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A B S T R A C T

The freeze/thaw state of permafrost landscapes is an essential variable for monitoring ecological, hydrological
and climate processes. Ground surface state can be obtained from satellite data through time series analysis of C-
band backscatter from scatterometer and Synthetic Aperture Radar (SAR) observations. Scatterometer data has
been used in a variety of studies concerning freeze/thaw retrieval of the land surface. Coarse spatial resolution
scatterometer data has great potential for application in this field due to its high temporal resolution (approx.
daily observations). In this study, we investigate the influence of sub-grid cell (12.5 km) surface water (ice free
and ice covered) on freeze/thaw retrieval based on ASCAT data using a threshold algorithm. We found dis-
crepancies related to the surface water fraction in the detected timing of thawing and freezing of up to 2 days
earlier thawing for spring and 3.5 days earlier freezing for autumn for open water fractions of 40% resulting in
an overestimation of the frozen season. Results of this study led to the creation of a method for correction of
water fraction impact on freeze/thaw data. Additionally, this study demonstrates the applicability of a new
approach to freeze/thaw retrieval which has not so far been tested for SAR, specifically Sentinel-1.

1. Introduction

Lakes and lake-rich landscapes are a dominant and highly variable
feature in the Arctic (Duguay et al., 2002; Lehner and Döll, 2004; Smith
et al., 2007; Grosse et al., 2013). These lakes of different shape, size and
depth are complex systems of water bodies, influencing surrounding
landscapes evolution and shaping landscape ecology (Smith et al.,
2007; Grosse et al., 2013). In remote sensing studies, lakes and other
water bodies (e.g. ponds, rivers) often impact the retrieval of geophy-
sical parameters such as soil moisture (e.g. Högström et al., 2014), snow
water equivalent (e.g. Rees et al., 2006; Kontu et al., 2008; Green et al.,
2012) and vegetation indices (e.g. Jiang et al., 2006). In particular,
lakes of sub-pixel size can lead to misclassification or errors in the Earth
observation results, causing problems in both coarse scale optical (e.g.
Bartsch et al., 2016) and microwave remote sensing (Högström et al.,
2014; Högström and Bartsch, 2017). However, remote sensing has also
been directly applied to study lakes and their features in numerous
studies ranging from water quality retrieval (Kutser et al., 2016) to

quantifying surface water dynamics (Carroll et al., 2016; Nitze et al.,
2018), water storage (Cai et al., 2016) and size distribution (Polishchuk
et al., 2017).

Next to the abundance of lakes, permanently frozen ground is a
characterizing feature of Arctic landscapes. In the Arctic, the landscape
is underlain by perennially frozen ground known as permafrost.
Following temperature changes in spring and autumn, the ground
surface undergoes an annual thaw/freeze cycle. Transitional periods are
characterized by partially frozen and thawed landscapes (Frauenfeld
et al., 2007) as well as daily thawing and refreezing in connection with
air temperature variations (Bartsch et al., 2007). These thawing and
freezing cycles have been linked to a multitude of hydrological pro-
cesses including surface runoff (Wang et al., 2009), ground water
movement (Woo and Winter, 1993), infiltration and evapotranspiration
(Arp et al., 2015; Woo, 1986) as well as mean annual ground tem-
perature (Arp et al., 2016; Kroisleitner et al., 2018) and ground surface
deformation (Bartsch et al., 2019). In addition, the thawing and re-
freezing of the ground is known to influence methane emissions
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(Mastepanov et al., 2008; Arndt et al., 2019) and has been found to
have a significant impact on terrestrial carbon exchange (Schuur et al.,
2008). The Arctic and its permafrost dominated landscapes are known
to be highly affected by climate warming, with temperatures in these
regions rising faster compared to lower latitudes (Pithan and Mauritsen,
2014). Under warming conditions the extent of permafrost as well as
seasonal frost effects and thawing and refreezing cycles are expected to
change (Zhang et al., 2008; Romanovsky et al., 2015).

Mapping frozen and thawed ground and detecting the timing of the
surface state change is therefore crucial for climate models as well as
hydrological and ecological applications (Zhang et al., 2004). Micro-
wave remote sensing has been used in the past to monitor the surface
state of permafrost areas (Zhang and Armstrong, 2001; Kim et al., 2011;
Naeimi et al., 2012; Kimball et al., 2004; McDonald and Kimball, 2006).
Backscatter values vary due to changes in the dielectric constant of the
water contained within the upper part of the ground (Dobson and
Ulaby, 1986; Ulaby et al., 1978), which changes significantly when the
soil water freezes (Wegmüller, 1990). At C-band (5.3 GHz) this leads to
overall lower backscatter during the frozen period compared to the
unfrozen period (e.g. Rignot and Way, 1994; Duguay et al., 1999; Park
et al., 2011). The absolute difference between backscatter values during
frozen and thawed conditions varies for sites with different surface
characteristics. For example Naeimi et al. (2012) found differences in
winter and summer mean backscatter of approximately 1.5 db to 3 db
for sites covered with wooded tundra, differences of approximately 2 db
for herbaceous tundra and approximately 3 db for sites with broad-
leaved forest. Several algorithms using both scatterometer and Syn-
thetic Aperture Radar (SAR) data to detect the timing of freezing and
thawing of the ground surface, relying on the difference of winter and
summer backscatter, have been developed in the past (Naeimi et al.,
2012; Park et al., 2011; Derksen et al., 2017; Kimball et al., 2001).

Freeze/thaw data products have been derived from different sensors
(active as well as passive systems) utilizing different frequencies as well
as temporal and spatial resolutions (Kim et al., 2017; Naeimi et al.,
2012; Paulik et al., 2014; Sabel et al., 2012; Derksen et al., 2017;
Rautiainen et al., 2016). To this date, only a few studies utilized Sen-
tinel-1 data for freeze/thaw retrieval (e.g. Baghdadi et al., 2018). In the
creation of freeze/thaw products (e.g. Paulik et al., 2014), lake masks
are typically applied to avoid errors in the classification due to the
influence of water bodies. Backscatter of surface water is known to be
different compared to the surrounding land areas and can be influenced
by different processes. During the ice free months, wind is a known
influence, changing the surface roughness of the water bodies which
leads to a different backscatter (Duguay et al., 1999; Högström et al.,
2014). While the ground surface thaws in spring and freezes in autumn,
ice break-up and freeze-up takes place on lakes. Remote sensing of lake-
ice break-up and freeze-up has been the subject of a few studies in the
past (e.g. Surdu et al., 2015; Arp and Jones, 2009). In the period during
which the soil is frozen, the backscatter of lakes can be influenced by
ice cover being frozen to the ground (called ground fast ice) or floating
which leads to differing backscatter responses (Duguay et al., 1999,
2002; Bartsch et al., 2017a, 2017b; Pointner et al., 2018; Engram et al.,
2018). During spring time, a lag between the thawing of the ground
surface and lake ice occurs where the terrestrial landscapes are thawed
but lake surfaces are still covered by a decaying ice cover. This leads to
a period in time, of up to several weeks, where the backscatter signal is
impacted by frozen lakes and thawed ground surfaces.

When using microwave remote sensing data both options, scatte-
rometer and SAR data, have particular advantages and disadvantages
specific to each data type. Scatterometer data has the advantage of high
temporal resolution, providing approximately daily observations, al-
lowing for the monitoring of short term processes and changes. SAR
sensors provide data in a higher spatial resolution (up to 20 m for
Sentinel-1), however data products based on SAR generally suffer from
the low temporal resolution of the SAR observations. SAR data, like
Sentinel-1 as well as previous sensors, have been used to assess spatial

variability and the validity of scatterometer observations. Pathe et al.
(2009) derive soil moisture with data obtained from the Advanced
Synthetic Aperture RADAR (ASAR) sensor onboard the ENVISAT sa-
tellite. A comparison of the results with 50 km soil moisture data from
the European Remote Sensing Satellite (ERS) showed the capability of
SAR data to resolve spatial patterns in soil moisture that are omitted by
scatterometers (e.g. differences in soil moisture due to different vege-
tation covers). Högström et al. (2014) and Högström and Bartsch
(2017) use data from ASAR to assess backscatter variations over water
bodies with regard to soil moisture derived from measurements of the
Advanced Scatterometer (ASCAT) onboard the MetOp satellites. Bauer-
Marschallinger et al. (2018) use Sentinel-1 and ASCAT derived surface
soil moisture products to create a product with both high temporal and
spatial resolutions. The authors use data fusion methodologies to
overcome the inherent problem of coarse scatterometer data and low
temporal resolution of the SAR observations. ASAR was also used to
study the spatial variability of soil freezing and thawing within a
scatterometer footprint (Bergstedt and Bartsch, 2017). Lake-rich areas
have been confirmed to have the largest influence on scale dis-
crepancies outside of mountainous terrain. The impact on the accuracy
of surface state retrieval has so far not been quantified.

The objective of this study is to assess and quantify the impact of
sub-grid cell water bodies on the backscatter signal of a scatterometer
sensor (ASCAT) using SAR (Sentinel-1) backscatter time series with
regard to freeze/thaw retrieval from coarse resolution scatterometer
data. We hypothesize that the surface water fraction on a sub-grid cell
scale influences the quality of the detected freeze/thaw timing by in-
fluencing the backscatter level. The chosen study sites are situated in
Alaska, northern Canada and Europe, and encompass a wide range of
open water fractions. We present a quantification of the temporal offset
in the detected freeze/thaw timing as retrieved from coarse scale
scatterometer time series caused by sub-grid cell surface water. The
results of this study have implications for future improvements in
freeze/thaw applications.

2. Study sites and data sets

2.1. Study sites selection

To analyze the influence of the sub-grid cell open water fraction on
backscatter time series of ASCAT, we chose multiple study sites in
Alaska, northern Canada and Finland (see Fig. 1). For most study sites,
several ASCAT grid cells were chosen to increase the representativeness
of the results increasing the number of studied grid cells to 50. Study
sites were chosen to represent areas in the low and high Arctic as well
as for different lake sizes and fractions (see Fig. 2). The open water
fraction of the study sites varies between 1% and 60%. The extent of
study sites was chosen on the basis of the 12.5 km grid of ASCAT data.
The overall studied time period is 01/2015 to 10/2018, and limited by
the availability of Sentinel-1 observations for each specific study site.

2.2. MetOp ASCAT data

The scatterometer data used in this study was obtained from the
Advanced Scatterometer (ASCAT) instrument on board the MetOp sa-
tellites. The ASCAT instrument operates at C-band (5.255 GHz) and
provides up to daily coverage of our study sites since 2007 (Figa-
Saldaña et al., 2002) (Table 1). The ASCAT time series (backscatter,
sigma naught (σ0)) were extracted from the database provided by the
European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) and are part of the soil moisture product series (data
product ASCAT Soil Moisture at 12.5 km Swath Grid–Metop). The data
product used for this analysis are provided with 25 km resolution
gridded to 12.5 km (Figa-Saldaña et al., 2002). The data is provided
normalized to an incidence angle of 40° (Naeimi et al., 2009).
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2.3. Sentinel-1 synthetic aperture radar data

The Sentinel-1 radar Earth observation mission is part of the
Copernicus Programme (Geudtner et al., 2014). It consists of two sa-
tellites (Sentinel-1A and 1B) that were launched in April 2014 and April
2016, respectively. The data from Sentinel-1 provides a higher spatial
resolution (5 × 5 m to 20 × 50 m) at C-band (5.405 GHz) compared to
most previous systems and scatterometer missions since 2014
(Showstack, 2014). The SAR data from Sentinel-1 was obtained through
the Copernicus Open Access Hub. Sentinel-1 data used in this study was
acquired in the Interferometric Wide swath (IW) mode in VV-

polarization (20 × 22 m spatial resolution, 10 × 10 m pixel spacing)
(Table 1). Available Sentinel-1 data in VH-polarization was not con-
sidered as there is no corresponding equivalent for ASCAT. To max-
imize the number of observations, data from both descending and as-
cending overpasses were included. The relative orbits for Sentinel-1
included for the different study sites are reported in Table 2.

2.4. Multispectral Sentinel-2 satellite imagery

To distinguish the lakes in the grid cells from the surrounding land
areas we created lake masks using cloud free Sentinel-2 optical satellite

Fig. 1. Circumpolar and zoomed in views of the locations of all 50 study sites included in this analysis (Background map: Blue Marble: Next Generation, NASA Earth
Observatory). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Characteristics of studied grid cells: (A) Count of study site grid cells with respective open water fractions and (B) overall open water fraction vs. fraction of
lakes with ground fast ice occurring during the frozen period (Bartsch et al., 2017a, 2017b).
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imagery. Sentinel-2 is an optical high-resolution Earth observation
mission and part of the Copernicus Program (Gascon et al., 2014).
Currently it consists of two satellites (Sentinel-2A and 2B) which have
been launched in June 2015 and March 2017, respectively. Both sa-
tellites are orbiting Earth in a polar, sun-synchronous orbit providing
multispectral data in 13 spectral bands with a spatial resolution of 10 m
to 60 m (Gascon et al., 2014). The Sentinel-2 data used in this study is
Level 1C data, providing top of atmosphere reflectances (Gascon et al.,
2014) (see further details in Table 1).

2.5. ERA-interim temperature data

The temperature data used in this study was obtained in large parts
from the ECMWF ReAnalysis (ERA-Interim) data set which is provided
by the European Centre for Medium-Range Weather Forecasts
(ECMWF). This data set provides global coverage of temperature data
and is based on the ECMWF Integrated Forecast Model. The data set
contains air temperature as well as surface temperature information
from 1989-present (Dee et al., 2011). This study used soil temperature
of the surface level (0–7 cm) for the determination of different back-
scatter levels (Naeimi et al., 2012).

2.6. In situ data

In situ data consisting of soil and lake temperature measurements,
used to support the analysis of satellite observations, were available for
a limited number of sites, located in northern Alaska and northern
Finland (see Table 2). These data sets were gathered through different
networks. Transmitted C-band radar signals have been found to pene-
trate into the ground up to 5 cm (e.g. Matgen et al., 2012; Naeimi et al.,
2012) and the penetration depth is known to increase up to 9 cm when
the ground is frozen (Wegmüller, 1990; Zhao et al., 2012). Additionally,
penetration depth is known to vary depending on soil moisture (Ulaby
et al., 1996). In this study, we included soil temperature observations of
the upper 30 cm to account for the variability of the penetration depths
and to maximize the number of available in situ measurements. In total,
5 of the chosen grid cells contained one or more in situ measurement

sites with suitable observations during the time frame limited by the
availability of Sentinel-1 data (since 2015). Two grid cells located in
Barrow and the Deadhorse areas both contain three observation sites
each with data provided by the Permafrost Laboratory (www.
permafrost.gi.alaska.edu). Data included near-surface soil temperature
and, in a more limited way, volumetric water content measured at
different depths. Grid cell 3080728 contains observation sites from the
Circum-Arctic Lake Observation Network (CALON). For one of the sites
(Teshekpuk Lake), lake bed and lake surface temperature was available
for part of the studied time frame (12/2015–10/2017). For more de-
tailed information on the measurement set up for the CALON sites see
Arp et al. (2015, 2016). For grid cell 3061839 located in northern
Finland, near surface soil ground temperature measurements were
available for the years 2016–2018. Temperature measurements were
obtained by distributing iButton temperature loggers to cover different
landscape types and different elevations within the grid cell. The
iButton loggers were placed approximately 2–3 cm below the surface to
avoid direct warming influence by the sun. Temperature data for the
Kaldoaivi site can be obtained from the PANGAEA data repository
(Bergstedt and Bartsch, 2020).

2.7. Additional data sets

A data set consisting of the ground fast lake ice fraction (Bartsch
et al., 2017a, 2017b) was used to compare the results of our analysis
with the ground fast lake ice fraction of the study sites. The ground fast
lake ice fraction data set was created based on ENVISAT ASAR Wide
Swath data and published as a supplement to Bartsch et al. (2017a,
2017b). The data set is based on circumpolar ASAR observations from
late winter 2008.

To compare our lake mask with established data products, we uti-
lized the Global Surface Water (GSW) Water Occurrence data set (Pekel
et al., 2016) which contains the frequency with which water was pre-
sent at the surface between 1984 and 2018 for any given area. To
compare our water mask to a data product geared towards Arctic ap-
plications, we utilized the Permafrost Region Pond and Lake data base
(PeRL) (Muster et al., 2017). This data set is based on high resolution

Table 1
Specifications of remote sensing data sets used in this study, including the Advanced Scatterometer (ASCAT), Sentinel-1 and Sentinel-2. The temporal resolution
indicated in the table is valid for time periods after the launch of Sentinel-1b and Sentinel-2b. Data availability (for observations covering our study sites) is given in
months and years.

Sensor Specification Spatial resolution Temporal resolution Data availability

ASCAT C-band, VV-pol. 25 km (12.5 km grid) ~ daily 01/2007–ongoing
Sentinel-1 C-band, VV-pol. Interferometric Wide swath (IW) mode 20 × 22 m (10 m pixel spacing) ~ 3 days 01/2015–ongoing
Sentinel-2 Multi-spectral 10 m - 60 m ~ 5 days 06/2015–ongoing

Table 2
Overview of all in situ data sets used in this study, including the respective ASCAT grid cell, the site name, date range used in this study, observed variable (soil
temperature, lake surface temperature, lake bed temperature) and relative Sentinel-1 orbits used for each ASCAT grid cell. Deadhorse and Barrow data sets were
obtained from the Permafrost Laboratory, Data sets for grid cell 3080728 were obtained through the Circum-Arctic Lake Observation Network (CALON) (TLO:
Teshekpuk Lake Observatory).

ASCAT grid Cell Location Site Variable Date range Rel. S1 Orbits

3061839 69.83°N, 27.27°E Kaldoaivi Soil temp. 09/2016–07/2018 14, 43, 51, 116, 124, 153
3069922 70.09°N, 148.58°W Deadhorse 2 Soil temp. 12/2016–07/2017 95, 102, 123, 131

70.10°N, 148.59°W Deadhorse 3 Soil temp. 12/2016–07/2017
70.10°N, 148.58°W Deadhorse 4 Soil temp. 12/2016–07/2017

3080728 70.75°N, 153.86°W Tes005 Lake bed & lake surf. temp. 12/2015–10/2017 65, 73, 94, 102, 138
70.70°N, 153.92°W Tes006 Lake bed & lake surf. temp. 12/2015–10/2017
70.72°N, 153.83°W TLO Soil temp. 12/2015–10/2017
71.31°N, 156.66°W Barrow 2 Soil temp. 01/2017–09/2017 36, 44, 65, 73
71.28°N, 156.61°W Barrow A Soil temp. 01/2017–09/2017

Soil Pit
71.28°N, 156.60°W Barrow C Soil temp. 01/2017–09/2017

Soil Pit
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aerial and satellite imagery from 2002 to 2013 and includes historical
imagery from 1948 to 1965.

3. Methodology

This section describes the methodology and workflow used in this
study. The analysis involved optical imagery (Sentinel-2), scatterometer
data (ASCAT) and SAR observations (Sentinel-1). Sentinel-1 SAR data
was used to assess the impact of sub-grid cell surface water on scatte-
rometer backscatter. To distinguish surface water from land areas,
Sentinel-2 water masks were employed.

3.1. Creating lake masks using the normalized difference water index

Lake masks were created using cloud-free Sentinel-2 imagery from
the summer of 2016 (June 2016–August 2016) for all areas. To map the
waterbodies in each ASCAT grid cell, we calculated the Normalized
Difference Water Index (NDWI) following the method described in Du
et al. (2016). The NDWI was first proposed by McFeeters (1996) and is
calculated as follows

=
−

+
NDWI

ρ ρ
ρ ρ

Green NIR

Green NIR (1)

where ρGreen and ρNIR are top of atmosphere reflectance values of the
green and near infrared (NIR) bands respectively. Applied to Sentinel-2
this results in

=
−

+
NDWI

ρ ρ
ρ ρ10

3 8

3 8 (2)

Lakes were identified using an NDWI threshold specific for each site.
Given the spatial resolution of Sentinel-2, the resulting NDWI has a
spatial resolution of 10 m (NDWI10).

3.2. Processing of Sentinel-1 imagery

To allow for an extensive analysis, all usable Sentinel-1 scenes with
VV-polarization for the chosen study areas were included into this
study. Observations included all time periods (frozen and unfrozen
conditions). The Sentinel-1 scenes were pre-processed using the cali-
bration and terrain correction tools of the Sentinel Application Platform
(SNAP) software. For the terrain correction we used the Global Earth
Topography and Sea Surface Elevation at 30 arc sec resolution
(GETASSE) digital elevation model as it is available for all chosen sites.
As the incidence angle is known to have a major effect on the back-
scatter values of SAR imagery, all chosen scenes were normalized using
the local incidence angle. Using

° = − ∗ − °σ σ θ k θ(40 ) ( ) ( 40 )0 0 (3)

where θ is the local incidence angle backscatter values were normalized
to a common incidence angle of 40° (Hahn et al., 2017). The parameter
k is dependent on the local incidence angle and the corresponding
backscatter values and can be derived as follows (Widhalm et al.,
2018):

=
− °

− °
k σ θ σ

θ
( ( ) (40 ))

40

0 0

(4)

To ensure consistency and comparability of the ASCAT and Sentinel-
1 results we used the values for the parameter k as provided together
with the ASCAT backscatter values by EUMETSAT. To allow for direct
comparison with the ASCAT backscatter values, subsets of the Sentinel-
1 imagery of the extent of the chosen ASCAT grid-cells were created.

3.3. Comparison of ASCAT and Sentinel-1

In order to have comparable ASCAT and Sentinel-1 time series, we
based our analysis on the 12.5 km grid of the ASCAT data set. Sentinel-1
data was subset to match the grid of the ASCAT data. ASCAT data is not
originally given in a gridded format but rather each ASCAT observation
represents an elliptical footprint. To efficiently compare the SAR and
scatterometer time series, an approximation of shape must be made. We
chose to subset the Sentinel-1 data to a grid based on the WARP5 grid
from the Technical University Vienna (Bartalis et al., 2006; Hahn et al.,
2017) using a rectangular approximation. Previous studies have used
different shapes to subset SAR data. While some studies have used
rectangular grids similar to our approach (Pathe et al., 2009), other
studies have used hexagonal (Högström et al., 2014) or circular grids
(Bauer-Marschallinger et al., 2018). We limited our analysis to Sentinel-
1 data with VV-polarization as this is also the polarization of the ASCAT
sensor. From the subsets of Sentinel-1 data, mean values were calcu-
lated for each scene considering all pixels, taking into account only
those pixels of water body areas as well as considering only those pixels
of land areas. To quantify the influence of the water areas on the overall
backscatter of each footprint, the values of water pixels were then re-
placed by the mean value of land pixels and an additional overall mean
value was calculated from those rasters (see Fig. 3). Subsequent ana-
lyses were done on time series comprised of these mean values.

3.4. Freeze/thaw algorithm

Several algorithms to detect the ground surface state have been
developed in the past (e.g. Naeimi et al., 2012; Park et al., 2011).
Naeimi et al. (2012) present an algorithm designed to retrieve surface
state information from ASCAT backscatter data. We based our analysis
on their presented algorithm and applied it subsequently to ASCAT
backscatter and Sentinel-1 time series. The algorithm is centered on

Fig. 3. Schematic of simulating the absence of lakes for lake rich footprint on the scale of 12.5 km ASCAT grid cells using Sentinel-1 SAR data.
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finding a threshold for backscatter values, below which the ground
surface can be classified as frozen (σ0FTL) (Naeimi et al., 2012). This is
achieved by fitting a logistic curve into the backscatter values with
respect to temperature around the freezing point. An example of this is
shown in Fig. 4. Additionally to the backscatter level of the freeze/thaw
level, the algorithm relies on the mean backscatter during the summer
months (σ0SM) as well as the backscatter at the snowmelt level (σ0SML).
Naeimi et al. (2012) have reported the best results of this process if the
regression is limited to values between +10 °C and − 10 °C. This ap-
proach has been reported to be applicable for Arctic regions (Naeimi
et al., 2012). We determined the three different backscatter levels
(σ0FTL, σ0SM, σ0SML) for the overall mean value and the mean value
with replaced water pixel values. To assess the influence of water areas
on the overall backscatter of the respective ASCAT grid cell, we de-
termined the difference between those backscatter levels relevant for
the ASCAT freeze/thaw algorithm for the different Sentinel-1 mean
value time series.

To quantify the impact of our findings on the results of the chosen
freeze/thaw algorithm, we applied the algorithm as presented in
Naeimi et al. (2012) to the created Sentinel-1 time series. The results
were analyzed regarding the differences arising from using the different
Sentinel-1 time series and we calculated the days per year for which the
results showed disagreement.

4. Results

The validation of the surface water mask used in this study using
established data sets revealed high agreements. This included a com-
parison with the Global Surface Water Occurrence data set which shows
96.2% to 96.6% agreement with our Sentinel-2 based water mask.
Comparing our mask to the PeRL data base lake inventory shows an
agreement of 86.7%.

Fig. 5 shows the difference between Sentinel-1 time series including
and excluding lake areas for all 50 selected study sites for all studied
years from the launch of Sentinel-1 (Spring 2014) to September 2018.
The offset between the two time series is largely positive with mean
values close to 0 db during the frozen season, meaning higher back-
scatter values for the time series including the lake areas, and largely
negative for the thawed period, meaning higher backscatter values for
the time series excluding lake areas. The variability of the offset is

visibly stronger and the absolute values for the offset are higher during
the thawed period.

Fig. 6 shows the relationship of differences between backscatter
levels (σ0FTL, σ0SM, σ0SML) for Sentinel-1 time series including and
excluding open water areas and the open water fraction of the re-
spective ASCAT grid cells. All three differences of backscatter levels
show positive Pearson correlations with the open water fraction. The
strongest correlation is exhibited by the difference between the summer
mean backscatter value (0.879), followed by the correlation of differ-
ences between the snow melt backscatter levels (0.691) (see Fig. 6) and
the correlations for the differences for backscatter at the freeze/thaw
level (0.602) (see Fig. 6). Winter mean values are not significantly
different between the time series including and excluding water pixels
(see Fig. 7). The correlation of the difference of the ASCAT backscatter
at the freeze/thaw level and the lake-excluding Sentinel-1 backscatter
at the freeze/thaw level shows a correlation of −0.379 (see Fig. 6).

The findings for differences in timing for thawing and freezing as
resulting from the freeze/thaw algorithm when applied to the mean
value Sentinel-1 time series including and excluding lakes can be seen
in Fig. 8. Applying the freeze/thaw algorithm to the different Sentinel-1
mean value time series results in offsets of up to 4 days per year for
thaw timing and up to 5 days per year for freeze-up timing. Fig. 8 shows
that this offset created by including lake areas in the analysis leads to an
early detection of thaw in spring and a early detection of freeze-up in
autumn for the majority of study sites. The offsets in days per year
correlate with the open water fraction of the corresponding grid cell
with values of 0.837 for thaw and 0.82 for freeze-up. Fig. 8 shows four
outliers for the relationship of the offset and the open water fraction
regarding the thaw timing and two outliers regarding the freeze-up
timing. The outliers represent grid cells types coast, lake and floodplain.

Fig. 9 shows the relationship of the difference in thaw and freeze-up
timing in days per year with the fraction of lakes with ground fast ice
per grid cell. Comparing the offset to the ground fast lake ice fraction
for the corresponding grid cell gives weaker correlations than the
analysis considering the general open water fraction (see Fig. 9). For
both the thaw timing as well as the freeze-up timing, the correlations
are negative. As in Fig. 8, Fig. 9 also shows outliers regarding the thaw
and freeze-up timing. Rivers were removed in the ground fast lake ice
data set (Bartsch et al., 2017a, 2017b) and those grid cells are therefore
not considered in this comparison.

Fig. 4. Example of backscatter versus ERA interim reanalysis temperature data for Sentinel-1 time series including (A) and excluding (B) water pixels for one grid cell
(70.72°N, 156.69°W) on the Alaskan North Slope. Red curve indicates the best fit logistical function fitted to the Sentinel-1 backscatter. The blue point indicates the
inflection point of the fitted logistic function which is assumed to represent the backscatter of the freeze/thaw level. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Figs. 10, 11 and 12 show a comparison of ASCAT and Sentinel-1
time series with in situ measurements from the respective grid cells. All
three examples show general agreement of the in situmeasurements and
the backscatter, but also the variability of freeze/thaw timings within
one grid cell.

To quantify the agreement of the Sentinel-1 freeze/thaw classifica-
tion with in situ near-surface soil temperature measurements we com-
pared the classification results with measurements from 3 different
study sites described in Table 2. The agreement of the classification
with the in situ data records is summarized in Table 3.

5. Discussion

5.1. Influence of unmasked water bodies on freeze/thaw algorithms

Our analysis confirms the significant impact of sub-grid cell water
bodies on C-band backscatter. The results are specific to approaches
concerning threshold algorithms as proposed by Naeimi et al. (2012).
The threshold algorithm used in this study relies on the different
backscatter levels during frozen and unfrozen periods. These back-
scatter mechanisms are disturbed by the presence of sub-grid cell water
bodies.

With the exception of windy conditions, open water has low back-
scatter while ice typically has high backscatter values. Water within the
grid cell therefore lowers the overall backscatter during the unfrozen
period and increases the backscatter during the frozen periods. This
alters the inflection point of the fitted function and thus the location
specific threshold for surface state determination.

The offset for the thresholds is strongest for the summer mean
(unfrozen period, SM) (see Fig. 6). These results are in good agreement
with previous work by Högström et al. (2014) who found low agree-
ment of ASCAT derived soil moisture with model results in areas with
high lake fractions. Högström et al. (2014) argue that this is due to
wind influencing the backscatter of the surface water areas. Högström
and Bartsch (2017) found that a water fraction greater than 20% causes
a bias of more than 10% relative surface soil moisture derived from
ASCAT data. The authors used wind speed and precipitation data from
the harmonized CPC Global Summary of the Day and Month Observa-
tions data set. It could be shown that the bias in ASCAT derived soil
moisture related to open surface water could be explained best by wind
speed observations. The stronger influence of lake areas on the overall
backscatter on the grid cell level can also be seen in Fig. 5. Stronger
offsets during the thawed periods as well as stronger variability of
offsets during this time are evident. The thawed period also shows more

Fig. 5. Offset (in db) for months of the year of the Sentinel-1 time series for all 50 study sites including lakes vs. excluding lakes.

Fig. 6. Offsets in db for time series comprised from different Sentinel-1 mean values (including and excluding lake areas) for three different backscatter levels (σ0FTL,
σ0SM, σ0SML) and ASCAT (σ0FTL); FTL - Freeze-Thaw Level, SM - mean of summer months, SML - Snow Melt Level (as defined in Naeimi et al. (2012)).
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outliers of offsets compared to other times. For grid cells without the
influence of sub-grid cell water bodies backscatter during summer is
higher compared to frozen periods.

Besides the summer mean threshold, other values important for
freeze/thaw algorithms include the snowmelt level and the freeze/thaw
level (for further explanation see Fig. 4). The offsets for the freeze/thaw
level show a weaker correlation with the open water fraction (0.602)
compared to the offsets for summer mean and snowmelt level (see
Fig. 6). The weaker correlation suggests that the threshold for the
freeze/thaw level is comparatively more strongly influenced by other
factors such as soil type, soil moisture and vegetation/landcover com-
pared to the influence of the open water fraction. It is therefore a
reasonable assumption that those factors also influence the quality of
the freeze/thaw level determination. While the correlation of the offset
for the freeze/thaw level is less pronounced compared to that of the
other parameters (summer mean, snowmelt) the offsets reach up to 4
db, showing that the open water fraction has a strong influence on the
backscatter level during thaw and freeze-up for many of the study sites.
A comparison of winter mean values shows no significant differences
between the time series excluding and including water pixel (see

Fig. 7). Previous studies found differences in winter ASCAT backscatter
between continuous and non-continuous permafrost sites (Bergstedt
et al., 2018). Soil moisture is known to influence the freeze-up process
and the intensity of the change in backscatter during the freeze-up
process (Hallikainen et al., 1984; Duguay et al., 1999; Naeimi et al.,
2012). Naeimi et al. (2012) describe vegetation as one of the factors
influencing backscatter in a way that is relevant for freeze/thaw de-
tection. It has been shown previously, that the landscape type influ-
ences the results of freeze/thaw algorithms when comparing SAR and
scatterometer scales (Bergstedt and Bartsch, 2017). The presence of
vegetation is also known to influence the backscatter response at
snowmelt (Frolking et al., 1999). Park et al. (2011) show that the thaw
date is correlated differently to snow melt depending on the vegetation
type. The snowmelt level shows a relatively strong correlation (0.691)
with the open water fraction (see Fig. 6). While strongly correlated with
the open water fraction, the difference in influence of melting snow on
the backscatter level is low with a majority of sites showing offsets
under 1 db.

The results in Fig. 8 demonstrate strong relationships for the dif-
ference in freeze/thaw timing between Sentinel-1 backscatter time
series, including and excluding lakes and the open water fraction of the
respective grid cells. These differences are caused by the considerable
offsets between the thresholds for the backscatter time series including
and excluding lakes used in the freeze/thaw detection algorithm
(Naeimi et al., 2012) (see Fig. 6). Our results show that using time series
including lakes in freeze/thaw algorithms leads, in most cases, to an
early thaw date. How many days thaw is detected prior to the timing
resulting from using time series excluding lakes is strongly correlated
with the open water fraction of the respective ASCAT grid cell. The
timing of freeze-up is mostly detected earlier when using SAR time
series including water bodies, compared to using time series excluding
water bodies.

A high fraction of lakes leads to comparably high backscatter in
winter, closer to the summer level. This eventually leads to an earlier
detection of thaw. In summer, backscatter is lower, being closer to the
winter backscatter than without lakes. This leads to an earlier detection
of freeze-up.

A small number of grid cells show a later freeze timing when water
body areas are included and for a small number of grid cells later thaw
timing is shown (see Figs. 8 and 9). For those grid cells, including water
body areas in the backscatter time series leads to a stronger over-
estimation of the length of the thawed or the frozen period. For the
majority of grid cells investigated in the study, including backscatter
from water bodies in the freeze/thaw analysis does not, however, lead
to an over or under estimation of the thawed or frozen period but rather

Fig. 7. Sentinel-1 winter mean backscatter values for time series including and
excluding water pixel.

Fig. 8. Differences of freeze and thaw timing in days per year for the period 2015–2018 resulting from the Sentinel-1 time series excluding and including lakes.

H. Bergstedt, et al. Remote Sensing of Environment 247 (2020) 111911

8



to a shift of both periods. The grid cells affected by an overestimation of
the thawed or frozen period are characterized as coastal, floodplain and
lake-rich areas. Grid cells including coastal waters are expected to have
different behaviors from those including only inland water bodies.
Variations in water level due to tidal changes or storm induced high
floods may cause the water masks to be less accurate. Additionally,
coastal water might introduce biases into the time series (including
water pixel) that are disproportionate to the open water fraction or
contrary to the influences caused by inland waters. Saline water (within
the ocean or near coastal water bodies) causes a different freeze-up
timing compared to adjacent freshwater that can cause mixed signals in
the backscatter time series (Stewart and Platford, 1986; Anderson et al.,
1999). For grid cells located within extensive floodplains it can be as-
sumed that the created water masks are less accurate due to the dy-
namic behavior of these specific water bodies.

Offsets between ASCAT backscatter time series and Sentinel-1 time
series excluding surface water bodies (seen in Fig. 6) are caused by the
underlying offset between backscatter values of the two time series.

This may be caused by a number of factors. While ASCAT and Sentinel-
1 operate at the same frequency (C-band) and we limited the Sentinel-1
observations used in this study to those with VV-polarization, the sen-
sors still have inherent differences which may contribute to the offset
between the data sets. Additionally, ASCAT observations are not ori-
ginally given in the gridded format but rather each observation re-
presents a specific elliptical footprint that does not completely match
with the Sentinel-1 subsets for this study. However, the main conclu-
sions of this analysis do not rely on the direct comparison of Sentinel-1
and ASCAT but rather on the comparison of different time series created
solely from Sentinel-1 observations. In this case, the issue of the mis-
match of footprints and grid cell geometry becomes negligible. In ad-
dition, due to the nature of the ASCAT acquisitions, the elliptical
footprint shifts slightly from acquisition to acquisition. Using the best
approximation for each single footprint for the Sentinel-1 subsets would
lead to differing surface water fractions between observations due to
slightly different footprints.

Figs. 10, 11 and 12 show within grid cell variability of in situ near

Fig. 9. Differences of freeze and thaw timing in days per year for the period 2015–2018 resulting from the Sentinel-1 time series excluding and including lakes in
relationship with relative ground fast lake ice fraction per grid cell in %.

Fig. 10. Time series of ASCAT backscatter, Sentinel-1 mean values (including and excluding water pixels) and in situ soil temperature measurements (70.16°N,
148.48°W). All in situ measurements displayed here were obtained from sites within the corresponding ASCAT grid cell. In situ data for sites Deadhorse 2–4 obtained
from the Permafrost Laboratory.
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surface soil and in situ water temperatures. The heterogeneity of soil
temperatures highlights a general uncertainty of coarse scale mea-
surements. The difference in lake temperatures as visible in Fig. 12
highlights the additional heterogeneity introduced into coarse scale
measurements by water bodies and suggests that a simple adjustment of
freeze/thaw results using open water fraction might not account for all
uncertainty introduced into scatterometer data by sub-grid cell surface
water bodies. The maximum open water fraction of grid cells included
in this study is 60%. It is therefore possible that areas with an even
higher open water fraction than studied here will show higher offsets as
reported for our chosen areas.

Fig. 11. Time series of ASCAT backscatter, Sentinel-1 mean values (including and excluding water pixels) and in situ soil temperature measurements (71.28°N,
156.67°W). All in situ measurements displayed here were obtained from sites within the corresponding ASCAT grid cell. In situ data for sites Barrow 2, A and C from
the Permafrost Laboratory.

Fig. 12. Time series of ASCAT backscatter, Sentinel-1 mean values (including and excluding water pixels) and in situ soil temperature and water temperature
measurements (71.28°N, 156.67°W). All in situ measurements displayed here were obtained from sites within the corresponding ASCAT grid cell. In situ data for sites
Tes005, Tess006 and TLO (Teshekpuk Lake Observatory).

Table 3
Results of the comparison of the Sentinel-1 based freeze/thaw classification
(incl. and excl. surface water) and in situ near-surface temperature for selected
study sites including the ASCAT Grid cell ID, location and name of the study site
(Kaldoaivi, TLO (Teshekpuk Lake Observatory), Barrow), available years and
agreement in %.

ASCAT grid cell Location Site Years % incl % excl.

3061839 69.83°N, 27.27°E Kaldoaivi 2016–2018 78.8 94.84
3080728 70.72°N, 153.83°W TLO 2015–2017 71.43 80.95
3091198 71.28°N, 156.60°W Barrow C 2017 85.71 90.48
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5.2. Special cases: rivers, coastal areas, and ground fast lake ice

Several of the study sites contain (in addition to lakes) rivers or
coastal waters. Some sites containing coastal waters can be seen as
outliers in Figs. 8 and 9. However, not all grid cells containing rivers or
coastal waters behave as outliers in this analysis. While lakes of a
certain size are generally masked in freeze/thaw products, rivers are
small/narrow and therefore have mostly not been masked in previously
published freeze/thaw products (Paulik et al., 2014). Including grid
cells from coastal or river rich areas is important when studying the
Arctic. Rivers are a common feature in arctic areas and excluding all
grid cells including rivers from any analysis would lead to large gaps in
resulting data sets. Coastal areas in permafrost zones are known to be
important sites of erosion and dynamic changes (Günther et al., 2013;
Lantuit et al., 2013; Jones et al., 2018) and can therefore not be omitted
when studying freeze/thaw dynamics. In coastal and river areas, the
issue of footprint and grid cell mismatch is of greater importance.
Rivers and coastal waters introduce additional heterogeneity into the
analysis. The additional heterogeneity in the form of different dynamics
of the different types of water bodies may lead to diverse impacts on
backscatter. Rivers and coastal waters both show different ice regimes
compared to lakes (Magnuson et al., 2000; Michel and Ramseier, 1971).
The assumption that this could lead to a stronger overall offset for these
grid cells could not be corroborated by our results. This is likely due to
the fact that the summer mean seems to be the parameter most influ-
enced by the lake areas and not the freeze/thaw or snowmelt level (see
Fig. 6).

The comparison of the difference of days in thaw and freeze-up with
the fraction of ground fast lake ice per grid cell reveals negative cor-
relations with lower numbers of days misclassified for higher ground
fast lake ice fractions. However, as shown in Fig. 2 in our sample, grid
cells with the highest ground fast lake ice fractions are those with low
overall open water fractions. When taking this into account, our results
do not show an impact of ground fast ice situations on the freeze/thaw
retrieval. As the ground fast lake ice data set (Bartsch et al., 2017a,
2017b) is based on ASAR data from one single year (2008), it can be
assumed that it does not represent the current ground fast state for all
studied grid cells. This introduces additional uncertainty into this part
of the results.

5.3. Uncertainties and potential error sources

The radiometric accuracy of Sentinel-1 and ASCAT observations is
an important factor contributing to the validity of our results. The
radiometric accuracy of Sentinel-1 has been extensively studied by
Schmidt et al. (2018), among others (e.g. Mattia et al., 2017; Recchia
et al., 2018; Torres et al., 2017). Schmidt et al. (2018) found a radio-
metric accuracy for the IW mode of 0.30 db for a study period of
1.5 years. This value is significantly smaller in comparison to the typical
differences of backscatter observed over frozen and unfrozen ground
which in this study ranged between approximately 2–4 db. It can
therefore be assumed that the radiometric accuracy of Sentinel-1
backscatter is high enough for the purposes of this study. For ASCAT the
radiometric accuracy has been found to be similar to Sentinel-1. Wilson
et al. (2010) found an average radiometric accuracy of 0.3 db to 0.35
db.

In this study, both the scatterometer and SAR data sets were used in
σ0. The ASCAT product which was used in this study is provided in
sigma0 by EUMETSAT as part of the operational soil moisture product.
This is related to the fact that algorithms and data sets used in the
community for freeze/thaw mapping (changes in liquid water content)
are generally based on σ0 (Bartsch et al., 2007, 2010; Naeimi et al.,
2012; Park et al., 2011). The aim of this study was to assess and im-
prove data sets and algorithms used by different research communities
today. To achieve this goal, σ0 data was used both for ASCAT and
Sentinel-1, to make this work applicable and relevant for critical data

sets (such as operational soil moisture and freeze thaw retrieval data
sets (e.g. Wagner et al., 2010; Naeimi et al., 2012; Paulik et al., 2014;
Baghdadi et al., 2018). Multiple studies discuss the advantages of using
gamma0 data for SAR applications (e.g. Small et al., 2004; Wicks et al.,
2018; Small, 2011). Utilizing gamma0 instead of σ0 for Sentinel-1 data
would allow for higher accuracy in mountainous areas. For future
studies, or studies focusing exclusively on Sentinel-1, using data in
gamma0 could be an interesting alternative.

A comparison of the water masks created for this analysis with es-
tablished lake and surface water data products reveals high percentages
of agreement. As the different data sets are based on data obtained at
different time periods and with different spatial resolution, perfect
agreements was not expected. The PeRL data set contains, in addition to
lakes, small ponds that are not included in our water mask due to the
resolution of Sentinel-2. Other areas of disagreement between our water
mask and the established data products are mainly located at edges of
lakes. These areas are highly influenced by the seasonality of Arctic
water bodies as well as temporal changes in the extent of lakes which
together with the different acquisition times of the data used to create
the different surface water products causes the disagreement in those
areas.

The accuracy of the freeze/thaw retrieval algorithm employed in
this study has been extensively tested by Naeimi et al. (2012). The
authors reported overall accuracies between 80.26% and 91.79% for
the comparison with in situ soil temperature data, an overall accuracy of
81.93% for the comparison with air temperature and overall accuracies
with modeled soil temperatures between 83.09% and 83.86% for ERA-
Interim and GLDAS-Noah data respectively (Naeimi et al., 2012). The
reported accuracy for the different data sets was different for frozen,
unfrozen and transitional periods (Naeimi et al., 2012). Highest accu-
racy was reported for unfrozen periods (91.36% to 92.32%), followed
by frozen periods (77.87% to 88.36%) and transitional periods (70.81%
to 75.09%) (Naeimi et al., 2012).

Comparison of freeze/thaw classification results with in situ near-
surface soil temperature measurements revealed high agreements from
80.95% to 94.84% for classifications based on Sentinel-1 backscatter
time series excluding lakes. Classification results based on time series
including lakes showed lower agreement with in situ data records from
71.43% to 85.71% (see Table 3). Complete agreement was not expected
as we compare the freeze/thaw classification results with in situ point
measurements which therefore do not represent the same spatial extent.
The higher agreement of classification results excluding surface water
compared to those including water bodies underlines our findings that
surface water within grid cells negatively impacts freeze/thaw classi-
fications in a significant way.

5.4. Potential implications for applications

The offsets between time series including and excluding lakes found
in this study for Sentinel-1 time series can be assumed to be comparable
to the influence surface water bodies have on coarse scatterometer data,
specifically ASCAT. The comparable frequencies of the sensors on board
the Sentinel-1 constellation and ASCAT (both C-band) suggest a similar
response of backscatter changes to the presence of surface water bodies.
Recently, circumpolar freeze/thaw data sets have been used in a variety
of applied studies (e.g. Kroisleitner et al., 2018; Park et al., 2016).
Kroisleitner et al. (2018) have applied freeze/thaw data, specifically the
number of frozen days, to estimate the mean annual ground tempera-
ture on a circumpolar level. Performing these kind of analyses on the
scale of the coarse spatial resolution of ASCAT grid cells allow for a
circumpolar scope. However, sub-grid cell lakes have not been speci-
fically considered. Our study clearly shows the importance of con-
sidering the open water fraction when performing analysis on the scale
of scatterometer data. The linear relationship of the offset with the open
water fraction suggests the possibility of a corrective function for coarse
scale scatterometer based freeze/thaw data sets on the basis of the lake
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(or surface water) fraction. Considering the results shown in Fig. 8, grid
cells with at and beyond 40% open water fraction show an offset in
spring of 2 days and on offset of 3.5 days in autumn. This translates to
an overestimation of the frozen season of 1.5 day per year. According to
the findings by Kroisleitner et al. (2018), this would result in a 0.1 °C
lower mean annual ground temperature.

Lake-rich regions in the Arctic have undergone and will further
undergo responses due to climate change (Surdu et al., 2014; Arp et al.,
2016; Schuur et al., 2008). An approach to account for the offset in-
troduced by lakes and other surface waters should therefore be dynamic
and incorporate the possibly changing open water fraction over time.
Dynamics in lake- and river-ice break-up and freeze-up as well as the
timing of these events is thought to be responsive to climate change as
ice development is highly sensitive to changes in winter temperature
and snow (Duguay et al., 2003; Arp et al., 2016).

6. Conclusions

This study examines the relationship of freeze/thaw data quality
and sub-grid cell surface water bodies. Our findings show a significant
influence of sub-grid cell water bodies on coarse scale C-band back-
scatter and consequently on resulting freeze/thaw data sets. The ana-
lysis reveals a disproportionate influence of the water bodies con-
tribution to the coarse scale backscatter during the unfrozen period on
the quality of the freeze/thaw results as well as the importance of
backscatter contribution from water bodies during frozen and transi-
tional periods. The comparison of the freeze/thaw classification with in
situ soil temperature data revealed an increasing accuracy when surface
water areas were omitted, underlining the importance of our results for
future applications of scatterometer data to freeze/thaw retrieval.

We found a general overestimation of the number of frozen days
caused by sub-grid cell surface water which increases with increasing
open water fractions. The overestimation of frozen days range from
0.5 days per year to 1.5 days per year for areas with 10% and 40%
surface water fraction, respectively. The results highlight the im-
portance of considering the complex relationship of backscatter ob-
servations with sub-grid cell water bodies when creating and using
freeze/thaw data products.
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