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Abstract—As improvements in medicine lower infant mortality
rates, more infants with neuromotor challenges survive past birth.
The motor, social, and cognitive development of these infants are
closely interrelated, and challenges in any of these areas can
lead to developmental differences. Thus, analyzing one of these
domains - the motion of young infants - can yield insights on
developmental progress to help identify individuals who would
benefit most from early interventions. In the presented data
collection, we gathered day-long inertial motion recordings from
N = 12 typically developing (TD) infants and N = 24 infants
who were classified as at risk for developmental delays (AR) due
to complications at or before birth. As a first research step, we
used simple machine learning methods (decision trees, k-nearest
neighbors, and support vector machines) to classify infants as TD
or AR based on their movement recordings and demographic
data. Our next aim was to predict future outcomes for the
AR infants using the same simple classifiers trained from the
same movement recordings and demographic data. We achieved
a 94.4% overall accuracy in classifying infants as TD or AR, and
an 89.5% overall accuracy predicting future outcomes for the AR
infants. The addition of inertial data was much more important
to producing accurate future predictions than identification of
current status. This work is an important step toward helping
stakeholders to monitor the developmental progress of AR infants
and identify infants who may be at the greatest risk for ongoing
developmental challenges.

Index Terms—infant motion sensing, early motion interven-
tions, rehabilitation engineering

I. INTRODUCTION

DUE to improvements in obstetric and neonatal medicine,

an increasing number of infants with neuromotor chal-

lenges survive past birth [1]. Infants with complications at or

before birth are classified as being at risk for developmental

delay (AR), and some are later diagnosed with cognitive

and/or physical developmental delays [2]. Early motor delays

are often the initial signs of later developmental impair-

ments [2]. Identifying neuromotor impairment accurately and
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early enough so that interventions can take place before the de-

velopmental delay is pronounced is a current challenge in the

field of physical therapy. One approach to early identification

is tracking infants’ spontaneous movements, which have been

shown to be correlated to future motor control [3]. Specifically,

researchers propose that neurological deficits could be identi-

fied by collecting high-quality spontaneous movement patterns

from wearable sensors and kinematic analysis systems [4]–[6].

One goal of our work is to use day-long kinematic data

collected from wearable inertial sensors to classify infants as

typically developing (TD) or AR. Although these labels are

already known for each infant based on the condition of that

infant at birth, a classifier that uses inertial motion data to label

infants as TD or AR would further establish and support past

work that indicates differences in the spontaneous movements

of TD and AR infants. Previous non-machine learning efforts

to accomplish this task on the same dataset appear in [7]. The

main impactful and challenging goal of our work is to predict

future outcomes for AR infants. By conducting supervised

learning using the inertial motion data of AR infants from our

data collection, we can establish whether recorded movement

patterns may enable the prediction of future developmental

challenges for these AR infants. This forecasting could support

strategic interventions for AR infants who are most likely to

experience developmental challenges.

This article discusses related work in Section II. A descrip-

tion of the data collection and initial data processing appears

in Section III. Section IV outlines the methods and results

for the TD/AR classification. Section V provides the methods

and results for predicting future outcomes of AR infants. We

discuss the implications of this work in Section VI and draw

overarching conclusions in Section VII.

II. RELATED WORK

Exploratory motions ranging from batting an overhead

mobile to reaching out to a caregiver are essential for the

development of young infants. TD infants engage in these

types of exploratory movements naturally, learning to control

their bodies and interact with their environment [8], [9]. In

contrast, AR infants often have neuromotor impairments in-

volving coordination, strength, and proprioception, which can

lead to developmental delays [2]. As medical care improves,

a larger number of infants who experience complications at or

before birth survive; recent estimates determined that 9% of

infants in the United States are born at risk [10]. Generally,

these infants could benefit from early intervention services
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to support their development [10]. However, resources for

early interventions are limited, and the standard of care for

these infants is often infrequent movement therapy or no

intervention until after infancy [11], [12].

The growing number of AR infants leads to emergent needs

to understand how the behavior of TD and AR infants differs

and identify which AR infants are at the highest risk for

later developmental delays. For infants, motor, social, and

cognitive development are all closely interrelated [13], so an

analysis of infant motion alone leads to insights on general

developmental progress. Past work involving short-term (5-

to 10-minute) analyses of infant motion have demonstrated

differences in motion features of TD and AR infants. Using

wearable sensors and kinematic analysis systems, these studies

have shown that kinematic variables such as spatiotemporal

organization, kicking frequency, and interjoint and interlimb

coordination are different between TD infants and infants with

myelomeningocele [14], [15], intellectual disabilities [16],

Down syndrome [17], as well as infants born preterm [18]. The

presented work for early, data-driven identification of infants

who are at high risk for developmental delays can improve

outcomes for these individuals; early and intense targeted in-

terventions have the potential to improve neurodevelopmental

structure and function [19].

Because of the past documented differences between the

motion features of TD infants and infants with various neuro-

muscular challenges, simple machine learning techniques are

good candidates for 1) distinguishing between TD and AR

infants and 2) attempting to predict developmental outcomes

using infant motion features. Past work has applied machine

learning to inertial sensor data to address similar classification

problems, such as the detection of gait anomalies in individuals

with Parkinson’s disease [20], pathological gait [21], and

Huntington’s disease [22]. In this work, we approach the stated

classification goals using relatively simple and interpretable

machine learning tools including decision trees (DT) [23], k-

nearest neighbors (KNN) [24], and support vector machines

(SVM) [25]. We also consider an ensemble approach that

combines the above methods as a way to reduce bias and

overfitting [26].

Certain existing neonatal assessments have shown promise

for early detection of developmental delays via observation of

movement, but the present tools in this space largely exhibit

poor sensitivity and specificity for predicting neurodevelop-

mental outcomes. One example is the Alberta Infant Motor

Scale (AIMS) [27]; on this assessment, a score of less than

five or ten percent is considered a “cutoff” for identifying

delay [28], but it is not shown to be a good predictor of later

neurodevelopmental outcomes [29]. Bias is a concern with

AIMS results [30], as are false positives [31]. One successful

counterexample is assessments for the detection of cerebral

palsy, which can be identified at approximately 3-4 months

chronological or adjusted age using the General Movements

Assessment (GMA) [32] with summary estimates of 98%

sensitivity (95% confidence interval [CI] 74–100%) and 91%

specificity (95% CI 83–93%) [33]. At the same time, the GMA

requires a trained observer to rate spontaneous movements

in early infancy. Our proposed quantitative approach with

accessible, low-cost sensors has potential to more accurately

predict future outcome compared to AIMS and to help predict

neurodevelopmental outcomes more broadly than the GMA.

III. DATA COLLECTION AND PROCESSING

To better understand TD and AR infant motion and its

implications, we conducted day-long data collections of in-

home infant motion using APDM Opal inertial sensors [34].

The participant information, procedures, and data processing

steps are outlined in this section.

A. Participants

Data for twelve TD infants were collected in the Portland,

OR, metro area and data for 24 AR infants were collected

in the Los Angeles, CA, metro area. To be included in the

study, TD infants were required to come from singleton, full-

term pregnancies. Infants with scores below the 5th percentile

on the AIMS assessment were excluded from the TD group.

AR infants included in the study were from a broad group

meeting the state of California’s criteria for being at risk for

developmental delay and eligible for state-administered early

intervention [35]. AR infants with unstable medical condi-

tions were excluded. The participant group was heterogeneous

because our goal was not to predict specific impairments or

diagnoses, but rather to study general motion characteristics

that might broadly reflect atypical motor control.

During each session, the AIMS score for the infant was

recorded. To help us capture longitudinal data including vari-

ous developmental stages, each infant participated in three data

collections between the ages of one and 20 months, with the

exception of two AR infants who only completed two sessions.

Corrected ages were used for any infant born preterm. Data

were collected only from infants who were not yet walking

independently; the two AR infants who did not complete a

final session were walking independently by the time of their

planned third data collections, and thus were excluded from

completing a third recording.

B. Procedure

During data collection sessions, we used two APDM Opal

inertial sensors [34] to measure tri-axial acceleration and

angular velocity at a sampling rate of 20 Hz. The sensors

were synchronized to one another throughout the recording

using Bluetooth. A researcher affixed one sensor to each of

the infant’s ankles using custom leg warmers with pockets,

as sketched in Fig. 1. Sensor placement was not consistent

in orientation (i.e., the axes were not placed in a consistent

way relative to the infant’s leg), but past work has validated

that Opal sensors affixed in this way can accurately record

the quantity of infant limb movements without impeding or

promoting movement [36], [37].

Inertial data were collected from typical infant behavior

over a full day of activity (8-13 hours) in the infant’s natural

environment, and the sensors were removed at the end of the

day. During the data collection, sensor data were stored on the

sensors’ internal memory. The recordings were downloaded
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the Lasso model that corresponded to the minimum cross-

validated mean squared error (MSE) and variables in the spars-

est model within one standard error of the minimum MSE.

Based on the meaningful feature subsets identified by the

union of these two techniques, we removed highly correlated

and low-variance features to reduce the dimensionality of the

feature set from 35 to eight features for each classification

task. Lasso’s selections were verified using random stumps that

generated single-split decision trees on subsets of the data to

determine which features were the most influential in dividing

the data for maximal information gain.

IV. TD VS. AR CLASSIFICATION

As introduced in Section II, the first goal of this work is to

distinguish between TD and AR infants using the observations

collected from infants in our dataset. This section details our

approach to this classification problem.

A. Selected Features

Before training models to distinguish between TD and AR

infants, we used Lasso to eliminate redundant and uninforma-

tive features, resulting in the following feature set:

• infant age

• AIMS developmental score

• mean movement duration of the right leg

• standard deviation of movement duration of the right leg

• mean left leg average acceleration

• mean right leg average peak acceleration

• mean left leg average peak acceleration

• right leg bilateral asynchronous motion rate

B. Initial Classification Results

During model training and evaluation, we used leave-one-

out cross-validation (LOOCV) to create binary classifiers that

could label the omitted infant observation as TD or AR.

In other words, 106 distinct models were trained using 105

observations each (and omitting one observation, which rotated

through the 106 total movement observations). The remaining

observation was then used as the test set for the classifier

trained without that data. This approach is commonly used

for classification tasks with small datasets [40].

For each considered classifier, we used grid search to tune

the hyperparameters. Specifically, we considered 1 to 5 splits

(for DT), nearest neighbors (for KNN), and polynomial orders

(for SVM). Our ensemble approach computed the majority

vote of the top-performing DT, KNN, and SVM models

together. Since we completed multiple motion observation

sessions with each infant, we determined the overall TD or

AR classification for a given infant by taking the majority

vote label across all observations for any given classification

approach.

In addition to overall accuracy, we used metrics such as

precision, recall, and F1 score to evaluate the classifiers.

We aimed to generate models with higher true positives

(TP) and lower false negatives (FN) because labeling the

AR status correctly is most important for supporting healthy

infant development. False positives (FP) were less potentially

harmful, although we should be mindful of how this type of

misclassification might affect resource allocation or lead to

other unintended consequences.

The classification accuracy of the tuned models varied from

77.8% for the KNN approach to 88.9% for the SVM approach.

The ensemble approach achieved an accuracy of 83.3% with

an F1 score of 0.880, falling short of the SVM model alone in

some aspects of the classification task. Accordingly, the SVM

approach was the top-performing classifier in this first round

of analysis. Table II shows the classification accuracy of each

approach, along with the corresponding precision, recall, and

F1 scores.

Although the SVM classifier was the most accurate overall,

the recall values for the KNN and ensemble approaches

were higher. This has implications on the treatment of AR

infants; if AR infants are misclassified as TD, they might miss

out on important early care and interventions. On the other

hand, in a scenario with limited resources (also the case in

interventions for AR infants) false positive classification of TD

infants could lead to stigma and wasted resources. Thus, the

choice of classifier depends on the objectives of researchers,

care providers, and families. For now, since the TD vs. AR

classification of infants is informed by the circumstances of

birth, we conclude that the SVM model is the top-performing

option in this case.

C. Effects of Considering Longitudinal Data

In the above analyses, we considered the majority vote label

across all infant observations to determine each classifier’s

prediction for each infant. With the collected dataset, this

approach is possible because we collected motion data from

each infant two or three times; however, it may not always be

possible to collect multi-session data. Thus, we conducted an

additional analysis to compare the accuracy of labels 1) based

on all individual infant movement recordings separately, 2)

based on the majority vote label across all recordings for each

infant, and 3) based on the third recording for each infant that

completed all three sessions. Table III lists the overall accuracy

of each of these approaches.

For all strategies, the SVM approach performs better than all

other models, reinforcing our selection of this classifier type

for the task of distinguishing between TD and AR infants.

Longitudinal observations yield better classification accuracy

than considering all infant observations separately. This con-

sistent trend demonstrates that in future efforts, considering

longitudinal observations together in a majority vote will likely

TABLE II
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN TD AND AR
INFANTS USING INFORMATION GATHERED DURING THE DAY-LONG

RECORDING SESSIONS (LOOCV APPROACH). THE BOLDED ROW

REPRESENTS THE TOP-PERFORMING CLASSIFIER IN OUR ANALYSIS.

Model Type Accuracy Precision Recall F1 Score

DT 0.806 0.769 0.833 0.800
KNN 0.778 0.767 0.958 0.852
SVM 0.889 0.954 0.875 0.913

Ensemble 0.833 0.846 0.917 0.880
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improve classifier accuracy compared to determining infant

status based on a single measurement taken at an arbitrary time

during the developmental period we are considering (early life

before 24 months of age).

In most cases, using the third movement recording as the

sole observation for each infant yields a lower classification ac-

curacy, but this strategy performs better in the SVM classifier

case. It is important to also consider the precision, recall, and

F1 score of the third-observation-only labels before adopting

this approach. Table IV reveals that solely considering the final

infant observation yields better results in every category.

This final result should be interpreted with caution; although

observing motion later into infant development yields more

accurate classification results, waiting longer may have im-

plications on the impact interventions can have on infants.

Additionally, the recall value still falls short of the KNN and

ensemble approach performances discussed previously, so the

updated SVM approach may not be preferable in circum-

stances where identifying all AR infants is the top priority.

Furthermore, the decrease in classifier performance for all

other models could indicate that a change from considering

all infant observations to the final observation alone may lead

to overfitting. Thus, more data should be collected before

researchers and clinicians turn to this approach alone for

distinguishing between TD and AR infants.

D. Effects of Other Cross-Validation Techniques

Another important consideration in assessing our TD vs.

AR classifier is the cross-validation approach, which can have

major implications for the accuracy of the labels and generality

of the approach. For each classifier type in the initial LOOCV

approach proposed above, 106 distinct models were trained

using 105 observations each (and omitting one observation,

which rotated through the 106 total movement observations).

The remaining observation was then used as the test set for

the classifier trained without those data. For a relatively small

dataset such as ours, this approach is reasonable, but it is easy

to imagine that overfitting could result from a strategy that

includes two observations from a given infant to classify that

infant’s third motion recording as TD or AR.

Accordingly, we also evaluated the performance of a leave-

one-subject-out cross-validation (LOSOCV) approach that is

likely to be less vulnerable to overfitting. In this approach, all

movement recordings from one infant are omitted during the

training of each model, and the models are then tested on the

omitted data. As mentioned before, note that two AR infants

TABLE III
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN TD AND AR
INFANTS WHEN EVALUATING THE ACCURACY OF EACH INDIVIDUAL

OBSERVATION VS. THE MAJORITY VOTE ACROSS ALL OBSERVATIONS VS.
THE FINAL OBSERVATION COLLECTED FOR A PARTICULAR INFANT. THIS

APPROACH USED LOOCV.

Model Ind. Acc. Maj. Vote Acc. Third Obs. Acc.

DT 0.783 0.806 0.765
KNN 0.707 0.778 0.765
SVM 0.877 0.889 0.941
Ensemble 0.811 0.833 0.792

TABLE IV
COMPARISON OF ACCURACY AND OTHER MEASURES FOR LABELS

OBTAINED USING THE MAJORITY VOTE FROM ALL OBSERVATIONS FOR A

PARTICULAR INFANT VS. LABELS BASED ONLY ON THE THIRD

OBSERVATION FOR A PARTICULAR INFANT. BOTH OF THESE APPROACHES

USED LOOCV.

Model Type Accuracy Precision Recall F1 Score

SVM Maj. Vote 0.889 0.954 0.875 0.913
SVM Third Obs. 0.941 1.000 0.909 0.952

TABLE V
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN TD AND AR

INFANTS, AFTER USING THE LOSOCV APPROACH. THE BOLDED ROW

REPRESENTS THE TOP-PERFORMING CLASSIFIER.

Model Type Accuracy Precision Recall F1 Score

DT 0.722 0.690 0.833 0.755
KNN 0.722 0.724 0.875 0.792
SVM 0.889 0.954 0.875 0.913

Ensemble 0.750 0.778 0.875 0.823

did not complete a third session, so some infants had only

two observations. Thus, 36 distinct models were trained using

103 or 104 observations each (the three - or occasionally two

- observations from 35 of the infants). Each trained model

omitted one set of infant observations, which rotated through

the 36 total infants. The omitted three (or occasionally two)

observations were then used as the test set for the classifier

trained without that data. This approach is commonly used to

strengthen model performance on new observations [41].

The classification results for the LOSOCV approach appear

in Table V. As foreshadowed above, the overall accuracy

suffers somewhat for most of the classifiers after the change

in cross-validation approach; however, for the top-performing

SVM classifier, the label accuracy did not change. This consis-

tency validates the original cross-validation approach for this

classification problem.

E. Model Interpretability

In addition to the above considerations, model interpretabil-

ity is also important; interpretable results can increase the

impact of this work by helping medical professionals to gain

insights about patients while maintaining patient (or parent)

trust [42]. The machine learning models discussed previously

increase in complexity while decreasing in interpretability.

Simpler approaches like the DT and KNN models are easier

to interpret compared to the more powerful and complex SVM

and ensemble approaches.

As an exercise in generating highly interpretable models,

we identified the most informative single feature using the

random stumps approach discussed in Section III. Then, using

only splits in the data based on this one feature, we identified

the highest-performing DT classifier. A DT model is easy

to visualize and very similar to dichotomous keys or other

scientific tools based on a series of binary splits. Thus, such

a model is a helpful tool for explaining how certain infant

motion features might help medical specialists to distinguish

between TD and AR infants.

We found that in the TD vs. AR classification problem, the

most meaningful feature for splitting the data was the mean left
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leg average peak acceleration. Using just a single, threshold-

based split (decision stump) on this feature yielded a 75.0%

overall classification accuracy. Furthermore, other performance

metrics in Table VI show that a simple, highly-interpretable

decision stump can achieve as high of a recall value as more

complex models.

Another approach that is accessible and interpretable is

using only features that clinicians would typically have access

to in the standard of care (age and AIMS score) to train

models. Using this approach, we discovered that a simple 2-

feature machine learning approach performs even better than

the previously proposed top models, as shown in Table VI.

Thus, for the task of identifying a child’s current status as

TD or AR, data presently available to healthcare providers

is just as powerful as added insights offered by inertial

measurements.

V. PREDICTING FUTURE OUTCOMES FOR AR INFANTS

The second goal of this work was to predict future develop-

mental outcomes for AR infants based on data collected during

their first two years of life. This section details our approach

to this classification problem.

A. Selected Features

As in the previous classification problem, we used Lasso to

eliminate redundant and uninformative features. This time, we

found the following features to be most informative:

• session number

• infant age

• AIMS developmental score

• mean movement duration of the left leg

• overall right leg movement rate

• standard deviation of average right leg acceleration di-

vided by mean right leg movement duration

• standard deviation of average right leg peak acceleration

divided by mean right leg movement duration

• right leg movement rate divided by mean right leg move-

ment duration

B. Initial Classification Results

As in the previous classification task, we used LOOCV

to create binary classifiers, although this time we aimed to

label the omitted infant motion observation as having higher

outcomes at 24 months (HO) or developmental delays/lower

outcomes at 24 months (LO). To undertake this classification

task, we could only determine model accuracy for the nineteen

TABLE VI
COMPARISON OF ACCURACY AND OTHER MEASURES FOR TD VS. AR

LABELS OBTAINED USING THE TOP-PERFORMING SVM CLASSIFIER VS.
LABELS BASED ON A SIMPLE DECISION STUMP OR MODEL TRAINED ON

ONLY TWO COMMONLY AVAILABLE FEATURES (AGE AND AIMS SCORE).
THIS APPROACH USED LOOCV.

Model Type Accuracy Precision Recall F1 Score

SVM 0.889 0.954 0.875 0.913
Decision Stump 0.750 0.778 0.875 0.823
2-Feature Models 0.944 1.000 0.917 0.956

TABLE VII
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN HO AND LO

INFANTS (LOOCV APPROACH). THE BOLDED ROW REPRESENTS THE

TOP-PERFORMING CLASSIFIER IN OUR ANALYSIS.

Model Type Accuracy Precision Recall F1 Score

DT 0.842 0.750 1.000 0.857
KNN 0.684 0.667 0.667 0.667
SVM 0.895 0.818 1.000 0.900

Ensemble 0.895 0.818 1.000 0.900

AR infants for whom we had information about later devel-

opmental outcomes (55 total observations). Accordingly, 55

distinct models were trained using 54 observations each (and

omitting one observation, which rotated through the 55 total

movement observations). The remaining observation was then

used as the test set for the classifier trained without those data.

We used the same classification methods in this round of

model training and evaluation, and we again used grid search

to select hyperparameters. We determined the classification

of HO or LO for a given infant by taking the majority

vote label across all observations for any given classification

approach. Furthermore, the same accuracies and scores helped

us to evaluate each model, the the implications of correct

anticipation of future diagnoses and various types of labeling

errors were similar to those of the previous classification

problem.

The classification accuracy of the tuned models varied from

68.4% for the KNN approach to 89.5% for the SVM approach.

The ensemble approach achieved an accuracy of 89.5% with

an F1 score of 0.900. Since the ensemble approach achieved

the same results as the SVM model with significantly more

training complexity (training three sets of models, rather than

one), the SVM approach is the top classification strategy

among the tested approaches. Table VII displays the classifica-

tion accuracy of each approach, along with the corresponding

precision, recall, and F1 scores. For this classification problem,

the SVM approach tied for most accurate and also produced

perfect recall values.

C. Effects of Considering Longitudinal Data

As in the previous classification problem, it is interesting

to consider not only the majority vote label across all infant

observations, but also the accuracy of each individual label

and classifications produced at a particular point in infant

development. Rich data gathered from multiple sessions with

infants may lead to improved classifications, but this benefit is

not guaranteed. Furthermore, longitudinal data may not always

be available. Thus, we conducted another analysis to compare

the accuracy of labels produced using different subsets of the

infant motion recordings. Table VIII lists the overall accuracy

of each approach.

Similarly to the previous classification problem, the majority

vote approach surpassed the individual observation approach,

although the individual approach outperformed the majority

vote for the KNN model. This time, the use of the third

infant observation alone seemed to limit the abilities of the

classifiers, leading to the same ceiling performance cap across

all approaches. For the KNN case, this cap was still an
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improvement over the majority vote approach, but the third-

observation-only strategy performed worse than the leading

majority vote classifiers.

D. Effects of Other Cross-Validation Techniques

Another consideration in assessing the HO vs. LO clas-

sifier results is how the cross-validation approach influences

model accuracy and generality. For each classifier type in the

initial LOOCV approach proposed above, 55 distinct models

were trained using 54 observations each (and omitting one

observation, which rotated through the 55 total movement

observations). The remaining observation was then used as

the test set for the classifier trained without that data.

Since the above approach may be prone to overfitting, we

also evaluated the performance of a LOSOCV approach. In

this approach, nineteen distinct models were trained using

52-53 observations each (the three - or occasionally two -

observations from eighteen of the infants). Each trained model

omitted one infant’s observations, which rotated through the

nineteen total infants. The omitted three (or occasionally two)

observations were then used as the test set for the classifier

trained without that data.

The classification results for the LOSOCV approach appear

in Table IX. It is not surprising to find that the overall

accuracy suffers somewhat for most of the approaches after

the change in cross-validation approach, including the for-

merly top-performing SVM classifier. This indicates that the

accuracy of our classifiers with the original cross-validation

approach may suffer as the existing models are used to label

new observations; however, even if we needed to shift to using

a LOSOCV approach while training models, the updated KNN

classifier achieves an 84.2% overall classification accuracy

with a recall level that is far above random. This type of model

may still augment clinicians’ ability to identify the infants who

would benefit most from early intervention.

E. Model Interpretability

Model interpretability is an important consideration in this

classification task as well. To again generate highly inter-

pretable models, we identified the most informative single

feature using the random stumps approach discussed in Sec-

tion III. Then, using only splits in the data based on this one

feature, we identified the highest-performing DT classifier.

For the HO vs. LO infant determination, the most mean-

ingful feature for splitting the data was the AIMS devel-

opmental score. Using just a single, threshold-based split

TABLE VIII
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN HO AND LO
INFANTS WHEN EVALUATING THE ACCURACY OF EACH INDIVIDUAL

OBSERVATION VS. THE MAJORITY VOTE ACROSS ALL OBSERVATIONS VS.
THE FINAL OBSERVATION COLLECTED FOR A PARTICULAR INFANT. THESE

APPROACHES USED LOOCV.

Model Ind. Acc. Maj. Vote Acc. Third Obs. Acc.

DT 0.745 0.842 0.765
KNN 0.691 0.684 0.765
SVM 0.764 0.895 0.765
Ensemble 0.727 0.895 0.765

TABLE IX
CLASSIFIER RESULTS FOR DISTINGUISHING BETWEEN HO AND LO

INFANTS, AFTER THE USE OF A LOSOCV APPROACH. THE BOLDED ROW

REPRESENTS THE TOP-PERFORMING CLASSIFIER IN OUR ANALYSIS.

Model Type Accuracy Precision Recall F1 Score

DT 0.737 0.667 0.667 0.667
KNN 0.842 0.875 0.778 0.823

SVM 0.684 0.636 0.778 0.700
Ensemble 0.789 0.778 0.778 0.778

TABLE X
COMPARISON OF ACCURACY AND OTHER MEASURES FOR HO AND LO
LABELS OBTAINED USING THE TOP-PERFORMING SVM CLASSIFIER VS.

LABELS BASED ON A SIMPLE DECISION STUMP OR MODEL TRAINED USING

TWO COMMONLY AVAILABLE FEATURES. THESE TESTS USED LOOCV.

Model Type Accuracy Precision Recall F1 Score

SVM 0.895 0.818 1.000 0.900
Decision Stump 0.789 0.667 0.889 0.762
2-Feature Models 0.684 0.636 0.778 0.700

(decision stump) on this feature yielded a 78.9% overall clas-

sification accuracy. Furthermore, other performance metrics

in Table X reveal that a simple, highly-interpretable decision

stump achieved a recall value well above random and close to

that of more complex models. This demonstrates that, of all the

features we tested, the AIMS score is the best single predictor

of future outcomes for AR infants. At the same time, if using

the AIMS score in this extended capacity, it is important to

understand more background information about it (including,

but not limited to, the caveats in Section II).

As in the previous classification task, we considered simple

classifiers with only two features (age and AIMS score) as

another viable option. In the HO/LO classification task, this

approach does significantly worse than the top performing

models and even the decision stump using only AIMS score,

as shown in Table X. This finding is consistent with the past

work showing AIMS score alone to be an insufficient predictor

of later outcomes. It also indicates that in the present task,

inertial data can play an important role.

Although the AIMS score is a powerful tool already used

by the medical community, conflicts between our results and

related work’s findings indicate that it may be best used in

combination with other features. The combination of AIMS

score with other infant demographic and motion features leads

to a uniformly greater classification performance. Thus, using

AIMS scores with inertial data has potential to better inform

clinicians in situations where a significant improvement in

classification accuracy is meaningful.

VI. DISCUSSION

In this work, conducted an initial evaluation of the possibil-

ity of using simple machine learning techniques to 1) distin-

guish between TD and AR infants and 2) predict developmental

outcomes using infant demographic and motion features. To-

ward the first goal, we found that by using an eight-feature

set and a relatively simple SVM classifier, we could achieve

an 88.9% classification accuracy with a recall value of 0.875.

In our considerations, recall measures are important because a

lower recall represents more AR infants being misclassified as
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TD and potentially overlooked needed care. By considering an

approach using only the final observation for each infant, we

are able to create an even more accurate TD vs. AR classifier

with higher recall (94.1% accuracy, recall of 0.909), although

some ability to intervene early is lost with this approach, and

future investigations are recommended to support or refute this

strategy. For the TD vs. AR classification problem, LOOCV

and LOSOCV approaches yielded the same performance for

our chosen classifier, suggesting that a LOOCV approach may

be reasonable for this labeling task. At the same time, this

outcome does not always hold, and researchers in this and

related areas should carefully consider the appropriateness of

the selected cross-validation approach when generalizing to

new observations.

For the prospective task of predicting future developmental

delays, we found that by using an eight-feature set and a

relatively simple SVM classifier, we could achieve an 89.5%

classification accuracy with a perfect recall value of 1.000.

When considering different longitudinal approaches, we found

that the majority vote approach performs best for all classifiers

except for the KNN approach. Nevertheless, the overwhelming

trend of improvement when using the majority vote leads

us to believe that this approach is best for the HO vs.

LO classification problem. When considering different cross-

validation approaches, on the other hand, we found that the

originally proposed SVM classifier may not be optimal for

reliably predicting future developmental delays for new infants

who are added to the dataset. Although the recall value was

0.778 for both the KNN and SVM approaches when using a

LOSOCV strategy, the overall label accuracy dropped from

84.2% in the KNN approach to 68.4% in the SVM approach.

This change resulted from an increase in false positives for

the SVM strategy, which could be acceptable or detrimental

depending on the clinical circumstances. Nevertheless, all

evaluated classifiers performed much better than average, even

in the LOSOCV case.

We also presented examples of very simple and highly

interpretable decision stumps that could be a resource to

healthcare providers working with infants. For the TD vs. AR

classification task, we found that the mean left leg average

peak acceleration was a single feature that can be thresholded

to achieve a 75.0% overall labeling accuracy with the same

recall level as the top-performing SVM classifier. This result is

consistent with the past related findings in [7] and trends seen

in another infant motion dataset [43]. The differing accelera-

tion of movement across the two groups of infants indicates

that underlying movement patterns may be different (e.g.,

slower acceleration in the AR group), but further investigation

is needed about the position and movements of the children

to conclude more. Upon considering an accessible 2-feature

model option (using just age and AIMS score), we found that

this classifier alternative produces the highest accuracy for TD

vs. AR classifications (94.4% accuracy, 1.000 recall). For the

prediction of future developmental delays, the AIMS score

was the single most impactful feature. Thresholding on the

AIMS score led to a 78.9% classification accuracy with a recall

value of 0.889. This emphasizes that the AIMS score already

being used as a tool by healthcare providers is very powerful,

but that the prediction of future developmental challenges can

be improved by more than 10% after considering additional

infant demographic and motion features. This improvement is

promising motivation for using inertial data in combination

with AIMS score to improve infant outcomes.

While this work can help inform future steps that will pro-

vide new tools and insights to healthcare providers, it is also

important to consider possible drawbacks and shortcomings of

our efforts. Overall, the size of the dataset is relatively small,

and as discussed throughout the previous sections, there is a

possibility of overfitting. Thus, the outputs of these machine

learning models should be interpreted with the help of medical

experts and more data should be collected to strengthen the

models. In particular, more data is needed before the authors

can confidently recommend using the presented HO vs. LO

prediction models to anticipate future challenges for infants

who were not part of the original dataset, and a universal mea-

sure of outcomes at 24 months would have provided a stronger

ground truth label for this assessment. The AIMS score used

in this work was administered to infants older than 18 months

of age who were not yet walking, which is outside of the

established age range norms for the assessment. Our methods

are also reliant on human selection of features. With larger

datasets, techniques like deep learning could eliminate the

need to select important features. In this work, our emphasis

was on collecting compact and noninvasive data, but additional

data collection methods (including video recordings, RGB-D

recordings, and thermal imaging) can yield additional types of

features [44]–[49]. Further, no diagnoses can be made about

specific future impairments using the present dataset. Although

the initial results presented here are promising, additional work

is needed before these types of algorithms should be used

as the central tool for identifying infants with high risk of

developmental delays or need for intervention.

VII. CONCLUSIONS AND FUTURE WORK

Overall, we presented preliminary classifiers that show high

accuracy and promise for 1) distinguishing between TD and

AR infants and 2) anticipating future developmental challenges

for AR infants. These results are presented with certain cross-

validation caveats, and we also emphasize the creation of sim-

ple models that can augment the usefulness and interpretability

of this work for healthcare providers. To further strengthen

this work, we hope to recruit a large sample of AR infants

and collect longitudinal data from them, including traditional

developmental assessment test scores, movement recordings,

and a check-up at two years of age to assess if the infant has

been diagnosed with developmental delays.

The highest-impact goal of this work is to use machine

learning tools to reliably anticipate if an AR infant will be

diagnosed with developmental delays. If this information is

known, infants can be targeted for early interventions that

could make an enormous difference in their later life and

health outcomes. Currently, developmental delays are often not

diagnosed until an infant is two years old. Current tools, such

as the AIMS score, detect early signs of atypical development,

but these approaches perform best in extreme cases. Our classi-

fiers can strengthen predictions of developmental delays based
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on the general movement of young infants. As a result, those

infants could receive earlier and more directed interventions.

Accordingly, this work can benefit researchers and healthcare

providers who seek improved outcomes for AR infants.
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