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Abstract—As improvements in medicine lower infant mortality
rates, more infants with neuromotor challenges survive past birth.
The motor, social, and cognitive development of these infants are
closely interrelated, and challenges in any of these areas can
lead to developmental differences. Thus, analyzing one of these
domains - the motion of young infants - can yield insights on
developmental progress to help identify individuals who would
benefit most from early interventions. In the presented data
collection, we gathered day-long inertial motion recordings from
N = 12 typically developing (TD) infants and N = 24 infants
who were classified as at risk for developmental delays (AR) due
to complications at or before birth. As a first research step, we
used simple machine learning methods (decision trees, k-nearest
neighbors, and support vector machines) to classify infants as TD
or AR based on their movement recordings and demographic
data. Our next aim was to predict future outcomes for the
AR infants using the same simple classifiers trained from the
same movement recordings and demographic data. We achieved
a 94.4% overall accuracy in classifying infants as TD or AR, and
an 89.5% overall accuracy predicting future outcomes for the AR
infants. The addition of inertial data was much more important
to producing accurate future predictions than identification of
current status. This work is an important step toward helping
stakeholders to monitor the developmental progress of AR infants
and identify infants who may be at the greatest risk for ongoing
developmental challenges.

Index Terms—infant motion sensing, early motion interven-
tions, rehabilitation engineering

I. INTRODUCTION

UE to improvements in obstetric and neonatal medicine,

an increasing number of infants with neuromotor chal-
lenges survive past birth [1]. Infants with complications at or
before birth are classified as being at risk for developmental
delay (AR), and some are later diagnosed with cognitive
and/or physical developmental delays [2]. Early motor delays
are often the initial signs of later developmental impair-
ments [2]. Identifying neuromotor impairment accurately and
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early enough so that interventions can take place before the de-
velopmental delay is pronounced is a current challenge in the
field of physical therapy. One approach to early identification
is tracking infants’ spontaneous movements, which have been
shown to be correlated to future motor control [3]. Specifically,
researchers propose that neurological deficits could be identi-
fied by collecting high-quality spontaneous movement patterns
from wearable sensors and kinematic analysis systems [4]-[6].

One goal of our work is to use day-long kinematic data
collected from wearable inertial sensors to classify infants as
typically developing (TD) or AR. Although these labels are
already known for each infant based on the condition of that
infant at birth, a classifier that uses inertial motion data to label
infants as TD or AR would further establish and support past
work that indicates differences in the spontaneous movements
of TD and AR infants. Previous non-machine learning efforts
to accomplish this task on the same dataset appear in [7]. The
main impactful and challenging goal of our work is to predict
future outcomes for AR infants. By conducting supervised
learning using the inertial motion data of AR infants from our
data collection, we can establish whether recorded movement
patterns may enable the prediction of future developmental
challenges for these AR infants. This forecasting could support
strategic interventions for AR infants who are most likely to
experience developmental challenges.

This article discusses related work in Section II. A descrip-
tion of the data collection and initial data processing appears
in Section III. Section IV outlines the methods and results
for the TD/AR classification. Section V provides the methods
and results for predicting future outcomes of AR infants. We
discuss the implications of this work in Section VI and draw
overarching conclusions in Section VIIL.

II. RELATED WORK

Exploratory motions ranging from batting an overhead
mobile to reaching out to a caregiver are essential for the
development of young infants. TD infants engage in these
types of exploratory movements naturally, learning to control
their bodies and interact with their environment [8], [9]. In
contrast, AR infants often have neuromotor impairments in-
volving coordination, strength, and proprioception, which can
lead to developmental delays [2]. As medical care improves,
a larger number of infants who experience complications at or
before birth survive; recent estimates determined that 9% of
infants in the United States are born at risk [10]. Generally,
these infants could benefit from early intervention services
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to support their development [10]. However, resources for
early interventions are limited, and the standard of care for
these infants is often infrequent movement therapy or no
intervention until after infancy [11], [12].

The growing number of AR infants leads to emergent needs
to understand how the behavior of TD and AR infants differs
and identify which AR infants are at the highest risk for
later developmental delays. For infants, motor, social, and
cognitive development are all closely interrelated [13], so an
analysis of infant motion alone leads to insights on general
developmental progress. Past work involving short-term (5-
to 10-minute) analyses of infant motion have demonstrated
differences in motion features of TD and AR infants. Using
wearable sensors and kinematic analysis systems, these studies
have shown that kinematic variables such as spatiotemporal
organization, kicking frequency, and interjoint and interlimb
coordination are different between TD infants and infants with
myelomeningocele [14], [15], intellectual disabilities [16],
Down syndrome [17], as well as infants born preterm [18]. The
presented work for early, data-driven identification of infants
who are at high risk for developmental delays can improve
outcomes for these individuals; early and intense targeted in-
terventions have the potential to improve neurodevelopmental
structure and function [19].

Because of the past documented differences between the
motion features of TD infants and infants with various neuro-
muscular challenges, simple machine learning techniques are
good candidates for 1) distinguishing between TD and AR
infants and 2) attempting to predict developmental outcomes
using infant motion features. Past work has applied machine
learning to inertial sensor data to address similar classification
problems, such as the detection of gait anomalies in individuals
with Parkinson’s disease [20], pathological gait [21], and
Huntington’s disease [22]. In this work, we approach the stated
classification goals using relatively simple and interpretable
machine learning tools including decision trees (DT) [23], k-
nearest neighbors (KNN) [24], and support vector machines
(SVM) [25]. We also consider an ensemble approach that
combines the above methods as a way to reduce bias and
overfitting [26].

Certain existing neonatal assessments have shown promise
for early detection of developmental delays via observation of
movement, but the present tools in this space largely exhibit
poor sensitivity and specificity for predicting neurodevelop-
mental outcomes. One example is the Alberta Infant Motor
Scale (AIMS) [27]; on this assessment, a score of less than
five or ten percent is considered a “cutoff” for identifying
delay [28], but it is not shown to be a good predictor of later
neurodevelopmental outcomes [29]. Bias is a concern with
AIMS results [30], as are false positives [31]. One successful
counterexample is assessments for the detection of cerebral
palsy, which can be identified at approximately 3-4 months
chronological or adjusted age using the General Movements
Assessment (GMA) [32] with summary estimates of 98%
sensitivity (95% confidence interval [CI] 74-100%) and 91%
specificity (95% CI 83-93%) [33]. At the same time, the GMA
requires a trained observer to rate spontaneous movements
in early infancy. Our proposed quantitative approach with

accessible, low-cost sensors has potential to more accurately
predict future outcome compared to AIMS and to help predict
neurodevelopmental outcomes more broadly than the GMA.

III. DATA COLLECTION AND PROCESSING

To better understand TD and AR infant motion and its
implications, we conducted day-long data collections of in-
home infant motion using APDM Opal inertial sensors [34].
The participant information, procedures, and data processing
steps are outlined in this section.

A. Farticipants

Data for twelve TD infants were collected in the Portland,
OR, metro area and data for 24 AR infants were collected
in the Los Angeles, CA, metro area. To be included in the
study, TD infants were required to come from singleton, full-
term pregnancies. Infants with scores below the 5th percentile
on the AIMS assessment were excluded from the TD group.
AR infants included in the study were from a broad group
meeting the state of California’s criteria for being at risk for
developmental delay and eligible for state-administered early
intervention [35]. AR infants with unstable medical condi-
tions were excluded. The participant group was heterogeneous
because our goal was not to predict specific impairments or
diagnoses, but rather to study general motion characteristics
that might broadly reflect atypical motor control.

During each session, the AIMS score for the infant was
recorded. To help us capture longitudinal data including vari-
ous developmental stages, each infant participated in three data
collections between the ages of one and 20 months, with the
exception of two AR infants who only completed two sessions.
Corrected ages were used for any infant born preterm. Data
were collected only from infants who were not yet walking
independently; the two AR infants who did not complete a
final session were walking independently by the time of their
planned third data collections, and thus were excluded from
completing a third recording.

B. Procedure

During data collection sessions, we used two APDM Opal
inertial sensors [34] to measure tri-axial acceleration and
angular velocity at a sampling rate of 20 Hz. The sensors
were synchronized to one another throughout the recording
using Bluetooth. A researcher affixed one sensor to each of
the infant’s ankles using custom leg warmers with pockets,
as sketched in Fig. 1. Sensor placement was not consistent
in orientation (i.e., the axes were not placed in a consistent
way relative to the infant’s leg), but past work has validated
that Opal sensors affixed in this way can accurately record
the quantity of infant limb movements without impeding or
promoting movement [36], [37].

Inertial data were collected from typical infant behavior
over a full day of activity (8-13 hours) in the infant’s natural
environment, and the sensors were removed at the end of the
day. During the data collection, sensor data were stored on the
sensors’ internal memory. The recordings were downloaded
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Fig. 1. A sketch of an infant in this data collection. The sensors were worn
in pockets on custom leg warmers, as shown in gray.

following the data collection. Participating families were in-
structed to go about their normal activities during the data
collection. This process was repeated during each of the three
data collection sessions, which were spaced approximately two
months apart, starting from an infant age of anywhere from
one to fifteen months. More detail on infant ages and AIMS
scores during each session appears in Table I.

For AR infants, we followed up with the parents when each
infant was 24 months old to determine whether the infant
was experiencing developmental delays or higher outcomes
resemblant of typical development. Infants with developmen-
tal delays/lower outcomes were defined as those who were
undergoing ongoing therapy after the identification of specific
delays. Infants with higher outcomes were defined as those
who were not undergoing any physical or occupational therapy,
although they could still be under developmental stimulation
or monitoring. We obtained follow-up developmental status
information for nineteen of the 24 total AR infants, corre-
sponding to 55 total infant movement recordings. One of the
infants without follow-up information passed away before the
age of 24 months, and the families of the other four infants
could not be successfully reached for follow-up information.

C. Data Preprocessing

The Opal sensors collected raw accelerometer, gyroscope,
and magnetometer data from infant movements. The raw tri-
axial accelerometer and gyroscope data were initially pro-
cessed using custom MATLAB programs described in more
detail in [37]. This previously validated algorithm [37], [38]
detected leg movement occurrences using thresholding on the
root sum of squares signal from the three filtered accelerometer

axes and the gyroscope axes. The duration of movement,
average motion acceleration, peak motion acceleration, and
type of movement (unilateral, bilateral synchronous, or bilat-
eral asynchronous) were also determined by our MATLAB
software.

After processing, the basic dataset contained 23 features
that summarized the general demographics and movement
characteristics of each infant, as listed below:

« session number

« infant age

o AIMS developmental score

« movement duration (mean and S.D. for right and left)

« movement acceleration (mean and S.D. for right and left)

« average peak acceleration (mean and S.D. for right and
left)

« hours of awake time

« unilateral movement rates (right and left)

« bilateral asynchronous movement rates (right and left)

« overall leg movement rates (right and left)

« bilateral synchronous movement rates

For the unilateral, bilateral, and overall leg movement data, the
number of movements was normalized by the total awake time
for the infant to give the rate of movements per hour. Other
than session number, infant age, and AIMS score, all features
originated from the processed accelerometer and gyroscope
data. Each feature was drawn from the entire length of the
recording (day-long time range of 8-13 hours).

Because two AR infants completed only two sessions, the
resulting dataset contained 36 observations of day-long TD
infant leg movement and 70 AR infant observations. Since the
dataset is imbalanced, we used several accuracy metrics in our
evaluations, including precision, recall, and F1 score. Results
in later sections suggest that the 2:1 imbalance present in our
overall dataset does not prevent high classifier performance.

D. Feature Engineering and Extraction

To more completely represent the infants’ behaviors, we ex-
panded the above-listed 23-feature set with additional features
computed as the ratios of each leg motion rate type divided
by the mean movement duration for the same leg. Here, the
considered leg motion rate types are the unilateral movement
rates (right and left), bilateral asynchronous movement rates
(right and left), and overall leg movement rates (right and left)
mentioned above.

For each classification problem, we used the Lasso feature
and variable selection method [39] to remove redundant or
unnecessary features. Specifically, we identified variables in

MEAN (STANDARD DEVIATION; AND RANGE) OF TD AND AR INFANT AGES (IN MONTHS) AND AIMS SCORES FOR EACH SESSION.

AR

Age AIMS

5.35 (3.62; 14.5)
7.43 (3.59; 14.5)
9.04 (3.20; 14.5)

17.17 (11.78; 42.00)
24.04 (15.81; 49.00)
27.55 (12.96; 40.00)

TABLE I
TD
Age AIMS
Session 1 | 4.75(2.49; 7.0)  18.00 (10.30; 27.00)
Session 2 | 6.75(2.49; 7.0)  29.33 (11.75; 38.00)
Session 3 | 8.75(2.49; 7.0)  40.50 (11.66; 32.00)
Overall | 6.75 (2.93; 11.0)  29.28 (14.36; 48.00)

7.22 (3.75; 18.5)  22.79 (14.12; 49.00)
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the Lasso model that corresponded to the minimum cross-
validated mean squared error (MSE) and variables in the spars-
est model within one standard error of the minimum MSE.
Based on the meaningful feature subsets identified by the
union of these two techniques, we removed highly correlated
and low-variance features to reduce the dimensionality of the
feature set from 35 to eight features for each classification
task. Lasso’s selections were verified using random stumps that
generated single-split decision trees on subsets of the data to
determine which features were the most influential in dividing
the data for maximal information gain.

IV. TD vs. AR CLASSIFICATION

As introduced in Section II, the first goal of this work is to
distinguish between TD and AR infants using the observations
collected from infants in our dataset. This section details our
approach to this classification problem.

A. Selected Features

Before training models to distinguish between TD and AR
infants, we used Lasso to eliminate redundant and uninforma-
tive features, resulting in the following feature set:

« infant age

o AIMS developmental score

« mean movement duration of the right leg

« standard deviation of movement duration of the right leg
o mean left leg average acceleration

o mean right leg average peak acceleration

« mean left leg average peak acceleration

« right leg bilateral asynchronous motion rate

B. Initial Classification Results

During model training and evaluation, we used leave-one-
out cross-validation (LOOCYV) to create binary classifiers that
could label the omitted infant observation as TD or AR.
In other words, 106 distinct models were frained using 105
observations each (and omitting one observation, which rotated
through the 106 total movement observations). The remaining
observation was then used as the fest set for the classifier
trained without that data. This approach is commonly used
for classification tasks with small datasets [40].

For each considered classifier, we used grid search to tune
the hyperparameters. Specifically, we considered 1 to 5 splits
(for DT), nearest neighbors (for KNN), and polynomial orders
(for SVM). Our ensemble approach computed the majority
vote of the top-performing DT, KNN, and SVM models
together. Since we completed multiple motion observation
sessions with each infant, we determined the overall TD or
AR classification for a given infant by taking the majority
vote label across all observations for any given classification
approach.

In addition to overall accuracy, we used metrics such as
precision, recall, and F1 score to evaluate the classifiers.
We aimed to generate models with higher true positives
(TP) and lower false negatives (FN) because labeling the
AR status correctly is most important for supporting healthy

infant development. False positives (FP) were less potentially
harmful, although we should be mindful of how this type of
misclassification might affect resource allocation or lead to
other unintended consequences.

The classification accuracy of the tuned models varied from
77.8% for the KNN approach to 88.9% for the SVM approach.
The ensemble approach achieved an accuracy of 83.3% with
an F1 score of 0.880, falling short of the SVM model alone in
some aspects of the classification task. Accordingly, the SVM
approach was the top-performing classifier in this first round
of analysis. Table II shows the classification accuracy of each
approach, along with the corresponding precision, recall, and
F1 scores.

Although the SVM classifier was the most accurate overall,
the recall values for the KNN and ensemble approaches
were higher. This has implications on the treatment of AR
infants; if AR infants are misclassified as TD, they might miss
out on important early care and interventions. On the other
hand, in a scenario with limited resources (also the case in
interventions for AR infants) false positive classification of TD
infants could lead to stigma and wasted resources. Thus, the
choice of classifier depends on the objectives of researchers,
care providers, and families. For now, since the TD vs. AR
classification of infants is informed by the circumstances of
birth, we conclude that the SVM model is the top-performing
option in this case.

C. Effects of Considering Longitudinal Data

In the above analyses, we considered the majority vote label
across all infant observations to determine each classifier’s
prediction for each infant. With the collected dataset, this
approach is possible because we collected motion data from
each infant two or three times; however, it may not always be
possible to collect multi-session data. Thus, we conducted an
additional analysis to compare the accuracy of labels 1) based
on all individual infant movement recordings separately, 2)
based on the majority vote label across all recordings for each
infant, and 3) based on the third recording for each infant that
completed all three sessions. Table III lists the overall accuracy
of each of these approaches.

For all strategies, the SVM approach performs better than all
other models, reinforcing our selection of this classifier type
for the task of distinguishing between TD and AR infants.
Longitudinal observations yield better classification accuracy
than considering all infant observations separately. This con-
sistent trend demonstrates that in future efforts, considering
longitudinal observations together in a majority vote will likely

TABLE 11
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN TD AND AR
INFANTS USING INFORMATION GATHERED DURING THE DAY-LONG
RECORDING SESSIONS (LOOCV APPROACH). THE BOLDED ROW
REPRESENTS THE TOP-PERFORMING CLASSIFIER IN OUR ANALYSIS.

Model Type \ Accuracy  Precision Recall F1 Score
DT 0.806 0.769 0.833 0.800
KNN 0.778 0.767 0.958 0.852
SVM 0.889 0.954 0.875 0.913
Ensemble 0.833 0.846 0.917 0.880
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improve classifier accuracy compared to determining infant
status based on a single measurement taken at an arbitrary time
during the developmental period we are considering (early life
before 24 months of age).

In most cases, using the third movement recording as the
sole observation for each infant yields a lower classification ac-
curacy, but this strategy performs better in the SVM classifier
case. It is important to also consider the precision, recall, and
F1 score of the third-observation-only labels before adopting
this approach. Table IV reveals that solely considering the final
infant observation yields better results in every category.

This final result should be interpreted with caution; although
observing motion later into infant development yields more
accurate classification results, waiting longer may have im-
plications on the impact interventions can have on infants.
Additionally, the recall value still falls short of the KNN and
ensemble approach performances discussed previously, so the
updated SVM approach may not be preferable in circum-
stances where identifying all AR infants is the top priority.
Furthermore, the decrease in classifier performance for all
other models could indicate that a change from considering
all infant observations to the final observation alone may lead
to overfitting. Thus, more data should be collected before
researchers and clinicians turn to this approach alone for
distinguishing between TD and AR infants.

D. Effects of Other Cross-Validation Techniques

Another important consideration in assessing our TD vs.
AR classifier is the cross-validation approach, which can have
major implications for the accuracy of the labels and generality
of the approach. For each classifier type in the initial LOOCV
approach proposed above, 106 distinct models were trained
using 105 observations each (and omitting one observation,
which rotated through the 106 total movement observations).
The remaining observation was then used as the test set for
the classifier trained without those data. For a relatively small
dataset such as ours, this approach is reasonable, but it is easy
to imagine that overfitting could result from a strategy that
includes two observations from a given infant to classify that
infant’s third motion recording as TD or AR.

Accordingly, we also evaluated the performance of a leave-
one-subject-out cross-validation (LOSOCYV) approach that is
likely to be less vulnerable to overfitting. In this approach, all
movement recordings from one infant are omitted during the
training of each model, and the models are then tested on the
omitted data. As mentioned before, note that two AR infants

TABLE III
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN TD AND AR
INFANTS WHEN EVALUATING THE ACCURACY OF EACH INDIVIDUAL
OBSERVATION VS. THE MAJORITY VOTE ACROSS ALL OBSERVATIONS VS.
THE FINAL OBSERVATION COLLECTED FOR A PARTICULAR INFANT. THIS
APPROACH USED LOOCV.

Model \ Ind. Acc.  Maj. Vote Acc.  Third Obs. Acc.
DT 0.783 0.806 0.765
KNN 0.707 0.778 0.765
SVM 0.877 0.889 0.941
Ensemble 0.811 0.833 0.792

TABLE IV
COMPARISON OF ACCURACY AND OTHER MEASURES FOR LABELS
OBTAINED USING THE MAJORITY VOTE FROM ALL OBSERVATIONS FOR A
PARTICULAR INFANT VS. LABELS BASED ONLY ON THE THIRD
OBSERVATION FOR A PARTICULAR INFANT. BOTH OF THESE APPROACHES

USED LOOCV.
Model Type \ Accuracy  Precision Recall FI Score
SVM Maj. Vote 0.889 0.954 0.875 0.913
SVM Third Obs. 0.941 1.000 0.909 0.952
TABLE V

CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN TD AND AR
INFANTS, AFTER USING THE LOSOCV APPROACH. THE BOLDED ROW
REPRESENTS THE TOP-PERFORMING CLASSIFIER.

Model Type \ Accuracy  Precision Recall ~F1 Score
DT 0.722 0.690 0.833 0.755
KNN 0.722 0.724 0.875 0.792
SVM 0.889 0.954 0.875 0.913
Ensemble 0.750 0.778 0.875 0.823

did not complete a third session, so some infants had only
two observations. Thus, 36 distinct models were trained using
103 or 104 observations each (the three - or occasionally two
- observations from 35 of the infants). Each trained model
omitted one set of infant observations, which rotated through
the 36 total infants. The omitted three (or occasionally two)
observations were then used as the test set for the classifier
trained without that data. This approach is commonly used to
strengthen model performance on new observations [41].

The classification results for the LOSOCV approach appear
in Table V. As foreshadowed above, the overall accuracy
suffers somewhat for most of the classifiers after the change
in cross-validation approach; however, for the top-performing
SVM classifier, the label accuracy did not change. This consis-
tency validates the original cross-validation approach for this
classification problem.

E. Model Interpretability

In addition to the above considerations, model interpretabil-
ity is also important; interpretable results can increase the
impact of this work by helping medical professionals to gain
insights about patients while maintaining patient (or parent)
trust [42]. The machine learning models discussed previously
increase in complexity while decreasing in interpretability.
Simpler approaches like the DT and KNN models are easier
to interpret compared to the more powerful and complex SVM
and ensemble approaches.

As an exercise in generating highly interpretable models,
we identified the most informative single feature using the
random stumps approach discussed in Section III. Then, using
only splits in the data based on this one feature, we identified
the highest-performing DT classifier. A DT model is easy
to visualize and very similar to dichotomous keys or other
scientific tools based on a series of binary splits. Thus, such
a model is a helpful tool for explaining how certain infant
motion features might help medical specialists to distinguish
between TD and AR infants.

We found that in the TD vs. AR classification problem, the
most meaningful feature for splitting the data was the mean left
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leg average peak acceleration. Using just a single, threshold-
based split (decision stump) on this feature yielded a 75.0%
overall classification accuracy. Furthermore, other performance
metrics in Table VI show that a simple, highly-interpretable
decision stump can achieve as high of a recall value as more
complex models.

Another approach that is accessible and interpretable is
using only features that clinicians would typically have access
to in the standard of care (age and AIMS score) to train
models. Using this approach, we discovered that a simple 2-
feature machine learning approach performs even better than
the previously proposed top models, as shown in Table VI.
Thus, for the task of identifying a child’s current status as
TD or AR, data presently available to healthcare providers
is just as powerful as added insights offered by inertial
measurements.

V. PREDICTING FUTURE OUTCOMES FOR AR INFANTS

The second goal of this work was to predict future develop-
mental outcomes for AR infants based on data collected during
their first two years of life. This section details our approach
to this classification problem.

A. Selected Features

As in the previous classification problem, we used Lasso to
eliminate redundant and uninformative features. This time, we
found the following features to be most informative:

 session number

« infant age

o AIMS developmental score

« mean movement duration of the left leg

o overall right leg movement rate

« standard deviation of average right leg acceleration di-
vided by mean right leg movement duration

« standard deviation of average right leg peak acceleration
divided by mean right leg movement duration

« right leg movement rate divided by mean right leg move-
ment duration

B. Initial Classification Results

As in the previous classification task, we used LOOCV
to create binary classifiers, although this time we aimed to
label the omitted infant motion observation as having higher
outcomes at 24 months (HO) or developmental delays/lower
outcomes at 24 months (LO). To undertake this classification
task, we could only determine model accuracy for the nineteen

TABLE VI
COMPARISON OF ACCURACY AND OTHER MEASURES FOR TD vs. AR
LABELS OBTAINED USING THE TOP-PERFORMING SVM CLASSIFIER VS.
LABELS BASED ON A SIMPLE DECISION STUMP OR MODEL TRAINED ON
ONLY TWO COMMONLY AVAILABLE FEATURES (AGE AND AIMS SCORE).
THIS APPROACH USED LOOCV.

Model Type ‘ Accuracy  Precision  Recall F1 Score
SVM 0.889 0.954 0.875 0.913
Decision Stump 0.750 0.778 0.875 0.823
2-Feature Models 0.944 1.000 0.917 0.956

TABLE VII
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN HO AND LO
INFANTS (LOOCV APPROACH). THE BOLDED ROW REPRESENTS THE
TOP-PERFORMING CLASSIFIER IN OUR ANALYSIS.

Model Type \ Accuracy  Precision  Recall F1 Score
DT 0.842 0.750 1.000 0.857
KNN 0.684 0.667 0.667 0.667
SVM 0.895 0.818 1.000 0.900
Ensemble 0.895 0.818 1.000 0.900

AR infants for whom we had information about later devel-
opmental outcomes (55 total observations). Accordingly, 55
distinct models were trained using 54 observations each (and
omitting one observation, which rotated through the 55 total
movement observations). The remaining observation was then
used as the fest set for the classifier trained without those data.

We used the same classification methods in this round of
model training and evaluation, and we again used grid search
to select hyperparameters. We determined the classification
of HO or LO for a given infant by taking the majority
vote label across all observations for any given classification
approach. Furthermore, the same accuracies and scores helped
us to evaluate each model, the the implications of correct
anticipation of future diagnoses and various types of labeling
errors were similar to those of the previous classification
problem.

The classification accuracy of the tuned models varied from
68.4% for the KNN approach to 89.5% for the SVM approach.
The ensemble approach achieved an accuracy of 89.5% with
an F1 score of 0.900. Since the ensemble approach achieved
the same results as the SVM model with significantly more
training complexity (training three sets of models, rather than
one), the SVM approach is the top classification strategy
among the tested approaches. Table VII displays the classifica-
tion accuracy of each approach, along with the corresponding
precision, recall, and F1 scores. For this classification problem,
the SVM approach tied for most accurate and also produced
perfect recall values.

C. Effects of Considering Longitudinal Data

As in the previous classification problem, it is interesting
to consider not only the majority vote label across all infant
observations, but also the accuracy of each individual label
and classifications produced at a particular point in infant
development. Rich data gathered from multiple sessions with
infants may lead to improved classifications, but this benefit is
not guaranteed. Furthermore, longitudinal data may not always
be available. Thus, we conducted another analysis to compare
the accuracy of labels produced using different subsets of the
infant motion recordings. Table VIII lists the overall accuracy
of each approach.

Similarly to the previous classification problem, the majority
vote approach surpassed the individual observation approach,
although the individual approach outperformed the majority
vote for the KNN model. This time, the use of the third
infant observation alone seemed to limit the abilities of the
classifiers, leading to the same ceiling performance cap across
all approaches. For the KNN case, this cap was still an
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improvement over the majority vote approach, but the third-
observation-only strategy performed worse than the leading
majority vote classifiers.

D. Effects of Other Cross-Validation Techniques

Another consideration in assessing the HO vs. LO clas-
sifier results is how the cross-validation approach influences
model accuracy and generality. For each classifier type in the
initial LOOCYV approach proposed above, 55 distinct models
were trained using 54 observations each (and omitting one
observation, which rotated through the 55 total movement
observations). The remaining observation was then used as
the fest set for the classifier trained without that data.

Since the above approach may be prone to overfitting, we
also evaluated the performance of a LOSOCV approach. In
this approach, nineteen distinct models were trained using
52-53 observations each (the three - or occasionally two -
observations from eighteen of the infants). Each trained model
omitted one infant’s observations, which rotated through the
nineteen total infants. The omitted three (or occasionally two)
observations were then used as the test set for the classifier
trained without that data.

The classification results for the LOSOCV approach appear
in Table IX. It is not surprising to find that the overall
accuracy suffers somewhat for most of the approaches after
the change in cross-validation approach, including the for-
merly top-performing SVM classifier. This indicates that the
accuracy of our classifiers with the original cross-validation
approach may suffer as the existing models are used to label
new observations; however, even if we needed to shift to using
a LOSOCYV approach while training models, the updated KNN
classifier achieves an 84.2% overall classification accuracy
with a recall level that is far above random. This type of model
may still augment clinicians’ ability to identify the infants who
would benefit most from early intervention.

E. Model Interpretability

Model interpretability is an important consideration in this
classification task as well. To again generate highly inter-
pretable models, we identified the most informative single
feature using the random stumps approach discussed in Sec-
tion III. Then, using only splits in the data based on this one
feature, we identified the highest-performing DT classifier.

For the HO vs. LO infant determination, the most mean-
ingful feature for splitting the data was the AIMS devel-
opmental score. Using just a single, threshold-based split

TABLE VIII
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN HO AND LO
INFANTS WHEN EVALUATING THE ACCURACY OF EACH INDIVIDUAL
OBSERVATION VS. THE MAJORITY VOTE ACROSS ALL OBSERVATIONS VS.
THE FINAL OBSERVATION COLLECTED FOR A PARTICULAR INFANT. THESE
APPROACHES USED LOOCV.

Model \ Ind. Acc.  Maj. Vote Acc.  Third Obs. Acc.
DT 0.745 0.842 0.765
KNN 0.691 0.684 0.765
SVM 0.764 0.895 0.765
Ensemble 0.727 0.895 0.765

TABLE IX
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN HO AND LO
INFANTS, AFTER THE USE OF A LOSOCYV APPROACH. THE BOLDED ROW
REPRESENTS THE TOP-PERFORMING CLASSIFIER IN OUR ANALYSIS.

Model Type \ Accuracy  Precision  Recall F1 Score

DT 0.737 0.667 0.667 0.667

KNN 0.842 0.875 0.778 0.823

SVM 0.684 0.636 0.778 0.700

Ensemble 0.789 0.778 0.778 0.778
TABLE X

COMPARISON OF ACCURACY AND OTHER MEASURES FOR HO AND LO
LABELS OBTAINED USING THE TOP-PERFORMING SVM CLASSIFIER VS.
LABELS BASED ON A SIMPLE DECISION STUMP OR MODEL TRAINED USING
TWO COMMONLY AVAILABLE FEATURES. THESE TESTS USED LOOCV.

Model Type ‘ Accuracy  Precision Recall F1 Score
SVM 0.895 0.818 1.000 0.900
Decision Stump 0.789 0.667 0.889 0.762
2-Feature Models 0.684 0.636 0.778 0.700

(decision stump) on this feature yielded a 78.9% overall clas-
sification accuracy. Furthermore, other performance metrics
in Table X reveal that a simple, highly-interpretable decision
stump achieved a recall value well above random and close to
that of more complex models. This demonstrates that, of all the
features we tested, the AIMS score is the best single predictor
of future outcomes for AR infants. At the same time, if using
the AIMS score in this extended capacity, it is important to
understand more background information about it (including,
but not limited to, the caveats in Section II).

As in the previous classification task, we considered simple
classifiers with only two features (age and AIMS score) as
another viable option. In the HO/LO classification task, this
approach does significantly worse than the top performing
models and even the decision stump using only AIMS score,
as shown in Table X. This finding is consistent with the past
work showing AIMS score alone to be an insufficient predictor
of later outcomes. It also indicates that in the present task,
inertial data can play an important role.

Although the AIMS score is a powerful tool already used
by the medical community, conflicts between our results and
related work’s findings indicate that it may be best used in
combination with other features. The combination of AIMS
score with other infant demographic and motion features leads
to a uniformly greater classification performance. Thus, using
AIMS scores with inertial data has potential to better inform
clinicians in situations where a significant improvement in
classification accuracy is meaningful.

VI. DISCUSSION

In this work, conducted an initial evaluation of the possibil-
ity of using simple machine learning techniques to 1) distin-
guish between TD and AR infants and 2) predict developmental
outcomes using infant demographic and motion features. To-
ward the first goal, we found that by using an eight-feature
set and a relatively simple SVM classifier, we could achieve
an 88.9% classification accuracy with a recall value of 0.875.
In our considerations, recall measures are important because a
lower recall represents more AR infants being misclassified as
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TD and potentially overlooked needed care. By considering an
approach using only the final observation for each infant, we
are able to create an even more accurate TD vs. AR classifier
with higher recall (94.1% accuracy, recall of 0.909), although
some ability to intervene early is lost with this approach, and
future investigations are recommended to support or refute this
strategy. For the TD vs. AR classification problem, LOOCV
and LOSOCYV approaches yielded the same performance for
our chosen classifier, suggesting that a LOOCV approach may
be reasonable for this labeling task. At the same time, this
outcome does not always hold, and researchers in this and
related areas should carefully consider the appropriateness of
the selected cross-validation approach when generalizing to
new observations.

For the prospective task of predicting future developmental
delays, we found that by using an eight-feature set and a
relatively simple SVM classifier, we could achieve an 89.5%
classification accuracy with a perfect recall value of 1.000.
When considering different longitudinal approaches, we found
that the majority vote approach performs best for all classifiers
except for the KNN approach. Nevertheless, the overwhelming
trend of improvement when using the majority vote leads
us to believe that this approach is best for the HO vs.
LO classification problem. When considering different cross-
validation approaches, on the other hand, we found that the
originally proposed SVM classifier may not be optimal for
reliably predicting future developmental delays for new infants
who are added to the dataset. Although the recall value was
0.778 for both the KNN and SVM approaches when using a
LOSOCV strategy, the overall label accuracy dropped from
84.2% in the KNN approach to 68.4% in the SVM approach.
This change resulted from an increase in false positives for
the SVM strategy, which could be acceptable or detrimental
depending on the clinical circumstances. Nevertheless, all
evaluated classifiers performed much better than average, even
in the LOSOCYV case.

We also presented examples of very simple and highly
interpretable decision stumps that could be a resource to
healthcare providers working with infants. For the TD vs. AR
classification task, we found that the mean left leg average
peak acceleration was a single feature that can be thresholded
to achieve a 75.0% overall labeling accuracy with the same
recall level as the top-performing SVM classifier. This result is
consistent with the past related findings in [7] and trends seen
in another infant motion dataset [43]. The differing accelera-
tion of movement across the two groups of infants indicates
that underlying movement patterns may be different (e.g.,
slower acceleration in the AR group), but further investigation
is needed about the position and movements of the children
to conclude more. Upon considering an accessible 2-feature
model option (using just age and AIMS score), we found that
this classifier alternative produces the highest accuracy for TD
vs. AR classifications (94.4% accuracy, 1.000 recall). For the
prediction of future developmental delays, the AIMS score
was the single most impactful feature. Thresholding on the
AIMS score led to a 78.9% classification accuracy with a recall
value of 0.889. This emphasizes that the AIMS score already
being used as a tool by healthcare providers is very powerful,

but that the prediction of future developmental challenges can
be improved by more than 10% after considering additional
infant demographic and motion features. This improvement is
promising motivation for using inertial data in combination
with AIMS score to improve infant outcomes.

While this work can help inform future steps that will pro-
vide new tools and insights to healthcare providers, it is also
important to consider possible drawbacks and shortcomings of
our efforts. Overall, the size of the dataset is relatively small,
and as discussed throughout the previous sections, there is a
possibility of overfitting. Thus, the outputs of these machine
learning models should be interpreted with the help of medical
experts and more data should be collected to strengthen the
models. In particular, more data is needed before the authors
can confidently recommend using the presented HO vs. LO
prediction models to anticipate future challenges for infants
who were not part of the original dataset, and a universal mea-
sure of outcomes at 24 months would have provided a stronger
ground truth label for this assessment. The AIMS score used
in this work was administered to infants older than 18 months
of age who were not yet walking, which is outside of the
established age range norms for the assessment. Our methods
are also reliant on human selection of features. With larger
datasets, techniques like deep learning could eliminate the
need to select important features. In this work, our emphasis
was on collecting compact and noninvasive data, but additional
data collection methods (including video recordings, RGB-D
recordings, and thermal imaging) can yield additional types of
features [44]-[49]. Further, no diagnoses can be made about
specific future impairments using the present dataset. Although
the initial results presented here are promising, additional work
is needed before these types of algorithms should be used
as the central tool for identifying infants with high risk of
developmental delays or need for intervention.

VII. CONCLUSIONS AND FUTURE WORK

Overall, we presented preliminary classifiers that show high
accuracy and promise for 1) distinguishing between TD and
AR infants and 2) anticipating future developmental challenges
for AR infants. These results are presented with certain cross-
validation caveats, and we also emphasize the creation of sim-
ple models that can augment the usefulness and interpretability
of this work for healthcare providers. To further strengthen
this work, we hope to recruit a large sample of AR infants
and collect longitudinal data from them, including traditional
developmental assessment test scores, movement recordings,
and a check-up at two years of age to assess if the infant has
been diagnosed with developmental delays.

The highest-impact goal of this work is to use machine
learning tools to reliably anticipate if an AR infant will be
diagnosed with developmental delays. If this information is
known, infants can be targeted for early interventions that
could make an enormous difference in their later life and
health outcomes. Currently, developmental delays are often not
diagnosed until an infant is two years old. Current tools, such
as the AIMS score, detect early signs of atypical development,
but these approaches perform best in extreme cases. Our classi-
fiers can strengthen predictions of developmental delays based
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on the general movement of young infants. As a result, those
infants could receive earlier and more directed interventions.
Accordingly, this work can benefit researchers and healthcare
providers who seek improved outcomes for AR infants.
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