

1 **Editors summary**

2 **Compact early fruiting tomato and groundcherry plants suitable for urban farming are**  
3 **produced using genome editing.**

4

5 **Rapid customization of Solanaceae fruit**  
6 **crops for urban agriculture**

7

8 Choon-Tak Kwon<sup>1</sup>, Jung Heo<sup>2</sup>, Zachary H. Lemmon<sup>1,8</sup>, Yossi Capua<sup>3,9</sup>, Samuel F. Hutton<sup>4</sup>,  
9 Joyce Van Eck<sup>5,6</sup>, Soon Ju Park<sup>2</sup> & Zachary B. Lippman<sup>1,7\*</sup>

10

11 <sup>1</sup> Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

12 <sup>2</sup> Division of Biological Sciences and Research Institute for Basic Science, Wonkwang  
13 University, Iksan, Jeonbuk 54538, Republic of Korea.

14 <sup>3</sup> Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot,  
15 Israel 76100.

16 <sup>4</sup> Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA.

17 <sup>5</sup> Boyce Thompson Institute for Plant Science, Ithaca, New York 14853, USA.

18 <sup>6</sup> Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University,  
19 Ithaca, NY 14853, USA

20 <sup>7</sup> Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY  
21 11724, USA.

22 <sup>8</sup> Present address: Inari Agriculture, Cambridge, Massachusetts, USA.

23 <sup>9</sup> Present address: Centre for Organismal Studies, Department Stem Cell Biology, Ruprecht-  
24 Karls-University Heidelberg, Im NeuenheimerFeld 230, 69120 Heidelberg, Germany.

25

26 \*Correspondence should be addressed to Z.B.L. (lippman@cshl.edu)

27 **Cultivation of crops in urban environments might reduce the environmental impact of food**  
28 **production<sup>1-4</sup>. However, lack of available land in cities and a need for rapid crop cycling to**  
29 **yield quickly and continuously mean that so far only lettuce and related ‘leafy green’**  
30 **vegetables are cultivated in urban farms<sup>5</sup>. New fruit varieties with architectures and yields**  
31 **suitable for urban farming have proven difficult to breed<sup>1,5</sup>. We identified a regulator of**  
32 **tomato stem length (*SIER*) and devised a trait-stacking strategy to combine mutations for**  
33 **condensed shoots, rapid flowering (*SP5G*), and precocious growth termination (*SP*).**  
34 **Application of our strategy using one-step CRISPR-Cas9 genome editing restructured vine-**  
35 **like tomato plants into compact, early yielding plants suitable for urban agriculture. Field**  
36 **data confirmed yields were maintained, and we demonstrated cultivation in indoor farming**  
37 **systems. Targeting the same stem length regulator alone in groundcherry, another**  
38 **Solanaceae plant, also enabled engineering to a compact stature. Our approach can expand**  
39 **the repertoire of crops for urban agriculture.**

40

41       The loss of arable land, driven by population growth, diminishing water resources and  
42 climate change poses a substantial challenge for the future of agriculture. Part of the solution will  
43 require increasing yields of the staple crops that feed humans and their livestock, such as corn,  
44 rice, soybean, and wheat, which are bred for high productivity in large-scale field conditions. A  
45 complementary approach, that might contribute to sustainable agriculture, is to grow more food  
46 in urban environments<sup>1,2</sup>. For example, although initial infrastructure costs can be high, rooftop  
47 farms and climate-controlled automated vertical farming systems optimize land use and are  
48 designed to be more environmentally friendly and sustainable than traditional farming<sup>1,3,4</sup>.  
49 However, the benefits of urban agriculture and its expansion are limited by the few crops that  
50 can be cultivated under highly restrictive growth parameters. Crop varieties that are both  
51 compact and rapid cycling are needed to optimize efficiency and productivity, and for these  
52 reasons, urban agriculture is currently limited to lettuce and related leafy green vegetables<sup>1,5</sup>.

53       There is much interest in urban agriculture of fruits and berries but developing crop  
54 varieties suitable to the restrictive growth parameters of urban agriculture farming systems  
55 requires considerable modification. For example, commercial varieties were (and continue to be)  
56 bred for maximum productivity under typical greenhouse and field parameters. As an important  
57 component of the human diet and a major fruit crop, tomato is a promising candidate for growth

58 in urban farms. We previously showed that mutating two regulators of flowering in the universal  
59 florigen hormone system can convert tall, continuously growing “indeterminate” tomato plants  
60 into early yielding, compact “determinate” varieties. Natural and CRISPR-Cas9-induced  
61 mutations in the classical flowering repressor gene *SELF PRUNING (SP)* confer a determinate  
62 growth habit, and mutating its paralog *SP5G* in the *sp* background accelerates flowering and  
63 enhances plant compactness<sup>6,7</sup>. While these *sp sp5g* “double-determinate” genotypes are rapid  
64 cycling and productive when grown at high density in greenhouses and fields<sup>7</sup>, even smaller  
65 plants that produce commercially viable yields would be better suited to urban agriculture.  
66 Specifically, although per plant fruit yield may be lower on smaller plants, this reduction can be  
67 compensated by growing more plants at higher density, thereby maintaining productivity in a  
68 limited growth space.

69 We reasoned that decreasing stem length between leaves and flowers (internodes) would  
70 further increase the compactness of *sp sp5g* double-determinate plants without likely  
71 compromising productivity. In a previous ethyl methanesulfonate (EMS) mutagenesis  
72 experiment with the standard plum tomato variety “M82”<sup>8</sup>, we identified a dwarf mutant with  
73 shortened internodes and extremely compact inflorescences that form tight clusters of fruits (**Fig.**  
74 **1a-d**). This mutant, designated *short internodes (si)*, showed good fruit set and high fertility, and  
75 all vegetative and reproductive internodes and flower/fruit stems (pedicels) were substantially  
76 shorter than wild-type (WT) plants and *si/+* heterozygotes (**Fig. 1a-d, Supplementary Fig. 1a**).  
77 These phenotypes closely resembled a monogenic recessive mutant called *short pedicel 1 (spd1)*  
78 that was isolated in a separate mutagenesis experiment with M82<sup>9,10</sup>. We confirmed allelism, and  
79 mapping-by-sequencing positioned *si/spd1* to a large interval on chromosome 8 (**Supplementary**  
80 **Fig. 1b; Online Methods**). This region included the tomato ortholog of the classical *Arabidopsis*  
81 *ERECTA (ER)* gene, which is known to control internode length<sup>11</sup>. Notably, three EMS alleles,  
82 including one from a mutagenesis in the dwarf “MicroTom” genotype<sup>12</sup>, carried point mutations  
83 that caused splicing defects and a premature stop codon (**Fig. 1e and Supplementary Fig. 1c-g,**  
84 **Supplementary Fig. 2**). In addition, CRISPR-Cas9 mutagenesis of tomato (denoted with “*Sl*”  
85 prefix) *ER (SlER)* resulted in null mutants with identical phenotypes as *si/spd1*, and these alleles  
86 also failed to complement the EMS mutants (**Fig. 1e and Supplementary Fig. 1h-k**).

87 We also identified the gene underlying *spd2*, a short internode mutant in the same class as  
88 *sler*, but with additional developmental defects that make it unsuitable for agriculture, including

89 sterility<sup>10</sup>. Mapping and cloning showed three EMS alleles had mutations in the tomato homolog  
90 of Arabidopsis *SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 (SERK1)* on chromosome  
91 4, which in Arabidopsis functions in a complex with *ER* (**Supplementary Fig. 3a; Online**  
92 **Methods**)<sup>13</sup>. We found *slserk1* mutants showed severe developmental defects including fused  
93 stems and inflorescences, and parthenocarpic fruits, and less complex leaves (**Supplementary**  
94 **Fig. 3b**). The expression patterns of *S1SERK1* were similar to those of *S1ER*, and *sler slserk1*  
95 double mutants showed *slserk1* is epistatic to *sler* (**Supplementary Fig. 3c-d**). We mutagenized  
96 *S1SERK1* by CRISPR-Cas9 and obtained several T<sub>0</sub> individuals that were chimeric for large  
97 deletion mutations and showed a range of severity similar to the EMS alleles (**Supplementary**  
98 **Fig. 3f-h**). Finally, we mutated *S1ER-like 1 (S1ERL1)*, a paralog of *S1ER* that shares a similar  
99 expression pattern (**Fig. 1f, g**). While CRISPR-Cas9 generated *slerl1* mutants were  
100 indistinguishable from WT plants, *sler slerl1* double mutants showed severe pleiotropic growth  
101 defects resembling *spd2/slserk1* (**Fig. 1h-j, Supplementary Fig. 3i-k**).

102 Our results show conservation of function for *ER* and two of its interacting receptors, but  
103 for the purpose of agricultural application our primary interest was in the specific phenotype of  
104 short internodes caused by mutations in *S1ER*. However, *ER* has been shown to have multiple  
105 roles in plant development, for example in meristem maintenance and stomatal patterning<sup>14-18</sup>,  
106 which could impact agricultural productivity. To test agricultural performance of the *sler* mutant,  
107 specifically its potential to increase compactness of double determinate *sp sp5g* plants (**Fig. 2a**),  
108 we generated all combinations of double and triple *sp*, *sp5g*, and *sler* mutants in the M82  
109 background and evaluated shoot architecture and yield components in greenhouses and  
110 agricultural fields (**Fig. 2; Online Methods**). Compared to *sp* determinate plants, *sp sler* plants  
111 produced condensed shoots with no yield loss (**Supplementary Fig. 4a-c**). Notably, the *sp sp5g*  
112 *sler* triple mutants were the most compact of all genotypes (**Fig. 2b-d**), and these “triple-  
113 determinate” plants were still early flowering and produced the same number of inflorescences  
114 and flowers as *sp sp5g* double-determinates (**Supplementary Fig. 4d**). Though a smaller fruit  
115 size caused a reduction in yield, harvest index (defined as the total yield per plant weight) of the  
116 triple-determinates exceeded *sp* determinate plants and matched *sp sp5g* double determinates  
117 (**Fig. 2d**). Together, these results suggest that CRISPR-Cas9 targeting of only three genes,  
118 controlling flowering time (*SP5G*), growth termination (*SP*), and stem length (*S1ER*), can  
119 transform any tomato genotype into a compact, early yielding form.

Breeding medium and large-fruited varieties such as M82 for urban agriculture is not practical, because larger plants are needed to support the high metabolic and structural demands of fruits that also require more time to develop and ripen. We therefore focused on using CRISPR-Cas9 to generate a triple-determinate small-fruited variety. We targeted *SIER* in our previously generated “Sweet100” double-determinate plants<sup>7</sup>, and as expected the resulting plants showed a triple-determinate form (**Fig. 3a, b** and **Supplementary Fig. 5a, b**). Important agronomic traits including flowering time, flower number, and sugar content (Brix) were the same as double-determinates, though fruit size was slightly decreased (**Supplementary Fig. 5c-e**). We tested if Sweet100 triple-determinate plants perform well under restricted space conditions by performing a high-density yield trial in agricultural fields (**Online Methods**). Less than 40 days after transplanting, both double-determinate and triple-determinate plants produced their first ripe fruits, providing early yield and rapid cycling (**Fig. 3c, d**). Importantly, triple-determinate plants had the smallest stature of all Sweet100 genotypes in all conditions, and yields were the same as double-determinates (**Fig. 3d** and **Supplementary Fig. 6**). We also found that the highly compact fruit clusters minimized fruit drop during harvest (**Supplementary Fig. 6c**). Finally, we demonstrated the first steps for cultivating our Sweet100 triple-determinate variety in both a light-emitting diode (LED) growth chamber and a self-contained, climate-controlled LED hydroponic vertical farm system (**Fig. 3e, f**; see **Methods**). Together, these results demonstrate that high performing triple-determinate small-fruited tomato varieties can be developed to accommodate the plant size and space restrictions of urban agriculture.

Mutations of *ER* cause similar effects on stem length in diverse plants (**Fig. 1a-d**)<sup>11,19</sup>, suggesting that targeting this gene in other fruit crops could convert tall, bushy shoot architectures into more compact forms better adapted for both outdoor and indoor cultivation. We recently reported that CRISPR-Cas9 genome editing can be used to engineer domestication traits in the orphan Solanaceae fruit crop groundcherry (*Physalis grisea*, previously *Physalis pruinosa*)<sup>20,21</sup>. Groundcherry plants are typically large and bushy, with long stems between single-flower inflorescences, each of which produces a single sweet berry. To test if a compact groundcherry plant could be engineered by mutating the ortholog of *ER* (*PgER*), we identified both *PgER* and *PgERL1* using our genome and transcriptome assemblies<sup>20</sup>, and targeted specifically *PgER* using two guide RNAs (**Fig. 4a, b**). Surprisingly, null *pger* mutants had a dwarf phenotype that was more severe than tomato *sler* mutants and resembled triple-

151 determinate plants (**Fig. 4c**). The shortened internodes and pedicels in the *pger* dwarf plants  
152 resulted in a remarkably high concentration of fruits on each shoot compared with WT plants  
153 (**Fig. 4c**). As for tomato, fruit size was reduced (**Fig. 4d**), but this could be compensated for by  
154 targeting regulators of fruit size, such as the homolog of the *CLAVATA1* gene<sup>20</sup>. Other important  
155 productivity traits, such as fruit number and sugar content, were the same as WT (**Fig. 4e**). We  
156 also compared the dwarf *pger* plants to a determinate groundcherry variety that we had produced  
157 by mutating the ortholog of *SP* (*PgSP*)<sup>20</sup>. Compared to WT, determinate (*pgsp*) groundcherry  
158 plants produce multiple flowers at each node, but growth terminates rapidly on all shoots, which  
159 limits fruit production<sup>20</sup>. We found that fruit number in *pger* plants was much higher than the  
160 determinate plants, making this new dwarf variety of groundcherry an attractive starting point for  
161 urban agriculture of this fruit (**Fig. 4f, g**).

162 Our strategy enables rapid engineering of two Solanaceae fruit crops to the most  
163 challenging agronomic parameters of urban agriculture: rapid cycling and compact plant size.  
164 Our CRISPR-Cas9 based approach will enable rapid modification of many other small-fruited  
165 tomato varieties into a triple-determinate growth habit by generating loss-of-function alleles of  
166 *SP*, *SP5G* and *SIER* in elite breeding lines. Alternatively, in cases where resources for genome  
167 editing are not available, the novel genetic diversity we have generated in these genes in a  
168 “plum” and “cherry” variety could easily be incorporated into traditional breeding programs.

169 Small-fruited tomato varieties have been bred for diverse colors, shapes, sizes, and flavor  
170 profiles in order to appeal to consumers; crossing these genotypes with our triple determinate  
171 plants would enable rapid selection for these highly desirable and heritable fruit quality traits. To  
172 demonstrate this, we generated F<sub>2</sub> populations between Sweet100 triple determinates and a  
173 “cocktail” and a “grape” tomato variety, and selected new triple determinate genotypes with  
174 larger and elongated fruits, respectively (**Supplementary Fig. 7**). Our alleles could also be used  
175 to customize plant compactness for specific agronomic needs. For example, *sp5g* and *sler*  
176 mutations could be combined to develop early yielding and shorter indeterminate varieties for  
177 urban greenhouses. In such cases, particularly when larger-fruited varieties are sought, a more  
178 subtle change in internode length might be beneficial, which could be achieved with weak *sler*  
179 alleles. Notably, one of our CRISPR-Cas9 alleles was a 6 bp in-frame mutation in the *SIER* LRR  
180 domain that resulted in a less severe effect on stem and pedicel length, and we also generated  
181 weak alleles by targeting the promoter of *SIER* (**Supplementary Fig. 8**)<sup>22</sup>.

182 Our findings indicate that even closely-related species may require different genetic  
183 solutions to enable commercially viable growth in urban farms. Like groundcherry, the  
184 Solanaceae crop pepper is a bushy plant that produces single-flower inflorescences, and may  
185 benefit more from mutations in *ER* as opposed to *SP*<sup>23</sup>. Beyond the Solanaceae, reducing or  
186 eliminating *SP* function in cucumber and kiwifruit, respectively, also results in accelerated  
187 flowering and compact growth habits<sup>24,25</sup>. Targeting the coding sequence or regulatory regions of  
188 *ER* alone, or in combination with *SP*, could help customize these and other high-value fruit crops  
189 for urban agriculture.

190 Looking to the future, the gene targets and engineering strategies we have described,  
191 together with additional promising genetic targets for modifying flowering and plant size in other  
192 crops<sup>26,27</sup>, are a key step towards the development of agricultural systems for space travel<sup>28,29</sup>.

193 **Acknowledgements**

194 We thank members of the Lippman laboratory for valuable comments and discussions. We thank  
195 G. Robitaille, J. Kim, A. Krainer, J. Dalrymple, M. Strahl and J. Wong for technical support. We  
196 thank K. Swartwood, M. Tjahjadi and B. N. Williams for assistance with tomato and  
197 groundcherry transformation. We thank T. Mulligan, K. Schlecht, B. Hendrick, A. Krainer, and  
198 S. Qiao, and staff from Cornell University's Long Island Horticultural Research and Extension  
199 Center for assistance with plant care. We thank M. E. Bartlett for assistance with the  
200 phylogenetic tree. We thank N. Van Eck for assistance with the LED growth chamber  
201 experiment. We thank D. Harris, D. Lucas, and J. Friedman from Freight Farms for assistance  
202 with the vertical farm experiment. We thank D. Zamir (Hebrew University), N. Ori (Hebrew  
203 University), Y. Eshed (Weizmann Institute) and K. Hoshikawa (University of Tsukuba) for  
204 providing seed. This research was supported by the Howard Hughes Medical Institute, Next-  
205 Generation BioGreen 21 Program SSAC (grant no. PJ0134212019) from the Rural Development  
206 Administration, Republic of Korea to S.J.P and Z.B.L, the National Research Foundation of  
207 Korea (grant no. 2017R1A4A1015594 and 2016R1C1B2015877) funded by the Ministry of  
208 Science, ICT & Future Planning to S.J.P, an Agriculture and Food Research Initiative  
209 competitive grant from the USDA National Institute of Food and Agriculture (2016-67013-  
210 24452) to S.H. and Z.B.L., and the National Science Foundation Plant Genome Research  
211 Program (grant no. IOS-1732253 to J.V.E. and Z.B.L., and grant no. IOS-1546837 to Z.B.L.).

212

213 **Author contributions**

214 C.-T.K. and Z.B.L designed the research and performed the experiments, J. H. and S.J.P.  
215 performed the MicroTom experiments and tomato transformation. Z.H.L. performed mapping  
216 analysis. Y.C. generated tomato CRISPR mutants. S.F.H. contributed to the tomato yield trial.  
217 J.V.E. performed tomato and groundcherry transformations. C.-T.K. and Z.B.L wrote the  
218 manuscript with editing contributed from all authors.

219

220 **Competing interests**

221 Z.B.L. is a paid consultant for and a member of the Scientific Strategy Board of Inari  
222 Agriculture, and he is also a named inventor on a number of patents and patent applications

223 (Patent Application Publications WO/2017/180474; WO/2014/081730A1; WO/2018/213547)  
224 directed to related technology that have been exclusively licensed from CSHL to Inari  
225 Agriculture.

226 **References**

227

228 1. Benke, K. & Tomkins, B. Future food-production systems: vertical farming and controlled-  
229 environment agriculture. *Sustain. Sci. Pract. Policy* **13**, 13–26 (2017).

230 2. Pearson, L. J., Pearson, L. & Pearson, C. J. Sustainable urban agriculture: stocktake and  
231 opportunities. *Int. J. Agric. Sustain.* **8**, 7–19 (2010).

232 3. Martellozzo, F. *et al.* Urban agriculture: a global analysis of the space constraint to meet urban  
233 vegetable demand. *Environ. Res. Lett.* **9**, 064025 (2014).

234 4. Banerjee, C. & Adenaeuer, L. Up, Up and Away! The Economics of Vertical Farming. *J.*  
235 *Agric. Stud.* **2**, 40–60 (2014).

236 5. Touliatos, D., Dodd, I. C. & McAinsh, M. Vertical farming increases lettuce yield per unit  
237 area compared to conventional horizontal hydroponics. *Food Energy Secur.* **5**, 184–191  
238 (2016).

239 6. Pnueli, L. *et al.* The SELF-PRUNING gene of tomato regulates vegetative to reproductive  
240 switching of sympodial meristems and is the ortholog of CEN and TFL1. *Development* **125**,  
241 1979–1989 (1998).

242 7. Soyk, S. *et al.* Variation in the flowering gene *SELF PRUNING 5G* promotes day-neutrality  
243 and early yield in tomato. *Nat. Genet.* **49**, 162–168 (2017).

244 8. Xu, C. *et al.* A cascade of arabinosyltransferases controls shoot meristem size in tomato. *Nat.*  
245 *Genet.* **47**, 784–792 (2015).

246 9. Menda, N., Semel, Y., Peled, D., Eshed, Y. & Zamir, D. In silico screening of a saturated  
247 mutation library of tomato. *Plant J.* **38**, 861–872 (2004).

248 10. Brand, A., Shirding, N., Shleizer, S. & Ori, N. Meristem maintenance and compound-leaf  
249 patterning utilize common genetic mechanisms in tomato. *Planta* **226**, 941–951 (2007).

250 11. Torii, K. U. *et al.* The *Arabidopsis ERECTA* gene encodes a putative receptor protein  
251 kinase with extracellular leucine-rich repeats. *Plant Cell* **8**, 735–746 (1996).

252 12. Saito, T. *et al.* TOMATOMA: A Novel Tomato Mutant Database Distributing Micro-  
253 Tom Mutant Collections. *Plant Cell Physiol.* **52**, 283–296 (2011).

254 13. aan den Toorn, M., Albrecht, C. & de Vries, S. On the Origin of SERKs: Bioinformatics  
255 Analysis of the Somatic Embryogenesis Receptor Kinases. *Mol. Plant* **8**, 762–782 (2015).

256 14. Shpak, E. D. Diverse Roles of ERECTA Family Genes in Plant Development. *J. Integr.*  
257 *Plant Biol.* **55**, 1238–1250 (2013).

258 15. Shpak, E. D., McAbee, J. M., Pillitteri, L. J. & Torii, K. U. Stomatal Patterning and  
259 Differentiation by Synergistic Interactions of Receptor Kinases. *Science* **309**, 290–293 (2005).

260 16. Masle, J., Gilmore, S. R. & Farquhar, G. D. The ERECTA gene regulates plant  
261 transpiration efficiency in *Arabidopsis*. *Nature* **436**, 866–870 (2005).

262 17. Mandel, T. *et al.* The ERECTA receptor kinase regulates *Arabidopsis* shoot apical  
263 meristem size, phyllotaxy and floral meristem identity. *Development* **141**, 830–841 (2014).

264 18. Kimura, Y., Tasaka, M., Torii, K. U. & Uchida, N. ERECTA-family genes coordinate  
265 stem cell functions between the epidermal and internal layers of the shoot apical meristem.  
266 *Development* **145**, dev156380 (2018).

267 19. Zhang, Y. *et al.* Phylogenetic and CRISPR/Cas9 Studies in Deciphering the Evolutionary  
268 Trajectory and Phenotypic Impacts of Rice ERECTA Genes. *Front. Plant Sci.* **9**, 473 (2018).

269 20. Lemmon, Z. H. *et al.* Rapid improvement of domestication traits in an orphan crop by  
270 genome editing. *Nat. Plants* **4**, 766–770 (2018).

271 21. Martínez, M. The correct application of *Physalis pruinosa* L. (Solanaceae). *TAXON* **42**,  
272 103–104 (1993).

273 22. Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B.  
274 Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. *Cell* **171**,  
275 470-480.e8 (2017).

276 23. Elitzur, T. *et al.* Co-ordinated regulation of flowering time, plant architecture and growth  
277 by FASCICULATE: the pepper orthologue of SELF PRUNING. *J. Exp. Bot.* **60**, 869–880  
278 (2009).

279 24. Varkonyi-Gasic, E. *et al.* Mutagenesis of kiwifruit CENTRORADIALIS-like genes  
280 transforms a climbing woody perennial with long juvenility and axillary flowering into a  
281 compact plant with rapid terminal flowering. *Plant Biotechnol. J.* **17**, 869–880 (2019).

282 25. Wen, C. *et al.* CsTFL1 inhibits determinate growth and terminal flower formation  
283 through interaction with CsNOT2a in cucumber. *Development* **146**, dev180166 (2019).

284 26. Eshed, Y. & Lippman, Z. B. Revolutions in agriculture chart a course for targeted  
285 breeding of old and new crops. *Science* **366**, 705, eaax0025 (2019).

286 27. Tomlinson, L. *et al.* Using CRISPR/Cas9 genome editing in tomato to create a  
287 gibberellin-responsive dominant dwarf DELLA allele. *Plant Biotechnol. J.* **17**, 132–140  
288 (2019).

289 28. Wheeler, R. M. Agriculture for Space: People and Places Paving the Way. *Open Agric.* **2**,  
290 14–32 (2017).

291 29. Wang, M., Dong, C. & Gao, W. Evaluation of the growth, photosynthetic characteristics,  
292 antioxidant capacity, biomass yield and quality of tomato using aeroponics, hydroponics and  
293 porous tube-vermiculite systems in bio-regenerative life support systems. *Life Sci. Space Res.*  
294 **22**, 68–75 (2019).

295  
296

297 **Figure legends**

298

299 **Fig. 1 Condensed shoots of the tomato *short internode (si)* mutant and identification of the**  
300 **underlying gene. a**, Shoots and inflorescences of WT and *si* mutants. Arrowheads indicate  
301 inflorescences. **b**, Quantification of shoot lengths in WT, *si* and *si* heterozygotes (*si*/+). Prim.,  
302 primary shoot and Axil, basal axillary shoot (Length between 1<sup>st</sup> inflorescence and 1<sup>st</sup> leaf);  
303 Symp., sympodial shoot (Length between 1<sup>st</sup> and 2<sup>nd</sup> inflorescence); n, number of plants. **c**,  
304 Inflorescences and mature fruits. DP, distal section of 1<sup>st</sup> pedicel; PP, proximal section of 1<sup>st</sup>  
305 pedicel; INT, 1<sup>st</sup> inflorescence internode; AZ, abscission zone. **d**, Quantification of inflorescence  
306 stem sections. n, number of inflorescences. **e**, The tomato *ERECTA* gene (*SlER*) and various  
307 ethyl methanesulfonate (EMS) and CRISPR-Cas9 generated alleles having identical phenotypes.  
308 **f**, Normalized expression (RPKM) for *SlER* and its paralog *SlER-like 1* (*SlERL1*) in meristems  
309 and major tissues. Sym. inflo., sympodial inflorescence; Sym. shoot; sympodial shoot. **g**, The  
310 *SlERL1* gene and CRISPR-Cas9 generated mutations. Guide RNA and protospacer-adjacent  
311 motif (PAM) sequences are highlighted in red and bold underlined, respectively. Blue dash and  
312 letter indicate deletion and insertion. Numbers in parentheses indicate gap lengths. **h**, Shoots and  
313 inflorescences of *slrl1* mutants compared to WT and *slrl*. Arrowheads indicate inflorescences.  
314 **i**, Quantification of WT and *slrl1* inflorescence stem sections. n, number of inflorescences. **j**,  
315 *slrl slrl1* double mutants. DAT, days after transplanting in **a**, **h**, and **j**. Box plots, 25<sup>th</sup>–75<sup>th</sup>  
316 percentile; center line, median; whiskers, full data range in **b**, **d** and **i**. *P* values (two-tailed, two-  
317 sample *t*-test) in **b**, **d** and **i**. The exact sample sizes (n) for each experimental group/conditions  
318 are given as discrete numbers in each panel.

319

320

321 **Fig. 2 Creating highly compact, rapid flowering tomatoes by genome editing. a**, A trait  
322 stacking strategy that combines mutations that cause precocious growth termination, rapid  
323 flowering, and shorter stems to create “triple-determinate” tomato varieties. **b**, A comparison of  
324 double (*sp sp5g*) and triple (*sp sp5g slrl*) determinate tomato genotypes. Basal axillary shoots of  
325 *sp sp5g* and *sp sp5g slrl*. Arrowheads indicate inflorescences. **c**, Mature plants and fruits (left)  
326 and associated shoots and inflorescences (right) from field-grown plants of double and triple  
327 determinate genotypes. Leaves were removed to expose fruits. Arrowheads indicate

328 inflorescences. **d**, Quantification of primary shoot height (length between first leaf and last  
329 inflorescence of primary shoot) and a field-based productivity trial comparing all three  
330 determinate genotypes. Harvest index, total yield/plant weight. n, number of plants, or  
331 inflorescences (for flower number). Box plots, 25<sup>th</sup>–75<sup>th</sup> percentile; center line, median;  
332 whiskers, full data range. P values (two-tailed, two-sample t-test). The exact sample sizes (n) for  
333 each experimental group/conditions are given as discrete numbers in each panel.

334

335

336 **Fig. 3 CRISPR-Cas9 generation of a rapid cycling, highly compact cherry tomato variety.**  
337 **a**, Shoots and inflorescences comparing double and triple determinate cultivars of cherry tomato  
338 variety Sweet100. Arrowheads indicate inflorescences. **b**, Quantification of shoot lengths and  
339 inflorescence stem sections, as in Figure 1. n, number of plants and inflorescences. **c**, Field-  
340 grown plants of Sweet100 *sp* determinate, *sp sp5g* double-determinate and *sp sp5g sler* triple-  
341 determinate plants at 50 days after transplanting. Both the double-determinate and triple-  
342 determinate plants show ripe fruits, but not determinate plants. **d**, Days after transplanting to first  
343 ripe fruit, primary shoot height and total yield in all three genotypes. **e**, Sweet100 triple-  
344 determinate plants producing ripe fruits in an LED growth chamber at 51 days after  
345 transplanting. **f**, More than 1000 Sweet100 triple-determinate plants cultivated in a hydroponic  
346 vertical farm system (see Methods). The triple-determinate plants produced open flowers 20  
347 days after transplanting. n, number of plants. Box plots, 25<sup>th</sup>–75<sup>th</sup> percentile; center line, median;  
348 whiskers, full data range in **b** and **d**. the numbers represent P values (two-tailed, two-sample t-  
349 test) in **b** and **d**. The exact sample sizes (n) for each experimental group/conditions are given as  
350 discrete numbers in each panel.

351

352

353 **Fig. 4 CRISPR-Cas9 generated compact groundcherry.** **a**, Phylogenetic tree of the *ER* gene  
354 family in *Arabidopsis*, tomato, rice, *Amborella* (*A. trichopoda*) and groundcherry (*P. grisea*).  
355 Contigs for groundcherry (*Pg-t*) are from a previously published *de novo* transcriptome  
356 assembly. Tomato and groundcherry *ER* homologues are highlighted in red and orange,  
357 respectively. Bootstrap values from 100 replicates are represented on each node. **b**, Sequences of  
358 *pger* mutant alleles generated by CRISPR-Cas9. **c**, Shoots, inflorescences and fruit husks of WT

359 and *pger*. Arrowheads in insets indicate pedicels. **d**, Fruits of WT and *pger*. **e**, Pedicel length,  
360 shoot length, fruit weight, fruit number and sugar content of WT and *pger*. **f**, Representative  
361 field-grown *pgsp* and *pger* plants. Leaves were removed to expose fruits with husks. **g**, Total  
362 fruit number from *pgsp* and *pger* plants. n, number of inflorescences, plants and fruits in **e** and **g**.  
363 Box plots, 25<sup>th</sup>–75<sup>th</sup> percentile; center line, median; whiskers, full data range in **e** and **g**. The  
364 numbers represent *P* values (two-tailed, two-sample *t*-test) in **e** and **g**. The exact sample sizes (n)  
365 for each experimental group/conditions are given as discrete numbers in each panel.

366

367 **Online Methods**

368 **Plant materials and growth conditions.** Seeds of tomato cultivar M82, Sweet100, MicroTom,  
369 *short internode (si)* and groundcherry (*Physalis grisea* is the correct name for a North American  
370 plant that had been misnamed *P. pruinosa*)<sup>21</sup> were from our own stocks. The *short pedicel 1*  
371 (*spd1*) and *short pedicel 2* (*spd2*) mutants were obtained from Dani Zamir and Naomi Ori at  
372 Hebrew University, Israel. Seed of *sler* mutant in the MicroTom background (TOMJPE5066-1)  
373 was provided by the University of Tsukuba, Gene Research Center, through the National Bio-  
374 Resource Project (NBRP) of the AMED, Japan (<http://tomatoma.nbrp.jp/>).

375 Both tomato and groundcherry seeds were sown directly in soil in 96-cell plastic flats and  
376 grown to ~4 week-old seedling stage according to standard protocols. Seedlings were  
377 transplanted to pots in the greenhouse or fields 28–40 days after sowing. Briefly, plants were  
378 grown in a greenhouse under long-day conditions (16 h light, 26–28°C /8 h dark, 18–20°C; 40–  
379 60% relative humidity) supplemented with artificial light from high-pressure sodium bulbs (~250  
380  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ), the agricultural fields at Cold Spring Harbor Laboratory, the Cornell Long Island  
381 Horticultural Experiment Station, Riverhead, New York, and the Gulf Coast Research and  
382 Education Center, Wimauma, Florida. Plants were grown under drip irrigation and standard  
383 fertilizer regimes. Damaged or diseased plants were marked and excluded from data analyses.

384

385 **CRISPR-Cas9 mutagenesis and plant transformation.** CRISPR–Cas9 mutagenesis for tomato  
386 and groundcherry were performed as described previously<sup>20,30–32</sup>. Briefly, gRNAs were designed  
387 using the CRISPRdirect software<sup>33</sup> (<https://crispr.dbcls.jp/>) and binary vectors were built through  
388 Golden Gate cloning as described<sup>34,35</sup>. The final binary plasmids were introduced into the tomato  
389 cultivar M82, Sweet100 and groundcherry seedlings by *Agrobacterium tumefaciens*–mediated  
390 transformation as described previously<sup>31,32</sup>. Transplanting first-generation (T0) transgenic plants  
391 and genotyping of CRISPR-generated mutations were performed as previously described<sup>20,36</sup>.  
392 Guide RNA and primer sequences for genotyping can be found in the Supplementary Data File.

393

394 **Plant phenotyping.** Quantification data on tomato and groundcherry shoots and inflorescences  
395 were obtained from the individual plants grown in greenhouses and fields at Cold Spring Harbor  
396 Laboratory. Prior to phenotyping, all CRISPR-generated null mutants were backcrossed at least  
397 once to the M82 or Sweet100 cultivar, and genotyped by PCR and sprayed by 400 mg/liter

398 kanamycin to confirm absence of the transgene. All phenotyping was conducted on non-  
399 transgenic homozygous plants from selfing or backcrossing with WT plants. We manually  
400 measured pedicels, peduncles and inflorescence internodes when at least half of the flowers were  
401 opened in the inflorescences. Mature red fruits were used for measurement of fruit size and mass.  
402 All measurements were taken with an electronic digital caliper (Fowler). Shoot lengths and  
403 heights were evaluated with standard 30 cm and 100 cm rulers. Fruit mass was quantified by a  
404 digital scale (OHAUS). Data for flowering time, flower, inflorescence and fruit number were  
405 quantified from matched staged plants and inflorescences. For analyses of flowering time, we  
406 counted leaf numbers on the primary shoot before initiation of the first inflorescence as described  
407 previously<sup>7</sup>. Exact numbers of individuals for the quantification are indicated in all figures.  
408

409 **Mapping-by-sequencing.** To map the locus underlying condensed shoot and inflorescence of  
410 *spd1*, we generated an F<sub>2</sub> segregating population by crossing *spd1* with the wild progenitor of  
411 tomato, *S. pimpinellifolium*. From a total of 96 *spd1* x *S. pimpinellifolium* F<sub>2</sub> plants, we selected  
412 16 segregating *spd1* mutants and 12 WT siblings for tissue collection and DNA extraction.  
413 Tissue collection, library preparation, whole genome sequencing, mapping-by-sequencing and  
414 data analyses were followed as previously described<sup>36</sup>. The difference in allele frequency (ΔSNP  
415 index) between WT and *spd1* was evaluated for all pairwise comparisons. By plotting across the  
416 12 tomato chromosomes, one large genomic region on chromosome 8 surpassed a genome-wide  
417 95% cut-off in SNP index. Despite a large mapping interval, *SIER* was the top candidate gene.  
418

419 The mapping of *spd2* was performed with an *spd2* x *S. pimpinellifolium* F<sub>2</sub> population.  
420 Bulked and individual mutant and WT sibling plants were used for mapping with a core set of  
421 PCR markers that scanned the genome. The candidate region was narrowed down to 564 kbp in  
422 chromosome 4, and the *SISERK1* candidate gene was sequenced from all EMS alleles, which  
423 revealed coding sequence mutations.

424 **RNA extraction, cDNA synthesis and transcriptome profiling.** For RNA extraction, leaf  
425 tissue was collected and immediately flash-frozen in liquid nitrogen. Total RNA from leaves was  
426 extracted using the RNeasy Plant Mini Kit (QIAGEN) according to the manufacturer's  
427 instructions. 1 µg of total RNA was used for reverse transcriptase PCR using the SuperScript III  
428 First-Strand Synthesis System (Invitrogen).

429 Tissue-specific expression patterns for *SIER*, *SIERL1* and *SI SERK1* were obtained from  
430 the tomato tissue RNA sequencing database. All data from different tissues and meristems were  
431 procured from the tomato genome project transcriptome profiling data sets deposited in the  
432 Sequence Read Archive (SRA) under accession SRP010775 and our own tomato meristem  
433 maturation expression atlas<sup>37</sup>.

434

435 **Yield trials under agricultural field conditions.** Tomato yield trials were performed as  
436 previously described with slight modification<sup>7</sup>. The yield trial for M82 *sp*, *sp sp5g*, *sp sp5g sler*,  
437 *sp<sup>CR</sup>* and *sp<sup>CR</sup> sler<sup>CR-1</sup>* was conducted on plants grown in the fields of the Gulf Coast Research  
438 and Education Center, Wimauma, Florida (May 21, 2019). The yield trial for Sweet100 *sp*, *sp*  
439 *sp5g* and *sp sp5g sler* was conducted on plants grown in the field of Cornell Long Island  
440 Horticultural Experiment Station, Riverhead, New York (August 9, 2019). Seeds were  
441 germinated in 96-cell flats in greenhouses and grown for 40 days in the greenhouse (Florida) or  
442 30 (New York). Yield trials for this project were performed under higher-density planting of 2  
443 plants/m<sup>2</sup> (Florida and New York) and 4 plants/m<sup>2</sup> (New York), with standard fertilizer regimes  
444 and drip irrigation. Each genotype was represented by ten biological replicates (Florida), and  
445 twelve biological replicates for yield per individual plant (New York). For block yield  
446 (randomized replicated block design), eight plants were planted in each block, and eight  
447 replicated blocks (2 plants/m<sup>2</sup> and 4 plants/m<sup>2</sup>) were analyzed (New York). To evaluate fruit  
448 yield and plant weight, fruits and plants were manually separated from the plant and the soil,  
449 respectively. Total fruit yield was the sum of green and mature fruits (Red and breakers) from  
450 each plant. Harvest indices were calculated by dividing the total fruit weight by the vegetative  
451 biomass. Sugar content in fruit juice was determined by measuring the Brix value (percentage)  
452 with a digital Brix refractometer (ATAGO Palette). Exact numbers for individuals (n) of the  
453 yield trials are presented in all figures.

454

455 **Growth conditions of LED growth chamber and hydroponic vertical farm.**

456 To grow Sweet100 triple-determinate tomatoes in an LED growth chamber, seeds were sown in  
457 soil in flats with 32-cell plastic inserts. Seedlings were transplanted to pots in the LED growth  
458 chamber 17 and 20 days after sowing. Briefly, plants were grown under long-day conditions (16  
459 h light, 26-28°C /8 h dark, 18-20°C; ambient humidity) with artificial light from LED (475 μmol

460  $\text{m}^{-2} \text{s}^{-1}$ ) with 4000k color temperature at Cornell University, Ithaca, New York. The chamber  
461 dimensions were 1.12 m (width) x 0.74 m (depth) x 1.32 m (height). A total 18 pots were evenly  
462 distributed in the growth chamber for high-density planting (1 plant/0.05m<sup>2</sup>). Plants were grown  
463 under overhead watering and standard fertilizer regimes.

464 To demonstrate the potential of Sweet100 triple-determinate tomatoes for hydroponic  
465 vertical farming, seeds were sown in both peat moss plugs (Grow-tech) and peat/coco plugs  
466 (iHort) in flats with plastic 200-cell inserts. Seedlings were grown in a greenhouse at Cold  
467 Spring Harbor Laboratory and also a self-contained hydroponic farm inside of an upcycled  
468 insulated shipping container designed and manufactured by Freight Farms based in Boston, MA.  
469 Seedlings were grown under long-day conditions (16 h light, 26–28°C /8 h dark, 18–20°C; 40–  
470 60% relative humidity) and with sub-irrigation containing 50ppm of JR Peters 15-5-15 Cal-Mg  
471 fertilizer. Seedlings in the hydroponic farm were grown with artificial light from red/blue LED  
472 (150–200  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ). Five-week old seedlings were transplanted into 128 adjacent vertical  
473 growing columns for higher-density planting (1 plant/0.03 m<sup>2</sup>) and 64 vertical growing columns  
474 in an alternating pattern comprised of a column of plants next to a column with no plants for  
475 lower-density planting (1 plant/0.06 m<sup>2</sup>). Equal numbers of columns containing 6 or 7 evenly  
476 spaced plants were transplanted into each section. Plants in the columns were grown with  
477 artificial light from red/blue LED (200  $\mu\text{mol m}^{-2} \text{s}^{-1}$ ) and the same long-day conditions.  
478 Automated irrigation systems were operated with JR Peters 15-5-15 Cal-Mg fertilizer (pH 6.0–  
479 6.4) on a 45-90 min on/30 min off cycle during the day cycle and with one 30-minute irrigation  
480 cycle in the middle of the night cycle. The concentrations of the fertilizer were gradually  
481 increased from 150 ppm to 350 ppm in accordance with plant age and size.  
482

483 **Phylogenetic analysis.** Coding and peptide sequences were obtained for tomato, *Arabidopsis*  
484 and rice *ER* family members from the Phytozome v12.1 database (phytozome.jgi.doe.gov)<sup>38</sup>.  
485 Putative orthologs in groundcherry transcriptome were identified by BLAST as previously  
486 described<sup>20</sup>. Full length peptide sequences of *Arabidopsis*, rice, tomato, *Amborella* and  
487 groundcherry *ER* family members were aligned with MAFFT version 7 (L-ins-i algorithm)<sup>39</sup>.  
488 Model selection and phylogenetic inference were both conducted using IQTree as implemented  
489 on CIPRES<sup>40,41</sup>. Full name of *AmTr\_v1.0\_scaffold00069.214* and *AmTr\_v1.0\_scaffold00024.267*

490 are *evm\_27.model.AmTr\_v1.0\_scaffold00069.214* and  
491 *evm\_27.model.AmTr\_v1.0\_scaffold00024.267*, respectively.

492

493 **Statistical analyses.** For quantitative analyses, exact numbers of individuals (n) are presented in  
494 all figures. Statistical calculations were performed using Microsoft Excel and R (RStudio  
495 (v1.1.442)<sup>42</sup>. Statistical analyses were performed using a two-tailed, two-sample *t*-test and a one-  
496 way analysis of variance (ANOVA) with Tukey test, whenever appropriate. All raw data and the  
497 the exact sample sizes (n; number of shoots, inflorescences, fruits, and plants) for each  
498 experimental group/conditions are given as discrete numbers in each figure panel and in the  
499 Supplementary Data File. Additional information is available in Nature Research reporting  
500 summaries, which includes statements on statistics, software used and data availability.

501

502

503 **Data availability**

504 Raw data for all quantifications and primer sequences are included in a Supplementary Data file.  
505 Raw Sanger sequencing data files confirming CRISPR-Cas9 generated mutations are available in  
506 the Supplementary information. Seeds may be requested by contacting Z.B.L.

507

508 **Online Methods References**

509

510 30. Brooks, C., Nekrasov, V., Lippman, Z. B. & Van Eck, J. Efficient gene editing in tomato  
511 in the first generation using the clustered regularly interspaced short palindromic  
512 repeats/CRISPR-associated9 system. *Plant Physiol.* **166**, 1292–1297 (2014).

513 31. Van Eck, J., Keen, P. & Tjahjadi, M. Agrobacterium tumefaciens-Mediated  
514 Transformation of Tomato. in *Transgenic Plants: Methods and Protocols* (eds. Kumar, S.,  
515 Barone, P. & Smith, M.) 225–234 (Springer New York, 2019). doi:10.1007/978-1-4939-8778-  
516 8\_16.

517 32. Swartwood, K. & Van Eck, J. Development of plant regeneration and Agrobacterium  
518 tumefaciens-mediated transformation methodology for *Physalis pruinosa*. *Plant Cell Tissue  
519 Organ Cult. PCTOC* **137**, 465–472 (2019).

520 33. Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. CRISPRdirect: software for designing  
521 CRISPR/Cas guide RNA with reduced off-target sites. *Bioinformatics* **31**, 1120–1123 (2015).

522 34. Werner, S., Engler, C., Weber, E., Gruetzner, R. & Marillonnet, S. Fast track assembly of  
523 multigene constructs using Golden Gate cloning and the MoClo system. *Bioeng. Bugs* **3**, 38–  
524 43 (2012).

525 35. Rodriguez-Leal, D. *et al.* Evolution of buffering in a genetic circuit controlling plant stem  
526 cell proliferation. *Nat. Genet.* **51**, 786–792 (2019).

527 36. Soyk, S. *et al.* Duplication of a domestication locus neutralized a cryptic variant that  
528 caused a breeding barrier in tomato. *Nat. Plants* **5**, 471 (2019).

529 37. Park, S. J., Jiang, K., Schatz, M. C. & Lippman, Z. B. Rate of meristem maturation  
530 determines inflorescence architecture in tomato. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 639–644  
531 (2012).

532 38. Goodstein, D. M. *et al.* Phytozome: a comparative platform for green plant genomics.  
533 *Nucleic Acids Res.* **40**, D1178–D1186 (2012).

534 39. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:  
535 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

536 40. Miller, M. A. *et al.* A RESTful API for Access to Phylogenetic Tools via the CIPRES  
537 Science Gateway. *Evol. Bioinforma. Online* **11**, 43–48 (2015).

538 41. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and  
539 Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol. Biol.*  
540 *Evol.* **32**, 268–274 (2015).

541 42. R Core Team (2015). *R: A language and environment for statistical computing*. (R  
542 Found. Stat. Comput. Vienna, Austria.).







