. (b) Nakatani, A.; Hirano, K.; Satoh, T.; Miura, M. Manganese-Mediated C3-Selective Direct Alkylation and Arylation of 2-Pyridones with Diethyl Malonates and Arylboronic Acids. *J. Org. Chem.* **2014**, *79*, 1377-1385. (c) Anagnostaki, E. E.; Fotiadou, A. D.; Demertzidou, V.; Zografos, A. L. Palladium catalyzed C3-Arylation of 4-Hydroxy-2-pyridones. *Chem. Commun.* **2014**, *50*, 6879-6882. (d) Modak, A.; Rana, S.; Maiti, D. Iron-Catalyzed Regioselective Direct Arylation at the C-3 Position of N-Alkyl-2-pyridone. *J. Org. Chem.* **2015**, *80*, 296-303. (e) Katsina, T.; Papoulidou, K. E.; Zografos, A. L. Umpolung-like Cross-coupling of Tosylhydrazones with 4-Hydroxy-2-pyridones under Palladium Catalysis. *Org. Lett.* **2019**, *21*, 8110-8115. For C4-selective C-H functionalization, see: (f) Miura, W.; Hirano, K.; Miura, M. Iridium-Catalyzed Site-Selective C-H Borylation of 2-Pyridones. *Synthesis* **2017**, *49*, 4745-4752.

(5) For C5-selective C-H functionalization, see: (a) Chen, Y. Y.; Wang, F.; Jia, A. Q.; Li, X. W. Palladium-catalyzed Selective Oxidative Olefination and Arylation of 2-Pyridones. *Chem. Sci.* **2012**, *3*, 3231-3236. (b) Dutta, U.; Deb, A.; Lupton, D. W.; Maiti, D. The Regioselective Iodination of Quinolines, Quinolones, Pyridones, Pyridines and Uracil. *Chem. Commun.* **2015**, *51*, 17744-17747. (c) Li, Y.; Xie, F.; Li, X. Formal Gold- and Rhodium-Catalyzed Regiodivergent C-H Alkynylation of 2-Pyridones. *J. Org. Chem.* **2016**, *81*, 715-722. (d) Maity, S.; Das, D.; Sarkar, S.; Samanta, R. Direct Pd(II)-Catalyzed Site-Selective C5-Arylation of 2-Pyridone Using Aryl Iodides. *Org. Lett.* **2018**, *20*, 5167-5171.

(6) For C6-selective C-H functionalization, see: (a) Odani, R.; Hirano, K.; Satoh, T.; Miura, M. Copper-Mediated C6-Selective Dehydrogenative Heteroarylation of 2-Pyridones with 1, 3-Azoles. *Angew. Chem., Int. Ed.* **2014**, *53*, 10784-10788. (b) Yu, S.; Li, Y.; Zhou, X.; Wang, H.; Kong, L.; Li, X. Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium (III)-Catalyzed C-C/C-N Coupling of Bifunctional Substrates. *Org. Lett.* **2016**, *18*, 2812-2815. (c) Miura, W.; Hirano, K.; Miura, M. Rhodium-Catalyzed C6-Selective C-H Borylation of 2-Pyridones. *Org. Lett.* **2016**, *18*, 3742-3745. (d) Das, D.; Poddar, P.; Maity, S.; Samanta, R. Rhodium (III)-catalyzed C6-Selective Arylation of 2-Pyridones and Related Heterocycles Using Quinone Diazoates: Syntheses of Heteroarylated Phenols. *J. Org. Chem.* **2017**, *82*, 3612-3621. (e) Li, J.; Yang, Y.; Wang, Z.; Feng, B.; You, J. Rhodium (III)-Catalyzed Annulation of Pyridinones with Alkynes via Double C-H Activation: A Route to Functionalized Quinolizinones. *Org. Lett.* **2017**, *19*, 3083-3086. (f) Kumar, K. A.; Kannaboina, P.; Das, P. Ruthenium-catalyzed Site-selective C-H Arylation of 2-Pyridones and 1-Isoquinolinones. *Org. Biomol. Chem.* **2017**, *15*, 5457-5461. (g) Biswas, A.; Giri, D.; Das, D.; De, A.; Patra, S. K.; Samanta, R. A Mild Rhodium Catalyzed Direct Synthesis of Quinolones from Pyridones: Application in the Detection of Nitroaromatics. *J. Org. Chem.* **2017**, *82*, 10989-10996. (h) Wang, H.; Pesciaioli, F.; Oliveira, J. C. A.; Warratz, S.; Ackermann, L. Synergistic Manganese (I) C-H Activation Catalysis in Continuous Flow: Chemoselective Hydroarylation. *Angew. Chem. Int. Ed.* **2017**, *56*, 15063-15067. (i) Zhao, H.; Xu, X.; Luo, Z.; Cao, L.; Li, B.; Li, H.; Xu, L.; Fan, Q.; Walsh, P. J. Rhodium(I)-Catalyzed C6-Selective C-H Alkenylation and Polyenylation of 2-Pyridones with Alkenyl and Conjugated Polyenyl Carboxylic Acids. *Chem. Sci.* **2019**, *10*, 10089-10096.

(7) For C6-selective C-H alkylation, see: (a) Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. Direct Alkenylation and Alkylation of Pyridone Derivatives by Ni/AlMe₃ Catalysis. *J. Am. Chem. Soc.* **2009**, *131*, 15996-15997. (b) Tamura, R.; Yamada, Y.; Nakao, Y.; Hiyama, T. Alkylation of pyridone derivatives by nickel/Lewis acid catalysis. *Angew. Chem., Int. Ed.* **2012**, *51*, 5679-5682. (c) Donets, P. A.; Cramer, N. Ligand-Controlled Regiodivergent Nickel-Catalyzed Annulation of Pyridones. *Angew. Chem., Int. Ed.* **2015**, *54*, 633-637. (d) Das, D.; Biswas, A.; Karmakar, U.; Chand, S.; Samanta, R. C6-Selective Direct Alkylation of Pyridones with Diazo Compounds under Rh (III)-Catalyzed Mild Conditions. *J. Org. Chem.* **2016**, *81*, 842-848. (e) Peng, P.; Wang, J.; Jiang, H.; Liu, H. Rhodium (III)-Catalyzed Site-Selective C-H Alkylation and Arylation of Pyridones Using Organoboron Reagents. *Org. Lett.* **2016**, *18*, 5376-5379. (f) Ni, J.; Zhao, H.; Zhang, A. Manganese (I)-catalyzed C-H 3, 3-difluoroallylation of pyridones and indoles. *Org. Lett.* **2017**, *19*, 3159-3162. (g) Miura, W.; Hirano, K.; Miura, M. Nickel-Catalyzed Directed C6-Selective C-H Alkylation of 2-Pyridones with Dienes and Activated Alkenes. *J. Org. Chem.* **2017**, *82*, 5337-5344. (h) Xia, J.; Kong, L.; Zhou, X.; Zhong, G.; Li, X. Access to Substituted Propenoic Acids via Rh (III)-Catalyzed C-H Allylation of (Hetero)Arenes with Methyleneoexitanones. *Org. Lett.* **2017**, *19*, 5972-5975. (i) Chen, S.-Y.; Li, Q.; Wang, H. Manganese (I)-catalyzed Direct C-H Allylation of Arenes with Allenes. *J. Org. Chem.* **2017**, *82*, 11173-11181. (j) Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; Aissa, C. Cross-Coupling of α -Carbonyl Sulfoxonium Ylides with C-H Bonds. *Angew. Chem. Int. Ed.* **2017**, *56*, 13117-13121. (k) Xia, J.; Huang, Z.; Zhou, X.; Yang, X.; Wang, F.; Li, X. Rh (III)-catalyzed Acceptorless Dehydrogenative Coupling of (Hetero)arenes with 2-Carboxyl Allylic Alcohols. *Org. Lett.* **2018**, *20*, 740-743. (l) Diesel, J.; Finogenova, A. M.; Cramer, N. Nickel-Catalyzed Enantioselective Pyridone C-H Functionalizations Enabled by a Bulky N-Heterocyclic Carbene Ligand. *J. Am. Chem. Soc.* **2018**, *140*, 4489-4493. (m) Boerth, J. A.; Hummel, J. R.; Ellman, J. A. Highly Stereoselective Cobalt (III)-Catalyzed Three-Component C-H Bond Addition Cascade. *Angew. Chem. Int. Ed.* **2016**, *55*, 12650-12654.

(8) (a) Hirano, K.; Miura, M. A Lesson for Site-selective C–H Functionalization on 2-Pyridones: Radical, Organometallic, Directing Group and Steric Controls. *Chem. Sci.* **2018**, *9*, 22–32. (b) Prendergast, A. M.; McGlacken, G. P. Transition Metal Mediated C–H Activation of 2-Pyrones, 2-Pyridones, 2-Coumarins and 2-Quinolones. *Eur. J. Org. Chem.* **2018**, 6068–6082.

(9) For reviews, see: (a) Gooßen, L. J.; Rodriguez, N.; Gooßen, K. Carboxylic Acids as Substrates in Homogeneous Catalysis. *Angew. Chem., Int. Ed.* **2008**, *47*, 3100–3120. (b) Rodriguez, N.; Gooßen, L. J. Decarboxylative Coupling Reactions: A Modern Strategy for C–C bond Formation. *Chem. Soc. Rev.* **2011**, *40*, 5030–5048. (c) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Carboxylates as Sources of Carbon Nucleophiles and Electrophiles: Comparison of Decarboxylative and Decarbonylative Pathways. *Chem. Sci.* **2012**, *3*, 2671–2678. (d) Park, K.; Lee, S. Transition Metal-catalyzed Decarboxylative Coupling Reactions of Alkynyl Carboxylic Acids. *RSC Adv.* **2013**, *3*, 14165–14182. (e) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-Catalyzed Decarboxylative C–H Functionalization. *Chem. Rev.* **2017**, *117*, 8864–8907. (f) Perry, G. J. P.; Larrosa, I. Recent Progress in Decarboxylative Oxidative Cross-Coupling for Biaryl Synthesis. *Eur. J. Org. Chem.* **2017**, *3517*–3527.

(10) (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Nucleophilic Character of Alkyl Radicals–VI: A New Convenient Selective Alkylation of Heteroaromatic Bases. *Tetrahedron* **1971**, *27*, 3575–3579. (b) Minisci, F.; Vismara, E.; Fontana, F. Recent Developments of Free-Radical Substitutions of Heteroaromatic Bases. *Heterocycles* **1989**, *28*, 489–519. (c) Dunton, M. J. Minisci Reactions: Versatile CH-Functionalizations for Medicinal Chemists. *Med. Chem. Commun.* **2011**, *2*, 1135–1161. (d) Proctor, R. S.; Phipps, R. J. Recent Advances in Minisci-Type Reactions. *Angew. Chem. Int. Ed.* **2019**, *58*, 13666–13699.

(11) (a) Cowden, C. J. Use of N-protected Amino Acids in the Minisci Radical Alkylation. *Org. Lett.* **2003**, *5*, 4497–4499. (b) Xia, R.; Xie, M.-S.; Niu, H.-Y.; Qu, G.-R.; Guo, H.-M. Radical Route for the Alkylation of Purine Nucleosides at C6 via Minisci Reaction. *Org. Lett.* **2014**, *16*, 444–447. (c) Zhao, W.-M.; Chen, X.-L.; Yuan, J.-W.; Qu, L.-B.; Duan, L.-K.; Zhao, Y.-F. Silver Catalyzed Decarboxylative Direct C2-Alkylation of Benzothiazoles with Carboxylic Acids. *Chem. Commun.* **2014**, *50*, 2018–2020. (d) Garza-Sánchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. Visible Light-mediated Direct Decarboxylative C–H Functionalization of Heteroarenes. *ACS Catal.* **2017**, *7*, 4057–4061. (e) Mai, W.-P.; Sun, B.; You, L.-Q.; Yang, L.-R.; Mao, P.; Yuan, J.-W.; Xiao, Y.-M.; Qu, L.-B. Silver Catalysed Decarboxylative Alkylation and Acylation of Pyrimidines in Aqueous Media. *Org. Biomol. Chem.* **2015**, *13*, 2750–2755. (f) Galloway, J. D.; Mai, D. N.; Baxter, R. D. Silver-Catalyzed Minisci Reactions Using Selectfluor as a Mild Oxidant. *Org. Lett.* **2017**, *19*, 5772–5775. (g) Wang, J.; Li, G.-X.; He, G.; Chen, G. Photoredox-Mediated Minisci Alkylation of N-Heteroarenes Using Carboxylic Acids and Hypervalent Iodine. *Asian J. Org. Chem.* **2018**, *7*, 1307–1310. (h) Mahajan, P. S.; Mhaske, S. B. Silver-Mediated Oxidative Decarboxylative Intramolecular Asymmetric Radical Cyclization (Csp^3 - Csp^2) via Memory of Chirality: Access to Circumdatin Alkaloids. *Org. Lett.* **2018**, *20*, 2092–2095. (i) Zhang, X.-Y.; Weng, W.-Z.; Liang, H.; Yang, H.; Zhang, B. Visible-Light-Initiated, Photocatalyst-Free Decarboxylative Coupling of Carboxylic Acids with N-Heterocycles. *Org. Lett.* **2018**, *20*, 4686–4690. (j) Liu, S.; Huang, Y.; Qing, F.-L.; Xu, X.-H. Transition-Metal-Free Decarboxylation of 3,3,3-Trifluoro-2,2-dimethylpropanoic Acid for the Preparation of $C(CF_3)Me_2$ -Containing Heteroarenes. *Org. Lett.* **2018**, *20*, 5497–5501. (k) Pillaiyar, T.; Uzair, M.; Ullah, S.; Schnakenburg, G.; Müller, C. E. Decarboxylative Coupling Reaction of 2-(1H-Indol-3-yl)acetic Acids with Indole, Azaindole, Benzimidazole and Indazole Derivatives. *Adv. Synth. Catal.* **2019**, *361*, 4286–4293. (l) Tian, W.-F.; Hu, C.-H.; He, K.-H.; He, X.-Y.; Li, Y. Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release. *Org. Lett.* **2019**, *21*, 6930–6935. (m) Guo, J.-Y.; Guan, T.; Tao, J.-Y.; Zhao, K.; Loh, T.-P. Stereoselective $C(sp^2)$ -H Alkylation of Enamides with Unactivated Aliphatic Carboxylic Acids via Decarboxylative Cross-Coupling Reactions. *Org. Lett.* **2019**, *21*, 8395–8399.

(12) For selected reviews, see: (a) Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C–H Functionalization Reactions. *Chem. Rev.* **2010**, *110*, 1147–1169. (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Weak Coordination as a Powerful Means for Developing Broadly Useful C–H Functionalization Reactions. *Acc. Chem. Res.* **2012**, *45*, 788–802. (c) Gandeepan, P.; Ackermann, L. Transient Directing Groups for Transformative C–H Activation by Synergistic Metal Catalysis. *Chem.* **2018**, *4*, 199–222. (d) Sambiagio, C.; Schonbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaa, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnurch, M. A Comprehensive Overview of Directing Groups Applied in Metal-catalysed C–H Functionalization Chemistry. *Chem. Soc. Rev.* **2018**, *47*, 6603–6743. (e) Rej, S.; Chatani, N. Rhodium-Catalyzed $C(sp^2)$ – $C(sp^3)$ -H Bond Functionalization Assisted by Removable Directing Groups. *Angew. Chem. Int. Ed.* **2019**, *58*, 8304–8329.

(13) Premi, C.; Dixit, A.; Jain, N. Palladium-Catalyzed Regioselective Decarboxylative Alkylation of Arenes and Heteroarenes with Aliphatic Carboxylic Acids. *Org. Lett.* **2015**, *17*, 2598–2601.

(14) (a) Pan, F.; Lei, Z.-Q.; Wang, H.; Li, H.; Sun, J.; Shi, Z.-J. Rhodium(I)-Catalyzed Redox-Economic Cross-Coupling of Carboxylic Acids with Arenes Directed by N-Containing Groups. *Angew. Chem. Int. Ed.* **2013**, *52*, 2063–2067. (b) Lei, Z.-Q.; Ye, J.-H.; Sun, J.; Shi, Z.-J. Direct Alkenyl C–H Functionalization of Cyclic Enamines with Carboxylic Acids via Rh Catalysis Assisted by Hydrogen Bonding. *Org. Chem. Front.* **2014**, *1*, 634–638. (c) Zhang, L.; Xue, X.; Xu, C.; Pan, Y.; Zhang, G.; Xu, L.; Li, H.; Shi, Z. Rhodium-Catalyzed Decarbonylative Direct C2-Arylation of Indoles with Aryl Carboxylic Acids. *ChemCatChem* **2014**, *6*, 3069–3074. (d) Qiu, X.; Wang, P.; Wang, D.; Wang, M.; Yuan, Y.; Shi, Z. P^{III} -Chelation-Assisted Indole C7-Arylation, Olefination, Methylation, and Acylation with Carboxylic Acids/Anhydrides by Rhodium Catalysis. *Angew. Chem. Int. Ed.* **2019**, *58*, 1504–1508.

(15) (a) Chen, Y. Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. *Chem. Eur. J.* **2019**, *25*, 3405–3439. (b) Schönherr, H.; Cernak, T. Profound Methyl Effects in Drug Discovery and a Call for New C–H Methylation Reactions. *Angew. Chem. Int. Ed.* **2013**, *52*, 12256–12267. (c) Barreiro, E. J.; Kummerle, A. E.; Fraga, C. A. M. The Methylation Effect in Medicinal Chemistry. *Chem. Rev.* **2011**, *111*, 5215–5246.

(16) (a) Goofen, L. J.; Ghosh, K. Palladium-Catalyzed Synthesis of Aryl Ketones from Boronic Acids and Carboxylic Acids Activated in situ by Pivalic Anhydride. *Eur. J. Org. Chem.* **2002**, 3254–3267. (b) Liang, H.-W.; Ding, W.; Jiang, K.; Shuai, L.; Yuan, Y.; Wei, Y.; Chen, Y. Redox-Neutral Palladium-Catalyzed C–H Functionalization To Form Isoindolinones with Carboxylic Acids or Anhydrides as Readily Available Starting Materials *Org. Lett.* **2015**, *17*, 2764–2767.

(17) (a) Zhao, X.; Yu, Z. Rhodium-Catalyzed Regioselective C–H Functionalization via Decarbonylation of Acid Chlorides and C–H Bond Activation under Phosphine-Free Conditions. *J. Am. Chem. Soc.* **2008**, *130*, 8136–8137. (b) Jin, W.; Yu, Z.; He, W.; Ye, W.; Xiao, W.-J. Efficient Rh(I)-Catalyzed Direct Arylation and Alkenylation of Arene C–H Bonds via Decarbonylation of Benzoic and Cinnamic Anhydrides. *Org. Lett.* **2009**, *11*, 1317–1320.