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Advances in ocean observations and models mean increasing flows of data. Integrating
observations between disciplines over spatial scales from regional to global presents
challenges. Running ocean models and managing the results is computationally
demanding. The rise of cloud computing presents an opportunity to rethink traditional
approaches. This includes developing shared data processing workflows utilizing
common, adaptable software to handle data ingest and storage, and an associated
framework to manage and execute downstream modeling. Working in the cloud
presents challenges: migration of legacy technologies and processes, cloud-to-cloud
interoperability, and the translation of legislative and bureaucratic requirements for
“on-premises” systems to the cloud. To respond to the scientific and societal needs
of a fit-for-purpose ocean observing system, and to maximize the benefits of more
integrated observing, research on utilizing cloud infrastructures for sharing data and
models is underway. Cloud platforms and the services/APIs they provide offer new ways
for scientists to observe and predict the ocean’s state. High-performance mass storage
of observational data, coupled with on-demand computing to run model simulations
in close proximity to the data, tools to manage workflows, and a framework to share
and collaborate, enables a more flexible and adaptable observation and prediction
computing architecture. Model outputs are stored in the cloud and researchers either
download subsets for their interest/area or feed them into their own simulations without
leaving the cloud. Expanded storage and computing capabilities make it easier to
create, analyze, and distribute products derived from long-term datasets. In this paper,
we provide an introduction to cloud computing, describe current uses of the cloud
for management and analysis of observational data and model results, and describe
workflows for running models and streaming observational data. We discuss topics
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that must be considered when moving to the cloud: costs, security, and organizational
limitations on cloud use. Future uses of the cloud via computational sandboxes and
the practicalities and considerations of using the cloud to archive data are explored.
We also consider the ways in which the human elements of ocean observations are
changing — the rise of a generation of researchers whose observations are likely to be
made remotely rather than hands on — and how their expectations and needs drive
research towards the cloud. In conclusion, visions of a future where cloud computing is

ubiquitous are discussed.

Keywords: ocean observation, ocean modeling and prediction, cloud, data management, archiving, technology

DEFINING CLOUD COMPUTING AND
PATTERNS FOR ITS USE

The most widely used definition of cloud computing is in Mell
and Grance (2011):

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction.

Essential Characteristics:

e On-demand self-service: A consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed.

e Broad network access: Capabilities are available over the
network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick
client platforms.

e Resource pooling: The providers computing resources
are pooled to serve multiple consumers using a
multi-tenant model.

e Rapid elasticity: Capabilities can be elastically provisioned
and released, in some cases automatically, to scale rapidly
outward and inward commensurate with demand.

e Measured service: Cloud systems automatically control and
optimize resource use by leveraging a metering capability.

Service Models:

e Software as a Service (SaaS): The capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure.

e Platform as a Service (PaaS): The capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages, libraries, services, and tools
supported by the provider.

e Infrastructure as a Service (IaaS): The capability provided to
the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software (Mell
and Grance, 2011).

For this paper, we define the cloud as shared, off-premises user
configurable resources for data storage/discovery and computing.

Butler and Merati (2016) provide another view of the cloud.
Following the framework of A Pattern Language (Alexander
et al, 1977) and applications of patterns to object-oriented
programming in Gamma et al. (1995), they define six patterns
of cloud use:

Cloud-Based Scientific Data - Getting
Data From the Cloud

Intent: Explores integrating the use of cloud-based data and
how scientists can access large volumes of diverse, current and
authoritative data, addresses the problem of locating and using
large amounts of scientific data.

The Section “Architectures for Real-Time Data Management
and Services for Observations” describes streaming data and
an architecture for making it easy to gather data. Also see
Johanson et al. (2016).

Cloud-Based Management of Scientific
Data - Storing Data in the Cloud

Intent: Explores storing and managing data in the cloud.
Addresses the problem of ever increasing data quantities with
decreasing budgets for data management. Explores the ways
scientific projects can meet data access and dissemination
requirements such as the U.S. Public Access to Research Results
(PARR) mandate (Holdren, 2013).

The section on the NOAA Big Data Project and open
data and archiving are examples of this pattern. Also see
Meisinger et al. (2009).

Computing Infrastructure for Scientific

Research
Intent: Explores the ways in which cloud computing, in the form
of PaaS or IaaS could be used as part of a research program
and for teaching. It addresses the need for larger computational
capabilities, especially under constrained budgets.

The modeling efforts described in later sections are examples
of this pattern.

Analysis in the Cloud
Intent: Explores conducting analyses in the cloud. Addresses the
problem of wanting to perform analyses on ever larger datasets
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and on datasets from multiple sources. Explores the secondary
question of ways scientific projects can standardize analysis tools
among geographically distributed researchers.

The section entitled “Architectures for Real-Time Data
Management and Services for Observations” is an example of this
pattern, as are Henderson (2018) and Gorelick et al. (2017).

Visualization

Intent: Explores creating visualizations using cloud-based tools
and making the visualizations available via the cloud. Addresses
the need to visualize larger amounts of data and the opportunities
provided by improved graphics processors and display devices
such as VR headsets.

The section entitled “Workflow on the cloud” shows examples
of this pattern as does Allam et al. (2018). Workflow tools can
visualize more than just the data, they can reveal unexpected
dependencies, bottlenecks, and participants’ roles.

Results Dissemination in Real
Time/Storytelling/Outreach

Intent: Explores ways in which cloud-based platforms and
tools can be used to reach new audiences. Addresses the
need to make research results rapidly available and relevant
to a wide variety of audiences - scientific and non-scientific
(Butler and Merati, 2016).

The US Integrated Ocean Observing System (I00S) Regional
Associations’ work described below are examples of this pattern.

CURRENT USES - OBSERVATIONS AND
MODELS IN THE CLOUD

To expand upon the patterns above, three specific use cases are
presented — one focused on using the cloud to disseminate data,
a second one describing how the IOOS Regional Associations
use a number of patterns for their observational and model
data, and a third one based on the European Copernicus Marine
Environment Monitoring Service and the capabilities of Google
Earth Engine and Google Cloud Datalab. These use cases are
intended to provide a pragmatic introduction to using the cloud
and specific implementations, to describe what data or outputs
and analysis/modeling tools have been moved to the cloud, to
show preliminary results and challenges, and to tell where we see
these projects going.

Observational Data in the Cloud: The
NOAA Big Data Project

The U.S. National Oceanic and Atmospheric Administration’s
(NOAA) Big Data Project (BDP), announced in 2015, is a
collaborative research effort to improve the discoverability,
accessibility, and usability of NOAAs data resources. NOAA
signed five identical Cooperative Research and Development
Agreements (CRADAs) with collaborators: Amazon Web
Services (AWS), Google Cloud Platform (GCP), IBM, Microsoft
Azure, and the Open Commons Consortium (OCC). The BDP
is an experiment to determine to what extent the inherent value
in NOAAs weather, ocean, climate, fisheries, ecosystem, and

other environmental data can underwrite and offset the costs of
commercial cloud storage for access to those data. The project
also investigates the extent to which the availability of NOAA's
data on collaborators’ cloud platforms drives new business
opportunities and innovation for U.S. industry.

The BDP facilitates cloud-based access to NOAA data to
enhance usability by researchers, academia, private industry, and
the public at no net cost to the American taxpayer. One example
is the transfer of NOAAs Next Generation Weather Radar
(NEXRAD) archive to cloud object stores. The entire NEXRAD
88D archive (~300 TB, 20 M files) was copied from NOAA’s
National Centers for Environmental Information (NCEI) to
AWS, Google and OCC in October 2015. Marine datasets include
elements of the NOAA Operational Forecast System (OFS'), sea
surface temperature datasets, NCEP/NCAR reanalysis data, and
some National Marine Fisheries Service (NMFS) Trawl, Observer,
and Essential Fish Habitat data. The full list of available datasets
can be found at https://ncics.org/data/noaa-big-data-project/.
Under the CRADA, collaborators are allowed to charge for the
“marginal cost of distribution.” To date, however, none of the
collaborators has implemented this provision.

Following the NEXRAD release on AWS:

e In March 2016, users accessed 94 TB from NCEI and
AWS combined, more than doubling the previous monthly
maximum from NCEL

e The amount of outgoing NEXRAD Level II data from NCEI
has decreased by 50%.

e New analytical uses of the NEXRAD data became
manifest — bird migration, mayfly studies.

e 80% of NOAA NEXRAD data
now served by AWS.

orders are

(Ansari et al., 2017)

Another approach has been the integration of NOAA data
into cloud-based analytical tools, including GCP’s hosting of
NOAAS historical climate data from the Global Historical
Climatology Network (GHCN). By offering access through
Google BigQuery, from January 2017 to April 2017 1.2 PBs of
climate data was accessed via an estimated 800,000 individual
accesses. This occurred without Google or NOAA advertising the
availability of the data.

Thus far, the NOAA Big Data Project and the CRADA
partners have published ~40 NOAA datasets to the cloud. This
has led to increased access levels for NOAA open data, higher
levels of service to the data consumer, new analytical uses for
open data, and the reduction of loads on NOAA systems. Some
lessons learned to date include:

e There is demonstrable unmet demand for NOAA data -
as additional services are made available, more total data
usage is observed.

e Of equal value to NOAA’s data is NOAASs scientific and
analytical expertise associated with the data. By working
with the CRADA partners to describe and reformat
datasets, NOAA’s expertise ensures that the “best” version

'https://docs.opendata.aws/noaa-ofs- pds/readme.html
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of a data type or dataset is made available. If scientific
questions arise, NOAA scientists can assist knowing exactly
which version of the data is being used.

e Providing copies of NOAAs open data to collaborators’
platforms to enable cloud-based access is a technically
feasible and practical endeavor and it improves NOAA
security posture by reducing the number of users traversing
NOAA networks to access data.

e Beyond the free hosting by cloud providers of several
high-value NOAA datasets, another outcome of the NOAA
BDP has been the development of an independent data
broker entity or service that can facilitate publishing NOAA
data on multiple commercial cloud platforms (Figure 1).
The role of an intermediate “data broker” has emerged as a
valuable function that enables the coordinated publishing
of NOAA data from federal systems to collaborators’
platforms, and could become a common Service supporting
all of NOAA publishing data to the cloud.

e Integrating NOAA data into cloud-based tools, as opposed
to simply making the original NOAA data files available,
has great potential to increase usage. However, expertise
and labor is required to properly load NOAA data
into those tools.

e A defined commitment and level of service has emerged
as a need for both NOAA and the collaborators for the
partnership to be sustained.

e Noteworthy is the challenge in generating equal interest on
the part of CRADA partners across all of the NOAA data
domains. To date, weather related data has been the most
requested as part of the NOAA BDP.

The NOAA Big Data Project is scheduled to end in May
2019. Looking toward the future, the BDP seeks, in discussions

with current CRADA participants and NOAA managers,
to define a sustainable partnership to continue providing
cloud-based data access.

Cloud Use Within 1I00S for Observational

Data and Model Output

The Present

Within the Integrated Ocean Observing System (IOOS)
enterprise, many Regional Associations (RA)* have migrated
ocean observation data management and distribution services to
the cloud. Cloud usage varies significantly between IOOS RAs,
with some deploying most of their web service infrastructure
on the cloud, some deploying infrastructure to shared data
centers with or without cloud components, and others utilizing
primarily on-premises infrastructure that sometimes includes a
cloud backup capability.

IOOS Regional Associations’ that have migrated some
infrastructure to the cloud have focused on porting existing
applications from their own infrastructure, and may not have re-
architected to leverage the unique capabilities of cloud services.
This represents an incremental approach to cloud adoption, as
existing services and data on RA-owned hardware are migrated
first, and then, as institutional familiarity with the cloud services
grows, new features may be plugged in for better operation.

The most common use of cloud computing within IOOS’ 11
RAs is for web applications and data access services. This includes
data servers that provide both observation and forecast data to
end users [e.g., THREDDS (Thematic Real-time Environmental
Distributed Data Services), ERDDAP (Environmental Research
Division’s Data Access Program), and GeoServer], map-based
applications, as well as standard web pages. IOOS RAs have

Zhttps://ioos.us/regions

NOAA Data Services

Data Broker
(CICS-NC)

Federal
Security
Boundary

FIGURE 1 | Data broker architecture diagram for Cloud ingest (source: NOAA BDP). CICS-NC: Cooperative Institute for Climate and Satellites — North Carolina.
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deployed THREDDS and ERDDAP servers on the cloud using
both virtual machine and Docker runtime environments. The
IOOS Environmental Data Server, or EDS’, a web-mapping
platform for oceanographic model visualization, is run on the
cloud using the Docker platform. GLOS, the Great Lakes IOOS
regional association, uses cloud-based virtual machines to run
their buoy portal application and the Great Lakes acoustic
telemetry system*-°. Figure 2 depicts the number of RAs currently
using, or planning to use within 2 years, the cloud for a
particular use case.

Several RAs currently use or are actively investigating the
cloud as a direct data ingest and storage service for near-real time
observations. In this scenario, a server or service is deployed to a
cloud-based resource as a direct ingest point for data telemetered
from buoys or other sensors operated by the RAs or their
affiliates. An example of this is GCOOS, the IOOS region for the
Gulf of Mexico, and its affiliate Mote Marine Laboratory’s use of
a cloud-based instance of Teledyne Webb Research’s Dockserver
application. Dockserver receives data transmitted by a glider
through the Iridium communications network and transfers it
to the Internet. Mote’s Dockserver has been cloud-based since
2010, receiving data packets in real-time from operational gliders
via satellite downlink. Leveraging the cloud has provided a more
stable operating environment for Mote’s glider operations, and it
is far less vulnerable to weather-related hazards than on-premises
systems, especially if they are located on or near the coast.

3https://eds.ioos.us
*https://glbuoys.glos.us
*https://glatos.glos.us

GLOS is experimenting with transitioning their locally hosted
near real-time data ingest system to a cloud-ready architecture.
The primary change involves migrating from a custom sensor
data ingest platform to one more suitable to leverage solutions
such as AWS’ Internet of Things (IoT) services. Currently,
GLOS collects transmissions from deployed sensors in eXtensible
Markup Language (XML) format via cellular modem to a locally
managed secure file transfer protocol (SFTP) service, which
then unpacks, stores, and distributes the data. In the new
system, nearshore LoRaWAN (Long Range Wide Area Network)
devices that connect to Internet-connected gateways may be
used to transmit data using HTTP POST or MQTT (message
queuing telemetry transport) to remote web services to read,
store and re-publish the data. These web services could be more
readily deployed on cloud platforms, or, if compatible, use the
aforementioned IoT services provided by cloud vendors. GLOS
will continue to investigate these pathways over the next 2 years
along with its full-scale data center migration to the cloud.

The most significant value that cloud has provided to IOOS
RAs to date is its reliability. CARICOOS, the IOOS region for the
Caribbean, migrated much of their web presence and associated
data services to AWS in 2015. The motivation for the move
was mitigation of power grid reliability issues at their University
of Puerto Rico’s Mayaguez facility. Generator power proved
insufficient, and the result was unreliable Internet, data flow,
modeling, webpage, and THREDDS server uptimes.

CARICOOS experienced a significant reduction in outages
after the migration. During the 2017 hurricane season, they
were able to provide near continuous uptime for their most
essential data flows, data services, and web pages for use in
planning and executing relief efforts. Despite widespread power

Cloud Use Cases within US 100S

12

Number of RAs

Data Access Obs
Services Ingest/Storage

Modeling

Offsite Backup
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FIGURE 2 | Current and planned Cloud use within the IOOS Regional Associations.
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outages and catastrophic damages sustained by Puerto Rico and
other Caribbean islands during the hurricanes, CARICOOS’ data
buoys that had not been damaged in the storms were able
to remain online.

Backup and redundancy are also common use cases for
cloud computing. Since recovering from Hurricane Maria,
CARICOOS has renewed their efforts to develop and test
high-performance computing (HPC) ocean models in the
cloud. CARICOOS’ modelers have been experimenting with
a regional high-resolution Finite Volume Community Ocean
Model (FVCOM) on AWS, and next in line for migration
are their Weather Research Forecast (WRF) implementations,
Simulating Waves Nearshore (SWAN) and SWAN beach
forecasts and an updated Regional Ocean Modeling System
(ROMS). These models currently run on local servers and
CARICOOS’ goal is to maintain local-cloud redundancy in their
operational modeling efforts.

Several of IOOS’ RAs have organizational characteristics that
affect decisions on whether or not to embrace the cloud. Several
RAs share a common IT provider, which pools resources and runs
its own self-managed data center similar to a cloud service. This
data center is housed in a co-location facility and provides an
expandable pool of compute nodes and other resources that allow
the RAs to meet customer needs for data services. While no true
cloud backup exists yet for this system, it is architected to allow
a future cloud migration either in the case of emergency or if it
makes economic sense to do so. Many IOOS RAs are affiliated
with public universities or other research organizations that
provide lower cost internal IT support and services, including
data management and web publishing infrastructure. Due to
these affiliations, the RAs can take advantage of considerable
organizational investment in IT infrastructure and support that
would have to be replicated in a cloud environment. In effect, this
makes the decision to adopt the cloud an indirect one for these
RAs: if their parent organizations or IT provider decide to make
the move, they will be included.

The RA for the Pacific Islands, PacIOOS (Pacific Islands
Ocean Observing System) is run primarily through the University
of Hawaii (UH). The University provides IT infrastructure in
the form of server rooms, cooling, network connectivity and
firewalls at minimal costs (charged as an indirect cost to the
grant). Thus, for an initial investment in hardware, PaclOOS
established a variety of IOOS recommended data services,
and obtained relatively secure data warehousing for individual
observing system components — gliders, High Frequency Radars,
model output, etc.

Two of PacIOOS higher use datasets include real-time
observations supplied by offshore wave buoys and forecasts
from numerical models. PacIOOS THREDDS servers distribute
hundreds of gigabytes of data per month of these data, risking
large data egress costs on commercial cloud platforms and
making the cloud not yet economically viable. Bandwidth
and latency for data publishing is also a concern. PaclOOS
forecast models generate about 15 GB/day in output. These
models are run on UH hardware, and it is no problem getting
the data between modeling clusters and the PacIOOS data
servers, whereas bandwidth limitations might affect routine

data publishing workflows to the cloud. High volume modeling
input/output (I/O) can be handled efficiently on local hardware.

The Future

Challenges, cost barriers, and inertia aside, commercial cloud
platforms increasingly offer novel services and capabilities
that are difficult or impossible to replicate in an on-premises
IT environment. Managed services, aka “software-as-a-service,”
provide flexibility and scalability in response to changes in
user traffic or other metrics that are not easily replicated in
self-owned systems and environments. “Serverless” computing,
where predefined processes or algorithms are executed in
response to specific events, offers a new way to manage
data workflows, and are often priced extremely competitively
when their unlimited elasticity and zero-cost for periods of
non-operation are factored in. Event-based computing using
serverless cloud systems is well suited to real-time observation
processing workflows, which are inherently event-driven.

For IOOS, or other observing systems, the cloud may become
compelling as these features are improved and expanded upon.
Instead of data first being telemetered to a data provider’s or
RA’s on-premises servers, it could be ingested by a cloud-based
messaging platform, processed by a serverless computing process,
and stored in a cloud-based data store for dissemination, all in a
robust, fault- and environmental hazard-tolerant environment.

In summary, the motivations and benefits in adopting cloud-
hosted services for IOOS RAs have so far been the following:

e Locally available computing infrastructure and/or power
grids can be unreliable.

e The operational cost of cloud hosting can be lower. The
cost of cloud hosting is highly dependent on a particular
application, but IOOS could develop a set of best-practices
to end up with lower costs for cloud hosting.

e Hardware lifecycle costs are reduced. The periodic
replacement of critical server and network infrastructure is
eliminated with cloud-hosted services.

e Cloud scalability can help meet user data request peaks.

e Greater opportunity for standardization exist by
providing all RAs with a standard image for commonly
used data services.

Undertaking a cloud migration is not without challenges,
however. Data integrity on cloud systems must be ensured
and characterized accordingly in data provenance metadata (see
Section “Data integrity: How to Ensure Data Moved to Cloud
Are Correct”). Users must have confidence in the authenticity
and accuracy of data served by IOOS RAs on cloud providers’
systems, and the metadata provided alongside the data must be
sufficiently developed to allow this. The IOOS RA community
will need to balance these and other concerns with the potential
benefits both in choosing to move to the cloud and in devising
approaches by which to do so.

Copernicus and Google: Earth Engine,
Cloud and Datalab

Copernicus is the European Union’s Earth Observation Program.
It offers free and open information based on satellite and
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in situ data, covering land, ocean and atmospheric observations,
(European Space Agency, 2019a). Copernicus is made of three
components: Space, in situ, and Services. The first component,
“Space;” includes the European Space Agency’s (ESA) Sentinels,
as well as other contributing missions operated by national and
international organizations.

The second component of Copernicus, “in situ,” collects
information from different monitoring networks around Europe,
such as weather stations, ocean buoys, or maps. This information
can be accessed through the Copernicus Marine Environment
Monitoring Service (CMEMS) (European Space Agency, 2019b).
CMEMS was established in 2015 to provide a catalog of services
that improved knowledge in four core areas for the marine sector:
Maritime Safety, Coastal and Marine Environment, Marine
Resources, and Weather, Seasonal Forecasting, and Climate. The
in situ data is key to calibrate and validate satellite observations,
and is particularly relevant for the extraction of advanced
information from the oceans.

Sentinel data can be accessed through the dedicated
Copernicus Open Access Hub (European Space Agency, 2019¢),
and can be processed using the Sentinel-2 and Sentinel-3
Toolboxes (Copernicus, 2019a,b), but Google Earth Engine
(GEE) and Google Cloud (GC) provide a simplified environment
to access and operate data online (Google Cloud, 2019; Google
Earth Engine, 2019). The data is accessible through GC Storage
and directly available using the GEE dedicated platform. The
access and management of GEE is simplified using a Python API
which interacts with the GEE servers through the GC Datalab
(Google Cloud Datalab, 2019). The Datalab allows advanced
data analysis and visualization using a virtual machine within
the Google datacenters, allowing high processing speeds by
means of open source coding. Moreover, the Datalab is also
useful for machine learning modeling, which makes it very
interesting when working with different marine in situ and
satellite data combinations.

The main limitation of these set of tools is the lack
of integration between some data sources and the virtual
environment. At the moment, satellite data is stored in the cloud,
but in situ data is just available through the dedicated Copernicus
service, making the process of downloading and accessing this
information not as straightforward as in the Earth observation
case. However, the inclusion of machine learning techniques
and a dedicated language for satellite data treatment makes the
use of GEE very attractive, especially for academic and R&D
applications. The Google computing capabilities make the GEE-
GC-Copernicus combination a realistic option for future ocean
observation applications.

OPERATIONAL CONSIDERATIONS

Costs

Comparing the cost of working in the cloud with traditional
local computing is a challenge. Deciding which costs should be
included to make an equitable comparison requires considering
factors such as true infrastructure costs - not only the purchase
of hardware but the costs of housing it, utility costs, the

cost of personnel to run the system, and how long it will
be before the system needs to be replaced. Systems hosted at
universities may have unusually low costs due to State or other
support — should these costs be used or should the true cost
be calculated without external support? On the other hand,
cloud providers may provide reduced cost resources or grants
of compute time and storage to help new users move to the
cloud. The terms and conditions of these grants may affect the
long term costs of migrating and may also introduce concerns
about data ownership.

Differences in use also affect estimating costs. A project that
only involves storing data in the cloud is easy to price out,
and the costs of the various types of storage can be balanced
against the rapidity with which the data are needed. The benefits
of compressing data and finding ways to reduce the size and
frequency of data egress from cloud storage can be fairly easily
determined. Maintenance of data in the cloud should also be
included in cost estimations. The cost of running a model in
the cloud is much harder to compute due to variables such as
number of virtual machines, the number of cores, what compilers
or libraries are needed, grid sizes and time steps, what output
files need to be downloaded, and whether analyses of the output
can be done in the cloud. If the model is to be used for real time
forecasting, then the wall clock run time of the model is critical
and may require more expensive compute options to ensure that
runs are completed in time.

Molthan et al. (2015) described efforts to deploy the Weather
Research and Forecast (WRF) model in private NASA and
public cloud environments and concluded that using the cloud,
especially in developing nations, was possible. Cost ran from
$40-$75 for a 48-h simulation over the Gulf of Mexico.

Mendelssohn and Simons (2016) provide a cautionary tale on
deploying to the cloud. As a part of the GeoCloud Sandbox, they
deployed the ERDDAP web-based data service to the cloud and
concluded that hosting the service in-house was still cheaper.
They also found that, except in cases of one-time or infrequent
needs for large scale computation, the limitations described
in Section “Limitations/Barriers Imposed by U.S. Government
Policies” could easily make use of the cloud untenable.

Siuta et al. (2016) looked at the cost of deploying WRF
under updated cloud architectures and options and described
how resource optimization could reduce costs to be equivalent
to on-premises resources.

Generally, running in the cloud can be equal to, or possibly
cheaper than running on-premises, but reaping the full benefits
requires tuning and experimentation to get the best performance
at the lowest cost.

Security

Security concerns are often cited as an impediment to cloud
adoption, especially by government researchers. Adoption
requires a shift in thinking on the part of institutional security
managers from how to secure their resources, via mechanisms
such as firewalls and trusted connections, and a shift on the
part of users from hardware that they can see and manage to
the more amorphous concept of unseen virtual machines. Unless
on-premises infrastructures for data services are completely
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isolated from public networks, the logical access requirements
for on-premises and cloud-hosted infrastructure are very similar.
Physical access to local infrastructure is visible, while physical
access to cloud hosting solutions is less easily observed.
Commercial cloud providers go to great effort to ensure the
security of their data centers and users should ensure that these
meet local IT requirements.

While the challenges are real, arguably the cloud can be
the safest place to operate. Cloud operating systems are up
to date on patches and upgrades, redundancy in disks ensures
rapid recovery from hardware failures, tools such as Docker can
containerize an entire environment and allow for rapid restarts
in case of problems, and the fact that cloud systems need to
meet commercial level security/data confidentiality requirements
drives additional levels of system resilience. Coppolino et al.
(2017) provide a good review of cloud security. While their
paper is aimed more at business needs, their observations and
conclusions are equally valid for scientific data. NIST also
provides guidelines on security and privacy in the cloud (Jansen
and Grance, 2011; Joint Task Force, 2017).

Limitations/Barriers Imposed by U.S.

Government Policies

The dichotomy in U.S. Federal Government IT positions when
policy is compared to strategy is evident with regards to cloud
services. The U.S. Government proclaims an affinity for cloud
services and has done so for the last 8 years (Kundra, 2011;
American Technology Council, 2017). The biggest hurdle to
cloud adoption has not been technical implementation, nor a
lack of desire; it has been Federal IT policy. Offices using cloud
services have had to deal with extensive re-engineering and
documentation efforts to retroactively address IT requirements.
While the merits of Federal IT policy are not under evaluation, it
does not lend itself to rapid adoption for cloud services.

Here are notable policy barriers to Federal cloud adoption:

1. All cloud services used by the Federal Government must be
FedRAMP approved. The Federal Risk and Authorization
Management Program, FedRAMP, is a program established
to ensure IT services are secure. While major cloud
platform providers have undertaken the cost to ensure their
FedRAMP certification, most smaller providers are not
incentivized to spend the resources on FedRAMP approval.

2. All Federal IT traffic has to be routed via a Federally
approved Trusted Internet Connection (TIC). This policy
requirement is particularly onerous and restrictive to
cloud adoption. It requires cloud users to configure or
purchase dedicated secure routing between the cloud host
provider and the end user. This places a large configuration
burden and cost upon users, and might force the use of
lower performing virtual private network (VPN) solutions.
This requirement also negates the opportunity to leverage
IT infrastructure co-location benefits with non-Federal
collaborators due to the additional network latency added
by the Federally derived network traffic routing. Plans
are being developed to address the burdens of the TIC
requirement (Federal CIO Council, 2018).

3. Federal cloud deployments are not exempt from any of
the IT configuration/security requirements that apply to
on-premises deployments. For example, the requirement
for various monitoring and patch control clients to be
installed on Federal IT systems is a hurdle as these clients
are not available for many cloud platforms.

4. Procurement, especially the prescriptive nature of the
Federal Acquisition Regulation (FAR) does not lend
itself well to cloud adoption. Cloud providers innovate
rapidly and, when developing contract requirements, it is
impossible to know what future services may be available
for a particular business need; thus handicapping some
of the innovation potential of cloud solutions. Plans have
been released for the US Government to develop cloud
service catalogs to increase the efficiency with which the
government can procure cloud services®.

5. Budgeting, specifically in relation to cloud procurement,
can be challenging. One of the primary advantages of
cloud computing is the flexibility to scale resources based
on demand. Budgeting in advance is therefore difficult
or impossible: allocate too little and risk violating the
Anti-Deficiency Act; allocate too much and risk needing
to de-obligate unused funding at the end of the contract.
NASA, as part of the Cumulus project on AWS, has
developed monitoring functions for data egress charges
(Pilone, 2018). In practice, they effectively operate without
restriction until the budget limit is reached, and then shut
down. This is not an optimal solution if users depend on
continuous data availability.

These factors diminish the benefits of nimble deployment and
increase the cost and complexity of Federal cloud applications.

Data Integrity

Data integrity addresses the component of data quality related
to accuracy and consistency of a measurement. It is extremely
important to ensure the quality of data that are used in the
assessment of our environment. Broad confidence in the integrity
of data is critical to research, and decisions driven by this
research. The preservation of data integrity is an important
consideration in the complete data lifecycle.

Software considerations for cloud hosted data processing and
data management processes are no different from those hosted
on-premises. Software should be tested and versioned, and the
version of software used in the manipulation of the data should
be cataloged in metadata. While most of the software on a
cloud-hosted solution are bespoke solutions written for specific
data needs, a component in a software architecture can depend
on cloud host provided infrastructure. Often these solutions
are unique to a particular cloud provider. Examples are the
stores provided by popular commercial cloud platforms. Unlike
commonly used open-source relational database servers or other
storage frameworks, the inner working of these data stores are
proprietary, and therefore opaque to the data manager. This
raises the concern of the potential for data errors that could be

Chttps://cloud.cio.gov/strategy/
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introduced and affect the integrity of hosted data. It is imperative
that methods, such as periodic checksum verification, be applied
to ensure data integrity are preserved over the lifetime of the
cloud-hosted storage.

Due to the off-site nature of cloud hosting, serious
consideration should be given to the preservation of data integrity
during the data transmission from on-premises facilities to cloud
hosting. The financial sector has placed a heavy emphasis on this
subject and the environmental data sector can benefit greatly
from tapping into methodologies and processes developed by
other sectors. One such technology is Blockchain.

Blockchain, or digital general ledger technology, is a category
of technologies that record transactions between two parties as
digital encrypted records, or blocks. As each block contains a
digital reference to the previous record as a cryptographic hash,
these records create an immutable chain of transactions, or a
blockchain. Blockchain implementations are often distributed,
and by design can track transactions on many different
computers. Many commercial Blockchain solutions are available,
and this technology is widely used, especially in the financial
sector. The transactions embedded in a blockchain, combined
with the immutability of embedded metadata, makes this
technology a favorable framework for data provenance tracking.
In combination with digital checksums computed against the
data embedded in the Blockchain entries, this technology can also
support elements used to ensure data integrity. The decentralized
nature of Blockchain makes it ideally implementable on cloud
solutions and distributed data management systems. Blockchain
is a complex topic, worthy of a discussion by itself. For an
introduction to using blockchain in science, see Brock (2018)
and Extance (2017).

These important considerations that could affect the short and
long term integrity of the data are critical to maintain trust in
data, but do not detract from the benefits of cloud hosted data
processing and data storage.

EMERGING CLOUD TECHNOLOGIES
FOR OBSERVATIONS AND MODELING

Architectures for Real-Time Data
Management and Services

for Observations

Rapidly growing volumes of application-, wuser-, or
sensor-generated data, have led to new software tools built
to process, store, and use these data. Whether the data are
primary, as in the case of sensor-generated data streams, or
ancillary, such as application-generated log files, software stacks
have emerged to allow humans to understand and interpret these
data interactively and downstream applications to monitor them
continuously for abnormal behavior, change detection, or other
signals of interest.

While observation data do not always constitute “big
data,” sensor data in general fits this classification, especially
as the measurement frequency of the sensor increases.
Low measurement frequency may be due to limitations

in communication standards or speeds (ie., satellite
communications costs and the opacity of the ocean to radio
frequencies) or in the data processing pipeline that prevent
more frequent measurements, not limitations of the sensors
themselves. Real-time data streaming applications have the
potential to change this paradigm. Combined with server-based
Edge computing and the scalability of cloud platforms as
execution environments, there is the potential to measure ocean
conditions on scales and at precisions not previously possible.

Cloud platforms also reduce the geographic risk associated
with research-grade ocean observation systems. Typically, an
institution deploys sensors into the ocean and communicates
and/or downloads data from them via a “base station” -
a physical computer at said institution. In extreme weather
events — situations where ocean observing data are critical to
decision-making - the stability of the physical computer can be
compromised due to power outages, network connectivity and
other weather-related nuisances. Putting the software required to
keep observing systems running into a cloud system can mitigate
most of the geographic risk and provide a more stable access
point during events.

One processing model that adapts well to the cloud is stream
processing, a technology concept centered on being able to react
to incoming data quickly, as opposed to analyzing the data in
batches. It can be simplified into three basic steps:

e Placing data onto a message broker
e Analyzing the data coming through the broker
e Saving the results

Stream processing is a natural fit for managing observational
ocean data since the data are essentially a continuous time-
series of sensor measurements. Data from ocean sensors, once
telemetered to an access point, can be pushed to a data-streaming
platform (such as Apache Kafka) for analysis and transformation
to a persistent data store. Many streaming platforms are designed
to handle large quantities of streaming data and can scale up
by adding additional “nodes” to the broker as data volume
increases. As data volume increases, the analysis may also need to
increase. This can be done by increasing the resources available
to the analysis code or by adding additional analysis nodes.
Each streaming platform is different and has its advantages and
disadvantages that should be taken into account before deciding
on a solution. Vendor provided end-to-end systems include GCP
Dataflow, AWS Kinesis, and Azure Stream Analytics.

An example cloud-architected system for ocean observation
data handling system could use this workflow:

Stream system is spun up on cloud resources and, using the
provided client tools, is hooked into receive a continuous
stream of ocean observations from multiple stations.

Processing code is written using the provided client
application programming interfaces (APIs) to:

1. Quality control the data - detect missing/erroneous data
using Quality Assurance of Real Time Oceanographic Data
(QARTOD) and other quality control software.

Frontiers in Marine Science | www.frontiersin.org

May 2019 | Volume 6 | Article 211


https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles

Vance et al.

From the Oceans to the Cloud

2. Alert managers and users based on pre-defined or
dynamic conditions.

3. Calculate running daily, weekly and monthly means
for each parameter.

4. Store processing results back onto the processing stream as
well as in a vendor-supplied analytical-friendly data format,
such as AWS Redshift or BigTable, for additional analysis.

5. Export data streams to Network Common Data Form
(netCDF) files for archiving and hosting through
access services.

The architectures described above provide a number of tools
to better support data stewardship and management when setting
up a new system and workflow in the cloud. Some of these
needs and opportunities will be described in later sections
on data provenance, data quality and archiving. Migrations of
existing applications have taught helpful lessons in coherently
answering the question “hey wait, who’s responsible for these
data?” as they move along the pipeline from signals to messages
to readings in units to unique records to collated data products
to transformed information. Migration will require reexamining
data ownership - is it correctly documented, will moving to
the cloud intentionally or unintentionally transfer ownership
to another entity, and who will maintain the data in the
cloud - and how useful the data are for further computations
or analyses. The following section addresses some of these
questions and challenges.

Modeling Workflows in the Cloud

The traditional workflow for ocean modeling is to run a
simulation on an HPC cluster, download the output to a local
computer, then analyze and visualize the output locally. As ocean
models become higher resolution, however, they are producing
increasingly massive amounts of data. For example, a recent
one-year simulation of the world ocean at 1 km resolution
produced 1PB of output. These data are becoming too large to
be downloaded and analyzed locally.

The cloud represents a new way of operating, where large
datasets can be stored, then analyzed and visualized all in
the cloud in a scalable, data-proximate way. Data doesn’t
need to leave the cloud, and can be efliciently accessed
by anyone, allowing reproducibility of results as well as
supporting innovative new applications that efficiently access
model data. Moving analysis and visualization to the cloud
means that modelers and other researchers need only lightweight
hardware and software. The traditional high-end workstation
can be replaced by a simple laptop with a web browser and
cell-phone-hotspot-level Internet connection.

With these benefits come new challenges, however, some
cultural, some technical and some institutional. We will examine
the benefits of the Cloud for each component of the simulation
workflow and then discuss the challenges.

Simulation and Connectivity Between Nodes

Numerical models solve the equations of motion on large
3D grids over time, producing 4D (time, depth, latitude,
longitude) output. To reduce the time required to produce

the simulation, the horizontal domain is decomposed into
a number of small tiles, with each tile handled by a
different CPU in a parallel processing system. Because the
information from each tile needs to be passed to neighboring
tiles, interprocess communications require high throughput
and low latency.

For large grids that require many compute nodes, this
traditionally has meant using technologies such as Infiniband.
Of the major cloud providers, Microsoft Azure offers Infiniband
(200 Gb/s), Amazon offers an Enhanced Network Adaptor
(20 Gb/s) and Google offers no enhanced networking
capability. Because cloud providers provide nodes with
sizes up to 64 cores, however, smaller simulations can be
run efficiently without traversing nodes. In many cases,
simulations with hundreds of cores perform reasonably well
on non-specialized cloud clusters, depending on how the
simulation is configured.

Storage

Model results are traditionally stored in binary formats designed
for multidimensional data, such as NetCDF and hierarchical data
format (HDF). These formats allow users to easily extract just the
data they need from the dataset. They also allow providers the
ability to chunk and compress the data to optimize usage and
storage space required.

While these formats work well on traditional file systems,
they have challenges with object storage used by the Cloud (e.g.,
S3). While NetCDF and HDF files can simply be placed in
object storage and then accessed as a filesystem by systems like
FUSE, the access speed is very poor, as multiple slow requests
for metadata are required for each data chunk access. This has
given rise to new ways to represent data that use the NetCDF
and HDF data models on the Cloud. The Zarr format, for
example, makes access to multidimensional data efficient by
splitting each chunk into a separate object in cloud storage, and
then representing the metadata by a simple JSON (JavaScript
Object Notation) file.

With cloud storage, there are no limitations on dataset size,
and the data is automatically replicated in different locations,
protecting against data loss. A large benefit of storage data
on the Cloud is that the buckets are accessible via HTTP
(HyperText Transfer Protocol), so efficient access to the data
is possible without the need for web services like THREDDS
or OPeNDAP (Open-source Project for a Network Data
Access Protocol).

Analysis

Analysis of model data on the Cloud is greatly enhanced by
frameworks that allow parallel processing of the data (e.g., Spark,
Dask)’. This takes advantage of the Cloud’s ability to allow
arbitrary scale up processing. An analysis that takes 100 min on
one processor costs the same as an analysis that takes 1 min
on 100 processors. The analysis runs on the Cloud, near the
data, and with server/client environments like Jupyter, the only
data transferred are images and javascript objects to the user’s

“http://docs.dask.org/en/latest/spark.html
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browser. The Pangeo (2018) project is developing a flexible,
open-source, cloud-agnostic framework for working with big
data on the Cloud, using containers and container orchestration
to scale the system for number of users and number of processors
requested by each user.

Visualization

Display of data on large grids or meshes is challenging in the
browser, but new technologies like Datashader allow data to
be represented directly if the number of is polygons is small,
but represented as dynamically created images if the number of
polygons is large (Figure 3). Signell and Pothina (2019) used the
Pangeo framework with these techniques to analyze and visualize
coastal ocean model data on the Cloud.

Challenges

There are several challenges with moving to cloud simulation,
storage, analysis and visualization of model data. Likely, the
largest is the apparent cost. Computation can appear expensive
because local computing is often subsidized by institutional
overhead in the form of computer rooms, power, cooling,
Internet charges and system administration. Storage is often
expensive but offers increased reliability and the benefit of
sharing your data with the community, essentially getting a data
portal for free (Abernathey, 2018). The main challenge therefore

might be getting institutions and providers to calculate the true
cost/benefit of local vs. cloud computing and storage.

THE FUTURE IN THE CLOUD:
OPPORTUNITIES AND CHALLENGES

Open Data Hosting

With continued growth in volume of both ocean observations
and numerical ocean model output, the problem of how and
where to efficiently store these data becomes paramount. As
described earlier, the commercial cloud can accept massive
volumes of data and store them efficiently in object storage
systems, while also enabling new data analysis approaches
(Pangeo, 2018). Setting aside costs, migrating open data to
commercial cloud provider platforms offers clear technical
advantages, but we must consider the potential pitfalls
alongside the benefits.

If we take the assumption that all ocean data generated by
I00S, NOAA, or other publicly funded scientific organizations
should be freely available and accessible for public use, as
stewards of these data we must consider any downstream
implications of where we store these data, including storing them
on the cloud. Fair and equitable access to ocean data for users,
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assurance of long-term preservation, archival and continuous
access, and flexibility for users to choose the environment in
which they use the data, are all factors we must consider.

Already, some earth observing organizations (EOSDIS, 2018)
are anticipating that the sheer growth in size of the data they
collect will make it prohibitively expensive and complex to host
within their own data centers. In this situation, commercial cloud
storage services offer an effectively infinite ability to scale to
meet their projected data storage needs. Similarly, we can expect
ocean data holdings to someday eclipse our abilities to efficiently
manage the systems to store them.

As a result, organizations may choose to migrate both the
primary public copy of their data, as well as the standards-based
services — such as OPeNDAP or Open Geospatial Consortium
(OGC) Web Coverage Service (WCS) - users depend on for
access, to the cloud. Discontinuing on-premises data hosting
entirely can eliminate the need to maintain increasingly complex
systems, relying instead on cloud vendors’ almost infinite
scalability. While this may seem a transparent change for end
users, it may not be; there may be indirect implications of this
choice on users of our data.

As highlighted earlier, open data that is available on a
commercial cloud platform enables users to deploy massively
parallel analyses against them. This is becoming known as
the “data-proximate” computing paradigm (Ramamurthy, 2018;
Pangeo, 2018). This is a breakthrough capability and one
very likely to facilitate new discoveries from data that were
either not previously possible, or not readily available at costs
manageable for most users.

Data-proximate analyses such as these are most efficiently
done only when the user provisions computing resources on
cloud platform where the data resides. If we move our public,
open data to a cloud provider, we may as a result be determining
cloud platform suitability for end users looking to run these types
of analyses, limiting them to only use the cloud host of our choice.
If we move our open data exclusively to a single cloud provider,
we lose a degree of impartiality as data brokers compared to when
we self-host. We are in effect incentivizing users to come with the
data to a particular provider.

Furthermore, the possibility is very real that if one ocean
data provider organization selects Amazon, while another selects
Google, and yet another selects Microsoft, it will be impossible
for a single end user to run data-proximate analyses efficiently
without first performing a data migration step to bring each
source dataset to a common cloud platform for their compute
workflows. If the data are massive, migration likely would not
even be an option if the user does not have substantial resources
to pay to self-host a copy of it. Fragmentation of data between
competing clouds has the potential to negate, or at least lessen,
the potential gains of “bringing the compute to the data” as
the phrase goes.

These are both issues that deserve recognition and an effort
to resolve as the earth observation community undertakes a
migration to the cloud. As publishers and stewards of publicly
funded open data, it is our responsibility to ensure fair and
equitable access to the data for users (Project Open Data,
2018). Budgets, however, are limited, and because of the cost

implications for storage and data egress from the cloud, we may
not be willing or able to pay to replicate our data on multiple
cloud platforms. If we were to try, what criteria would we use to
determine which providers to use? Costs and performance would
be typical selection factors for contract solicitations, but if, for
our users sake, we must factor in our decision which provider
or providers other data publishers have used to host their data
on, the picture gets complicated. As soon as data is moved from
institution-owned systems, the calculus to determine “fair and
equitable” changes.

So what can be done? Standard practice is for individual
data provider organizations to sign contracts with commercial
cloud providers to host their open data at prearranged costs to
the organization. This accomplishes the individual organization’s
goal to migrate to the cloud, however, it does nothing to address
either of the above issues. As an earth observation open data
community as a whole, perhaps we can leverage the inherent
value of our data to advocate for solutions that meet both our
and our user communities’ needs.

A technical solution to these issues might be to encourage
cooperation among the cloud providers to replicate cloud-hosted
public open data on their own. In exchange for signing a
pay-for-hosting contract as described above, they could require
the provider offer a free data replication service to their
competitors, separate from standard data egress channels. Costs
for such a service would be borne by the cloud providers, hence
a strong push as a community might be necessary to spur
its development. Downstream cloud providers would have to
self-host open datasets they were not being paid to host in the
first place, and each would have to make a cost/benefit decision
whether to replicate the data or not, similar presumably to the
decision made by participants in NOAA’s BDP to host a particular
dataset - it would need to have value to their business.

From a technical perspective, a service like this might resemble
the following:

e The cloud provider hosting the data would provide a free,
authenticated API endpoint that a well-known competitor
cloud provider would be able to access to pull new data as it
arrives. There would need to be a means to restrict access
to this service to legitimate competitor cloud providers
in order to prevent standard users downloading the data
from circumventing egress charges due to be paid to the
primary provider.

e A notification service would allow the downstream cloud
provider to subscribe to receive update notifications of new
or modified datasets, helping ensure data is kept in sync
from one provider to the next.

e Finally, checksums for each data granule or “object” in
a cloud data store would be generated and provided via
the API to ensure integrity of the duplicated data, or
a blockchain-based technology, as described in Section “
Data integrity: How to Ensure Data Moved to Cloud Are
Correct,” might be deployed to accomplish this.

e Costs for the data replication service would either
be paid by the original cloud provider hosting the
organization’s data, or passed back to the original data
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publishing organization. In the case of the data publishing
organization, this might need to be a part of the
organization with archiving/stewardship responsibilities
and accompanying funding/budget or a funding agency
with similar requirements and responsibilities.

Stepping back from the technical, large organizations such
as NOAA that publish many open datasets of high-value
to users - including potential future customers for cloud
providers — can leverage this value to negotiate free or
reduced-cost hosting arrangements with the providers.
NOAAs Big Data Project is an attempt to accomplish this.
The “data broker” concept conceived by the NOAA BDP is
a possible independent, cloud-agnostic solution to the one
dataset-one cloud problem, making it easier for competing cloud
providers to replicate to their own platforms agency open data
published there.

It remains to be seen how much NOAA open data cloud
providers are willing to host at no cost to the agency because of
the BDP. If NOAA can negotiate free hosting of less commercially
valuable data in exchange for technical expertise, including a
data broker service, to assist in transfer of its more valuable
data, then this lessens the cost of hosting data on multiple
clouds and may be the best solution to avoid fragmenting
NOAA’s data among the clouds. For smaller data publishers,
however, this negotiation is less likely to be feasible, and a
single-cloud migration is the most likely option for them. In
this case, a cloud-to-cloud data replication service might be
the best path to ensure their data remains truly “open,” and
platform-neutral.

A final option for open data providers concerned about
equitability is whether to eschew the cloud entirely, or to
continue self-hosting data that they also move to the cloud. Either
approach carries risks, either of technical obsolescence in the
former, or excessive cost and technical complexity to manage two
parallel data hosting systems in the latter — likely a deal-breaker
for most budget-restricted data publishers.

Time may tell, as more public open data is moved from
institution-owned systems to commercial cloud providers,
whether cloud-by-cloud data fragmentation or the risk of
inadvertently forcing users in co-locating computation on
clouds alongside data are significant or not. The open data
community as a whole, however, should plan a cloud migration
carefully and considerately, and avoid the potential for adverse
effects on our users.

Sandboxes in the Cloud for Modeling

and Development
Adapting an on-premises high-performance computing
environment used to execute ocean model simulations
to a commercial cloud environment can be a challenging
undertaking. Commercial cloud platforms, however, offer
services not available in standard HPC environments that offer
significant returns on investment for ocean modeling once the
time and effort is taken to leverage them properly.

A computing sandbox is an isolated computing environment
where researchers and others may test and develop new

applications and workflows. In the computer security realm,
they are a place where code and tools can be downloaded
and examined without risking malicious damage to operational
systems. In research, a sandbox can be a way for a funding source
or other entity to provide computing resources to new users of the
cloud so they can try-out migrating to the cloud. The sandbox is a
communal resource and users are allowed to spin up new virtual
machines with limited oversight. Cloud sandboxes support agile
development and allow users to try out new ideas. The sandbox is
usually a dynamic resource in that virtual machines are expected
to be in use for short periods, may be taken down unexpectedly,
and should not be used for operational applications. They are a
place to “fail small.”

One of the first cloud sandboxes for ocean research was the
Federal Geospatial Data Consortium (FGDC) cloud sandbox,
started in 2011°. This sandbox provided IaaS and PaaS
and explored the logistics of managing a shared resource.
Applications included particle tracking of larval fish, spatial data
warehousing, and deployment of an ERDDAP installation.

From 2011 to 2014, the European Commission funded GEOSS
interoperability for Weather, Ocean and Water (GEOWOW)
project explored expanding the Global Earth Observation
System of Systems (GEOSS) in general and the GEOSS
Common Infrastructure (GCI). Deployment was on the Terradue
Developer Cloud Sandbox and the results provided better access
to datasets by centralizing their location and getting them out
from behind firewalls and a sandbox for access to and processing
of these datasets (Combal and Caumont, 2016)°.

Molthan et al. (2015) used a NASA private cloud sandbox to
explore deploying the WRF weather model and to test various
system configurations before re-deploying on a commercial cloud
for full scale testing. The UK Met Office Visualization Lab
does all their work in the cloud and can be thought of as
an all-encompassing sandbox. Because of the operational and
security requirements of the main Met Office IT infrastructure,
the only way they are able to explore cutting edge technologies
and applications is by doing all their work in the cloud
(Robinson et al., 2016).

The Earth Science Information Partners (ESIP) has created
a de facto sandbox by creating an organizational account with
Amazon Web Services to enable members to start using the cloud
painlessly. Hack for the Sea'® has set up a sandbox for use during
their hackathons but also makes it available to a wide variety of
marine professionals and non-professionals for cloud compute
and storage at greatly reduced cost. Ocean Networks Canada
(ONC) has The Oceans 2.0 Sandbox, which is for internal use.
The goal of this sandbox is to bring computing closer to the data
by making it easy for ONC scientists to upload and use scripts on
the same cloud resources where their data reside.

IOOS is creating a Coastal Ocean Modeling sandbox
to enable researchers to explore transitioning their
models to the cloud. The aim of the sandbox is to make
computing resources available and to foster a community

Shttps://www.fgdc.gov/initiatives/geoplatform/geocloud
“https://cordis.europa.eu/result/rcn/171980_en.html
Ohttps://github.com/hackforthesea/welcome/
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of researchers with expertise in migrating models to the
cloud and running them there. The sandbox is intended
to serve as a transitional location for models that will
eventually be run on NOAA/National Weather Service
computing resources or NOAA-wide cloud resources and
it will replicate the operational computing environment
wherever possible.

As more users explore migrating to the cloud, sandboxes
will remain an important tool for easing the transition from
research to operations and will provide an important place
for experimentation and development. They will also be used
as a commons to create and nurture communities and as a
place to exchange experiences and techniques. Funding agencies
and others can provide these sandboxes in the same way they
currently provide communication tools and meeting spaces to
support projects.

Cloud Providers as an Archive, or an
Archive

Archiving - Not Necessarily the End Point

For many projects, archiving is where data are preserved, typically
after a project is completed. Many publications or granting
agencies require the researchers to archive their data to make
them accessible so that others might reproduce research results,
or to provide a safe haven for data that are danger due to lack of
funds to continue data stewardship or preservation. For others,
archives or data repositories are places where collaborators can
contribute similar data sets for sharing and curation - the pattern
of “management of scientific data” mentioned above. Formal
Archives, less restrictive archives, and repositories improve
the chances of data being re-used and shared with a wider
audience for reanalysis or use in new ways. Cloud computing
provides new ways to make archiving work for research and
collaboration and the cloud can host new kinds of archives
and repositories.

While many researchers provide data to Archives of record
National Archives and Records Administration (NARA) or
specialty federated archives, the cloud allows for new groups and
collaborators to build archives or repositories using commodity
cloud with less oversight and levels of governance. While this
seems contrary to the idea of a formal Archive, new tools and
certifications developed by data management communities can
give data providers considering submitting data a sense that
the archive has been vetted, evaluated and made trustworthy
for data submission and download. One example of this
is the World Data System’s Core Trust Seal certification
process. This organization has certified repositories for their
ability to steward, curate, and provide data submitters and
providers with open data access in a reliable manner for a
long-term stewardship.

Addressing Storage and Accessibility

Enterprise data management has long used physical offsite data
storage as method of data protection. Deploying data into the
cloud uses the same concept but can be spun up quickly and can
scale up storage and access to fit the needs of the users. Data
retrieval can be slower for off-premises backups because data

providers/enterprises may have written the data to tapes or other
media which are slower to access or a user may have chosen deep
storage in the cloud.

Cloud storage companies realize that not all data are created
equal. Some data sets may not be accessed after archiving
as often as others, based on the content, size and other
means of data access. Variations in data storage choices are
given names which allude to how the data are accessed -
e.g., data storage that is hot or near, would be data accessed
more frequently than data storage with names like cold or
glacier storage which are for infrequently accessed data. In
some cases, historical data sets that need to be archived to
fulfill a mandate do not require direct read access and can
be put into a deeper level of archive. For other data sets
used by multiple collaborators which are still being analyzed
or curated (metadata improved, error checked), the nearby or
hot storage options makes sense. Costs of archiving data (and
subsequent access) vary based on the storage decisions made
by the data management mandates and colder storage typically
costs less than warmer. Analytics on data access, user behavior
modeling and download versus data browsing may help cloud
engineers and data providers determine when to shift data sets
from deeper colder storage to a warmer storage. This may
be event-based (extreme weather-based reanalysis of data or
new/older operational instrument comparisons). This also allows
data managers and cloud engineers to estimate and budget for
shifts in the archival access loads based on data usage. Data
virtualization, used by commercial entities, is another method to
keep down cloud costs - the data sets that are larger, and not used
often, can be virtualized and produced on demand when needed,
saving storage costs.

For many, the startup cost for archival storage and access
may seem high, but prices continually come down and
are dependent on the access requirements. Not having to
purchase on-premises hardware should bring the costs down
and as data volume increases and the capacity of data
center does not increase as quickly, cloud archival storage
makes more sense.

NASA EOSDIS - Cloud Archiving

NASA’s Earth Observing System Data and Information System
(EOSDIS) project has recently moved their data stores to the
cloud (EOSDIS, 2018). The project includes earth observational
data sets from several distributed active archives for users in
the scientific community. The arguments for moving into the
cloud are not so much that cloud resources are less expensive
than the traditional on-premises data storage and archiving
solutions, but that by putting the archival stores in the cloud,
these data sets are closer to the cloud-based compute power
that many using earth science resources require. There is no
longer the need to download data to one’s desktop to do complex
analysis; the data, computation, analytics, and visualization are
all in one place.

Challenges to Using the Cloud for Archiving
Success of projects like EOSDIS for cloud archiving may lead
to other distributed archives prototyping projects to test the
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efficacy of cloud storage as a way to provide data archiving
as a service (DAaaS), but issues around data stewardship,
certification, data retention policies and data governance may
need to be addressed prior to transitioning from traditional
archiving models.

Best practices around data archiving recommend that
data formats for archiving be open and well-documented -
flat files, simple geospatial files and JSON objects that are
easily described and machine and human readable. While
this makes sense in a traditional archive, these formats are
not natively cloud friendly due to inefficiencies in reading
large files in these formats. This may require a shift by
data managers and archivists in what they are willing to
archive or require an extra step to transform data to make it
more cloud amenable.

The long-term storage of data as NOAA acquires commercial
cloud infrastructure requires consideration of the long-term
viability of the cloud provider. NCEI considers long-time
storage of data to cover a period of 75 years. It is very likely
that the business model of the cloud provider will change
over this period. This may affect the costs and benefits of
cloud-based storage. Similarly, the underlying data storage

technology will most likely change over this period. Scientific
data archive centers that act on behalf of future generations
of scientists, should consider deep local storage of a verified
“master” copy of data.

PREPARING FOR THE NEXT WAVES OF
USERS, TECHNOLOGIES, AND POLICIES

The technical changes we have discussed are paralleled by
human changes. In the past, marine research was mainly
hands on - researchers went out and collected samples or
measurements while on a cruise. As Kintisch (2013) has
observed, graduate students are now less likely to ever
go to sea — they are working with satellite data, model
outputs and aggregated datasets. Research groups have become
virtual (Robinson et al., 2016; Wigton, 2016) and an entire
research program can be conducted in the cloud - from
communication to gathering data to analysis and the distribution
of results. It behooves us to consider the human dimensions
of cloud adoption as well as the technical strengths and
weaknesses of the cloud.

TABLE 1 | Waves of ocean data users and developers.

Wave Connectivity Work patterns and needs Technology best practices that reflect their
work patterns and information needs
The Future Always online, always Understand continuous information, less Expectation of immediacy and continuous

Digital Nomads

Technical Experts

Researchers

Digitally divided

connected

Connect from anywhere,
applications centric

Hard core large pipeline
connectivity

Lighter connectivity to the
Internet

Limited connectivity — either
permanently or situational

interested in data that produced the information
Less likely to understand or be interested in the
entire workflow rather they will focus on
aspects of it: analysis, visualization relevance
and context of mashing up a variety of
information sources.

Challenge will be ensuring that the information
they receive still supports deep science

Understand continuous data collection, require
information Comfortable with technology and
view it as extension of themselves. Digital
Nomads have a different relationship with
information than technical or research users?

Understand entire workflow — sensor to results
Want to know the details of what they are
doing, are inclined to make updates and fixes
themselves, and want to know the path of data
from observation to use. They are very familiar
with the conversion of data to information and
intimately understand every nuance of that
conversion

Understand final results of data processing and
expect quality data. Want to use data and need
to be able to trust their quality but may not
want to know all the details.

They may be comfortable with a reliance on the
automatic conversion of data to information

Need information but may not have access to
HPC etc. May be members of other waves
working as first responders during disasters or
at sea Need information and require
technologies that will enable them to mitigate
issues such as low bandwidth or missing or
destroyed communication infrastructure

connectivity to information

Not tolerant of long processing times or
difficulty in getting an answer to their question
Demand speed of cloud or edge computing

May be frustrated by organizational inertia when
it comes to adopting, leveraging and embracing
the Cloud

Well documented workflows in the cloud can
enable them to share techniques and
standardize paths.

Need high capacity (cloud) computing
resources and fast connectivity

Need trusted data in the cloud and efficient,
expandable and easily shared analysis and
visualization tools

Need high capacity (cloud) computing
resources and fast connectivity

Need cloud-based technologies that support
intermittent connectivity and asynchronous
communication.

Need trusted data in the cloud and efficient,
expandable and easily shared analysis and
visualization tools
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As we look at the factors and variables affecting the move of
organizations to the Cloud for storage, resources, processing, and
security, it is important to recognize the bi-directional impact
of the next waves of users. Individual and institutional attitudes
are shifting, prompting a new wave of Cloud users (Table 1).
Many have never known a professional or personal environment
without the concept of being “online.” They are mobile-savvy,
always connected, hyper-aware of shifting technology trends
and readily willing to adopt emerging technology. Organizations
should adopt best practices that reflect their work patterns and
information needs, guaranteeing a much higher likelihood of
their adoption and continuation of the data science integrity that
is a core trait of the ocean science community.

A Technological (R)evolution

A technology evolution is equally underway and it will
dramatically affect ocean science and the Cloud. Autonomous
vehicles, swarm robotics, Edge computing (aka sensor-based
computing), in situ communications such as cabled
observatories, and global availability of low cost, high bandwidth
communications will disrupt ocean data collection and
distribution. Data will be processed at the source of collection,
sensors and vehicles will autonomously make decisions based on
that processed data, science-based machine learning'-'? and the
results will be broadcast in near-real time once the sensor is able
to contact the Internet. Consumers will be a mix of human and
machine end-points.

Future users will enjoy a near continuous Internet experience
for non-submerged devices and cabled observatories and the
human and non-human consumption of the information that
they generate. The emerging Ambient Internet will see the
Internet effectively disappear as it becomes connected to nearly
everything, and in particular, devices, vehicles and sensors used
for marine data collection. This will naturally lead to more
data being collected. We are already nearing a tipping point
of data volumes exceeding the human capacity to process it
all. Automated and cloud-based processing have been slow to
materialize in this industry, and what is likely to happen is that
it will be eclipsed by sensor-based processing.

Edge computing sits squarely in the realm of the Ambient
Internet, leveraging machine learning, artificial intelligence,
advanced processing and computing power on the devices
themselves and communicating securely and selectively with the
Cloud for data transfer. Human reliance on the raw data itself
will depreciate over time as the volume of collected data becomes
untenable. Confidence levels will increase as machine-learning
algorithms consistently produce better results. There will be a
nexus when confidence in machine based acquisition, processing
and delivery of information exceeds that of the human equivalent.

Tension Between the Current and
the Future

As use of the Cloud becomes more widespread, a natural
tension between users of local resources and cloud users will be

Mhttps://ieeexplore.icee.org/document/7959606
Phttps://www.hydrol-earth-syst-sci.net/22/5639/2018/

created. Early adopters should feel compelled to prepare best
practices to ease adoption for future waves of users. Some of
these include embracing the notion of true Digital Nomads.
They will not be beholden to any particular platform, operating
system, application or physical space. They will have never
known an Internet that was not in their pocket, available
to them at all times, without constraint. Their expectations
of immediacy will be unparalleled and is not centric to the
data itself, but rather to the information that it possesses.
The emerging Future wave is going to be comfortable with
artificial intelligence and augmented reality with a blurred line
of information derived from humans or machines. They will
live and work in a world of augmented intelligence, where
artificial intelligence, machine learning and deep learning assist
the human experience.

The behavioral characteristics of the next wave(s), coupled
with mainstream information technology and the inevitable
reduction in cost and increase in proliferation of smart enabled
marine based sensors, will cement the fundamental shift in
data-information relationships. Sensor based processing with
results transmitted to the Cloud will force emerging ocean
knowledge workers to have an information centric mindset
rather than a data centric one. This mindset will make it
easier for others to receive the information they need without
needing access to massive datasets. Cloud hosted weather
models are a prime example where advances led by Technical
Experts and Digital Nomads can benefit Researchers and the
Digitally Divided.

Relevance to Cloud and Policy Today
Creation of the structures needed to support the work of
all of the waves to do their jobs and advance ocean science
is multi-faceted and need not be considered a monumental
effort. Evolving and adapting the current mindsets around the
Cloud, Edge computing, artificial intelligence, machine learning
and augmented reality will dramatically alter the landscape
for future workers. Engaging with industry, both traditional
and non-traditional, will help spur the innovation. It will also
significantly enhance the quantity and quality of data that is
collected as the private sector works to produce more inexpensive
and more capable devices that work in a connected world.

Data policies also need to shift. Following the old mantra
of “collect it, process it, publish it and store it” will not
work in an environment of constantly updated information,
huge data volumes and increased access through widespread
and continuous Internet coverage. Although data security will
remain highly important, there will be demands to make data
more available so non-human means can interrogate it, learn
from it and apply those results to data banks of valuable
information. These approaches need to percolate through all
levels of organizations in order to create a culture of innovation
and preparedness.

Few would disagree that there is an enormous brain-trust
resident in organizations all over the world. Intricate knowledge
of data formats, sensor types, performance nuances, and
metadata standards (or lack thereof) are just some of the
elements. There needs to be a concerted effort to increase
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documentation, standardization and openness in multiple areas
in order to propagate and persist this knowledge.

New commercial opportunities may develop that focus on
supporting new waves of workers. Encouraging proposals, new
grants, funding for innovation and joint partnerships that
stimulate research, commercialization and productization of
emerging technology are a beginning. Existing companies also
have an opportunity to embrace open data and standards,
develop automated processing and better support Edge devices
as they come online.

The transformation that is occurring does not just involve
the Cloud. It is part of a larger technology movement for
smarter, smaller and more computing power all around us. The
Cloud is only one piece of the transformation and remaining
focused on the Cloud at the expense of Edge computing,
smart devices, artificial intelligence, automated processing and
information centric workflows will not adequately prepare for
the next waves of marine scientists. The combination of people,
process, and technology - including the Cloud - must be
interfaced effectively to develop ocean data and information
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