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A microscopic approach to the proton-neutron nuclear response is formulated in the finite-temperature 
relativistic nuclear field theory framework. The approach is based on the meson-nucleon Lagrangian of 
quantum hadrodynamics and advances the relativistic field theory for spin-isospin response beyond the 
finite-temperature random phase approximation. The dynamical contribution to the in-medium proton-
neutron interaction amplitude is described in a parameter-free way by the coupling between the single 
nucleons and strongly-correlated particle-hole excitations (phonons) within the newly developed finite-
temperature formalism. In this framework we investigate temperature dependence of the Gamow-Teller 
and spin dipole resonances in the closed-shell nuclei 48Ca, 78Ni, and 132Sn. Broader impacts of their 
temperature dependence are illustrated for the associated beta decay rates and lifetimes of 78Ni and 
132Sn in hot astrophysical environments. We found a remarkable sensitivity of the beta decay rates to 
the enhanced low-energy spin-isospin strength at finite temperature, in particular, to the contribution of 
the first-forbidden transitions.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Response to charge-changing, or isospin-flip, probes, which in-
duce a conversion of a nucleon of one type to another (proton to 
neutron or neutron to proton), is one of the most important char-
acteristics of nuclear systems. On the fundamental level this type 
of response provides information on nuclear weak interactions and 
underlying forces in the proton-neutron channel, and in the con-
text of applications it has a very broad impact on nuclear sciences 
from nuclear data [1–3] to astrophysics [4,5].

Astrophysical implications of the isospin-transfer excitations in-
clude, for instance, beta decay, electron capture, neutrino capture 
and scattering, which occur under different conditions formed in 
various stages of star evolution and merging of neutron stars. The 
cross sections and rates of these processes within a broad range of 
densities and temperatures are decisive for astrophysical modeling 
[5–7]. Some of them can be determined in laboratory experiments, 
however, many exotic nuclear systems located far away from the 
beta-stability valley of the nuclear chart are beyond the present 
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and even future experimental capabilities. Therefore, reliable theo-
retical predictions are needed for the isospin-transfer excitations, 
such as the Gamow-Teller response (GTR) with transfer of one 
unit of isospin and one unit of spin, the spin-dipole response with 
transfer of an additional unit of angular momentum, and the pure 
isospin-flip isobaric-analog resonance at finite temperatures.

A theoretical description of these processes can be provided, 
for instance, by the shell-model or by the shell-model Monte-
Carlo approach combined with the random phase approximation 
(RPA) [2,8,9]. The predictive shell-model calculations are, however, 
very difficult to be extended beyond the pf-shell. The RPA, in 
turn, is very limited in the treatment of many-body correlations. 
Theoretical approaches to the proton-neutron nuclear response at 
finite-temperature are mostly confined by the finite-temperature 
quasiparticle RPA (FT-QRPA) [10,11] or the finite-temperature rela-
tivistic random phase approximation (FT-RRPA) [12] which provide 
a convenient framework for studying the Gamow-Teller (GT) and 
first-forbidden (FF) strength distributions in both (p,n) and (n,p) 
channels, beta-decay rates [10], and electron capture rates [11,12]. 
Pairing correlations taken into account in the FT-QRPA are impor-
tant for the temperatures below the critical temperature which 
typically amounts to 0.5-1.0 MeV in medium-heavy nuclei. How-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ever, the (Q)RPA theories are, in principle, limited by the one-
fermion loop approximation and can not account for important 
retardation effects which are responsible for the damping effects. 
At zero temperature, they are sometimes solely responsible for the 
decay of neutron-rich nuclei and necessary for accurate predictions 
of weak nuclear processes in fully self-consistent theories [13–16].

In order to meet the very high standards required for nu-
clear science applications, theoretical approaches to the nuclear re-
sponse must include correlations beyond (Q)RPA and, at the same 
time, be based on fundamental concepts of the nucleon-nucleon 
interaction. The latter provides an advanced predictive power and 
the former is of the utmost importance as the inaccuracies con-
tained in nuclear strength functions can propagate tremendously 
[5]. In this Letter, we present a novel approach to the finite-
temperature proton-neutron nuclear response, which is going to-
wards these requirements. We advance the approach developed 
previously in the zero-temperature framework of the relativistic 
nuclear field theory (RNFT) [13,15,17–22] to the finite-temperature 
case. The RNFT is based on the covariant energy density functional 
[23] and extends both the neutral-channel and proton-neutron rel-
ativistic RPA (pn-RRPA) [24,25] beyond the one-loop approximation 
by taking into account the medium polarization effects in the form 
of the particle-vibration coupling (PVC) in a parameter-free way. It 
was found that these effects play a crucial role in describing the 
nuclear response in both neutral [20,26–36] and charge-exchange 
[13,15,21,37] channels. Recently, the theory for neutral excitations 
was extended to finite temperatures [38], and here we present an-
other extension for the thermal proton-neutron response.

2. Method

The finite-temperature relativistic mean-field (RMF) theory 
based on the minimization of the grand potential �(μ, T ) [39]

�(μ, T ) = E − T S − μN (1)

is applied to calculate microscopic characteristics of the initial 
compound nucleus at finite temperature. The grand potential is 
minimized with the Lagrange multipliers μ and T determined by 
the average energy E , particle number N , and the entropy S . The 
latter two quantities are thermal averages with the one-body nu-
cleonic density operator ρ̂ of trace unity:

S = −kTr(ρ̂lnρ̂), N = Tr(ρ̂N̂ ), (2)

where N̂ is the particle number operator, and k is the Boltzmann 
constant which is equal to one in the natural units. The energy is 
a covariant functional of the nucleonic density and classical meson 
and photon fields φm [23]:

E[ρ̂, φm] = Tr[(�α · �p + βM)ρ̂] +
∑

m

{
Tr[(β�mφm)ρ̂] ±

±
∫

d3r
[1

2
( �∇φm)2 + U (φm)

]}
(3)

with the nucleon mass M and non-linear sigma-meson poten-
tials U (φm) [40]. In Eq. (3) the sign “+” corresponds to the scalar 
σ -meson, “-” to the vector ω-meson, ρ-meson and photon, and 
the index “m” runs over the bosonic and Lorentz indices [23]. The 
variation of Eq. (1) determines the operator of the nucleonic den-
sity with the eigenvalues of the Fermi-Dirac distribution:

n1(T ) = n(ε1, T ) = 1

1 + exp{ε1/T } , (4)

where the number index runs over the complete set of the single-
particle quantum numbers in the Dirac-Hartree basis including the 
single-particle energies ε1 = ε̃1 − μ measured from the chemi-
cal potential μ. In this work we consider non-superfluid nuclear 
systems, such as doubly-magic nuclei and nuclei at temperatures 
above the critical temperature when superfluidity vanishes.

The small-amplitude particle-hole response function is de-
scribed by the Bethe-Salpeter equation (BSE) [41]:

R(14,23) = G(1,3)G(4,2) +
+

∑
5678

G(1,5)G(6,2)V (58,67)R(74,83) (5)

adopted to the finite-temperature formalism. The number indices 
in Eq. (5) include the single-particle variables and time: 1 =
{k1, t1}, and G(1, 3) are the Matsubara temperature Green’s func-
tions of single particles defined for the imaginary time differences: 
t13 = t1 − t3 (0 < t1,3 < 1/T ) [42]. The interaction kernel V (58, 67)

includes both the instantaneous and the time-dependent contri-
butions, as in the zero-temperature case. In this work, the former 
is given by the meson-exchange interaction and the latter is rep-
resented, in the leading approximation, by the exchange of the 
correlated particle-hole pairs (phonons) between nucleons. Eq. (5)
can be rewritten as

R(14,23) = R̃(14,23) +
∑
5678

R̃(16,25)W(58,67)R(74,83),

(6)

in terms of the uncorrelated particle-hole propagator R̃(14, 23) =
G̃(1, 3)G̃(4, 2) and the redefined interaction kernel W(14, 23). The 
uncorrelated particle-hole propagator R̃(14, 23) is a product of 
two fermionic temperature mean-field Green’s functions G̃ which, 
in the imaginary-time representation, read [42]:

G̃(2,1) =
∑
σ

G̃σ (2,1), (7)

G̃σ (2,1) = −σδ12n(−σε1, T )e−ε1t21θ(σ t21), (8)

where t21 = t2 − t1 (−1/T < t21 < 1/T ), θ(t) is the Heaviside 
step-function and the index σ = +1(−1) denotes the retarded (ad-
vanced) component of G̃ . The new interaction kernel decomposes 
as follows:

W(14,23) = Ṽ (14,23) + V e(14,23) +
+ G̃−1(1,3)
e(4,2) + 
e(1,3)G̃−1(4,2), (9)

into the meson-exchange interaction Ṽ specified below, the phonon-
exchange term V e and the corresponding self-energy terms G̃−1
e

and 
eG̃−1, such that V e = δ
e/δG̃ , in analogy to the BSE in the 
particle-hole channel at T = 0 [18,43–45]. At zero temperature, 
Eq. (6) can be solved in the time blocking approximation [43,44,
46] which reduces the Fourier transform of Eq. (6) to a single fre-
quency variable equation. The approximation is based on the time 
projection technique within the Green function formalism, which 
allows for decoupling of configurations of the lowest complex-
ity beyond 1p1h (one-particle-one-hole), such as 1p1h ⊗ phonon
(particle-hole pair coupled to a phonon), from the higher-order 
ones. However, the time projection operator introduced at T = 0
[46] is not applicable for the finite-temperature case and, thus, has 
to be generalized. We found out in Refs. [38,47] that at T > 0 the 
projection operator, which should be introduced into the integral 
part of Eq. (6), has the following form:

�(14,23; T ) = δσ1,−σ2θ12(T )θ(σ1t14)θ(σ1t23),

θ12(T ) = n(σ1ε2, T )θ(σ1t12) + n(−σ1ε1, T )θ(−σ1t12), (10)
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Fig. 1. GT− strength distribution for 130,132,136Sn nuclei at zero temperature in the pnRQTBA, compared to the pnRQRPA (a-c). Beta decay half-lives in neutron-rich tin 
isotopes extracted from the pnRQRPA (diamonds) and pnRQTBA (triangles) strength distributions, compared to data (circles) [48] (d).
 

with σk = +(−)1 for particle (hole) states and the extra θ12(T )

factor, as compared to T = 0. Because of the diffuseness of the 
Fermi-Dirac distribution functions, this factor induces a soft block-
ing, which becomes sharp in the T → 0 limit when θ12(T ) → 1. 
After the 3-Fourier transformation, summing over the fermionic 
discrete energy variables and analytical continuation to the real-
energy domain, the BSE for the proton-neutron response reads:

Rpn′,np′(ω, T ) = R̃pn(ω, T )δpp′δnn′ +
+ R̃pn(ω, T )

∑
p′′n′′

Wpn′′,np′′(ω, T )Rp′′n′,n′′ p′(ω, T ), (11)

where R̃(ω, T ) is the uncorrelated proton-neutron propagator

R̃pn(ω, T ) = nnp(T )

ω − εp + εn
, (12)

nnp(T ) = nn(T ) − np(T ) with the indices ‘p’ and ‘n’ of the proton 
and neutron states, respectively, and W(ω, T ) is the interaction 
amplitude:

Wpn′,np′(ω, T ) = Ṽ pn′,np′(T ) + �pn′,np′(ω, T ). (13)

In the charge-exchange channels the static part of the interaction 
Ṽ is represented by the exchange of π and ρ mesons carrying 
isospin and the short-range Landau-Migdal term Ṽ δπ :

Ṽ = Ṽρ + Ṽπ + Ṽ δπ , (14)

where the ρ-meson is parametrized according to Ref. [40], the 
pion-exchange is treated as in a free space, and the strength of 
the last term is adjusted to the GTR in 208Pb [49], in the absence 
of the explicit Fock term [50–52]. The PVC amplitude �(ω, T ) has 
the following form:

�
(ph)

pn′,np′(ω, T ) = 1

nn′ p′(T )

∑
p′′n′′μ

∑
ημ=±1

ημξ
μημ;p′′n′′
pn,p′n′

×
(
N(ημ�μ) + nn′′(T )

)(
n(εn′′ − ημ�μ, T ) − np′′(T )

)
ω − εp′′ + εn′′ − ημ�μ

, (15)

with the phonon vertex matrices ξμημ denoted as:

ξ
μημ;56
12,34 = ζ

μημ

12,56ζ
μημ∗
34,56 , ζ

μημ

12,56 = δ15γ
ημ

μ;62 − γ
ημ

μ;15δ62, (16)

via the matrix elements of the particle-phonon coupling vertices, 
γ

ημ

μ;13 = δημ,+1γμ;13 + δημ,−1γ
∗
μ;31, and the phonon frequencies 

�μ . The index “μ” includes the phonon quantum numbers, such 
as angular momentum, parity, and frequency. The vertices γμ;13
and the frequencies �μ are extracted from the finite-temperature 
relativistic random phase approximation (FT-RRPA) as described in 
Refs. [38,47]. The bosonic occupation factors N(�) = 1/(e�/T − 1)

in Eq. (15) are associated with the phonons emitted and absorbed 
in the intermediate states of the proton-neutron pair propaga-
tion. The (ph)-component of the PVC amplitude (15) includes the 
proton-neutron pairs constrained by the condition: npn(T ) ≥ 0, 
np′n′(T ) ≥ 0 while the (hp)-counterpart is calculated analogously 
[47].

The spectral functions under study S(ω) related to the reduced 
transition probabilities Bν

S(ω) = − 1

π
lim
�→0

Im�(ω + i�) =
∑
ν

Bνδ(ω − ων) (17)

are determined via the nuclear polarizability �(ω)

�(ω + i�) = 〈V (0)RV (0)†〉 =
∑
ν

Bν

ω − ων + i�
(18)

by the Gamow-Teller (GT) and spin multipole (SL) external fields:

V (0)
GT− =

A∑
i=1


(i)τ−(i) (19)

V (0)λ
S L± =

A∑
i=1

rL(i)[
(i) ⊗ Y L(i)]λτ±(i), (20)

where 
 is the relativistic spin operator. The final finite-temperature
strength functions S̃(ω) contain an additional temperature correc-
tion [47,53]:

S̃(ω) = S(ω)

1 − e−(ω−δnp)/T
, (21)

where δnp = λnp + Mnp, λnp is the difference between neutron and 
proton chemical potentials in the parent nucleus and Mnp = 1.293
MeV is the neutron-proton mass splitting. The functions S(ω) and 
S̃(ω) are formally singular. Therefore, for representation purposes 
the usual practice is to take a finite value of the imaginary part of 
the energy variable (smearing parameter) �. It provides a smooth 
envelope of the strength distribution and also averages over com-
plex configurations which are not taken into account explicitly. The 
denominator in Eq. (21) is important only for the excitation ener-
gies |ω − δnp| ≤ T and is mostly close to unity for small tempera-
tures under ∼ 2 MeV. It is nearly negligible for the general features 
of the strength distribution, however, it is taken into account in the 
calculations of the beta decay half-lives discussed below.
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Fig. 2. GT− strength distribution in 48Ca with respect to the ground state of the parent nucleus at various temperatures in the proton-neutron FT-RRPA (dashed curves) and 
FT-RTBA (solid curves).
3. Results

The performance of the approach at T = 0 is illustrated in Fig. 1
for the response of the semi-magic neutron-rich tin isotopes to 
the GT− operator. The details of these calculations are given in 
Ref. [15] and here and in the following the presented spectra are 
displayed on the excitation energy scales relative to the parent nu-
clei. One can see in Fig. 1 that the PVC effects included in the 
proton-neutron relativistic quasiparticle time blocking approxima-
tion (pnRQTBA) produce a significant fragmentation of the GTR 
as compared to the proton-neutron relativistic QRPA (pnRQRPA). 
In turn, this fragmentation redistributes the strength in the low-
energy sector, in particular, in the Q β window and leads to faster 
beta decay, in agreement to experimental data [48]. We will see 
in the following that at finite temperature the PVC term �(ω, T )

plays a similar role.
First calculations at T > 0 within the proton-neutron finite-

temperature relativistic time blocking approximation (FT-RTBA) 
(11)–(15) were performed for three closed-shell nuclei 48Ca, 78Ni, 
and 132Sn, for which we have obtained a very good description 
of data at T = 0 [54]. In the latter work, the GT− strength func-
tions for 48Ca and 132Sn were directly compared to data, together 
with the beta decay half-lives for 132Sn and also for 78Ni, where 
the GT strength distribution is still unavailable. In all cases, the 
PVC contributions were found crucial in reproducing experimental 
data. The agreement with data at T = 0, together with the recent 
successful implementation of FT-RTBA for the neutral channel [38,
47], thus serves as a good benchmark for the present theory.

For the calculations at T > 0 the same numerical scheme and 
model space truncations as in Refs. [38,47] were used in the 
present applications. Fig. 2 displays the GTR in a doubly-magic 
48Ca at various temperatures. The right panel shows the general 
features of the GTR and its temperature evolution calculated within 
the proton-neutron FT-RRPA (dashed curves) and FT-RTBA (solid 
curves) with the imaginary part of the energy variable (smearing 
parameter) � = 200 keV. One can notice that the temperature in-
crease induces an additional fragmentation of the overall strength 
distribution in both FT-RRPA and FT-RTBA as well as a shift of 
the entire distribution toward lower energies. The fragmentation 
occurs due to the thermal unblocking of transitions within the 
particle-particle and hole-hole pairs, which receive increasing nu-
merators in Eq. (12) with the temperature growth [47]. As the 
calculations are self-consistent being based on the temperature-
dependent mean field, due to the change of the single-particle 
energies with temperature the corresponding transition energies 
evolve accordingly as well as the proton and neutron chemical 
potentials. These effects contribute to the displacements of the 
entire GT distributions. Compared to FT-RRPA, the fragmentation 
effects due to the PVC in FT-RTBA remain quite strong with the 
temperature increase for both high-energy and low-energy peaks. 
Calculations up to the temperature T = 6 MeV (not shown here) 
have revealed a continuation of these trends. The general features 
of the GTR obtained in the proton-neutron FT-RTBA calculations 
are consistent with the results of Refs. [55,56] and with the model 
analyses of Refs. [57,58]. The left panel of Fig. 2 displays a detailed 
fine structure of the GT− strength, which was obtained in FT-RTBA 
calculations with � = 20 keV, on the logarithmic scale. Here one 
can observe clearly a large amount of the new states emerging 
with more and more of the thermal unblocking in both high and 
low-energy sectors.

In Fig. 3 the calculated GT− response is shown for 78Ni and 
132Sn nuclei. The right panels (b, d) display the GT− strength 
distributions calculated with � = 200 keV in the proton-neutron 
FT-RRPA and FT-RTBA. Similarly to the case of 48Ca, the thermal 
and the PVC effects are clearly visible and cause general fragmen-
tation of the GTR as well as its spread toward low energies. The 
left panels (a, c) demonstrate the temperature evolution of the fine 
structure of the GTR in these nuclei by showing the proton-neutron 
FT-RTBA calculations with � = 20 keV on a smaller temperature 
grid within the Q β window. The enhancement of the GT− strength 
in this energy region with the temperature growth is signaling 
about the increasing beta instability of both nuclei. Presenting the 
GT− strength distributions on a finer temperature grid in panels 
(a,c) of Fig. 3 allows one to see, for instance, at which tempera-
tures the thermal unblocking becomes strong enough to induce the 
formation of new states in the Q β window and, thus, should start 
to influence the beta decay rates. In the cases of 78Ni and 132Sn 
nuclei the low-energy GT− strength distributions change notably 
between T = 0.5 MeV and T = 0.75 MeV, thus, the beta instabil-
ity is expected to increase starting from these temperatures. This 
points out that in modeling astrophysical processes, which occur 
at these and higher temperatures, one has to take into account the 
temperature dependence of the nuclear GT− transitions, in addi-
tion to the thermal effects of the environment.

The GT− strength distributions calculated with the small value 
of the smearing parameter and displayed in the left panels of Fig. 3
allow an extraction of the BGT values that can be compared to 
the available experimental data. As follows from the relations (17), 
(18), BGT (ων) ≡ Bν ≈ S(ων)π�, i.e. the reduced transition proba-
bilities are defined by the peak values of S(ω) multiplied by the 
smearing parameter � for relatively small values of �. In this case 
S(ω) scales linearly with �, so that their product remains con-
stant and independent on �. For example, at T = 0 for the three 
lowest states in 132Sn we have the BGT values of B(1)

GT = 0.037, 
B(2) = 0.607 and B(3) = 0.147 units. The energies of these states 
GT GT
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Fig. 3. GT− strength distribution in 78Ni and 132Sn at various temperatures with respect to the ground states of the parent nuclei. See text for details.

Fig. 4. Same as in Fig. 3, but for the spin dipole resonance (SDR).
with respect to the RMF ground state of 132Sb are E(1) = 0.01 MeV, 
E(2) = 1.11 MeV and E(3) = 2.08 MeV. The latter two excita-
tions may be compared to the experimentally observed ones at 
E(1) = 1.325 MeV with B(1)

GT = 0.364 and E(2) = 2.268 MeV with 
B(2)

GT = 0.0577 [48]. The higher BGT values and the presence of the 
lowest relatively weak GT− state obtained in RTBA may be artifacts 
of the incomplete theoretical description. We already know that 
coupling to the charge-exchange phonons [54], complex ground 
state correlations [59] and higher-order configurations [60] cause 
additional redistribution, upward shift and further fragmentation 
of the strength. We also note that in the RRPA, which does not in-
clude the PVC, the beta decay of 132Sn is very strongly hindered 
(see Fig. 5) because this approach produces only one weak state 
just below the upper integration bound of the Qβ window. In this 
context, the RTBA result demonstrates a significant improvement. 
Since the finite-temperature generalization of the RTBA implies a 
sophisticated derivation in terms of the Matsubara Green functions 
formalism as well as a rather complicated numerical implemen-
tation, as the first step in that direction we generalized only the 
simplest version of the RTBA (the so-called resonant RTBA with 
neutral phonons) for finite temperatures. That is why we do not 
discuss more sophisticated models at T = 0 here, however, they 
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Fig. 5. Beta decay half lives of 132Sn and 78Ni at various temperatures for electron 
density lg(ρYe) = 7.

can be potentially generalized to the case of finite temperature in 
a future work.

The GT− transitions are not the only ones which contribute to 
the beta decay. Indeed, as it was shown in a number of works, the 
first-forbidden transitions also play a role in this process [61–64]. 
In order to evaluate their contribution, we have calculated the 
response of 78Ni and 132Sn nuclei to the spin dipole (SD) oper-
ator V (0)

S D1− = ∑A
i=1 r(i)[
(i) ⊗ Y1(i)] J τ−(i) for Jπ = 0−, 1−, 2− . 

The corresponding strength functions calculated with and without 
nuclear charge form factor reflecting the influence of the proton 
structure, together with the isovector dipole response and Dirac 
γ5 matrix elements, define the contribution of the FF transitions 
to the beta decay rates [61]. Fig. 4 shows the spin dipole re-
sponse (SDR) summed over the angular momenta J = 0, 1, 2 as 
an example of the typical behavior of the FF transitions. Like in 
the previous figure, the right panels (b, d) display the overall SDR 
up to high excitation energy and the left panels (a, c) emphasize 
the fine structure of the SDR in the Q β window on a finer tem-
perature grid. We see that the temperature increase broadens the 
overall SDR distribution and slightly shifts the entire spectrum to-
ward lower energies. Compared to the FT-RRPA calculations, the 
strength is also strongly fragmented at all temperatures. The fine 
structure of the low-energy part of the SDR given in panels (a, c) 
shows a remarkable sensitivity of the FF transitions to tempera-
ture, especially in the case of 78Ni where they change noticeably 
already at T = 0.5 MeV. More strength appears in the Q β window 
with the temperature growth while at T = 2 MeV the lowest states 
are visibly pushed up in energy. The latter occurs due to the de-
crease of the difference between the proton and neutron chemical 
potentials.

The nuclei 78Ni and 132Sn play a very important role of the 
so-called waiting points in the r-process nucleosynthesis while 
78Ni is also relevant to the pre-collapse phase of the core-collapse 
supernovae (CCSN). Ultimately, identical simulation frameworks 
are to be used for both the neutron star mergers, where the r-
process occurs, and the CCSN [65]. Thus, to illustrate the temper-
ature dependence of the beta decay rates, we adopt some fixed 
medium values of electron density ρ and electron-to-baryon ratio 
Ye , such as lg(ρYe) = 7, from the Fuller, Fowler and Newman (FFN) 
temperature-density grid [66–68]. The results for 132Sn and 78Ni 
are summarized in Fig. 5. The values of T1/2 for 78Ni and 132Sn 
are associated with the heights of the histograms in the upper 
and lower panels, respectively. For each temperature, we show the 
beta decay half-lives extracted from the proton-neutron FT-RRPA 
and FT-RTBA strength distributions with the smearing parameter 
� = 20 keV, which ensures converged values of the half-lives. 
The half-lives are given with (GT+FF) and without (GT) contribu-
tions of the FF transitions. The latter contributions are indicated 
in Fig. 5 in percentage with respect to the total beta decay rates 
λ defined as λ = ln2/T1/2. These ratios are not given only for 
(FT)-RRPA in 132Sn at T = 0 and T = 0.5 MeV because of prac-
tically absent GT− transitions. The half-lives have been evaluated 
according to Refs. [61,63,64] while accounting for the temperature 
dependence of the leptonic phase space and detailed balance as in 
Refs. [2,53]. However, in contrast to the Refs. [63,64], in our calcu-
lations no quenching factors were used for the transition matrix el-
ements or for the axial vector coupling constant, and no adjustable 
proton-neutron pairing was introduced. As in Ref. [54], at T = 0 
the proton-neutron RRPA strongly overestimates the T1/2 values in 
both nuclei, in particular, 132Sn looks almost stable, however, the 
proton-neutron RTBA brings them in a very good agreement with 
experimental observations. In the present calculations we found 
that the inclusion of the first-forbidden transitions shortens the 
half-lives slightly further, but the inclusion of ground state corre-
lations associated with the PVC (G SC P V C ) should correct for this 
small shortcoming [59]. We also note that the relative contribu-
tions of the FF transitions to the beta decay rates of 78Ni and 132Sn 
at T = 0 are consistent with the trends discussed in Ref. [64], in 
particular, with the shell-model calculations of Ref. [63]. At T > 0
one can observe a gradual decrease of T1/2 in both nuclei after 
T = 0.5 MeV. A small increase of the total half-lives at this tem-
perature occurs because of the electron Fermi-Dirac distribution 
factor [2] while the nuclear spectra change relatively little. How-
ever, at higher temperature the enhancement of the GT− and FF 
transitions seen in Figs. 3, 4 at low energies starts to be important. 
The contribution of FF transitions is also increasing gradually after 
T > 0.5 MeV in 78Ni while in 132Sn it has a minimum at T = 1
MeV because of strong mutual cancellation of the associated ma-
trix elements. When going from T = 0 to T = 2 MeV, the overall 
FT-RTBA half-lives decrease by a factor of 22 and 632 in 78Ni and 
132Sn, respectively, while the FF transitions contribute to the beta 
decay rates by 40% and 55% at T = 2 MeV, compared to 6% and 
20% at T = 0. Open-shell nuclei are expected to be even more sen-
sitive to low temperatures, therefore, future developments should 
address effects of superfluid pairing.

In Fig. 6 we show separately the 0−, 1− , and 2− components of 
the spin dipole resonance together with the GT− response in 78Ni 
at various temperatures in the Qβ window. Since the SD opera-
tor contains a radial form factor “r”, the SD strength has different 
units, that is reflected on the plot (the 2− strength is consid-
erably quenched to make the comparison possible). One can see 
that at T = 0 there is a 2− state at low energy which brings the 
dominant among the FF transitions contribution to the beta decay 
rates, which are discussed above. With the temperature increase 
this 2− state undergoes fragmentation, while new states of the 0−
and 1− character appear in the Qβ window due to the thermal 
unblocking. At the same time, the GT− strength shows a similar 
growth and redistribution in the low-energy domain. The remain-
ing six FF strength functions contributing to the beta decay [61,63,
64] are variations of the three SDR components with different ra-
dial form factors or the absence of the spin-flip, i.e. demonstrate a 
similar behavior. The calculation of the T1/2 contains all these con-
tributions with different coefficients, and the cumulative growth of 
contributions of all the FF strength functions in the Qβ window 
may be faster than the one of the GT− strength, although the lat-
ter remains dominant in the considered temperature range. This 
can explain the increasing role of the FF transitions with tempera-
ture.
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Fig. 6. The 0−, 1− , and 2− components of the spin dipole response in comparison with the GT− response in 78Ni calculated in FT-RTBA at various temperatures. The spectral 
functions are computed with � = 20 keV to better illustrate and compare the effects of the thermal unblocking mechanism in different channels.
In this work we present the FT-RTBA calculations for the 
strength functions only in the β− branch. They are of a great 
astrophysical interest as a key ingredient for the r-process nu-
cleosynthesis, however, the typical temperatures for it are of the 
order of 100 keV. The nuclear structure impact of such tempera-
tures is relatively small. Similar calculations for the β+ decay and 
electron capture would possibly have a stronger astrophysical im-
pact as they occur, for instance, in the core-collapse supernovae 
within the temperature range of 0-2 MeV. However, as we discuss 
in Ref. [59], for nuclei with a neutron excess the β+ branch may 
require a more sophisticated approach than the resonant FT-RTBA 
of the present form. Such an extended approach should include 
at least complex ground state correlations caused by the PVC ef-
fects, which are found to be essential for the description of the β+
processes in nuclei with a neutron excess. The finite-temperature 
generalisation of the FT-RTBA extended by the G SC P V C is currently 
not existing, but can be developed in the future as the next step 
after our present advancement. The continuum effects [45,69] and 
configurations higher than ph⊗phonon included in the conven-
tional RTBA should also play a role in the description of both β−
and β+ branches, and they will be considered in the future work 
as well.

4. Summary

The nuclear charge-exchange finite-temperature response the-
ory is advanced beyond the random phase approximation. The new 
approach is designed for computing the nuclear proton-neutron re-
sponse at finite temperature taking into account the PVC spreading 
mechanism, in addition to the Landau damping. The time blocking 
technique, which was generalized lately to the case of finite tem-
perature in Refs. [38,47] and now adopted to the isospin-transfer 
excitations, allows for a numerically stable and executable calcu-
lation scheme, which is implemented on the base of quantum 
hadrodynamics in a parameter-free framework.

The temperature evolution of the spin-isospin response in 
closed-shell nuclei 48Ca, 78Ni, and 132Sn is investigated quanti-
tatively and discussed in detail for the temperature range between 
zero and 2 MeV, which is relevant for astrophysical modeling. 
A remarkable enhancement of the Gamow-Teller and spin dipole 
transitions at lowest excitation energies is found already at moder-
ate temperatures, while the fragmentation effects due to the PVC 
mechanism remain strong. We show that this enhancement, as a 
consequence of the thermal unblocking, gives rise to the short-
ening of the beta decay half-lives with the temperature increase 
in hot environments and to the possibly increasing importance of 
the first forbidden transitions with temperature. Being well con-
strained at T = 0 and benchmarked in neutral-channel calculations 
at T > 0, the developed approach can provide an accurate de-
scription of the proton-neutron response, beta decay and electron 
capture rates in a wide range of temperatures and densities. Thus, 
it can support modeling of various astrophysical objects, from su-
pernovae to neutron star mergers.
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