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A catalytic prior distribution is designed to stabilize a high-
dimensional “working model” by shrinking it toward a “simplified
model.” The shrinkage is achieved by supplementing the observed
data with a small amount of “synthetic data” generated from a predic-
tive distribution under the simpler model. We apply this framework
to generalized linear models, where we propose various strategies
for the specification of a tuning parameter governing the degree of
shrinkage and study resultant theoretical properties. In simulations,
the resulting posterior estimation using such a catalytic prior outper-
forms maximum likelihood estimation from the working model and
is generally comparable or superior to existing competitive methods
in terms of frequentist prediction accuracy of point estimation and
coverage accuracy of interval estimation. The catalytic priors have
simple interpretations and are easy to formulate.
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The prior distribution is a unique and important feature1

of Bayesian analysis, yet in practice, it can be difficult2

to quantify existing knowledge into actual prior distributions;3

thus, automated construction of prior distributions can be4

desirable. Such prior distributions should stabilize posterior5

estimation in situations when maximum likelihood (ML) be-6

haves problematically, which can occur when sample sizes are7

small relative to the dimensionality of the models. Here we8

propose a class of prior distributions designed to address such9

situations. Henceforth we call the complex model that the10

investigator wishes to use to analyze the data the “working11

model.”12

Often with real working models and datasets, the sample13

sizes are relatively small, and a likelihood-based analysis is un-14

stable, whereas a likelihood-based analysis of the same dataset15

using a simpler but less rich model can be stable. Catalytic16

priors∗ effectively supplement the observed data with a small17

amount of synthetic data generated from a suitable predictive18

distribution, such as the posterior predictive distribution under19

the simpler model. In this way, the resulting posterior distri-20

bution under the working model is pulled toward the posterior21

distribution under the simpler model, resulting in estimates22

and predictions with better frequentist properties. The name23

for these priors arises because a catalyst is something that24

stimulates a reaction to take place that would not take place25

(or not as effectively) without it, but only an insubstantial26

amount of the catalyst is needed. When the information in the27

observed data is substantial, the catalytic prior has a minor28

influence on the resulting inference, because the information29

in the synthetic data is small relative to the information in30

the observed data.31

We are not the first to suggest such priors, but we embed32

∗Throughout the paper, we use the ineloquent but compact ‘priors’ in place of the correct ‘prior
distributions’

the suggestion within a general framework designed for a broad 33

range of examples. One early suggestion for the applied use 34

of such priors was in Ref. (1), which was based on an earlier 35

proposal by Rubin in a 1983 report for the U.S. Census Bureau 36

(reprinted as an appendix in Ref. (2)). Such a prior was also 37

used in a Bayesian analysis of data with noncompliance in a 38

randomized trial (3). 39

As in both of these earlier references, consider logistic
regression as an example:

yi | xi,β ∼ Bernoulli
(
1/(1 + exp(−x>i β))

)
, i = 1, . . . , n,

where, for the ith data point (yi,xi), yi ∈ {0, 1} is the re- 40

sponse, and xi = (1, xi1, . . . , xi,p−1)> represents p covariates, 41

with unknown coefficients β = (β0, β1, . . . , βp−1)>. The ML 42

estimate (MLE) of β is infinite when there is complete sep- 43

aration (4, 5) of the observed covariate values in the two 44

response categories, which can occur easily when p is large 45

relative to n. Earlier attempts to address this problem, such 46

as using Jeffrey’s prior (6–9), are not fully satisfactory. This 47

problem arises commonly in practice, for example, Ref. (1) 48

studied the mapping of industry and occupation (I/O) codes 49

in the 1970 U.S. Census to the 1980 Census codes, where 50

both coding systems had hundreds of categories. The I/O 51

classification system changed drastically from the 1970 Census 52

to the 1980 Census, and a single 1970 code could map into 53

as many as 60 possible 1980 codes. For each 1970 code, the 54

1980 code was considered as missing and multiply-imputed 55

based on covariates. The imputation models were nested (di- 56

chotomous) logistic regression models (10) estimated from a 57

special training sample for which both 1970 and 1980 codes 58

were known. The covariates used in these models were derived 59

from nine different factors (sex, age, race, etc.) that formed 60

a cross-classification with J = 2, 304 categories. The sample 61

available to estimate the mapping was smaller than ten for 62

some 1970 codes, and many of these logistic regression models 63
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faced complete separation. The successful approach in Ref.64

(1) was to use the prior distribution65

π(β) ∝
J∏
j=1

(
ex
∗
j
>β

1 + e
x∗
j
>β

)pµ̂/J (
1

1 + e
x∗
j
>β

)p(1−µ̂)/J

, [1]66

where each x∗j is a possible covariate vector of the cross-
classification; p is the dimension of β; and µ̂ =

∑n

i=1 yi/n is
the marginal proportion of ones among the observed responses.
In this example, the simpler model has the responses yi’s
independent of the covariates:

yi | xi, µ ∼ Bernoulli (µ) (i = 1, . . . , n),

where µ ∈ (0, 1) is a probability estimated by µ̂. If we supple-
ment the dataset with pµ̂/J synthetic data points (y∗j = 1,x∗j )
and p(1 − µ̂)/J synthetic data points (y∗j = 0,x∗j ) for each
x∗j (j = 1, . . . , J), then the likelihood function of the aug-
mented dataset has the same form as the posterior distribution
with the prior in Eq. (1):

π(β | {(yi,xi)}ni=1) [2]

∝
J∏
j=1

(
ex
∗
j
>β

1 + e
x∗
j
>β

)Nj,1+pµ̂/J (
1

1 + e
x∗
j
>β

)Nj,0+p(1−µ̂)/J

,

where Nj,1, Nj,0 are, respectively, the numbers of (1, x∗j ) and67

(0, x∗j ) in the observed data. In this construction, the total68

amount of synthetic data is taken to be p, the dimension of69

β; see Remark 2.2 in SI for more discussion. The resulting70

MLE with the augmented dataset equals the maximum pos-71

terior estimator (the value of β that maximizes the posterior72

distribution), and it will always be unique and finite when73

µ̂ ∈ (0, 1).74

How to use the synthetic-data perspective for constructing75

general prior distributions, which we called catalytic prior76

distributions, is our focus. We mathematically formulate the77

class of catalytic priors and apply them to generalized linear78

models. We show that a catalytic prior is proper and yields79

stable estimates under mild conditions. Simulation studies80

indicate the frequentist properties of the model estimator us-81

ing catalytic priors are comparable, and sometimes superior,82

to existing competitive estimators. Such a prior has the ad-83

vantages that it is often easier to formulate and it allows for84

simple implementation from standard software.85

We also provide an interpretation of the catalytic prior86

from an information theory perspective (detailed in Section 487

of SI).88

Related Priors. The practice of using synthetic data or pseudo89

data to define prior distributions has a long history in Bayesian90

statistics (11). It is well-known that conjugate priors for ex-91

ponential families can be viewed as the likelihood of pseudo-92

observations (12). Some authors have suggested formulating93

priors by obtaining additional pseudo data from experts’ knowl-94

edge (13–15), which is not easy to use in practice when data95

have many dimensions or when numerous models or experts96

are being considered. Refs. (16, 17) proposed to use a conju-97

gate Beta-distribution prior with specifically chosen values of98

covariates to approximate a multivariate Gaussian prior for99

the regression coefficients in a logistic regression model. A100

complication of this approach is that the augmented dataset101

may contain impossible values for a covariate. Another ap- 102

proach is the expected-posterior prior (18–20), where the prior 103

is defined as the average posterior distribution over a set of 104

imaginary data sampled from a simple predictive model. This 105

approach is designed to address the challenges in Bayesian 106

model selection. Other priors have been proposed to incor- 107

porate information from previous studies. Particularly, the 108

power prior (21–23) formulates an informative prior generated 109

by a power of the likelihood function of historical data. One 110

limitation of this power prior is that its properness requires 111

the covariate matrix of historical or current data to have 112

full column rank (22). Recently, the power-expected-posterior 113

prior was proposed to alleviate the computational challenge 114

of expected-posterior priors for model selection (24, 25). It 115

incorporates the ideas of both the expected-posterior prior and 116

the power prior, but it cannot be applied when the dimension 117

of the working model is larger than the sample size. Some 118

other priors suggested in the literature have appearances simi- 119

lar to catalytic priors. Ref. (26) propose the reference prior 120

that maximizes the mutual information between the data and 121

the parameter, resulting in a prior density function that looks 122

similar to that of a catalytic prior but is essentially different. 123

Ref. (27) proposed a prior based on the idea of matching 124

loss functions, which, although operationally similar to the 125

catalytic prior, is conceptually different because it requires a 126

subjective initial choice for the distribution of the data. In 127

Ref. (28), the class of penalized complexity priors for hierarchi- 128

cal model components is based on penalizing the complexity 129

induced by the deviation from a simpler model. The simpler 130

model there needs to be nested in the working model, which 131

is not required by the catalytic prior. 132

Generic Formulation of Catalytic Priors 133

Catalytic Prior in the Absence of Covariates. Consider the 134

data, Y = (Y1, . . . , Yn)>, being analyzed under a working 135

model Yi
i.i.d.∼ f(y | θ) governed by unknown parameter θ. 136

Suppose a model g(y | ψ) with unknown parameter ψ, whose 137

dimension is smaller than that of θ, is stably fitted from Y 138

and results in a predictive distribution g∗(y∗ | Y ) for future 139

data drawn from g(y | ψ). The synthetic-data generating dis- 140

tribution g∗(y∗ | Y ) is used to generate the synthetic data 141

{Y ∗i }Mi=1, whereM is the synthetic-sample size and the asterisk 142

superscript is used to indicate synthetic data. 143

The synthetic-data generating distribution can be specified 144

by fitting a model simpler than f(y | θ), but it does not 145

necessarily have to be. Examples: (1) If a Bayesian analysis 146

of the simpler model can be carried out easily, g∗(y∗ | Y ) 147

can be taken to be the posterior predictive distribution under 148

the simpler model. (2) Alternatively, one can obtain a point 149

estimate ψ̂, and g∗(y∗ | Y ) = g(y∗ | ψ̂) can be the plug-in 150

predictive distribution. (3) If two simpler estimated models 151

are g(1)
∗ (y∗ | Y ) and g

(2)
∗ (y∗ | Y ), then g∗(y∗ | Y ) can be 152

taken to be a mixture w g(1)
∗ (y∗ | Y ) + (1−w) g(2)

∗ (y∗ | Y ) for 153

some w ∈ (0, 1). 154

The likelihood function of θ under the working model based 155

on the synthetic data {Yi∗}Mi=1 is `(θ | Y ∗) =
∏M

i=1 f(Y ∗i | θ). 156

Because these synthetic data are not really observed data, we 157

down-weight them by raising this likelihood to a power τ/M , 158

where τ > 0 is a tuning parameter called the prior weight. 159

This leads to the catalytic prior that has an unnormalized 160
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density:161

πcat,M (θ | τ) ∝

{
M∏
i=1

f(Y ∗i | θ)

}τ/M
, [3]162

which depends on the randomly drawn synthetic data {Yi∗}Mi=1.163

The population catalytic prior is formally the limit of Eq. (3)164

as M goes to infinity:165

πcat,∞(θ | τ) ∝ exp [τEg∗ {log f(Y ∗ | θ)}] . [4]166

Here the expectation Eg∗ {log f(Y ∗ | θ)} in Eq. (4) is taken167

with respect to Y ∗ ∼ g∗(Y ∗ | Y ). The dependence of g∗(Y ∗ |168

Y ) on the observed Y emphasizes that the catalytic prior is169

data-dependent, like that used in Box and Cox (29) for power170

transformations.171

The posterior density using the catalytic prior is mathemat-172

ically proportional to the likelihood with both the observed173

data and the weighted synthetic data. Thus, we can implement174

the required Bayesian inference using standard software. For175

instance, the maximum posterior estimate (posterior mode) is176

the same as the MLE using the weighted augmented data and177

can be computed by existing MLE procedures, which can be178

a computational advantage, as illustrated in Ref. (1).179

Catalytic Prior with Covariates. Let {(Yi,Xi)}ni=1 be the set of180

n pairs of a scalar response Yi and a p-dimensional covariate181

vector Xi; Yi depends on Xi in the working model with182

unknown parameter β:183

Yi | Xi,β ∼ f(y | Xi,β), i = 1, 2 . . . , n. [5]184

Let Y be the vector (Y1, . . . , Yn)>, and X be the matrix185

(X1, . . . ,Xn)>. The likelihood of these data is f(Y | X,β) =186 ∏n

i=1 f(Yi | Xi,β).187

Suppose a simpler model g(y | X,ψ) with unknown param-188

eter ψ is stably fitted from (Y ,X) and results in a synthetic-189

data generating distribution g∗(y | x,Y ,X). Note that g∗(·)190

here is analogous to its use earlier except that now, in addition191

to the observed data, it is also conditioned on x. The synthetic192

covariates X∗ will be drawn from a distribution Q(x), which193

we call the synthetic-covariate generating distribution. We will194

discuss the choice of Q(x) shortly.195

Given the distributions Q(x) and g∗(y | x,Y ,X), the cat-196

alytic prior first draws a set of synthetic data {(Y ∗i ,X∗i )}Mi=1197

from198

X∗i
i.i.d.∼ Q(x), Y ∗i | X∗i ∼ g∗(y | X∗

i ,Y ,X).199

Hereafter we write Y ∗ for the vector of synthetic responses
(Y ∗1 , . . . , Y ∗M )>, and X∗ for the matrix of synthetic covariates
(X∗1 , . . . ,X∗M )>. The likelihood of the working model based on
the synthetic data `(β | Y ∗,X∗) equals

∏M

i=1 f(Y ∗i | X∗i ,β).
Because these synthetic data are not really observed, we down-
weight them by raising this likelihood to a power τ/M , which
gives the unnormalized density of the catalytic prior with
covariates:

πcat,M (β | τ) ∝

{
M∏
i=1

f(Y ∗i | X∗i ,β)

}τ/M
. [6]

The population catalytic prior (when M →∞) has unnormal-200

ized density:201

πcat,∞(β | τ) ∝ exp (τEQ,g∗ [log f(Y ∗ | X∗,β)]) , [7]202

where the expectation EQ,g∗ averages over both X∗ and Y ∗. 203

Denote by Zτ,M and Zτ,∞ the integrals of the right-hand sides 204

of Eq. (6) and Eq. (7) w.r.t. β. When these integrals are 205

finite, the priors are proper, and Zτ,M and Zτ,∞ are their 206

normalizing constants. 207

An advantage of the catalytic prior is that the corresponding
posterior has the same form as the likelihood

π(β|X,Y , τ) ∝πcat,M (β|τ)f(Y |X,β)

∝ exp

(
τ

M

M∑
i=1

log(f(Y ∗i |X∗i ,β)

+
n∑
i=1

log(f(Yi|Xi,β)

)
,

which makes the posterior inference no more difficult than 208

other standard likelihood-based methods. For example, the 209

posterior mode can be easily computed as a maximum weighted 210

likelihood estimate using standard statistical software. Full 211

posterior inference can also be easily implemented by treating 212

the synthetic data as down-weighted data. 213

Catalytic Prior for GLMs. A generalized linear model (GLM) 214

assumes that, given a covariate vector X, the response Y has 215

the following density w.r.t. some base probability measure: 216

f(y | X,β) = exp (t(y)θ − b(θ)) , [8] 217

where t(y) is a sufficient statistic, and θ is the canonical 218

parameter that depends on η = X>β through θ = φ(η), 219

where β is the unknown regression coefficient vector and φ(·) 220

is a monotone differentiable function. The mean of t(Y ) is 221

denoted by µ(η) and is equal to b′(φ(η)). 222

When the working model is a GLM, from Eq. (7) and
Eq. (8), we have

EQ,g∗ [log f(Y ∗ | X∗,β)]

=EQ
{
φ(β>X∗)Eg∗ [t(Y ∗) | X∗]− b(φ(β>X∗))

}
, [9]

so that the expectation of the log-likelihood does not depend 223

on particular realizations of the synthetic response, but rather 224

on the conditional mean of the sufficient statistic under the 225

synthetic-data generating distribution. Thus, in the case of a 226

GLM (and exponential family models), instead of a specific 227

realization of the synthetic response, one only needs to use 228

the conditional mean of the sufficient statistic Eg∗ [t(Y ∗) | X∗] 229

to form a catalytic prior. This simplification reduces the 230

variability introduced by synthetic data †. 231

As a concrete example, consider a linear regression model
Y = Xβ + ε, where ε ∼ Nn(0, σ2In) with known σ. Suppose
the synthetic-data generating model is a sub-model with the
estimated parameter β∗0 , and X∗ is the synthetic covariate
matrix. In this case, the catalytic prior with any positive τ
has a normal distribution:

β ∼ N
(
β∗0 ,

σ2

τ
( 1
M

(X∗)>X∗)−1
)
.

If limM→∞
1
M

(X∗)>X∗ = ΣX , the population catalytic prior
is

β ∼ N
(
β∗0 ,

σ2

τ
(ΣX)−1

)
.

More details about this example can be found in SI. 232

†Note that in the previous example of 1970-1980 I/O code mapping, instead of the raw counts of
synthetic responses, their expected values pµ̂/J and p(1− µ̂)/J were used.
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Specifications of the Catalytic Prior233

Generating Synthetic Covariates. The synthetic covariate vec-234

tors are generated such that (X∗)>X∗ has full rank. Moreover,235

a synthetic covariate should have the same sample space as236

a real covariate. The simple choice of resampling the ob-237

served covariate vectors would not guarantee the full rank238

of (X∗)>X∗; for example, if the observed covariates are rank239

deficient, resampling would still give rank deficient (X∗)>X∗.240

Instead, we consider one option for generating synthetic241

covariates: resample each coordinate of the observed covariates242

independently. Formally, we define the independent resampling243

distribution by the probability mass function244

Q0(x) :=
∏
j

( 1
n

#{1 ≤ i ≤ n : (Xi)j = xj}
)
,245

for all x ∈ X , where X is the sample space of X. We use this246

distribution for simplicity. Alternatively, if historical data are247

available, synthetic covariates can be sampled from the histor-248

ical covariates. Furthermore, if some variables are naturally249

grouped or highly correlated, one may want to resample these250

grouped parts together. Other examples are discussed in SI.251

Generating Synthetic Responses. The synthetic-data gener-252

ating distribution can be specified by fitting a simple model253

GΨ = {g(y | x,ψ) : ψ ∈ Ψ} to the observed data. The254

only requirement is that this simple model can be stably fit255

by the observed data in the sense that the standard estima-256

tion of ψ, using either a Bayesian or frequentist approach,257

can lead to a well-defined predictive distribution for future258

data. Examples include a fixed distribution and an intercept-259

only model. GΨ can also be a regression model based on260

dimension reduction, such as a principal components analy-261

sis; see SI for a numerical example, which also suggests to262

keep GΨ as simple as possible when the observed sample size263

is small. For a working regression model with interactions,264

a natural choice of GΨ is the sub-model with only main-265

effects. If the main-effect model is overfitted as well, we could266

use a mixed synthetic-data generating distribution, such as267

g∗(y | x,Y ,X) = 0.5 g∗,1(y | x,Y ,X) + 0.5 g∗,0(y | x,Y ,X),268

where g∗,1 and g∗,0 are the predictive distributions of the pre-269

liminarily fitted main-effect model and intercept-only model,270

respectively. GΨ can also be chosen using additional knowl-271

edge, such as a sub-model that includes a few important272

covariates that have been identified in previous studies, or if273

domain experts have opinions on the range of possible values274

of certain model parameters, then the parameter space Ψ can275

be constrained accordingly.276

Sometimes it is beneficial to draw multiple synthetic re-277

sponses for each sampled synthetic covariate vector. We name278

this sampling the stratified synthetic data generation. It could279

help reduce variability introduced by synthetic data.280

Sample Size of Synthetic Data. Theorem 5 below quantifies281

how fast the randomness in the catalytic prior diminishes as282

the synthetic-sample size M increases. One implication is that283

for linear regression with binary covariates, if M ≥ 4p3

ε2 log( p
δ
),284

then the Kullback-Leibler divergence between the catalytic285

prior πcat,M and its limit πcat,∞ is at most ε with probability286

at least 1− δ. Such a bound can help choose the magnitude of287

M . When the prior needs to be proper, we suggest taking M288

larger than 4 times the dimension of β (based on Theorem 1 289

and Proposition 2 below). 290

Weight of Synthetic Data. The prior weight τ controls how 291

much the posterior inference relies on the synthetic data be- 292

cause it can be interpreted as the effective prior sample size. 293

Here we provide two guidelines for systematic specifications 294

of τ . 295

Frequentist Predictive Risk Estimation. Choose a value of τ using 296

the following steps: (1) Compute the posterior mode β̂(τ) 297

for various values of τ . (2) Choose a discrepancy function 298

D(y0, µ̂) that measures how well a prediction µ̂ predicts a 299

future response y0. (3) Find an appropriate criterion function 300

Λ(τ) that estimates the expected (in-sample) prediction error, 301

for a future response Y0 based on β̂(τ), and (4) Pick the value 302

of τ that minimizes Λ(τ). See Section 2.C.1 in SI for a detailed 303

discussion. 304

The discrepancy D(y0, µ̂) measures the error of a prediction 305

µ̂ for a future response Y0 that takes value y0. We consider 306

here discrepancy functions of the form 307

D(y0, µ̂) := a(µ̂)− λ(µ̂)y0 + c(y0), [10] 308

and define D(Y0, µ̂) := 1
n

∑n

i=1 D(Y0,i, µ̂i). This class is 309

general enough to include squared error, classification error and 310

deviance for GLMs: (a) squared error: D(y0, µ̂) = (y0− µ̂)2 = 311

µ̂2 − 2y0µ̂ + y2
0 ; (b) classification error: D(y0, µ̂) = 1y0 6=µ̂ = 312

µ̂−2y0µ̂+y0 for any y0 and µ̂ in {0, 1}; (c) deviance for GLMs: 313

D(y0, µ̂) = b(θ̂)− y0θ̂ + sup
θ

(y0θ − b(θ)), where θ̂ = (b′)−1(µ̂). 314

The criterion function Λ(τ) is an estimate of the expectation
of the (in-sample) prediction error. Such an estimate can be
obtained by using the parametric bootstrap. Take a bootstrap
sample of the response vector Y boot from the distribution
f(y | X, β̂0), where β̂0 = β̂(τ0) is a preliminary estimate, and
denote by β̂boot(τ) the posterior mode based on data (Y boot,X)
with the catalytic prior. The bootstrap criterion function is
given by

Λ(τ) = D(Y , µ̂τ ) + 1
n

n∑
i=1

Cov(λ(µ̂bootτ,i ), Y booti ), [11]

where µ̂τ,i = µ(X>i β̂(τ)) and µ̂bootτ,i = µ(X>i β̂boot(τ)). 315

See SI for a detailed derivation. In practice, the term 316

Cov(λ(µ̂bootτ,i ), Y booti ) is numerically computed by sampling 317

Y boot repeatedly. Based on our experiments with linear and 318

logistic models, the default choices of the initial values can be 319

τ0 = 1 for linear regression and τ0 = p/4 for other cases. See 320

SI for a mathematical argument. 321

The costly bootstrap repetition step to numerically compute 322

Cov(λ(µ̂bootτ,i ), Y booti ) can be avoided in two special cases (see 323

SI for more discussion): 324

1. If Yi follows a normal distribution and λ(µ̂τ,i) is smooth
in yi, then the Stein’s unbiased risk estimate yields

Λ(τ) = D(Y , µ̂τ ) + 1
n

n∑
i=1

Var(Yi)E
∂λ(µ̂τ,i)
∂yi

. [12]

In particular, when square error is considered and if µ̂τ
can be written as µ̂τ = Hτ · Y + cτ , the risk estimate is

Λ(τ) = ‖Y − µ̂τ‖2 + 2
n

n∑
i=1

Var(Yi)Hτ (i, i). [13]

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Huang et al.
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2. When responses are binary, say 0 or 1, let Y 4i be a copy325

of Y but with Yi replaced by 1−Yi, and let β̂4i(τ) be the326

posterior mode based on data (X,Y 4i) with the catalytic327

prior. The Steinian estimate (30) is given by328

D(Y , µ̂τ )+ 1
n

n∑
i=1

µ̂0
i (1−µ̂0

i )(2Yi−1)
(
λ(µ̂τ,i)− λ(µ̂4iτ,i)

)
,

[14]329

where µ̂0
i = µ(X>i β̂0), and µ̂4iτ,i = µ(X>i β̂4i(τ)).330

Bayesian Hyperpriors. An alternative way to specify the prior331

weight τ is to consider a joint catalytic prior for (τ,β):332

πα,γ(τ,β) ∝ Γα,γ(τ)

{
M∏
i=1

f(Y ∗i | X∗i ,β)

}τ/M
, [15]333

where Γα,γ(τ) is a function defined as follows for positive scalar334

hyperparameters α and γ. Denote335

κ := sup
β∈Rp

1
M

M∑
i=1

log f(Y ∗i | X∗i ,β).336

For linear regression, the function Γα,γ(τ) can be taken to be337

Γα,γ(τ) = τ
p+α

2 −1e−τ(κ+γ−1). [16]338

and for other models,339

Γα,γ(τ) = τp+α−1e−τ(κ+γ−1). [17]340

The form of Γα,γ(τ) is chosen mainly for practical conve-341

nience; by separating the dependence on p and κ, we have342

meaningful interpretations for α and γ. For GLMs, prior mo-343

ments of β up to order α exist, and γ controls the exponential344

decay of the prior density of τ ; see Theorem 4. For linear345

regression, the marginal prior for β induced by Eq. (15) is a346

multivariate t-distribution centered around the MLE for the347

synthetic data with covariance matrix 2σ2

αγ
· ( 1

M
(X∗)>X∗)−1

348

and degrees of freedom α. The analysis in Theorem 4 reveals349

how the parameters α and γ affect the joint prior. Roughly350

speaking, a larger value of α (or γ) tends to pull the working351

model more towards the simpler model. Admittedly, it appears352

impossible to have a single choice that works the best in all353

scenarios. We recommend (α, γ) = (2, 1) as a simple default354

choice based on our numerical experiments.355

Illustration of Methods356

Logistic Regression. We illustrate the catalytic prior using357

logistic regression. Another example using linear regression358

is presented in SI. Here the mean of Y depends on the linear359

predictor η = X>β through µ = eη/(1 + eη). Suppose the360

synthetic-data generating model includes only the intercept,361

so it is Bernoulli(µ0), where a simple estimate of µ0 is given362

by µ̂0 = (1/2 +
∑

i≤n Yi)/(1 + n). The synthetic response363

vector Y ∗ can be taken to be µ̂0 · 1M , and each synthetic364

covariate vectorX∗i is drawn from the independent resampling365

distribution; this prior is proper when (X∗)>X∗ is positive366

definite according to Theorem 1.367

Numerical Example. We first generate the observed covariatesXi 368

by drawing a Gaussian random vector Zi whose components 369

have mean 0, variance 1 and common correlation ρ = 0.5; set 370

Xi,j =
{

2 · 1Zi,j>0 − 1, 2j < p

Zi,j , 2j ≥ p.
371

This process yields covariate vectors that have dependent com- 372

ponents and have both continuous and discrete components 373

as one would encounter in practical logistic regression prob- 374

lems. We consider three different sparsity levels and three 375

different amplitudes of the regression coefficient β in the un- 376

derlying model. More precisely, β is specified through scaling 377

an initial coefficient β(0) that accommodates different levels 378

of sparsity. Each coordinate of β(0) is either 1 or 0. ζ pro- 379

portion of the coordinates of β(0) are randomly selected and 380

set to 1, and the remaining 1 − ζ proportion are set to 0, 381

where ζ is the level of non-sparsity and is set at 1/4, 1/2, 382

3/4. This factor controls how many covariates actually affect 383

the response. Then the amplitude of β is specified indirectly: 384

β0 = c1, β1:(p−1) = c2β
(0)
1:(p−1), where parameters (c1, c2) are 385

chosen such that the oracle classification error r (the expected 386

classification error of the classifier given by the true β) is equal 387

to 0.1, 0.2, 0.3. Here r = EX (min(Pβ(Y = 1),Pβ(Y = 0))) = 388

EX
(
1 + exp(|X>β|)

)−1 is numerically computed by sampling 389

2000 extra covariate vectors. The value of r represents how 390

far apart the class Y = 1 is from the class Y = 0, and small 391

values of r correspond to large amplitudes of β. 392

In this example, the number of covariates is 16, so the dimen- 393

sion of β is p = 17, and the sample size is n = 30. We use the 394

predictive binomial deviance, EX0

[
D(µ(X>0 β), µ(X>0 β̂))

]
, 395

where D(a, b) = a log(a/b) + (1− a) log((1− a)/(1− b)) mea- 396

sures the discrepancy between two Bernoulli distributions 397

with probability a and b respectively, to evaluate the predic- 398

tive performance of β̂. The expectation EX0 is computed by 399

sampling 1000 extra independent copies of X0 from the same 400

distribution that generates the observed covariates. 401

To specify catalytic priors, we use the generating distribu- 402

tions for synthetic data just described, and fix M at 400. The 403

first estimator of β is the posterior mode of β with τ = τ̂boot 404

selected by predictive risk estimation via the bootstrap with 405

deviance discrepancy (denoted as Cat.Boot.). This estimator 406

can be computed as the MLE with the weighted augmented 407

data. The second estimator of β is the coordinate-wise pos- 408

terior median of β with the joint prior πα=2,γ=1 (denoted as 409

Cat.Joint). The posterior median is used here because there is 410

no guarantee that the posterior distribution of β is uni-modal 411

in this case. These estimators are compared with two alterna- 412

tives: the MLE and the posterior mode with the Cauchy prior 413

(31) (calculated by the authors’ R package bayesglm). 414

Table 1 presents the average predictive binomial deviance 415

over 1600 simulations in each cell. The column Comp.Sep. 416

shows how often complete separation occurs in the datasets; 417

when complete separation occurs, the MLE does not exist but 418

a pseudo-MLE can be algorithmically computed if the change 419

in the estimate is smaller than 10−8 within 25 iterations; the 420

column of MLE averages across only the cases where either 421

MLE or pseudo-MLE exists. In Table 1, the boldface corre- 422

sponds to the best performing method under each simulation 423

scenario. Based on this table, the catalytic prior with τ̂boot 424

predicts the best and the MLE predicts the worst in all cases 425

considered. Although the Cauchy prior seems to perform close 426
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Setting Performance of Methods
Comp. Cat. Cat. Cauchy MLE

ζ r Sep. Boot. Joint (pseudo)

1/4 0.1 100% Mean 1.692 1.772 1.793 2.081
SE ×103 (6.8) (6.7) (6.7) (8.7)

0.2 98% Mean 0.675 0.769 0.802 1.123
SE ×103 (5.2) (5.0) (5.0) (7.2)

0.3 91% Mean 0.297 0.399 0.445 0.751
SE ×103 (2.3) (2.0) (1.9) (7.3)

2/4 0.1 100% Mean 1.661 1.742 1.749 2.048
SE ×103 (3.9) (3.8) (3.8) (5.0)

0.2 98% Mean 0.648 0.743 0.771 1.107
SE ×103 (2.5) (2.2) (2.0) (3.4)

0.3 92% Mean 0.287 0.392 0.438 0.748
SE ×103 (2.1) (1.8) (1.7) (7.1)

3/4 0.1 100% Mean 1.664 1.746 1.749 2.052
SE ×103 (4.0) (3.9) (3.8) (4.9)

0.2 99% Mean 0.649 0.745 0.771 1.104
SE ×103 (2.5) (2.2) (2.0) (3.4)

0.3 91% Mean 0.287 0.391 0.435 0.738
SE ×103 (2.1) (1.9) (1.7) (7.3)

Table 1. Mean and standard error of predictive binomial deviance of
different methods. The first two columns are the settings of the simu-
lation: ζ is the non-sparsity, and r is the oracle prediction error. The
column of Comp.Sep. shows how often complete separation occurs
in the datasets. The last four columns report the mean and stan-
dard error of the predictive binomial deviance of the different meth-
ods, which are the catalytic posterior mode with τ̂boot, denoted by
Cat.Boot., the posterior median under joint catalytic prior, denoted
by Cat.Joint, the Cauchy posterior mode, denoted by Cauchy, and
the MLE. The boldface corresponds to the best performing method
in each simulation scenario.

Difference between the error of Cauchy and that of Cat.Joint
ζ r Mean SE ×103

1/4 0.1 0.021 0.98
0.2 0.033 0.91
0.3 0.047 0.86

1/2 0.1 0.007 0.79
0.2 0.028 0.85
0.3 0.046 0.84

3/4 0.1 0.003 0.76
0.2 0.026 0.83
0.3 0.044 0.82

Table 2. Mean and standard error of the difference in predictive bi-
nomial deviance between the Cauchy posterior mode and the joint
catalytic posterior median. ζ is the non-sparsity; r is the oracle pre-
diction error.

to the joint catalytic prior, Table 2 shows that the prediction427

based on the joint catalytic prior is statistically significantly428

better than that of the Cauchy prior (Table 2 directly cal-429

culates the difference of the prediction errors between the430

Cauchy prior and the joint catalytic prior and shows that the431

difference is significantly positive with Bonferroni-corrected432

p-value smaller than 0.02). Tables 1 and 2 focus on predictive433

binomial deviance. Section 3.D in SI considers other error434

measurements, including the classification error and the AUC435

(Area Under Curve), where a similar conclusion can be drawn436

regarding the performance of different methods: predictions437

based on catalytic priors are generally much better than those438

based on the MLE and are often better than those based on439

the Cauchy prior.440

Setting Performance of Methods
ζ r Cat.Boot Cat.Joint Cauchy

1/4 0.1 Cover 90.5% 88.1% 90.1%
Width 3.5 2.9 3.3

0.2 Cover 93.3% 97.2% 98.0%
Width 2.8 2.7 3.0

0.3 Cover 95.0% 97.6% 97.6%
Width 2.2 2.4 2.8

2/4 0.1 Cover 89.8% 85.7% 86.2%
Width 3.5 2.9 3.2

0.2 Cover 93.4% 97.5% 98.4%
Width 2.7 2.7 3.0

0.3 Cover 95.7% 97.7% 97.7%
Width 2.1 2.4 2.8

3/4 0.1 Cover 89.4% 85.6% 86.1%
Width 3.5 2.9 3.2

0.2 Cover 93.9% 97.6% 98.6%
Width 2.7 2.7 3.0

0.3 Cover 95.9% 97.8% 97.8%
Width 2.1 2.4 2.7

Table 3. Average coverage probability (%) and width of 95% posterior
intervals under the catalytic prior with τ̂boot, the joint catalytic prior,
and Cauchy prior. ζ is the non-sparsity; r is the oracle prediction
error.

Table 3 presents the average coverage probabilities (in 441

percentage) and widths of the 95% nominal intervals for βj 442

averaging over j. Because all the intervals given by the MLE 443

have widths too large to be useful (thousands of times wider 444

than those given by the other methods), we do not report them 445

in this table. The intervals from the other three priors are 446

reasonably short in all cases and have coverage rates not far 447

from the nominal levels. Specifically, the intervals given by the 448

Cauchy prior and the joint catalytic prior tend to over-cover 449

when the true β has small amplitudes (r = 0.2 or 0.3) and 450

tend to under-cover when β has large amplitudes (r = 0.1), 451

whereas the intervals given by the catalytic prior with τ̂boot 452

perform more consistently. This example, together with more 453

results given in SI, illustrates that, for logistic regression, the 454

catalytic prior is at least as good as the Cauchy prior. The SI 455

also illustrates the performance of the catalytic prior in linear 456

regression, where it is at least as good as ridge regression. 457

Catalytic priors thus appear to provide a general framework 458

for prior construction over a broad range of models. 459

Theoretical Properties of Catalytic Priors 460

We show the properness and the convergence of a catalytic prior 461

when the working model is a GLM. Without loss of generality, 462

we assume the sufficient statistic in the GLM formula Eq. (8) 463

is t(y) = y; otherwise, we can let the response be Y ′ = t(Y ) 464

and proceed. We assume that every covariate has at least 465

two different observed values. Denote by Y the nonempty 466

interior of the convex hull of the support of the model density 467

in Eq. (8). Our results apply to any positive prior weight τ . 468

Properness. A proper prior is needed for many Bayesian in- 469

ferences, such as model comparison using Bayes factors (32). 470

We show that catalytic priors, population catalytic priors, and 471

joint catalytic priors are generally proper, with proofs in SI. 472

Theorem 1. Suppose (1) φ(·) satisfies infη 6=0 |φ(η)/η| > 0, 473

(2) the synthetic covariate matrix X∗ has full column rank, 474
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and (3) each synthetic response Y ∗i lies in Y or there exists a475

linearly independent subset {X∗ik}
p
k=1 of the synthetic covariate476

vectors such that the average of synthetic responses with the477

same X∗ik lies in Y. Then the catalytic prior is proper for any478

τ > 0.479

The condition infη 6=0 |φ(η)/η| > 0 is satisfied for the canon-480

ical link for any GLM, and also for the commonly used probit481

link and the complementary log-log link in binary regression.482

The condition that X∗ has full column rank holds with high483

probability according to the following result.484

Proposition 2. If each synthetic covariate vector is drawn485

from the independent resampling distribution, then there exists486

a constant c > 0 that only depends on the observed X such that487

for any M > p, with probability at least 1− 2exp(−cM), the488

synthetic covariate matrix X∗ has full column rank.489

Population catalytic priors are also proper.490

Theorem 3. Suppose (1) φ(·) satisfies infη 6=0 |φ(η)/η| > 0,491

(2) the synthetic covariate vector is drawn from the independent492

resampling distribution, and (3) there exists a compact subset493

Ycom ⊂ Y such that P(Y ∗ ∈ Ycom) = 1. Then the population494

catalytic prior is proper for any τ > 0.495

The following result shows the properness of the joint prior496

πα,γ(τ,β) in Eq. (15) and the role of the hyperparameters.497

Theorem 4. Suppose α and γ are positive. If Γα,γ(τ) equals498

Eq. (16) for linear regression or equals Eq. (17) for other499

generalized linear models. Then under the same condition500

as Theorem 1, (1) the joint prior is proper; (2) for any m ∈501

(0, α), the mth moment of β exists; (3) limτ→∞
1
τ

log hα,γ(τ) =502

−1/γ < 0, where hα,γ(τ) denotes the marginal prior on τ .503

Convergence to the Population Catalytic Prior. When504

synthetic-sample size, M , is large enough, the randomness in505

the synthetic data will not affect the catalytic prior regardless506

of the observed real sample size because, as a distribution of507

the parameters, the catalytic prior converges to the population508

catalytic prior.509

We can quantify how fast the catalytic prior, as a random510

distribution, converges to the population catalytic prior by511

establishing an explicit upper bound on the distance between512

these two distributions in terms of M . This result shows how513

large M needs to be so that the randomness in the synthetic514

data no longer influentially change the prior. We present here515

a simplified version of the theoretical result; for precise and516

detailed statements, see SI.517

Theorem 5. Under mild regularity conditions,518

1. For any given τ and p, there exists a constant C1,
such that for any small positive ε0, ε1, and any M ≥
C1
(
1 + log2( 1

ε1
)
)

1
ε2

1
log( 1

ε0
), with probability at least 1−ε0

the total variation distance between the catalytic prior and
the population catalytic prior is bounded by

dTV (πcat,∞, πcat,M ) ≤ ε1.

2. If the working model is linear regression with Gaussian519

noise, then there exists a constant C2 that only depends520

on the observed covariates, such that for any ε0 > 0 and521

any M > 16
9 C

2
2p log( p

ε0
), with probability at least 1 − ε0,522

the KL divergence between the catalytic prior and the 523

population catalytic prior with any τ > 0 is bounded by 524

KL(πcat,∞, πcat,M ) ≤ 2C2

√
1
M
p3 log( p

ε0
). 525

Data Availability. All the data used in the article are simula- 526

tion data. The details, including the models to generate the 527

simulation data, are described in the Illustration of Methods 528

section and the Additional Simulations section of the SI. 529

Discussion 530

The class of catalytic prior distributions stabilizes the estima- 531

tion of a relatively complicated working model by augmenting 532

the actual data with synthetic data drawn from the predictive 533

distribution of a simpler model (including but not limited to 534

a sub-model of the working model). Our theoretical work 535

and simulation-based evidence suggest that the resulting in- 536

ferences using standard software, which treat the augmented 537

data just like actual data, have competitive and sometimes 538

clearly superior frequency operating characteristics, compared 539

to inferences based on alternatives that have been previously 540

proposed. Moreover, catalytic priors are generally easier to 541

formulate because they are based on hypothetical smoothed 542

data that resemble the actual data. Two tuning constants, 543

M and τ , require selection, and wise choices for them appear 544

to be somewhat model dependent, for example, differing for 545

linear and logistic regressions, both of which are considered 546

here. We anticipate that catalytic priors will find broad appli- 547

cation, especially as more complex Bayesian models are fit to 548

more and more complicated datasets. Some open questions 549

for future investigation include: (1) how to apply the catalytic 550

priors to model selection, (2) how to study the asymptotic 551

properties when both the sample size and the dimension of 552

the working model go to infinity — in such a regime, it is also 553

interesting to investigate what the simple model should be in 554

order to achieve good bias-variance tradeoffs. 555
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