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ABSTRACT: A one-pot synthesis of vicinal diamines with azaarylmethylamines and aldehydes is reported. A diverse array of 
vicinal diamines could be achieved in up to 92% yield with good to excellent diastereoselectivities (up to 20:1). The tandem reac-
tion takes place under mild conditions and provides an alternative strategy for the synthesis of vicinal diamines.

Vicinal diamines constitute an important structural class 
with broad applications in natural products, chemotherapy, 
medicinal chemistry, and organic synthesis.1  Due to their 
wide applications, their synthesis continues to attract signifi-
cant attention, where the demand for more diastereoselective 
and straightforward syntheses still remains high.  Furthermore, 
the rapid introduction of nitrogens into organic structures is a 
long-standing challenge in medicinal chemistry.2  

Traditional routes for diamine syntheses generally involve: 
(1) direct inter- or intra-molecular diamination of unfunction-
alized alkenes;3 (2) addition of organometallic reagents to 
bisimine derivatives;4 (3) reductive homocoupling of imines;5 
(4) ring opening of aziridines with nitrogen nucleophiles;6 and 
(5) Mannich type reactions employing nitroalkanes followed 
by reduction of the corresponding nitro groups.7 These routes 
have a number of drawbacks. For example, the first three  
routes are limited to the synthesis of symmetric vicinal dia-
mines whereas the latter two require additional steps to pre-
pare the starting aziridines or use an external reductant to re-
duce the undesired nitro groups.   

The direct addition of α-amino anions to imines is a very 
important tool to construct a diverse array of vicinal dia-
mines.8 To the best of our knowledge, however, a one-pot 
synthesis of vicinal diamines from aldehydes is unknown. 
Recently, our team developed a one-pot chemoselective C–N 
and C–C bond forming reaction for the aminobenzylation of 
aldehydes with toluene derived pronucleophiles (Scheme 1a).9 
More recently, this method has been made catalytic in base.10 

Further adaptation of the chemistry led to a novel one-pot 
route to 2-arylindoles from readily available 2-fluoro toluenes 
and benzonitriles (Scheme 1b).11 We put forth evidence that 
these reactions are facilitated by formation of a cation-p inter-
actions between the main group metal (Cs+) and the toluene 
derivative, facilitating the deprotonation of the benzylic me-
thyl group9,11-12.  Herein, we advance a straightforward and 
practical one-pot synthesis of vicinal diamines employing 
azaarylmethylamines and aldehydes. The tandem reaction 
provides an alternative strategy for the synthesis of biological-
ly active compounds.13  

Scheme 1. Tandem synthesis of bioactive fine chemicals.  
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Based on our previous studies, we began to investigate em-
ploying benzaldehyde (1a) and 4-(pyridin-2-
ylmethyl)morpholine (2a) as model substrates (Table 1). We 
first screened three different bases [LiN(SiMe3)2, 
NaN(SiMe3)2, and KN(SiMe3)2] using THF as solvent at 10 oC 
for 12 h (Table 1, entries 1−3). According to the screening 
results, NaN(SiMe3)2 was identified as the best candidate 
among these three bases, giving 3aa in 84% AY with 4.5 : 1 dr 
(entry 2, AY = assay yield determined by 1H NMR integration 
of the unpurified reaction mixture against an internal standard). 
It is important to emphasize that MN(SiMe3)2 (M = Li, Na, K) 
plays two vital roles: (1) condensation with benzaldehyde and 
aza-Peterson elimination to in situ generate N-
(trimethylsilyl)imines; and (2) direct deprotonation of benzylic 
C−H bonds of 4-(pyridin-2-ylmethyl)morpholine (2a) 
(Scheme 1c). Based on the conditions of entry 2, we next test-
ed five ethereal solvents (iPr2O, TBME, CPME, DME and 
Et2O). Based on consideration of diastereomeric ratios and 
yield, iPr2O outperformed other solvents (5.2 : 1 dr, 86% AY, 
entry 4) and was used going forward. It is noteworthy that 
TBME also gave good results (90% yield, 4.6 : 1 dr, entry 5). 
Since amine additives impact the aggregation of silylamide 
bases,14 and therefore, their reactivity and selectivity, we ex-
amined two commonly used polyamine ligands: 
N,N,N’,N’’,N’’-pentamethyldiethylenetriamine (PMDTA, 1.0 
equiv) and TMEDA (1.0 equiv) under the conditions of entry 
2. PMDTA improved both the yield and diastereoselectivity, 
affording the desired product in 95% yield with 6.0 : 1 dr (en-
try 10). Ultimately, the optimized conditions for this tandem 
reaction are 1.0 equiv of benzaldehyde, 1.5 equiv of 2a, 2.0 
equiv of NaN(SiMe3)2, and 1.0 equiv. of PMDTA in iPr2O at 
10 oC for 12 h. After derivatization of 3aa by 3,5-
dinitrobenzoyl chloride, the corresponding anti- and syn-
diastereomers of 4aa could be separated. According to 1H 
NMR of 4aa (see Supporting Information), the coupling con-
stant between the two protons alpha to the nitrogens of the 
major isomer of 4aa is 10.5 Hz whereas the minor component 
of 4aa 3.7 Hz, leading to the assignment of the major diastere-
omer as anti-4aa.8h This spectroscopic difference between the 
diastereoisomers was used to judge syn/anti selectivity in the 
following studies, which show anti selectivity in all cases. 

 
Table 1. Optimization of Reaction Conditionsa. 

 

entry base additive solvent AY(%)b drc 

1 LiN(SiMe3)2 -- THF 90 1.6:1 

2 NaN(SiMe3)2 -- THF 84 4.5:1 

3 KN(SiMe3)2 -- THF Trace -- 

4 NaN(SiMe3)2 -- iPr2O 86 5.2:1 

5 NaN(SiMe3)2 -- TBME 90 4.6:1 

6 NaN(SiMe3)2 -- CPME 76 5.8:1 

7 NaN(SiMe3)2 -- DME 52 4.3:1 

8 NaN(SiMe3)2 -- Et2O 87 4.4:1 

9 NaN(SiMe3)2 TMEDA iPr2O 81 5.5:1 

10 NaN(SiMe3)2 PMDTA iPr2O 95 6.0:1 
aReactions conducted under argon on 0.1 mmol scale. bYields 
were determined by 1H NMR analysis of unpurified reaction mix-
tures with internal standard dimethyl terephthalate. cThe dr was 
determined by LC-MS analysis of unpurified reaction mixtures. 

With the optimized conditions in hand, the scope of aryl al-
dehydes was examined (Scheme 2). In general, a diverse array 
of substituents on the aldehydes was tolerated under the mild 
conditions. The parent benzaldehyde (1a) was successfully 
transformed to 3aa in 95% yield with 6.0 : 1 dr. Benzalde-
hydes substituted by electron donating groups, such as 4-
methyl (1b), 4-methoxy (1c) and 4-phenoxy (1d) exhibited 
good reactivity, giving 3ba, 3ca and 3da in 73%, 70% and 
79% yields with similar diastereoselectivities of 4.2 : 1, 6.7 : 1 
and 4.5 : 1, respectively. It is interesting that 4-
methylbenzaldehyde is a good substrate, given that deprotona-
tion of the relatively acidic methyl group of the aldehyde or 
imine could be envisioned to be problematic.  Substrates con-
taining extended π-systems, such as 2-naphthyl aldehyde (1e), 
furnished the corresponding product 3ea in 77% yield with 
5.6 : 1 dr. Benzaldehydes bearing halogens, such as 4-
chlorobenzaldehyde, were also good substrates, as exemplified 
by the generation of 3fa (80% yield and 6.0 : 1 dr). This prod-
uct is primed for further functionalization by cross-coupling 
methods. Since fluorinated compounds play an extremely im-
portant role in medicinal chemistry,15 we next examined fluor-
inated benzaldehydes. Both 4-fluoro- (1g) and 4-
trifluoromethoxy-benzaldehyde (1h) were excellent coupling 
partners, affording 3ga and 3ha in 91% (5.8 : 1 dr) and 87% 
yields (dr =  5.5 : 1) respectively. Benzaldehydes containing 
aromatic substituents such as 4-(2-thienyl) (1i) and 4-(N-
pyrrolyl) (1j) provided products 3ia and 3ja in 85% (5.8 : 1 dr) 
and 82% (5.1 : 1 dr)  yields, respectively. To our surprise, 4-
phenyl benzaldehyde and 4-(2-pyridyl) benzaldehyde reacted 
to give the expected products 3ka and 3la in very good yields 
(83% and 86%) with excellent diastereoselectivities (16:1 
and > 20:1), respectively. In addition to benzaldehydes, heter-
ocyclic aldehydes such as nicotinaldehyde (1m), quinoline-6-
carbaldehyde (1n), benzofuran-5-carbaldehyde (1o) and thio-
phene-2-carbaldehyde (1p) were transformed to their corre-
sponding products in good yields (76−86%) and diastereose-
lectivities (4.6 : 1 to 6.3 : 1). 

Scheme 2. Substrate Scope of Aldehydesa N
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 aReactions conducted under argon on 0.2 mmol scale. Yields are 
isolated yield. The dr was determined by LC-MS analysis of un-
purified reaction mixtures. 

Subsequently, the scope of azaarylmethylamines was ex-
plored (Scheme 3), beginning with the cyclic amine moiety. 
When the morpholino group of 2a was replaced by thiomor-
pholino (2b), piperidine (2c) and 1-methylpiperazine (2d), the 
corresponding products 4ab, 4ac and 4ad were obtained in 
89%, 83% and 81% yields with dr values of  7 : 1, 12 : 1 and > 
20 : 1, respectively. Acyclic amines N,N-dimethyl- (2e), N-
benzyl-N-methyl- (2f) and N,N-diethyl- (2g) derivatives were 
also good coupling partners and their respective products 4ae, 
4af and 4ag were recovered in 70−86% yield and with 4.2 : 1 
to >20 : 1 dr. To test the azaaryl group, 3-aminomethyl iso-
quinoline (2h) and 4-aminomethhyl pyridine (2i) derivatives 
were examined and the corresponding products (4ah and 4ai) 
were formed in 70%  and 80% yield with 7 : 1 and 2 : 1 dr, 
respectively. Unfortunately, 3-aminomethyl pyridine deriva-
tives and diphenylmethanes, which are significantly less acidic, 
did not react under our conditions.  To obtain acceptable dia-
stereoselectivity, 2-aminomethyl substituted pyridine deriva-
tives, which can chelate to the main group metal of the base, 
are required.  

Scheme 3. Substrate Scope of Azaarylmethylaminesa 

 aReactions conducted under argon on 0.2 mmol scale. Yields are 
isolated. The dr was determined by LC-MS analysis of unpurified 
reaction mixtures. 

 
To investigate the potential scalability (Scheme 4), a 5 

mmol scale reaction with 1l and 2a was conducted. The de-
sired product 3la was obtained in 88% yield with greater than 
20 : 1 dr. Condensation of 3la with 3,5-dinitrobenzoyl chloride 
(1.2 equiv) and triethylamine (1.2 equiv) formed the expected 
amide, the structure of which was determined to be the anti-
4la’ product by X-ray crystallographic analysis (see Supporting 
Information for details). 

Scheme 4. Scale-up to 5 mmol. 

 
In conclusion, we have reported a straightforward and prac-

tical one-pot synthesis of vicinal diamines between azaarylme-
thylamines and aldehydes. The tandem reaction takes place 
without transition metal catalysts and provides an effective 
strategy to synthesize biologically active vicinal diamines. A 
wide range of electron-donating and withdrawing aryl sub-
strates, including heterocycles, are viable substrates in our 
reaction. The synthetic value and practicality of this method 
were demonstrated with a highly diastereoselective gram scale 
reaction. We anticipate that this straightforward avenue to 
stitch together molecules with 3–4 nitrogen centers from 
readily available precursors will render it immediately useful 
to medicinal chemists. Further efforts will focus on the identi-
fication of a catalytic asymmetric route to these diamines. 
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