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A catalytic prior distribution is designed to stabilize a high-
dimensional “working model” by shrinking it toward a “simplified
model.” The shrinkage is achieved by supplementing the observed
data with a small amount of “synthetic data” generated from a predic-
tive distribution under the simpler model. We apply this framework
to generalized linear models, where we propose various strategies
for the specification of a tuning parameter governing the degree of
shrinkage and study resultant theoretical properties. In simulations,
the resulting posterior estimation using such a catalytic prior outper-
forms maximum likelihood estimation from the working model and
is generally comparable or superior to existing competitive methods
in terms of frequentist prediction accuracy of point estimation and
coverage accuracy of interval estimation. The catalytic priors have
simple interpretations and are easy to formulate.

Bayesian priors | synthetic-data | stable estimation | predictive distribu-

tion | regularization

he prior distribution is a unique and important feature

of Bayesian analysis, yet in practice, it can be difficult
to quantify existing knowledge into actual prior distributions;
thus, automated construction of prior distributions can be
desirable. Such prior distributions should stabilize posterior
estimation in situations when maximum likelihood (ML) be-
haves problematically, which can occur when sample sizes are
small relative to the dimensionality of the models. Here we
propose a class of prior distributions designed to address such
situations. Henceforth we call the complex model that the
investigator wishes to use to analyze the data the “working
model.”

Often with real working models and datasets, the sample
sizes are relatively small, and a likelihood-based analysis is un-
stable, whereas a likelihood-based analysis of the same dataset
using a simpler but less rich model can be stable. Catalytic
priors™ effectively supplement the observed data with a small
amount of synthetic data generated from a suitable predictive
distribution, such as the posterior predictive distribution under
the simpler model. In this way, the resulting posterior distri-
bution under the working model is pulled toward the posterior
distribution under the simpler model, resulting in estimates
and predictions with better frequentist properties. The name
for these priors arises because a catalyst is something that
stimulates a reaction to take place that would not take place
(or not as effectively) without it, but only an insubstantial
amount of the catalyst is needed. When the information in the
observed data is substantial, the catalytic prior has a minor
influence on the resulting inference, because the information
in the synthetic data is small relative to the information in
the observed data.

We are not the first to suggest such priors, but we embed

*Throughout the paper, we use the ineloguent but compact ‘priors’ in place of the correct ‘prior
distributions’
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the suggestion within a general framework designed for a broad
range of examples. One early suggestion for the applied use
of such priors was in Ref. (1), which was based on an earlier
proposal by Rubin in a 1983 report for the U.S. Census Bureau
(reprinted as an appendix in Ref. (2)). Such a prior was also
used in a Bayesian analysis of data with noncompliance in a
randomized trial (3).

As in both of these earlier references, consider logistic
regression as an example:

Yi | s, B ~ Bernoulli (1/(1 —|—exp(—a:;r,3))) ,i=1,...

y Ty

where, for the ith data point (y;,z;), ys € {0,1} is the re-
sponse, and x; = (1,%1,...,Tip—1) represents p covariates,
with unknown coefficients 8 = (8o, f1,...,8p—1) . The ML
estimate (MLE) of B is infinite when there is complete sep-
aration (4, 5) of the observed covariate values in the two
response categories, which can occur easily when p is large
relative to n. Earlier attempts to address this problem, such
as using Jeffrey’s prior (6-9), are not fully satisfactory. This
problem arises commonly in practice, for example, Ref. (1)
studied the mapping of industry and occupation (I/0) codes
in the 1970 U.S. Census to the 1980 Census codes, where
both coding systems had hundreds of categories. The I/O
classification system changed drastically from the 1970 Census
to the 1980 Census, and a single 1970 code could map into
as many as 60 possible 1980 codes. For each 1970 code, the
1980 code was considered as missing and multiply-imputed
based on covariates. The imputation models were nested (di-
chotomous) logistic regression models (10) estimated from a
special training sample for which both 1970 and 1980 codes
were known. The covariates used in these models were derived
from nine different factors (sex, age, race, etc.) that formed
a cross-classification with J = 2,304 categories. The sample
available to estimate the mapping was smaller than ten for
some 1970 codes, and many of these logistic regression models
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lize the estimation of complex “working models” when sample
sizes are too small for standard statistical analysis. The stabi-
lization is achieved by supplementing the observed data with a
small amount of synthetic data generated from the predictive
distribution of a simpler model. This class of prior distributions
is easy to use and allows direct statistical interpretation.

D.H., N.S., D.B.R. and S.C.K. designed research, performed research, analyzed data, and wrote
the paper.

The authors declare no conflict of interest.

"To whom correspondence should be addressed. E-mail: kou@stat.harvard.edu or dbru-

bin@me.com

PNAS | April2,2020 | vol. XXX | no.XX | 1-8

33
34
35
36
37
38

39

40
41

42
43
44
45
46
47
48
49
50
59

52
53
54
55
56
57
58
59
60
61
62

63


www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

64

65

66

67

68

69

70

ul

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89
90
91
92
93
94
95
96
97
98
99
100

101

faced complete separation. The successful approach in Ref.
(1) was to use the prior distribution
ph/J p(1=4)/J
5)

z* Tﬂ 1
VT (
=1 \1+e =57 1+4e%
where each x} is a possible covariate vector of the cross-
classification; p is the dimension of 3; and i = Z:.;l yi/n is
the marginal proportion of ones among the observed responses.

In this example, the simpler model has the responses y;’s
independent of the covariates:

Yi | iy ~ Bernoulli (1) (i =1,...,n),

where p € (0,1) is a probability estimated by fi. If we supple-
ment the dataset with pji/J synthetic data points (y; = 1,z})
and p(1 — f1)/J synthetic data points (y; = 0,x]) for each
xz; (j = 1,...,J), then the likelihood function of the aug-
mented dataset has the same form as the posterior distribution

with the prior in Eq. (1):

(B | {(yi, @) }ita) (2]
Nja+ei/J 1 Njo+p(1=4)/J
X T T g ’
I1 (=)

Jj=1
where N; 1, Njo are, respectively, the numbers of (1,z}) and
(0,z7) in the observed data. In this construction, the total
amount of synthetic data is taken to be p, the dimension of
B; see Remark 2.2 in SI for more discussion. The resulting
MLE with the augmented dataset equals the maximum pos-
terior estimator (the value of 8 that maximizes the posterior
distribution), and it will always be unique and finite when
e (0,1).

How to use the synthetic-data perspective for constructing
general prior distributions, which we called catalytic prior
distributions, is our focus. We mathematically formulate the
class of catalytic priors and apply them to generalized linear
models. We show that a catalytic prior is proper and yields
stable estimates under mild conditions. Simulation studies
indicate the frequentist properties of the model estimator us-
ing catalytic priors are comparable, and sometimes superior,
to existing competitive estimators. Such a prior has the ad-
vantages that it is often easier to formulate and it allows for
simple implementation from standard software.

We also provide an interpretation of the catalytic prior
from an information theory perspective (detailed in Section 4
of SI).

*TB

*T
14 e"i

Related Priors. The practice of using synthetic data or pseudo
data to define prior distributions has a long history in Bayesian
statistics (11). It is well-known that conjugate priors for ex-
ponential families can be viewed as the likelihood of pseudo-
observations (12). Some authors have suggested formulating
priors by obtaining additional pseudo data from experts’ knowl-
edge (13-15), which is not easy to use in practice when data
have many dimensions or when numerous models or experts
are being considered. Refs. (16, 17) proposed to use a conju-
gate Beta-distribution prior with specifically chosen values of
covariates to approximate a multivariate Gaussian prior for
the regression coefficients in a logistic regression model. A
complication of this approach is that the augmented dataset

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

may contain impossible values for a covariate. Another ap-
proach is the expected-posterior prior (18-20), where the prior
is defined as the average posterior distribution over a set of
imaginary data sampled from a simple predictive model. This
approach is designed to address the challenges in Bayesian
model selection. Other priors have been proposed to incor-
porate information from previous studies. Particularly, the
power prior (21-23) formulates an informative prior generated
by a power of the likelihood function of historical data. One
limitation of this power prior is that its properness requires
the covariate matrix of historical or current data to have
full column rank (22). Recently, the power-ezpected-posterior
prior was proposed to alleviate the computational challenge
of expected-posterior priors for model selection (24, 25). It
incorporates the ideas of both the expected-posterior prior and
the power prior, but it cannot be applied when the dimension
of the working model is larger than the sample size. Some
other priors suggested in the literature have appearances simi-
lar to catalytic priors. Ref. (26) propose the reference prior
that maximizes the mutual information between the data and
the parameter, resulting in a prior density function that looks
similar to that of a catalytic prior but is essentially different.
Ref. (27) proposed a prior based on the idea of matching
loss functions, which, although operationally similar to the
catalytic prior, is conceptually different because it requires a
subjective initial choice for the distribution of the data. In
Ref. (28), the class of penalized complezity priors for hierarchi-
cal model components is based on penalizing the complexity
induced by the deviation from a simpler model. The simpler
model there needs to be nested in the working model, which
is not required by the catalytic prior.

Generic Formulation of Catalytic Priors

Catalytic Prior in the Absence of Covariates. Consider the
data, Y = (Y1,...,Y,)", being analyzed under a working

model Y; “& f(y | 8) governed by unknown parameter 6.
Suppose a model g(y | 1) with unknown parameter v, whose
dimension is smaller than that of 6, is stably fitted from Y
and results in a predictive distribution g.(y* | Y) for future
data drawn from g(y | ¢). The synthetic-data generating dis-
tribution g«(y* | Y) is used to generate the synthetic data
{Y;},, where M is the synthetic-sample size and the asterisk
superscript is used to indicate synthetic data.

The synthetic-data generating distribution can be specified
by fitting a model simpler than f(y | €), but it does not
necessarily have to be. Examples: (1) If a Bayesian analysis
of the simpler model can be carried out easily, g.«(y* | Y)
can be taken to be the posterior predictive distribution under
the simpler model. (2) Alternatively, one can obtain a point
estimate v, and g.(y* | Y) = g(y* | ¥) can be the plug-in
predictive distribution. (3) If two simpler estimated models
(1)( * 1Y) and g*2>( | Y), then ¢g.(y* | Y) can be
DY)+ (- w)g? (" | Y) for

are g
taken to be a mixture w g
some w € (0,1).

The likelihood function of 9 under the working model based
on the synthetic data {Y;*}M; is £(0 | Y*) = Hiv; FY70).
Because these synthetic data are not really observed data, we
down-weight them by raising this likelihood to a power 7/M,
where 7 > 0 is a tuning parameter called the prior weight.
This leads to the catalytic prior that has an unnormalized
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density:

T/M

mearar(0]7) o< S[[F¥10) 3]

which depends on the randomly drawn synthetic data {Y;*}74;.
The population catalytic prior is formally the limit of Eq. (3)
as M goes to infinity:

Teat,00 (0| 7) oc exp [TEqg. {log f(Y™ | 0)}]. [4]

Here the expectation Eg4, {log f(Y* | 6)} in Eq. (4) is taken
with respect to Y™ ~ g.(Y* | Y). The dependence of g.(Y™ |
Y) on the observed Y emphasizes that the catalytic prior is
data-dependent, like that used in Box and Cox (29) for power
transformations.

The posterior density using the catalytic prior is mathemat-
ically proportional to the likelihood with both the observed
data and the weighted synthetic data. Thus, we can implement
the required Bayesian inference using standard software. For
instance, the maximum posterior estimate (posterior mode) is
the same as the MLE using the weighted augmented data and
can be computed by existing MLE procedures, which can be
a computational advantage, as illustrated in Ref. (1).

Catalytic Prior with Covariates. Let {(Y;, X;)}i—; be the set of
n pairs of a scalar response Y; and a p-dimensional covariate
vector X;; Y; depends on X; in the working model with
unknown parameter (3:

Yi| Xi,8~ f(y] Xi,8),i=1,2...,n. [5]

Let Y be the vector (Yi,...,Y,)", and X be the matrix
(X1,...,X5,)". The likelihood of these data is f(Y | X,8) =
1, f(Vi | X..B).

Suppose a simpler model g(y | X, %) with unknown param-
eter 1 is stably fitted from (Y, X) and results in a synthetic-
data generating distribution g.(y | x,Y,X). Note that g.(:)
here is analogous to its use earlier except that now, in addition
to the observed data, it is also conditioned on . The synthetic
covariates X* will be drawn from a distribution Q(z), which
we call the synthetic-covariate generating distribution. We will
discuss the choice of Q(x) shortly.

Given the distributions Q(x) and ¢.(y | =, Y, X), the cat-
alytic prior first draws a set of synthetic data {(¥;*, X;)}M,
from

X7 Q(a),
Hereafter we write Y™ for the vector of synthetic responses
(Y7, ..., Y5 T, and X* for the matrix of synthetic covariates
(X3,...,X5) 7. The likelihood of the working model based on
the synthetic data £(8 | Y*,X") equals Hi\il fyy7 | Xi,68).
Because these synthetic data are not really observed, we down-
weight them by raising this likelihood to a power 7/M, which
gives the unnormalized density of the catalytic prior with
covariates:

M T /M

mearar(B 7)o S [[ POV 1 X5.8) 6]
i=1

The population catalytic prior (when M — 0o0) has unnormal-
ized density:

Teat,00 (B | T) < exp (TEq,q. [log f(Y™ | X7, B)]),  [7]

Huang etal.

where the expectation Eg 4, averages over both X* and Y™.
Denote by Z; » and Z, ~ the integrals of the right-hand sides
of Eq. (6) and Eq. (7) w.r.t. 8. When these integrals are
finite, the priors are proper, and Z; y and Z. ~ are their
normalizing constants.

An advantage of the catalytic prior is that the corresponding
posterior has the same form as the likelihood

ﬂ-(ﬂ|X7 Y7 T) X Teat, M (ﬁ|T)f(Y|X7 ﬂ)

M
X exp (1\7—4 Zlog(f(Yi*lXZ, B)
i1

+Zlog(f(YiXm3)> ;

which makes the posterior inference no more difficult than
other standard likelihood-based methods. For example, the
posterior mode can be easily computed as a maximum weighted
likelihood estimate using standard statistical software. Full
posterior inference can also be easily implemented by treating
the synthetic data as down-weighted data.

Catalytic Prior for GLMs. A generalized linear model (GLM)
assumes that, given a covariate vector X, the response Y has
the following density w.r.t. some base probability measure:

fly| X,B) =exp (t(y)0 — b(#)), 8]

where t(y) is a sufficient statistic, and 6 is the canonical
parameter that depends on n = X '8 through 0 = ¢(n),
where 8 is the unknown regression coefficient vector and ¢(-)
is a monotone differentiable function. The mean of ¢(Y) is
denoted by p(n) and is equal to b'(¢(n)).

When the working model is a GLM, from Eq. (7) and
Eq. (8), we have

EqQ.g. [log f(Y" | X7, B)]
=Eq {#(B" X )E,. [t(Y") | XTT=b((B" X))}, [9]

so that the expectation of the log-likelihood does not depend
on particular realizations of the synthetic response, but rather
on the conditional mean of the sufficient statistic under the
synthetic-data generating distribution. Thus, in the case of a
GLM (and exponential family models), instead of a specific
realization of the synthetic response, one only needs to use
the conditional mean of the sufficient statistic Eg, [t(Y™) | X*]
to form a catalytic prior. This simplification reduces the
variability introduced by synthetic data .

As a concrete example, consider a linear regression model
Y = XB + ¢, where € ~ N,,(0,0°Z,) with known o. Suppose
the synthetic-data generating model is a sub-model with the
estimated parameter B3, and X* is the synthetic covariate
matrix. In this case, the catalytic prior with any positive 7
has a normal distribution:

o 1

B~N (/887 T(M(X*)TX*)_I> .

If limaz— o %(X*)TX* = Y x, the population catalytic prior
is

2
O _
B~N <,5'o7 7(2)() 1) .
More details about this example can be found in SI.

TNote that in the previous example of 1970-1980 I/O code mapping, instead of the raw counts of
synthetic responses, their expected values p/J and p(1 — 1)/ J were used.
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Specifications of the Catalytic Prior

Generating Synthetic Covariates. The synthetic covariate vec-
tors are generated such that (X*)"X* has full rank. Moreover,
a synthetic covariate should have the same sample space as
a real covariate. The simple choice of resampling the ob-
served covariate vectors would not guarantee the full rank
of (X*)TX*; for example, if the observed covariates are rank
deficient, resampling would still give rank deficient (X*)TX*.

Instead, we consider one option for generating synthetic
covariates: resample each coordinate of the observed covariates
independently. Formally, we define the independent resampling
distribution by the probability mass function

Q@) = [[ (#H1L<i<n: (X, =2},

J

for all x € X', where X is the sample space of X. We use this
distribution for simplicity. Alternatively, if historical data are
available, synthetic covariates can be sampled from the histor-
ical covariates. Furthermore, if some variables are naturally
grouped or highly correlated, one may want to resample these
grouped parts together. Other examples are discussed in SI.

Generating Synthetic Responses. The synthetic-data gener-
ating distribution can be specified by fitting a simple model
Gy = {g(y | =,¢) : ¥ € ¥} to the observed data. The
only requirement is that this simple model can be stably fit
by the observed data in the sense that the standard estima-
tion of 9, using either a Bayesian or frequentist approach,
can lead to a well-defined predictive distribution for future
data. Examples include a fixed distribution and an intercept-
only model. Gy can also be a regression model based on
dimension reduction, such as a principal components analy-
sis; see SI for a numerical example, which also suggests to
keep Gg as simple as possible when the observed sample size
is small. For a working regression model with interactions,
a natural choice of Gy is the sub-model with only main-
effects. If the main-effect model is overfitted as well, we could
use a mixed synthetic-data generating distribution, such as
gy | 2,Y,X) =05 ge1(y | 2,Y,X)+ 0.5 gs0(y | 2,Y,X),
where g«,1 and g« are the predictive distributions of the pre-
liminarily fitted main-effect model and intercept-only model,
respectively. G¢ can also be chosen using additional knowl-
edge, such as a sub-model that includes a few important
covariates that have been identified in previous studies, or if
domain experts have opinions on the range of possible values
of certain model parameters, then the parameter space ¥ can
be constrained accordingly.

Sometimes it is beneficial to draw multiple synthetic re-
sponses for each sampled synthetic covariate vector. We name
this sampling the stratified synthetic data generation. It could
help reduce variability introduced by synthetic data.

Sample Size of Synthetic Data. Theorem 5 below quantifies
how fast the randomness in the catalytic prior diminishes as
the synthetic-sample size M increases. One implication is that
for linear regression with binary covariates, if M > 46%3 log(%),
then the Kullback-Leibler divergence between the catalytic
prior 7eqr, i and its limit meqt,00 is at most € with probability
at least 1 — 4. Such a bound can help choose the magnitude of
M. When the prior needs to be proper, we suggest taking M

4 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

larger than 4 times the dimension of 8 (based on Theorem 1
and Proposition 2 below).

Weight of Synthetic Data. The prior weight 7 controls how
much the posterior inference relies on the synthetic data be-
cause it can be interpreted as the effective prior sample size.
Here we provide two guidelines for systematic specifications
of 7.

Frequentist Predictive Risk Estimation. Choose a value of 7 using
the following steps: (1) Compute the posterior mode B(7)
for various values of 7. (2) Choose a discrepancy function
D(yo, i) that measures how well a prediction ; predicts a
future response yo. (3) Find an appropriate criterion function
A(7) that estimates the expected (in-sample) prediction error,
for a future response Y; based on E(T), and (4) Pick the value
of 7 that minimizes A(7). See Section 2.C.1 in SI for a detailed
discussion.

The discrepancy D(yo, 11) measures the error of a prediction
u for a future response Yy that takes value yo. We consider
here discrepancy functions of the form

D(yo, 1) = a() — M@)o + c(yo),
and define D(Yp,pt) := + 3"  D(You, ). This class is
general enough to include squared error, classification error and
deviance for GLMs: (a) squared error: D(yo, /i) = (yo — 1) =
0% — 2yofi 4 v; (b) classification error: D(yo, i) = lygza =
A—2yofi+yo for any Yo and /i in {0, 1}; (c) deviance for GLMs:
D(yns 1) = b0) — 0l + sub(yod — b(0)), where § = () 7).

The criterion function A( ) is an estimate of the expectation
of the (in-sample) prediction error. Such an estimate can be
obtained by using the parametric bootstrap. Take a bootstrap
sample of the response vector Y9 from the distribution

fly|X B ) where ﬂo ,8(7’0) is a preliminary estimate, and
denote by ﬁb"‘)t( ) the posterior mode based on data (Ybo‘)t, X)
with the catalytic prior. The bootstrap criterion function is
given by

[10]

A(T) = D 7”’7‘ ZCOV '\bOOt) YLbOOt) [11}
where fi.; = w(X[B(r) and @' = w(X]B"(7)).

See SI for a detailed derivation. In practice, the term
Cov (A (ui"ft) Y£°°!) is numerically computed by sampling
Y?o° repeatedly. Based on our experiments with linear and
logistic models, the default choices of the initial values can be
7o = 1 for linear regression and 19 = p/4 for other cases. See
SI for a mathematical argument.

The costly bootstrap repetition step to numerically compute
Cov(A(f12°7"), Y;?°°") can be avoided in two special cases (see
ST for more discussion):

1. If Y; follows a normal distribution and A(fi-,;) is smooth
in y;, then the Stein’s unbiased risk estimate yields

Zv

In particular, when square error is considered and if 11,
can be written as i, = H, - Y + c,, the risk estimate is

Z Var(Y;

(Mm)‘

7

A(r) = D(Y, ir) [12]

A(T) =Y = B + (4,9).  [13]
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2. When responses are binary, say 0 or 1, let YAM be a copy
of Y but with Y; replaced by 1—Y;, and let 8°°(7) be the
posterior mode based on data (X, Y “?) with the catalytic
prior. The Steinian estimate (30) is given by

n

O R ~ ~ A
D(Y, fir)+— A (1=7)(2Yi—=1) (\(7irs) = AELD))
" =1
[14]
where 7if = (X, B°), and [i2} = u(X;" B4'(7)).

Bayesian Hyperpriors. An alternative way to specify the prior
weight 7 is to consider a joint catalytic prior for (7, 3):
/M

M
Tar (T B) x Tan () S [ FO | X7,8) 7 [19]

where Iy - (7) is a function defined as follows for positive scalar
hyperparameters « and . Denote

R =

M
1
sup — » log f(Y;" | X7, B).
BMZ (Y7 | XI.8)

For linear regression, the function I'y ~(7) can be taken to be

BEE 1 —r(sty )

LPaqy(r)=7"72 [16]
and for other models,
Con~(T) = ppre=l —r(sty™h) [17]

The form of 'y () is chosen mainly for practical conve-
nience; by separating the dependence on p and k, we have
meaningful interpretations for a and . For GLMs, prior mo-
ments of 8 up to order « exist, and = controls the exponential
decay of the prior density of 7; see Theorem 4. For linear
regression, the marginal prior for 8 induced by Eq. (15) is a
multivariate t-distribution centered around the MLE for the
synthetic data with covariance matrix 20% (X TXH)!
and degrees of freedom «. The analysis in Theorem 4 reveals
how the parameters a and v affect the joint prior. Roughly
speaking, a larger value of a (or ) tends to pull the working
model more towards the simpler model. Admittedly, it appears
impossible to have a single choice that works the best in all
scenarios. We recommend (o, ) = (2,1) as a simple default
choice based on our numerical experiments.

Illustration of Methods

Logistic Regression. We illustrate the catalytic prior using
logistic regression. Another example using linear regression
is presented in SI. Here the mean of Y depends on the linear
predictor n = X ' 8 through p = ¢7/(1 + €7). Suppose the
synthetic-data generating model includes only the intercept,
so it is Bernoulli(po), where a simple estimate of o is given
by o = (1/2+ )., Yi)/(1+ n). The synthetic response
vector Y* can be taken to be fio - 1as, and each synthetic
covariate vector X is drawn from the independent resampling
distribution; this prior is proper when (X*)TX* is positive
definite according to Theorem 1.
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Numerical Example. We first generate the observed covariates X;
by drawing a Gaussian random vector Z; whose components
have mean 0, variance 1 and common correlation p = 0.5; set

X, =42 mamo
Z; ;,

2j<p
2j > p.

This process yields covariate vectors that have dependent com-
ponents and have both continuous and discrete components
as one would encounter in practical logistic regression prob-
lems. We consider three different sparsity levels and three
different amplitudes of the regression coefficient 8 in the un-
derlying model. More precisely, 3 is specified through scaling
an initial coefficient 8© that accommodates different levels
of sparsity. Each coordinate of 8% is either 1 or 0. ¢ pro-
portion of the coordinates of 8% are randomly selected and
set to 1, and the remaining 1 — ¢ proportion are set to 0,
where ( is the level of non-sparsity and is set at 1/4, 1/2,
3/4. This factor controls how many covariates actually affect
the response. Then the amplitude of 3 is specified indirectly:
Bo=c1, Prp-1)= 02135?();;71)» where parameters (c1, c2) are
chosen such that the oracle classification error r (the expected
classification error of the classifier given by the true 3) is equal
t0 0.1, 0.2, 0.3. Here r = Ex (min(Pg(Y =1),Pg(Y =0))) =
Ex (1 + exp(|XT,3|)) s numerically computed by sampling
2000 extra covariate vectors. The value of r represents how
far apart the class Y = 1 is from the class Y = 0, and small
values of r correspond to large amplitudes of .

In this example, the number of covariates is 16, so the dimen-
sion of B is p = 17, and the sample size is n = 30. We use the
predictive binomial deviance, Ex, [D(M(XJBLM(XJ,C:I))},
where D(a,b) = alog(a/b) + (1 —a)log((1 —a)/(1 — b)) mea-
sures the discrepancy between two Bernoulli distributions
with probability a and b respectively, to evaluate the predic-
tive performance of B . The expectation Ex, is computed by
sampling 1000 extra independent copies of X from the same
distribution that generates the observed covariates.

To specify catalytic priors, we use the generating distribu-
tions for synthetic data just described, and fix M at 400. The
first estimator of B3 is the posterior mode of 8 with 7 = Tpoot
selected by predictive risk estimation via the bootstrap with
deviance discrepancy (denoted as Cat.Boot.). This estimator
can be computed as the MLE with the weighted augmented
data. The second estimator of B is the coordinate-wise pos-
terior median of 8 with the joint prior ma=2,=1 (denoted as
Cat.Joint). The posterior median is used here because there is
no guarantee that the posterior distribution of 8 is uni-modal
in this case. These estimators are compared with two alterna-
tives: the MLE and the posterior mode with the Cauchy prior
(31) (calculated by the authors’ R package bayesglm).

Table 1 presents the average predictive binomial deviance
over 1600 simulations in each cell. The column Comp.Sep.
shows how often complete separation occurs in the datasets;
when complete separation occurs, the MLE does not exist but
a pseudo-MLE can be algorithmically computed if the change
in the estimate is smaller than 10~% within 25 iterations; the
column of MLE averages across only the cases where either
MLE or pseudo-MLE exists. In Table 1, the boldface corre-
sponds to the best performing method under each simulation
scenario. Based on this table, the catalytic prior with 740t
predicts the best and the MLE predicts the worst in all cases
considered. Although the Cauchy prior seems to perform close

PNAS | April2,2020 | vol. XXX | no.XX | 5

368
369

370

371

372
373
374
375
376
377
378
379

380

382

383

384

385

386

387

388

389

390

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

410

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426



427

428

429

430

432

433

434

435

436

437

438

439

440

Setting Performance of Methods
Comp. Cat. Cat. Cauchy MLE
¢ r Sep. Boot. Joint (pseudo)
1/4 041 100% Mean 1.692 1.772 1.793 2.081
SE x103 (6.8) (6.7) (6.7) (8.7)
0.2 98% Mean 0.675 0.769 0.802 1.123
SE x10®  (5.2) (5.0) (5.0) (7.2)
0.3 91% Mean 0.297  0.399 0.445 0.751
SE x10%  (2.3)  (2.0) (1.9) (7.3)
2/4 0.1 100% Mean 1.661 1.742 1.749 2.048
SE x102 (3.9) (3.8) (3.8) (5.0)
0.2 98% Mean 0.648 0.743 0.771 1.107
SE x10%  (2.5) (2.2) (2.0) (3.4)
0.3 92% Mean 0.287  0.392 0.438 0.748
SE x10%  (2.1)  (1.8) (1.7) (7.1)
3/4 0.1 100% Mean 1.664 1.746 1.749 2.052
SE x103 (4.0) (3.9) (3.8) (4.9)
0.2 99% Mean 0.649 0.745 0.771 1.104
SE x103  (2.5) (2.2) (2.0) (3.4)
0.3 91% Mean 0.287 0.391 0.435 0.738
SE x10%  (2.1)  (1.9) (1.7) (7.3)

Table 1. Mean and standard error of predictive binomial deviance of
different methods. The first two columns are the settings of the simu-
lation: ¢ is the non-sparsity, and r is the oracle prediction error. The
column of Comp.Sep. shows how often complete separation occurs
in the datasets. The last four columns report the mean and stan-
dard error of the predictive binomial deviance of the different meth-
ods, which are the catalytic posterior mode with 7,.;, denoted by
Cat.Boot., the posterior median under joint catalytic prior, denoted
by Cat.Joint, the Cauchy posterior mode, denoted by Cauchy, and
the MLE. The boldface corresponds to the best performing method
in each simulation scenario.

Difference between the error of Cauchy and that of Cat.Joint

¢ r Mean SE x103
1/4 0.1 0.021 0.98
0.2 | 0.033 0.91
0.3 0.047 0.86
1/2 041 0.007 0.79
0.2 0.028 0.85
0.3 | 0.046 0.84
3/4 0.1 0.003 0.76
0.2 0.026 0.83
0.3 | 0.044 0.82

Table 2. Mean and standard error of the difference in predictive bi-
nomial deviance between the Cauchy posterior mode and the joint
catalytic posterior median. ( is the non-sparsity; r is the oracle pre-
diction error.

to the joint catalytic prior, Table 2 shows that the prediction
based on the joint catalytic prior is statistically significantly
better than that of the Cauchy prior (Table 2 directly cal-
culates the difference of the prediction errors between the
Cauchy prior and the joint catalytic prior and shows that the
difference is significantly positive with Bonferroni-corrected
p-value smaller than 0.02). Tables 1 and 2 focus on predictive
binomial deviance. Section 3.D in SI considers other error
measurements, including the classification error and the AUC
(Area Under Curve), where a similar conclusion can be drawn
regarding the performance of different methods: predictions
based on catalytic priors are generally much better than those
based on the MLE and are often better than those based on
the Cauchy prior.

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

Setting Performance of Methods
¢ r Cat.Boot  Cat.Joint  Cauchy
1/4 0.1 | Cover 90.5% 88.1% 90.1%
Width 3.5 2.9 3.3

0.2 Cover 93.3% 97.2% 98.0%
Width 2.8 2.7 3.0

0.3 | Cover 95.0% 97.6% 97.6%
Width 2.2 2.4 2.8

2/4 0.1 | Cover 89.8% 85.7% 86.2%
Width 3.5 2.9 3.2

0.2 | Cover 93.4% 97.5% 98.4%
Width 2.7 2.7 3.0

0.3 Cover 95.7% 97.7% 97.7%
Width 2.1 2.4 2.8

3/4 0.1 | Cover 89.4% 85.6% 86.1%
Width 3.5 2.9 3.2

0.2 | Cover 93.9% 97.6% 98.6%
Width 2.7 2.7 3.0

0.3 Cover 95.9% 97.8% 97.8%
Width 2.1 2.4 2.7

Table 3. Average coverage probability (%) and width of 95% posterior
intervals under the catalytic prior with 7., the joint catalytic prior,
and Cauchy prior. ¢ is the non-sparsity; r is the oracle prediction
error.

Table 3 presents the average coverage probabilities (in
percentage) and widths of the 95% nominal intervals for 3;
averaging over j. Because all the intervals given by the MLE
have widths too large to be useful (thousands of times wider
than those given by the other methods), we do not report them
in this table. The intervals from the other three priors are
reasonably short in all cases and have coverage rates not far
from the nominal levels. Specifically, the intervals given by the
Cauchy prior and the joint catalytic prior tend to over-cover
when the true 8 has small amplitudes (r = 0.2 or 0.3) and
tend to under-cover when g has large amplitudes (r = 0.1),
whereas the intervals given by the catalytic prior with Ty00¢
perform more consistently. This example, together with more
results given in SI, illustrates that, for logistic regression, the
catalytic prior is at least as good as the Cauchy prior. The SI
also illustrates the performance of the catalytic prior in linear
regression, where it is at least as good as ridge regression.
Catalytic priors thus appear to provide a general framework
for prior construction over a broad range of models.

Theoretical Properties of Catalytic Priors

We show the properness and the convergence of a catalytic prior
when the working model is a GLM. Without loss of generality,
we assume the sufficient statistic in the GLM formula Eq. (8)
is t(y) = y; otherwise, we can let the response be Y’ = #(Y)
and proceed. We assume that every covariate has at least
two different observed values. Denote by ) the nonempty
interior of the convex hull of the support of the model density
in Eq. (8). Our results apply to any positive prior weight 7.

Properness. A proper prior is needed for many Bayesian in-
ferences, such as model comparison using Bayes factors (32).
We show that catalytic priors, population catalytic priors, and
joint catalytic priors are generally proper, with proofs in SI.

Theorem 1. Suppose (1) ¢(-) satisfies inf,-o|d(n)/n| > 0,
(2) the synthetic covariate matrix X* has full column rank,
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and (3) each synthetic response Y;" lies in ) or there ezists a
linearly independent subset { X} }7_, of the synthetic covariate
vectors such that the average of synthetic responses with the
same X}, lies in Y. Then the catalytic prior is proper for any
7> 0.

The condition inf,xo |¢(n)/n| > 0 is satisfied for the canon-
ical link for any GLM, and also for the commonly used probit
link and the complementary log-log link in binary regression.
The condition that X* has full column rank holds with high
probability according to the following result.

Proposition 2. If each synthetic covariate vector is drawn
from the independent resampling distribution, then there exists
a constant ¢ > 0 that only depends on the observed X such that
for any M > p, with probability at least 1 — 2exp(—cM), the
synthetic covariate matriz X* has full column rank.

Population catalytic priors are also proper.

Theorem 3. Suppose (1) ¢(-) satisfies inf,-o|d(n)/n| > 0,
(2) the synthetic covariate vector is drawn from the independent
resampling distribution, and (8) there exists a compact subset
yeem C Y such that P(Y™ € Y°°™) = 1. Then the population
catalytic prior is proper for any T > 0.

The following result shows the properness of the joint prior
Ta,~ (7, B) in Eq. (15) and the role of the hyperparameters.

Theorem 4. Suppose o and «y are positive. If I'o »(7) equals
Eq. (16) for linear regression or equals Eq. (17) for other
generalized linear models. Then under the same condition
as Theorem 1, (1) the joint prior is proper; (2) for any m €
(0, ), the m" moment of B exists; (3) limr o0 L 10g ha,(T) =
—1/v < 0, where ha,~(T) denotes the marginal prior on T.

Convergence to the Population Catalytic Prior. When
synthetic-sample size, M, is large enough, the randomness in
the synthetic data will not affect the catalytic prior regardless
of the observed real sample size because, as a distribution of
the parameters, the catalytic prior converges to the population
catalytic prior.

We can quantify how fast the catalytic prior, as a random
distribution, converges to the population catalytic prior by
establishing an explicit upper bound on the distance between
these two distributions in terms of M. This result shows how
large M needs to be so that the randomness in the synthetic
data no longer influentially change the prior. We present here
a simplified version of the theoretical result; for precise and
detailed statements, see SI.

Theorem 5. Under mild reqularity conditions,

1. For any given T and p, there exists a constant Ci,
such that for any small positive eo, €1, and any M >
Cy (1 + logQ(i)) = log(i), with probability at least 1—eo

1
the total variation distance between the catalytic prior and
the population catalytic prior is bounded by

dTV(ﬂ—cat,oo, ﬂ-cat,NI) S €1.

2. If the working model is linear regression with Gaussian
noise, then there exists a constant Cy that only depends
on the observed covariates, such that for any g > 0 and
any M > %Cgplog(%), with probability at least 1 — €,

Huang etal.

the KL divergence between the catalytic prior and the
population catalytic prior with any T > 0 is bounded by

1 .
KL('Trcat,OO7 Wcat,lvf) < 2C, Mp3 log(g)

Data Availability. All the data used in the article are simula-
tion data. The details, including the models to generate the
simulation data, are described in the [llustration of Methods
section and the Additional Simulations section of the SI.

Discussion

The class of catalytic prior distributions stabilizes the estima-
tion of a relatively complicated working model by augmenting
the actual data with synthetic data drawn from the predictive
distribution of a simpler model (including but not limited to
a sub-model of the working model). Our theoretical work
and simulation-based evidence suggest that the resulting in-
ferences using standard software, which treat the augmented
data just like actual data, have competitive and sometimes
clearly superior frequency operating characteristics, compared
to inferences based on alternatives that have been previously
proposed. Moreover, catalytic priors are generally easier to
formulate because they are based on hypothetical smoothed
data that resemble the actual data. Two tuning constants,
M and 7, require selection, and wise choices for them appear
to be somewhat model dependent, for example, differing for
linear and logistic regressions, both of which are considered
here. We anticipate that catalytic priors will find broad appli-
cation, especially as more complex Bayesian models are fit to
more and more complicated datasets. Some open questions
for future investigation include: (1) how to apply the catalytic
priors to model selection, (2) how to study the asymptotic
properties when both the sample size and the dimension of
the working model go to infinity — in such a regime, it is also
interesting to investigate what the simple model should be in
order to achieve good bias-variance tradeoffs.
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