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Abstract. A thermal extension of the relativistic nuclear field theory is formulated for the nuclear response.
The Bethe-Salpeter equation (BSE) with the time-dependent kernel for the particle-hole response is treated
within the Matsubara Green’s function formalism. We show that, with the help of a temperature-dependent
projection operator on the subspace of the imaginary time (time blocking), it is possible to reduce the
BSE for the nuclear response function to a single frequency variable equation also at finite temperature.
The approach is implemented self-consistently in the framework of quantum hadrodynamics based on the
meson-nucleon Lagrangian. The method is applied to the monopole, dipole and quadrupole response of
48Ca and to the dipole response of the tin isotopes 100,120,132Sn, in particular, to a study of the evolution of
nuclear collective oscillations with temperature. The article is dedicated to the memory of Pier Francesco
Bortignon and devoted to the developments related to his pioneering ideas.
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1 Introduction

Response to external probes is one of the major char-
acteristics of strongly-correlated systems, which provides
complete information about them. In nuclear systems, the
spectral properties extracted from various nuclear reac-
tions serve also for understanding the underlying nuclear
forces. Being extremely complicated already for a two-
nucleon system, the nucleon-nucleon interaction is, in ad-
dition, considerably modified by numerous processes in
the strongly-correlated medium, which are commonly cal-
led medium polarization. It was recognized early by A.
Bohr and B.R. Mottelson [1,2] that the major contribu-
tion to the medium polarization originates from the cou-
pling between nucleonic and vibrational degrees of free-
dom, at least in medium-mass and heavy nuclei. Since
then, this idea has advanced many directions in both the-
oretical and experimental nuclear physics. Pier Francesco
Bortignon was one of the pioneers of the nuclear field the-
ory (NFT) which developed the concept of the interac-
tion between fermionic and bosonic (vibrational) degrees
of freedom in atomic nuclei [3–11]. These developments
lead to a very successful description of a large amount of
experimental data and advanced tremendously the under-
standing of many nuclear structure phenomena, especially
those related to collective effects. They also inspired exper-
imental groups in various fields of research, such as giant
resonances at finite temperature and multi-phonon exci-
tations. This has become possible after a number of works
on single-particle and collective excitations in hot nuclei
within the thermal NFT [9,12–15] as well as on the the-

ory of thermal shape fluctuations [16,17]. A large corpus of
theoretical knowledge and experimental data was summa-
rized in the volume ”Giant Resonances: Nuclear Structure
at Finite Temperature” by Pier Francesco Bortignon and
his co-authors Angela Bracco and Ricardo A. Broglia [18].
In his late years, he was involved in new advancements of
the NFT [19–22], which also open new horizons for future
research.

In this article dedicated to his memory we would like
to focus on one of our recent developments which are
closely related to the pioneering ideas of Pier Francesco
Bortignon on the nuclear response at finite temperature.
Inspired by those, the temperature dependence of the nu-
clear response, mostly in the dipole channel and mostly of
its high-energy part associated with the giant dipole res-
onance (GDR), was extensively studied experimentally in
the past [23–28], see also a relatively recent review [29] and
a newer study of Refs. [30,31]. In more recent experiments
on the dipole response, a concentration of strength has
been observed in the low-energy region [32,33], being most
prominent in neutron-rich nuclei. Its origin was attributed
to the coherent oscillation of the neutron skin around the
isospin-saturated core, which is called pygmy dipole res-
onance (PDR). In the gamma decay of quasicontinuum
excitations another enhancement of the dipole strength
has been found at very low gamma energies [34,35]. These
new features of the low-energy strength functions become
especially interesting in the context of astrophysical mod-
eling, because they can, in particular, significantly en-
hance the reaction rates of the rapid neutron-capture nu-
cleosynthesis (r-process) [36] and modify the nuclear mat-
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ter equation of state. Similar enhancements of the low-
lying spin-isospin response are found in the theoretical
finite-temperature studies of Refs. [37–39], which indicate
that the electron capture and beta decay rates in the as-
trophysical environments are also affected by the sensi-
tivity of nuclear transitions to finite temperature. Thus,
both phases of the r-process (neutron capture and beta
decay), which occurs in the neutron star mergers (NSM),
and electron capture, which is crucial for the core-collapse
supernovae (CCSN) simulations, require precise knowl-
edge about low-energy nuclear transitions at finite tempe-
rature. The nature and progress of the r-process depend
on the specific astrophysical scenario, which can vary in
rather broad limits, however, a consistent description of
merging neutron stars require the information about the
CCSN which precedes the neutron star formation. As dis-
cussed in Ref. [40], ultimately, identical simulation frame-
works are to be used for both the NSM and the CCSN.

As the complete description of the r-process requires
information about many nuclei which are beyond current
experimental capabilities, a reliable theory of the finite-
temperature nuclear response is highly desirable. An ac-
curate theory for the response of nuclei at finite tempera-
ture, or compound nuclei, which is required for applica-
tions, is very challenging. The most common practice for
the microscopic approaches to the finite-temperature nu-
clear response is to confine the framework by the simplest
one-loop approximation represented by the thermal ran-
dom phase approximation (TRPA) [41,42], thermal qua-
siparticle RPA (TQRPA) [41,43], and by the continuum
TQRPA [44–46]. Some extensions beyond T(Q)RPA have
been proposed over the years, for instance, the finite- tem-
perature self-consistent RPA [47], the collision-integral ap-
proach [48], the finite-temperature second RPA (SRPA)
[49,50], the thermal NFT with a coupling of nucleons
to collective surface vibrations [9], and the quasiparticle-
phonon model formulated in terms of the thermofield dy-
namics [51]. These microscopic approaches elaborated on
different aspects of the finite-temperature nuclear response
and, together with the theories of thermal shape fluctua-
tions [52,17] advanced considerably the understanding of
spectral properties of hot nuclei.

In this article we discuss another microscopic approach
to the finite-temperature nuclear response, which was de-
veloped recently in a relativistic framework. The aim of
this approach is to advance the relativistic version of the
nuclear field theory (RNFT) [53–60] to the finite- tempe-
rature case. The RNFT, which is based on the covariant
energy density functional of quantum hadrodynamics, ex-
tends the relativistic RPA (RRPA) by the (quasi)particle-
vibration coupling in a parameter-free way. This approach
performs very well in the description of nuclear transi-
tions from ground to excited states [61–66,56,32,67–70].
It has been extended recently in Refs. [71,72] to finite tem-
peratures and applied to the dipole response of selected
medium-light and medium-heavy nuclei. In the present ar-
ticle we discuss some more details of the dipole response
as well as further aspects of the finite-temperature the-
ory, such as the monopole and quadrupole excitations and

its broader impacts on the r-process and on the nuclear
matter equation of state. We will consider both the low-
temperature range (1-2 MeV) relevant for the astrophysi-
cal applications, such as NSM and CCSN, and higher tem-
peratures which can be achieved in heavy-ion collisions.

2 Method

We begin with modeling a compound nucleus with the
finite-temperature relativistic mean-field (RMF) theory.
The grand potential Ω(λ, T )

Ω(λ, T ) = E − TS − λN (1)

is minimized with the Lagrange multipliers λ and T deter-
mined by the average energy E, particle number N , and
the entropy S [73]. The quantities N and S are thermal
averages with the one-body nucleonic density operator ρ̂ :

S = −kTr(ρ̂lnρ̂), N = Tr(ρ̂N̂ ). (2)

Here N̂ is the particle number operator, k is the Boltz-
mann constant, and the energy E is a covariant functional
of the nucleonic density and classical meson and photon
fields φm [74]:

E[ρ̂, φm] = Tr[(α · p+ βM)ρ̂] +
∑
m

{
Tr[(βΓmφm)ρ̂]±

±
∫
d3r

[1

2
(∇φm)2 + U(φm)

]}
. (3)

The energy is thus determined by the nucleon mass M and
non-linear sigma-meson potentials U(φm) containing me-
son masses and meson-nucleon coupling vertices adjusted
to bulk nuclear characteristics [75,74]. In Eq. (3) the sign
”+” is associated with the scalar σ-meson, ”-” with the
vector ω- and ρ-mesons, and the index ”m” runs over the
mesons, photon and Lorentz indices [74]. The variation of
Eq. (1) determines the operator of the nucleonic density
with the unity trace

ρ̂ =
e−(Ĥ−λN̂ )/kT

Tr[e−(Ĥ−λN̂ )/kT ]
, (4)

where Ĥ = δE[ρ̂, φm]/δρ̂. The eigenvalues of the density
matrix are the Fermi-Dirac occupation factors:

n1(T ) = n(ε1, T ) =
1

1 + exp{ε1/T}
, (5)

where the subscript ”1” runs over the complete set of
the single-particle quantum numbers in the Dirac-Hartree
basis, which diagonalizes Ĥ with the eigenvalues of the
single-particle energies ε1 = ε̃1 − λ measured from the
chemical potential λ. In Eq. (5) and in the following we
adopt the units where the value of the Boltzmann con-
stant is k = 1. In the following, we will deal also with the
counterpart of Eq. (5) in the bosonic sector:

Nµ(T ) ≡ N(Ωµ, T ) =
1

exp{Ωµ/T} − 1
, (6)
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where Ωµ are the frequencies of the phonon modes com-
posed of correlated particle-hole excitations, which possess
the quantum numbers µ.

As in Refs. [71,72], in this work we will consider non-
superfluid nuclear systems, such as doubly-magic nuclei
and nuclei at temperatures above the critical tempera-
ture, when pairing correlations vanish. In this case, the
particle-hole finite-temperature four-point response func-
tionR(12, 34) can be conveniently formulated in the Dirac-
Hartree basis of the single-particle states defined above
and in the imaginary-time representation, so that the num-
ber multi-indices 1 = {k1, τ1} with the k1 characteriz-
ing the single-nucleon quantum numbers and τ1 being the
imaginary time. The response function R(12, 34) obeys
the Bethe-Salpeter equation (BSE)

R(12, 34) = R̃0(12, 34) +

+

τ∑
5678

R̃0(12, 56)
[
Ṽ (56, 78) +W(56, 78)

]
R(78, 34), (7)

which is formally similar to the one at zero temperature,
but in the imaginary-time representation. In Eq. (7) the
summations imply integrations over the time arguments:

τ∑
12..

=
∑
k1k2...

∫ 1/T

0

dτ1dτ2 · · · (8)

and the uncorrelated particle-hole response R̃0(12, 34) =

G̃(3, 1)G̃(2, 4) is defined via the one-body Matsubara Green’s

function G̃ in the thermal mean-field [76]:

G̃(2, 1) =
∑
σ

G̃σ(2, 1), (9)

G̃σ(2, 1) = −σδ12n[−σε1, T ]e−ε1τ21θ(στ21), (10)

where τ21 = τ2−τ1 (−1/T < τ21 < 1/T ), θ(τ) is the Heav-
iside step-function and the index σ = +1(−1) denotes the

retarded (advanced) component of G̃. The Fourier trans-
formation of Eqs. (9,10) with respect to the imaginary
time gives the mean-field Matsubara Green’s function in
the domain of the discrete imaginary energy variable:

G̃21(ε`) =
1

2

∫ 1/T

−1/T
dτ21e

iε`τ21 G̃(2, 1)

=
δ12

iε` − ε1 + µ
= δ12G̃1(ε`), (11)

where ε` = (2`+ 1)πT with ` being integer numbers.
The interaction kernel of the BSE (7) is divided into

two parts Ṽ and W, which are responsible for the short
and long-range correlations, respectively. This division is
very general and can be obtained, for instance, by the
equation of motion method for a model-independent Hamil-
tonian with a time-independent two-body bare interac-
tion [49,47,77]. As in our previous works [54,55,63,56],

the short-range contribution Ṽ is associated with the ex-
change by effective mesons and photon parametrized in

accordance with Eq. (3) [75], and the long-range term W
is induced by the medium polarization effects. In prac-
tice, the short-range term is almost instantaneous, and its
temporal locality translates to the energy independence
of its Fourier transform. In case of neglecting the second
long-range term, where the retardation effects are impor-
tant, the BSE reduces to the response-theory form of the
random phase approximation (RPA). If the latter term
is retained, it translates to an energy-dependent kernel
while the time integrations transform to the integrations
over the energy variables of the internal fermionic loops.
Because of a clear separation of these two terms, it is con-
venient to divide the problem of solving Eq. (7) into two
parts, namely: (i) to calculate the correlated propagator
Re from the equation (in the operator form):

Re = R̃0 + R̃0WRe (12)

and (ii) to solve the remaining equation

R = Re +ReṼR (13)

for obtaining the full response R. The problem of finding
Re is, thus, the central problem of accounting for the com-
plex nuclear long-range correlations. The exact solution
of this problem is hardly possible at both finite and zero
temperatures and, thus, requires some model assumptions
and simplifications which, at the same time, would retain
the leading contribution of correlations beyond RPA. A
truncation scheme based on retaining only two-body cor-
relation functions leads to the following leading approxi-
mation for the long-range part of the interaction kernel:

W(12, 34) = G̃−1(3, 1)Σe(2, 4) + Σe(3, 1)G̃−1(2, 4) +

+ Ue(12, 34), (14)

whereΣe(3, 1) and Ue(12, 34) are the time-dependent parts
of the fermionic self-energy and induced interaction, re-
spectively. The diagrammatic expression ofΣe(3, 1) is given
in Fig. 1 and the induced interaction Ue(12, 34) is related
to it by the dynamical consistency condition

Σe
12(ε` + ωn) − Σe

12(ε`)

= T
∑
34

∑
`′

Ue21,43(ωn, ε`, ε`′)×

× [G̃34(ε`′ + ωn)− G̃34(ε`′)], (15)

which we assume as a finite-temperature generalization of
the T = 0 one [78] using ωn = 2nπT with integer n.

Thus, the equation for the correlated propagator takes
the form:

Re (12, 34) = R̃0(12, 34) +

τ∑
5678

R̃0(12, 56)
[
Ue(56, 78) +

+ G̃−1(7, 5)Σe(6, 8) +Σe(7, 5)G̃−1(6, 8)
]
Re(78, 34).

(16)

At T = 0 it can be solved in the time blocking approx-
imation [79,78] which is obtained by introducing a time
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Fig. 1. Diagrammatic representation of the self-energy Σe, the
main building block of the particle-vibration coupling contribu-
tions. Straight lines represent one-fermion propagators, circles
denote the particle-phonon coupling vertices, and the wiggly
lines correspond to the phonon propagators.

projection operator into the integral part of Eq. (16). The
analogous imaginary-time projection operator for the fi-
nite temperature case would look as follows:

Θ(12, 34) = δσ1,−σ2
θ(σ1τ41)θ(σ1τ32). (17)

With such time projection, the triple Fourier transform
onto the energy domain and integrating over two energy
variables leads to the equation of the Dyson type with
a single frequency at T = 0. This allows for obtaining a
clearly positive definite spectral (strength) functions and
stable numerical schemes performing a sort of time order-
ing. However, it turns out that at T > 0 this operator
does not lead to a similar result.

We found that, in order to reach the desired form of
the kernel, the imaginary-time projection operator has to
be modified as follows:

Θ(12, 34;T ) = δσ1,−σ2
θ(σ1τ41)θ(σ1τ32)×

×[n(σ1ε2, T )θ(σ1τ12) + n(σ2ε1, T )θ(σ2τ12)],

(18)

i.e. it needs to contain an additional multiplier with the de-
pendence on the Fermi-Dirac occupation numbers, which
turns to unity in the T = 0 limit at the condition σ1 =
−σ2. Acting by the projection operator Θ(12, 34;T ) on

the components of R̃0(12, 34), we construct an operator

D̃, which reads:

D̃(12, 34) = Θ(12, 34;T )R̃0(σ1σ2)(12, 34) =

= δσ1,−σ2
G̃σ1(3, 1)G̃σ2(2, 4)θ(σ1τ41)θ(σ1τ32)×

×[n(σ1ε2, T )θ(σ1τ12) + n(σ2ε1, T )θ(σ2τ12)]

(19)

and make a replacement R̃0 → D̃ in the second term of
Eq. (16). In Eq. (19), σk = +1(−1) for particle (hole)
components. The multiplier δσ1,−σ2 constrains the possi-
ble combinations of (σ1, σ2) to be (+1,−1) and (−1,+1).
A pair of states {12} is regarded as a ph (hp) pair if the
energy difference ε1 − ε2 is larger (smaller) than zero. As

at T = 0, the replacement of R̃0 by D̃ corresponds to
the elimination of configurations, which are more complex
than ph ⊗ phonon ones. Thus, besides confining by only
two-fermion correlation functions, in the leading approxi-
mation we keep the terms with only ph and ph⊗ phonon
configurations and neglect higher-order terms.

After the triple Fourier transformation with respect to
the imaginary-time,

Re12,34 (ωn, ε`, ε`′) =
1

8

∫ 1/T

−1/T
dτ31dτ21dτ34 ×

×ei(ωnτ31+ε`τ21+ε`′τ34)Re(12, 34), (20)

the summation over the fermionic discrete variables ` and
`′,

Re12,34(ωn) = T 2
∑
`

∑
`′

Re12,34(ωn, ε`, ε`′),

(21)

and the analytical continuation to the real frequencies, we
obtain

Re12,34(ω) = R̃0
12,34(ω)+

∑
56,78

R̃0
12,56(ω)Φ56,78(ω)Re78,34(ω),

(22)
where the uncorrelated propagator is given by:

R̃0
12,34(ω) = δ13δ24

n(ε2, T )− n(ε1, T )

ω − ε1 + ε2
(23)

and the particle-vibration coupling amplitude reads:

Φ12,34(ω) =
δσ1,−σ2σ1

n(ε4, T )− n(ε3, T )
×

×
∑
56;µ

∑
ηµ=±1

ηµζ
µηµ
12,56ζ

µηµ∗
34,56 ×

× [N(ηµΩµ) + n(ε6, T )][n(ε6 − ηµΩµ, T )− n(ε5, T )]

ω − ε5 + ε6 − ηµΩµ
.

(24)

Here we defined the phonon vertex matrices ζµηµ accord-
ing to:

ζ
µηµ
12,56 = δ15g

µ(ηµ)
62 − gµ(ηµ)15 δ62 (25)

and the matrix elements of the phonon vertices gµ(ηµ) [79,
54] as:

g
µ(σ)
12 = δσ,+1g

µ
12 + δσ,−1g

µ∗
21 . (26)

The phonon vertices gµ12 are formally related to the tran-
sition densities ρµ12

gµ12 =
∑
34

Ṽ12,34ρ
µ
34, (27)

which can be extracted from the full response function as
described in Ref. [72], however, in practice it is sufficient to
calculate them in the random phase approximation. The
static interaction, in the framework based on the covari-
ant energy density functional (3), obeys the well-known

relation:
ˆ̃
V = δ2E[ρ̂, φm]/(δρ̂δρ̂). In the case of effective

mesons, whose masses and coupling vertices are adjusted
to bulk properties of finite nuclei, the double counting of
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the particle-vibration coupling (PVC) is removed by cor-
recting the PVC amplitude as follows:

Φ(ω)→ δΦ(ω) = Φ(ω)− Φ(0), (28)

i.e. by the subtraction of itself at ω = 0. This subtrac-
tion procedure and its role in the density functional based
calculations is discussed in more detail in Refs. [80,81,
54] for the case of T = 0. At finite temperature we per-
form the subtraction in the complete analogy to the zero-
temperature case.

Finally, the nuclear strength function S̃(E) is defined
as the response to a certain external probe associated with
a one-body operator V̂ 0:

S̃(E) =
1

1− e−E/T
S(E),

S(E) = − lim
∆→+0

1

π
Im

∑
1234

V 0∗
12 R12,34(E + i∆)V 0

34.

(29)

The exponential factor [1− exp(−E/T )]
−1

appears due
to the detailed balance between the absorption and emis-
sion parts of the strength function [72,73,41]. This factor
brings a new feature to the finite-temperature strength
function, for instance, it changes the low-energy behavior
and the zero-energy limit of S̃(E). In addition to the ap-
pearance of new poles in the response function due to the
thermal unblocking, the exponential factor leads to a fi-
nite strength function at E = 0, in contrast to the spectral
density S(E) which has zero limit at E → 0.

3 Numerical details, results and discussion

In this work, we illustrate the performance of the devel-
oped approach named finite-temperature relativistic time-
blocking approximation (FT-RTBA) for the response of
the even-even spherical nuclei 48Ca and 100,120,132Sn. The
calculation scheme consists of the following steps. First,
the closed set of the RMF equations is solved using the
NL3 parametrization [82] of the non-linear sigma-model
with the thermal fermionic occupancies (5). The obtained
temperature-dependent single-particle Dirac spinors and
the corresponding single-nucleon energies form the basis
for subsequent calculations. Second, the finite-temperature
relativistic random phase approximation (FT-RRPA) equa-
tions, which are equivalent to Eq. (7) without the time-
dependent kernelW, are solved to obtain the phonon ver-
tices gµ and their frequencies Ωµ. The set of phonons,
together with the RMF single-particle basis, forms the
1p1h⊗phonon configurations for the particle-phonon cou-
pling amplitude Φ(ω). Then, Eq. (22) is solved in the trun-
cated configuration space which includes excitations be-
low 25 MeV and the total response function is computed
by solving Eq. (13) in either momentum or configuration
space as described in [54,55] for the T = 0 case. Finally,
the strength function is computed according to Eq. (29)

with external fields of the isoscalar (L=0,2) and electro-
magnetic (L=1) character:

V 0
00 =

A∑
i=1

r2i Y00(Ωi)

V 0
1M =

eN

A

Z∑
i=1

riY1M (Ωi)−
eZ

A

N∑
i=1

riY1M (Ωi)

V 0
2M = e

A∑
i=1

r2i Y2M (Ωi). (30)

The particle-hole basis was limited by εph ≤ 100 MeV
and εαh ≥ −1800 MeV with respect to the positive-energy
continuum. A direct verification with εph ≤ 300 MeV elim-
inating the dipole spurious translational mode completely
showed that the physical states of the excitation spectra
converge reasonably well with εph ≤ 100 MeV. The val-
ues of the smearing parameter ∆ = 500 keV and ∆ = 200
keV were adopted for the calculations of the strength func-
tions for 48Ca and 100,120,132Sn, respectively. The phonon
space was formed of the vibrations with quantum num-
bers of spin and parity Jπ = 2+, 3−, 4+, 5−, 6+ below
the energy cutoff, which amounts to 15 and 20 MeV for
heavy and medium-mass nuclei, respectively. This cutoff
is justified by our previous calculations at T = 0 with
the subtraction (28) which minimizes the the high-energy
phonon contribution. An additional truncation was done
according to the values of the reduced transition probabil-
ities of the corresponding electromagnetic transitions. The
modes with the values of the reduced transition probabili-
ties B(EL) less than 5% of the maximal one (for each Jπ)
were neglected. We have put a condition that the same
truncation criteria on the phonon energy, Jπ and the re-
duced transition probability should be kept for all tempe-
rature regimes in order to make a fair comparison of the
calculated strength distributions. At zero and low temper-
atures varying these limits would almost not change the re-
sulting strength distributions and, therefore, we typically
adopt these cutoff values for T = 0 calculations. At high
temperatures, as a consequence of the significant ther-
mal unblocking, we see the appearance of many additional
phonon modes. This effect is illustrated below in Figs. 4-6
for Jπ = 0+, 1−, 2+ and it is similar for all Jπ values.
On average, at T ∼ 5 − 6 MeV the number of phonon
modes in the truncated model space becomes by an order
of magnitude larger than at T = 0. We note that at high
temperatures the saturation of the results with respect to
the B(EL) cutoff is rather slow, but the 5% cutoff, which
is at the limit of our current computational capabilities, is
still very reasonable. We have checked that by varying the
cutoff value between 10% and 5%. Another truncation was
made on the absolute values of the numerator of Eq. (23),
so that the contributions with |n(ε2, T )−n(ε1, T )| ≤ 0.01
were excluded from the BSE. FT-RTBA calculations at
high temperatures are otherwise very prohibitive, while at
low and moderate temperatures this truncation does not
affect the results. We found, however, that in some cases at
high temperature values this truncation can cause a no-
ticeable contribution of the spurious translational mode
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Fig. 2. Energies of the thermally excited compound nuclei
48Ca and 132Sn as functions of temperature: RMF (blue circles)
and parabolic fits (red curves).

in the lowest-energy parts of the dipole spectra, therefore,
the truncation on the occupation numbers was released
as much as possible to remove this contribution where it
appeared.

An illustration of the thermal RMF calculations for
the compound nuclei 48Ca and 132Sn at Jπ = 0+ is given
in Fig. 2. As it follows from Eqs. (3,5), the effect of fi-
nite temperature on the total (binding) energy of a ther-
mally excited nucleus is mainly induced by the change
of the fermionic occupation numbers. Their direct effect
is caused by promoting the fermions to higher-energy or-
bits, which obviously increases the total energy. Another,
indirect, contribution is related to the change of the nucle-
onic densities which play the role of sources for the meson
and photon fields [72]. The changes in the bosonic fields,
in turn, translate to the nucleons via the self-consistent
set of the thermal RMF equations. Thus, the thermody-
namical equilibrium is achieved throughout the iteration
procedure. As one can observe in Fig. 2, the dependence
E∗(T ) is nearly parabolic, as it is expected for the non-
interacting Fermi gas, except for the lowest temperature
values. The flat behavior of the excitation energy at these
temperatures is a result of the presence of the large shell
gaps right above the Fermi surface in the doubly-magic
nuclei: small temperatures are insufficient to promote the
nucleons over the shell gaps. At T ≥ 1 MeV the depen-
dence E∗(T ) is very well approximated by the parabolic
fits, which are also shown in Fig. 2. The corresponding
coefficient at the quadratic term is found to be in a very
good agreement with the empirical Fermi gas level density
parameter a = A/k, where 8 ≤ k ≤ 12 [83].

Fig. 3 explains qualitatively the new mechanism of
formation of nuclear excitations, which emerges with the
temperature growth. Due to the thermal occupation fac-
tors of the single-nucleon orbits (5), a sharp borderline be-
tween particle and hole states becomes diffuse as all states
acquire a non-zero probability to be occupied. Therefore,
the notion of particle-hole pairs adopts a conditional char-
acter. As far as the response is concerned, in the simplest
approximation it is governed by the uncorrelated propaga-
tor of Eq. (23), which has formally the same ansatz as at
T = 0. At zero temperature, when the occupation factors

ph phph ph
~ ~ ~

F

Fig. 3. The appearance of thermally unblocked pairs with
both single-nucleon states below or above the Fermi energy

εF . Here p̃h stands for the particle-particle (pp) and hole-hole
(hh) fermionic pairs with the non-vanishing uncorrelated prop-
agator (23).

take the values of zero above the Fermi energy and unity
below the Fermi energy, the only non-vanishing contri-
butions come, obviously, from the pairs of single-nucleon
states located on different sides from the Fermi surface
(particle-hole, or ph pairs). At finite temperature, due to
the fractional occupancies, the uncorrelated propagator of
Eq. (23) acquires contributions from all pairs of states, ex-
cept for those of the identical states. This fact allows for an
extended notion of the particle-hole pairs. As mentioned
in the previous section, we regard a pair of states {12} as
a ’thermal’ ph (hp) pair if the energy difference ε1 − ε2
is larger (smaller) than zero. Remarkably, in this context
a single-particle state alone does not carry a particle or a
hole character, but adopts it only being paired with an-
other state. In Fig. 3 we have denoted as ph the pairs
which have a particle-hole character already at T = 0 and

as p̃h the new, or ’thermal’ ph-pairs which are classified
as particle-particle or hole-hole ones at T = 0 and do not
contribute to the zero-temperature uncorrelated propaga-
tor and, thus, to the zero-temperature response.

The isoscalar monopole, electromagnetic dipole, and
isoscalar quadrupole strength distributions were computed
for the doubly-magic 48Ca in a wide range of tempera-
tures, according to Eqs. (22 - 29,13) with the value of
the imaginary part of the energy variable (smearing pa-
rameter) ∆ = 500 keV. The results of the FT-RTBA cal-
culations are displayed in the right panels of Fig. 4 and
can be compared to the FT-RRPA results given in the
left panels. At T = 0 RTBA provides a very reasonable
description of the strength distributions in 48Ca, in agree-
ment with data, see, for instance, a direct comparison for
the dipole response in our recent work [70]. This can serve
as a good benchmark of the theory and, together with
the thermal mean-field calculations presented above, jus-
tify the reliability of our approach to the strength distri-
butions at finite temperature. The isoscalar monopole re-
sponse (ISMR) shown in the top panels of Fig. 4 represents
the so-called breathing mode, or the compression mode,
and serves as one of the most important nuclear charac-
teristics. It is directly related to the nuclear compressibil-
ity which is studied very extensively, by both theory and
experiment. One of the main motivations for these stud-
ies is that the characteristics of response of finite nuclei
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Fig. 4. Temperature dependence of the isoscalar monopole IS
E0 (top), electromagnetic dipole EM E1 (middle) and isoscalar
quadrupole IS E2 (bottom) strength distributions in 48Ca. Left
panels show FT-RRPA and right panels FT-RTBA results.

to compression can be translated or extrapolated to the
compressibility of the uniform nuclear matter. Its incom-
pressibility parameter, K∞, is one of the most important
parameters of the nuclear matter equation of state (EOS)
and, thus, plays the key role in modeling astrophysical ob-
jects, from core collapse supernovae to neutron star merg-
ers. The incompressibility of a finite nucleus with the mass
number A, KA, can be determined from the centroid of
ISMR and related to the K∞ through the well-known lep-
todermous expansion. The possibility of such extraction of
K∞ uniquely is, however, very much debated as it leads
to different results if different nuclei are used for this pro-
cedure. In particular, nuclear superfluidity seems to play
a role in nuclear compressibility, because the results of
analyses based on the monopole responses of closed-shell
and open-shell nuclei vary, see, for instance, a recent re-
view [84]. As far as the astrophysical aspect of nuclear
compressibility is concerned, its temperature dependence
could be, in principle, another factor to be taken into ac-
count. One can see, comparing the two top panels of Fig.

4, that PVC effects are not strongly manifested in the
case of monopole response at T = 0. This is a well-known
phenomenon related to a significant cancellations of terms
with the self-energy and induced interaction in Eq. (24)
in the monopole channel [54]. At T = 1 MeV both FT-
RRPA and FT-RTBA strength distributions demonstrate
the appearance of a new soft mode at E ≈ 9 MeV. This
is already a clear manifestation of the thermal unblocking
mechanism discussed above. At T = 3 MeV we observe
first drastic changes in the monopole strength distribu-
tion: the soft mode at 9 MeV strengthens considerably
while a new prominent mode emerges at E ≈ 5 MeV. The
locations of these states reveal the presence of 0h̄ω exci-
tations which are barely possible at T = 0. Another new
effect at this temperature is enforcing the fragmentation of
the main high-energy peak whose origin stems from 2h̄ω
excitations. The latter two features – the emergence of
strong low-lying states and the reinforcement of fragmen-
tation of the high-energy peak - become even more am-
plified at T = 5 MeV, moreover, the low-energy strength
begins to dominate. In addition, the entire strength distri-
bution shifts toward lower energies. Such changes in the
isoscalar monopole strength distribution obviously affect
its centroid, that, in turn, means a change of the nuclear
compressibility. We do not go into more details of the nu-
clear compressibility here, however, point out that its sen-
sitivity to the temperature increase might be studied else-
where more extensively for the temperature regimes which
are relevant for astrophysical processes.

It can be seen from the middle panels of Fig. 4 that
the main thermal effects which are observed for the case of
ISMR, are also visible in the dipole channel. At zero and
low temperatures, the latter is dominated by the giant
dipole resonance (GDR), which is formed by collective os-
cillations of protons and neutrons against each other and
centered at about EGDR = 18A−1/3 + 25A−1/6 MeV [18].
In the context of its temperature dependence, the dipole
response was studied most extensively in experiments with
heavy ion collisions [23–31]. The general conclusions from
these studies are (i) a fast growth of the GDR’s width with
temperature and (ii) disappearance of the high-frequency
collective oscillation at high temperatures.

As discussed in detail in Ref. [18], the latter phenomenon
occurs largely due to the particle emission which is not
taken into account consistently in our approach and should
be included with the exact continuum as it is done, for in-
stance, in Ref. [46]. However, even in the present calcula-
tions we observe a reduction of the coherence of the GDR
with temperature. Indeed, one can see that, in the case of
48Ca, at T = 5 MeV the soft mode starts to dominate over
the high-frequency mode while the latter becomes more
fragmented. At higher temperatures these effects become
even more pronounced, see, for instance, an example of
our calculations in Refs. [71,72].

Another enhancement of the low-energy strength comes
with the exponential factor in Eq. (29) which is analyzed
below. Experimental and theoretical studies of the nuclear
dipole response also have far reaching broader impacts.
The electric dipole polarizability, which is proportional to
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temperature strength distribution: an example of the FT-
RTBA dipole strength in 48Ca.

the m−1 moment of the dipole strength distribution, pro-
vides another very important aspect of the nuclear EOS,
namely the slope of its symmetry energy, see, for instance,
a recent review [85]. As the m−1 moment of the dipole
strength distribution is particularly sensitive to the low-
energy fraction of the strength, it should be also sensi-
tive to the temperature increase, which can become cru-
cial for the symmetry-energy sector of the EOS at high-
temperature regimes.

The specific feature of a typical isoscalar quadrupole
response (ISQR) at T = 0 is the presence of two main col-
lective structures: one at low (few MeV) and one at high
energy. The properties of the ISQR are also of a broader
interest as it is sensitive to the nuclear matter incom-
pressibility, provides a constraint on the effective mass,
and contributes to determining the nuclear symmetry en-
ergy and the neutron skin thickness [85]. In the context
of theoretical models for nuclear response beyond the ran-
dom phase approximation, the low-lying quadrupole mode
is of a particular interest, because, together with its oc-
tupole counterpart, it provides the most important contri-
bution to the PVC mechanism. The low-energy collective
quadrupole and octupole phonons couple most strongly
to the single-particle degrees of freedom and produce the
largest fraction of the fragmentation of both single-particle
and collective nuclear states. The ISQR in 48Ca at var-
ious temperatures is displayed in the bottom panels of
Fig. 4, where FT-RTBA results can be compared to those
of FT-RRPA. The first thermal unblocking effect can be
seen already at T = 1 MeV as the formation of the new
low-energy mode. With the temperature increase, i.e. at
0 ≤ T ≤ 3 MeV the fragmentation of the high-energy
quadrupole peak enforces gradually while at T = 5 MeV
it becomes visibly stronger. The latter is common for all
0+, 1− and 2+ strength distributions and related to the
tremendously enhanced low-energy strength of all multi-
polarities Jπ = 2+, 3−, 4+, 5−, 6+ included into the
PVC amplitude (24). These new strong low-lying modes
tend to also couple strongly to the single-particle degrees
of freedom and to contribute significantly to the Φ(ω) am-
plitude, while the quadrupole contribution is one of the
dominant ones.

Here it should be noted that in Fig. 4 we plot not the fi-
nal strength functions, but their zero-temperature analogs
S(E) of Eq. (29) called spectral densities. The strength

function at finite temperature S̃(E) has to obey the de-
tailed balance between absorption and emission and, thus,
to be corrected by the exponential factor [1− exp(−E/T )]

−1

which is singular at E = 0. In order to illustrate the
role of this new factor, Fig. 5 shows the FT-RTBA dipole
strength distributions in 48Ca with and without this fac-
tor. For a better assessment of its role at low temperatures,
the right panel displays the same strength functions as
shown in the left panel, but on the logarithmic scale. One
can notice that the high-frequency giant dipole resonance
remains almost unaffected at all temperatures. The situ-
ation is, however, different for the low-energy part. It can
be seen that already at T = 1 MeV the strength function
acquires a finite value at E = 0 because in the present case
S(0) = 0 (no physical poles appear at zero energy) and
the influence of the exponential factor on the low-energy
strength grows with temperature. At T = 5 MeV, for in-
stance, the low-energy peak receives an enhancement of
a factor of two. Thus, although such high temperatures
are not relevant for typical astrophysical situations, tem-
peratures of ∼ 1 − 2 MeV can be reached in many cases,
so that the exponential factor should not be neglected in
the finite-temperature astrophysical modeling of quanti-
ties which are sensitive to the zero-energy limit of the
strength functions.

In this work we mostly focus on the spectral den-
sity S(E) because it has a well-defined zero-energy limit.
Self-consistent calculations for the dipole strength should
demonstrate, in particular, the absence of the admixture
of the spurious translational mode. The presence of the
singular factor in the full strength function S̃(E) which
makes it finite at E = 0 conceals the low-energy behav-
ior of the distribution S(E) and makes an assessment of
the quality of the numerical implementation difficult. We
note that the exponential factor gives a very small con-
tribution at temperatures below 4 MeV and can be easily
included for a comparison with experimental data when
they are available for the low-lying strength. By these rea-
sons we found showing S(E) more informative than the
full strength function and illustrated the influence of the
exponential factor in Fig. 5 as an example of its generic be-
havior. For a reliable prediction of the low-energy strength
distributions at finite temperatures at least one more as-
pect, namely the (single-particle) continuum should be in-
cluded into the description, because it can further modify
the trend of the low-energy behavior of the strength dis-
tributions of all multipoles [46].

The picture of the temperature evolution of the nuclear
response would not be complete without considering heav-
ier nuclear systems. Therefore, we have performed calcu-
lations for some isotopes of the tin chain. The nucleus
120Sn is of special interest because of the availability of
experimental data for its giant dipole resonance in terms
of the temperature-dependent width [86,28,26]. We have
also considered the neutron-rich doubly magic 132Sn be-
cause of its particular importance for the astrophysical
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Fig. 6. The giant dipole resonance in 100,120,132Sn (top, middle
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panels display FT-RTBA calculations, to be compared to the
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r-process nucleosynthesis, so that the precise knowledge
about its strength functions is required for the r-process
modeling [36]. The neutron-deficient 100Sn was chosen in
order to find out whether the temperature evolution of
the nuclear response is different in the neutron-rich and
neutron-deficient cases. The results of our calculations for
the dipole response of these three nuclei with the smearing
parameter ∆ = 200 keV are displayed in Fig. 6. One can
observe immediately that the doubly-magic 100,132Sn iso-
topes reveal a trend in the temperature evolution of the
dipole strength, which is similar to one already seen in
48Ca. The situation with the open-shell 120Sn is somewhat
different in the low-temperature regime. This nucleus is
superfluid at T = 0, and the superfluidity effects typically
produce a more spread strength distribution because of
the presence of more poles in the response function. How-
ever, above the critical temperature of Tc ≈ 0.66 MeV the
superfluidity, in its traditional understanding within the
Bardeen-Cooper-Schrieffer or Hartree-(Fock)-Bogoliubov
models, vanishes, while at T = 1 MeV the thermal un-

blocking is not yet well pronounced. As a result, the dipole
strength in 120Sn at T = 1 MeV is less broad than at
T = 0, in contrast to the case of the closed-shell nuclei.
Otherwise, at T ≥ 1 MeV the strength distributions in
all three nuclei evolve in a similar manner. As in the case
of 48Ca, we observe a gradual increase of the fragmenta-
tion and broadening of the high-energy peak, due to both
Landau damping and PVC, and the formation of the en-
hanced strength at low energies. Comparing the neutron-
balanced 120Sn, the neutron-rich 132Sn and the neutron-
deficient 100Sn nuclei, one can see that the proton-neutron
composition does not play the major role in the tempe-
rature evolution of the dipole strength. In particular, the
formation of the new pronounced low-energy structure at
high temperature is very similar for the three considered
tin isotopes. This means that this structure is not associ-
ated with the pygmy resonance as a neutron skin oscilla-
tion, but has a purely thermal unblocking origin. Indeed,
from the Fig. 3 it is clear that in the calculations within

a sufficiently large single-particle basis the number of p̃h
pairs above the Fermi surface can grow tremendously with
the temperature increase and form a coherent low-lying
mode, because many of such pairs can have close values
of the energy differences which enter the denominator of
Eq. (23). Accounting for the single-particle continuum is
expected to provide a more accurate description of the
low-energy strength and will be addressed in future work.
Another interesting aspect of this new low-energy struc-
ture is a relatively weak fragmentation due to the PVC
mechanism, which is obtained for the strength functions
of all multipolarities. As it was discussed in Refs. [71,72],
this can possibly occur due to missing contributions of the
PVC-induced ground state correlations [78], which should
be considered among other future directions.

The width of the strength distribution and the energy
weighted sum rule (EWSR) are the most important inte-
gral characteristics of the GDR which are often addressed
in theoretical and experimental studies. For example, they
help constraining theoretical approaches because of their
almost model-independent character. In theoretical cal-
culations, verification of the sum rules usually helps in
testing the consistency of numerical implementations.

In order to illustrate the present case, the evolution
of GDR’s width Γ (T ) with temperature obtained in FT-
RTBA for 120Sn and 132Sn nuclei is shown together with
experimental data in the left panel of Fig. 7. Experimental
data which are available only for 120Sn are given as well.
The theoretical values for the widths at T = 0 are pro-
vided by our earlier calculations [55,54], respectively. As
follows from Fig. 2, the thermal unblocking effects hardly
appear at T ≤ 1 MeV in 132Sn because of its specific shell
structure, namely, the presence of the large shell gap in
the vicinity of the Fermi energy in both proton and neu-
tron subsystems. In particular, for protons, which form
the Z = 50 closed shell and have the next available or-
bitals only in the next major shell, temperatures below 1
MeV are not sufficient to promote particles over the shell
gap with a sizable occupancy. For neutrons in 132Sn as
well as for protons in 120Sn the situation is similar. The
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lowest orbit available for neutrons in 120Sn is the intruder
1h11/2 state where particles get promoted relatively eas-
ily, but the next shell gap occurs right after this orbit. As
a result, at T = 1 MeV there are still not many options

for the p̃h pair formation and for the thermal unblocking.
Together with the disappearance of superfluidity above
the critical temperature Tc ≈ 0.66 MeV, this explains, for
instance, the unexpectedly small GDR’s width at T = 1
MeV in 120Sn reported in Ref. [28]. After T = 1 MeV in
132Sn and T = 2 MeV in 120Sn we observe a quick growth
of Γ (T ) due to the formation of the low-energy shoulder of
the dipole strength distribution and due to the reinforced
fragmentation of the high-energy peak emerging from the
finite-temperature effects in the PVC amplitude Φ(ω). In
general, at all temperatures T ≥ 1 MeV the low-energy
shoulder of 132Sn is stronger, which leads to a larger over-
all width in 132Sn, compared to 120Sn. This occurs because
of the more neutron-rich character of 132Sn. Notice here
that, since our standard Lorentzian fit of the microscopic
strength distribution fails in recognizing the distribution
as a single peak structure at high temperatures, the GDR’s
widths for T>3 MeV in 132Sn and for T>4 MeV in 120Sn
are not presented in Fig. 7.

At T = 0, T = 1 MeV and T = 3 MeV the agreement
on the GDR’s width in 120Sn between the FT-RTBA cal-
culations and data is very reasonable while at T = 2 MeV
FT-RTBA underestimates the experimental value of the
width by a factor of two. Here we should note that ef-
fects of thermal shape fluctuations are not included into
the present approach. In order to do this in a microscopic
way, we would need to generalize our method to the de-
formed case and to consider a superposition of shapes and
orientations, as discussed, for instance, in Ref. [18]. As a
very large number of shapes and orientations would be
required, the authors of Refs. [16,17], for instance, did
that in an effective way using phenomenological relations
for the GDR. However, as it is shown, for instance, in
Refs. [87–89], nuclear deformation tends to disappear at
some critical temperature. These studies agree on the up-
per bound of the critical temperature Tc ≈ 2.0−4.0 MeV.
This means that above those temperatures medium-mass
and heavy nuclei reveal the tendency to take the spherical
shape. On the other hand, one can see from Refs. [16,17]
that, although the theory of thermal shape fluctuations
describes the GDR’s width at temperatures 1.5 ≤ T ≤ 3
MeV well, it does not reproduce Γ (T ) in the low tempe-
rature regime at T < 1.5 MeV in 120Sn. Our microscopic
theory, however, shows a reasonable agreement with data
for T = 0 and T = 1 MeV. From these arguments we can
conclude that the thermal shape fluctuations in medium-
heavy nuclei should be important in a limited temperature
range between T ≈ 1 MeV and T ≈ 3 MeV. They could
be, perhaps, included on top of our model in the way pro-
posed in Refs. [16,17], however, we leave this beyond the
scope of our paper admitting that thermal shape fluctu-
ations have to be included for a correct comparison to
experimental data. Apart from that, our results for Γ (T )
in the entire range of temperatures under study show a
nearly quadratic dependence, which is in agreement with
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The figure is adopted from Ref. [71].

the Fermi liquid theory [90]. The FT-RTBA results are
also consistent with those of the microscopic approach of
Ref. [9], which are available for the GDR energy region at
T ≤ 3 MeV.

The energy-weighted sum rule for 48Ca and 132Sn nu-
clei as a function of temperature within FT-RRPA and
FT-RTBA is given in the right panel of Fig. 7, in the per-
centage with respect to the Thomas-Reiche-Kuhn (TRK)
sum rule. The EWSR at T > 0 can be calculated in anal-
ogy with the zero-temperature case [73,91]. In our frame-
work the meson-exchange interaction is velocity-dependent,
so that already in RRPA and RQRPA at T = 0 we ob-
serve up to 40% enhancement of the TRK sum rule within
the energy regions which are typically studied in experi-
ments [54,55], in agreement with data. In the resonant
time blocking approximation without the ground state
correlations associated with the PVC mechanism the EWSR
is known to have exactly the same value as in RPA [92].
A small violation comes only with the subtraction pro-
cedure [92,81]. At T = 0 in the RTBA corrected by the
subtraction we find a few percent less EWSR in finite en-
ergy intervals below 25-30 MeV than in RRPA, however,
this difference becomes smaller for larger intervals. As in
RTBA the strength distributions are more spread, one
finds more strength outside finite intervals. The situation
is very similar at T>0. In Fig. 7 (b) one can see that the
EWSR stays nearly flat with a slow decrease with the tem-
perature growth due to the fact that the entire strength
distribution shifts toward lower energies. The EWSR val-
ues from FT-RRPA and FT-RTBA become nearly equal
at T = 6 MeV in both nuclei, because apparently at this
temperature the high-energy tails of the strength distri-
butions become less important.

As it follows from Eq. (29), calculations of the nuclear
response with small smearing parameter ∆ are capable of
resolving individual states in the low-energy region. Such
calculations can reveal fine details of the evolution of the
thermally emergent strength, as it was illustrated in Ref.
[72]. In addition, such calculations allow for extracting
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the transition densities from the response function, which
provide a valuable information about the underlying struc-
ture of individual states. Fig. 8 gives an illustration of such
kind with the radial dependencies of the neutron and pro-
ton transition densities in the neutron-rich 48Ca (top pan-
els) and in the neutron-deficient 100Sn (bottom panels).
The proton and neutron transition densities are shown for
the most prominent peaks below 10 MeV, which are se-
lected separately for each temperature value. In 48Ca pro-
ton and neutron transition densities show in-phase oscilla-
tions inside the nucleus while neutron oscillations become
weakly dominant outside at T = 0. At T = 1 MeV the
major oscillations shift toward the nuclear surface while
in the outer area one observes the typical pattern of the
neutron skin oscillation known as pygmy dipole resonance.
At T = 3 MeV the general picture changes very little, but
at T = 5 MeV the oscillations of proton and neutron sub-
systems in the outer region start to develop the pattern of
the out-of-phase oscillation. The latter is more typical for
the giant dipole resonance and reproduced in numerous
theoretical calculations at T = 0. Our previous analysis of
the thermal transition densities in a heavier nuclear sys-
tem, such as 68Ni, has shown that the low-energy peak at
high temperature has indeed some features of collective
nature [72]. In order to clarify whether this new feature
is related to a considerable neutron excess, we have per-
formed a similar analysis for the neutron-deficient 100Sn
nucleus. As it can be seen from the bottom panels of Fig.
8, at T = 0, it also exhibits the in-phase oscillations of
protons and neutrons inside the nucleus, but with a little

dominance of proton oscillations in the surface area. Only
little changes are observed at T = 1 MeV, and at T = 3
MeV one can see a clear proton dominance in the outer
area. As in the case of 48Ca, at T = 5 MeV one starts to
distinguish a GDR-like pattern of the out-of-phase oscil-
lation in the low-lying state at E =3.92 MeV while the
in-phase oscillations are still present inside the nucleus
and on the surface. Notice that at 3 ≤ T ≤ 5 MeV the os-
cillations extend to far distances from the nuclear central
region, which indicates that these oscillations are mainly
associated with nucleons in the continuum. The latter is
again consistent with the picture of Fig. 3 which illustrates

the possibility to create a large amount of p̃h transitions
between the states located above εF .

In the spectra of compound nuclei at finite tempera-
ture, especially at the high temperature values, the ther-
mal unblocking allows for the appearance of the states
with arbitrary small energy values. Such states can be in-
deed observed in Figs. 4 - 6 and, in principle, they would
form a smooth continuum if the calculations were done
in the complete basis [46]. We have analyzed the underly-
ing structure of the lowest dipole peaks at E =1.44 MeV
in 48Ca and at E =0.76 MeV in 100Sn at T = 6 MeV
that is displayed in Fig. 9. As at these transition energies
the PVC effects included in the present model are rather
weak, in this figure we show only the FT-RRPA calcu-
lations for the proton and neutron transition densities.
In both neutron-rich 48Ca and neutron-deficient 100Sn we
have obtained very similar pictures for the behavior of
the proton and neutron transition densities in the lowest
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Fig. 9. The proton and neutron FT-RRPA transition densities
for the lowest dipole state at T = 6 MeV in 48Ca (left) and
100Sn (right).

dipole states: they oscillate in phase and have their major
peaks inside the nucleus while protons in 48Ca and neu-
trons in 100Sn show a pronounced minor peak in the outer
area. The lowest dipole state at E =1.44 MeV in 48Ca is

composed predominantly by the proton p̃h configuration
3p3/2 − 2d5/2 and the analogous state at E =0.76 MeV

in 100Sn is dominated by the neutron p̃h-configuration
1i13/2 − 2h11/2. Other states in the lowest-energy domain

are similar and their single p̃h-configuration character is
in agreement with their relatively low transition probabil-
ities.

4 Summary

In this article, which is dedicated to the memory and in-
spiring ideas of Pier Francesco Bortignon, we discuss a
finite- temperature extension of the nuclear response the-
ory beyond the relativistic RPA. We review the formalism
of the thermal relativistic mean field and the time blocking
method generalized for the finite-temperature case as the
leading-order approach to the time-dependent part of the
in-medium nucleon-nucleon interaction. Technically, the
temperature-dependent imaginary-time projection opera-
tor is used to reduce the Bethe-Salpeter equation to an
equation with one energy (frequency) variable in the en-
ergy domain.

The finite-temperature relativistic time blocking ap-
proximation was implemented on the base of the meson-
nucleon Lagrangian of quantum hadrodynamics with the
NL3 parametrization. We investigated the temperature
dependence of the monopole, dipole and quadrupole re-
sponse in the closed-shell medium-light 48Ca and of the
dipole response of the medium-heavy 100,120,132Sn isotopes.
It was found that the temperature dependence of the nu-
clear response is very generic and exhibits similar features
for all multipoles and all nuclei under study. The most re-
markable effects of the temperature increase on the spec-
tra are (i) the reinforcement of both the Landau damp-
ing and the particle-vibration coupling, (ii) the formation

of the low-energy strength due to the thermal unblock-
ing, and (iii) the shift of the entire strength distribution
toward lower energies. We have investigated numerically
the integral characteristics of the obtained dipole spec-
tra, such as the energy-weighted sum rule and the width
of the giant dipole resonance, in finite energy intervals
up to high-temperature regimes. The EWSR was found
to be very robust up to very high temperatures and the
width exhibits a nearly parabolic growth with tempera-
ture, in accordance with the Landau theory. The obtained
temperature dependence of the GDR’s width is consistent
with the available data, except for the temperature regime
where thermal shape fluctuations become important. The
results obtained for the dipole and quadrupole response
functions are also consistent with the NFT calculations of
Ref. [9].

We have discussed some broader impacts of the pre-
sented developments, from the astrophysical r-process nu-
cleosynthesis to the nuclear matter equation of state. The
proposed treatment of the many-body correlations at fi-
nite temperature is of a general character and can be
widely applied to the response of strongly-correlated sys-
tems other than finite nuclei. Future developments may
consider the inclusion of continuum effects and ground
state correlations associated with the particle-vibration
coupling.
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