Managing data constraints in database-backed web applications

Junwen Yang
University of Chicago, USA
junwen@uchicago.edu

Alvin Cheung
University of California, Berkeley
USA
akcheung@cs.berkeley.edu

ABSTRACT

Database-backed web applications manipulate large amounts of
persistent data, and such applications often contain constraints
that restrict data length, data value, and other data properties. Such
constraints are critical in ensuring the reliability and usability of
these applications. In this paper, we present a comprehensive study
on where data constraints are expressed, what they are about, how
often they evolve, and how their violations are handled. The re-
sults show that developers struggle with maintaining consistent
data constraints and checking them across different components
and versions of their web applications, leading to various prob-
lems. Guided by our study, we developed checking tools and API
enhancements that can automatically detect such problems and
improve the quality of such applications.

1 INTRODUCTION
1.1 Motivation

Constraints are often associated with data used in software. These
range from describing the expected length, value, uniqueness, and
other properties of the stored data. Correctly specifying and check-
ing such constraints are crucial for software reliability, maintainabil-
ity, and usability. This is particularly important for database-backed
web applications, where a huge amount of data generated by mil-
lions of users plays a central role in user interaction and application
logic. Furthermore, such data persists in database and needs to
continue serving users despite frequent software upgrades [10] and
data migration [9]. As a result, consistently and comprehensively
specifying data constraints, checking them, and handling constraint
violations are of uttermost importance.

To better understand these challenges, consider an issue [16]
reported by users of Redmine [19], a popular project-management
web application written using Ruby on Rails. When a user tried to
create a wiki page, she initially left the title field empty, which led
to the “title is invalid” error message shown next to the title field;
she then put in a long title, but got a “title is too long (maximum is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05...$15.00
https://doi.org/10.1145/3377811.3380375

Utsav Sethi
University of Chicago, USA
usethi@uchicago.edu

Cong Yan
University of Washington, USA
congy@cs.washington.edu

Shan Lu
University of Chicago, USA
shanlu@uchicago.edu

AN
<input value="title’ pattern="+" title="invalid title’/>

(0

title varchar(30) NO NULL

validates_length_of : title, maximum: 60,
message: ‘title is too long’

Figure 1: Crossstack data constraints

60 characters)” error; finally, she tried a title a little shorter than 60
characters, but the web page then crashed with all the filled content
lost with some unreadable database error displayed.

It turned out that different constraints were specified for the
title field across different components in Redmine. As shown
in Figure 1, the front-end HTML file views/wiki/new.html.erb
used a regular expression “.+" to specify that the title should have a
positive length; the application model file models/wiki. rb instead
used Rails validates_length_of API to limit the maximum title
length to be 60; finally, in the database schema file schema. rb, the
title field is declared as varchar (30), limiting the maximum length
to be 30.

This example illustrates how common it is for database-backed
web applications to specify and check constraints for the same piece
of data in different code components: the front-end browser, the
application server, and the database. As such components are often
separately developed and maintained, they could hold conflicting
assumptions about the same piece of data. Such inconsistencies
can lead to various reliability and usability problems. Particularly,
a piece of data that passes all but the database checking often leads
to a web-page crash, as in the above example.

Consider another example in Diaspora [22], the most popular
social network application written using Ruby on Rails (according
to application-stars in Github). In earlier versions, the password
length is allowed to be three characters or shorter. In one version,
developers decided that passwords should be longer, probably for
security concerns. They then added a constraint “.....+” to the pass-
word field of the log-in page, requiring the password to be at least
6 characters long. As a result, many users, whose passwords were

Table 1: Highlight results of our study

(*: all the identified issues are in latest versions of these applications)

RQ1: How are constraints specified in one software version?
How 2.1 per 100 LoC
Many? 1.4 per 1 data field
77% of data fields have constraints
Where? 76% in DB; 23% in application; 1% in front-end
24% of application constraints are missing in DB

RQ2: How are constraints specified across versions?
49% of versions contain constraint changes
>25% of changes tighten constraints on existing data fields

RQ3: What led to real-world constraint problems?
Where 21% of 114 studied issues
What 51% of 114 studied issues
When 10% of 114 studied issues
How 18% of 114 studied issues

RQ4: Can we identify constraint problems in latest version?

Where 1000+ string fields have length constraints in DB but not in app.

200+ fields forbidden to be null in app. but null by default in DB

88 fields required to be unique in app. but not so in DB

57 in(ex)clusion constraints specified in app. but missed in DB

133 conflicting length/numericality constraints between app. and DB
What 19 incorrect case-sensitivity constraints identified
How 2 missing error-message problems identified

API default error-message enhancement preferred in user study

shorter than 6 characters, can no longer log in and are shown with
the unhelpful “Please use the required format” error.

This example demonstrates that in a software world where noth-
ing endures but change, it is challenging to make long-living per-
sistent data endure frequent code changes, which may introduce
new or even conflicting requirements to persistent data fields. Such
a conflict can lead to upgrade failures, user-unfriendly error pages,
and software misbehavior, like that in the above examples.

In summary, effectively managing constraints for the huge amount
of persistent data in database-backed web applications (short as
web applications) is critical and challenging. To understand the
challenges involved, we first perform a comprehensive study to
understand the specification, checking, maintenance, and violation
handling of data constraints in web applications.

1.2 Contributions

In this paper, we aim to answer four key research questions about
real-world database-backed web applications, as listed in Table 1 by
comprehensively studying the source code, the commit history, and
the issue-tracking system of 12 popular Ruby on Rails applications
that represent 6 most common web-application categories.

For RQ1, we wrote scripts to collect and compare constraints
expressed in various components of the latest versions of the 12
applications. We found that about three-quarter of all data fields
are associated with constraints. In total, there are hundreds to over
one thousand constraints explicitly specified in each application,
averaging 1.1-3.6 constraints specified per 100 lines of code. Data
presence and data length are the two most common types of con-
straints, while complicated constraints like the relationship among
multiple fields also exist. We also found that hundreds to thousands
of constraints specified in the database are missing in the applica-
tion source code, and vice versa, which can lead to maintenance,
functionality, and performance problems. The details are presented
in Section 4.

For RQ2, we checked how data constraints change throughout
the applications’ development history. We found that about 32%
of all the code changes related to data constraints is about adding
new constraints or changing existing ones on data fields that have
already existed in software. These changes, regardless of whether
they are due to developers’ earlier mistakes or warranted by new
code features, can easily lead to upgrade and usage problems for
data that already exists in the database. The details are in Section 5.

For RQ3, we thoroughly investigated 114 real-world issues that
are related to data constraints. We categorize them into four major
anti-patterns: (1) inconsistency of constraints specified at different
places, which we refer to as the Where anti-pattern; (2) inconsis-
tency between constraint specification and actual data usage in
the application, which we refer to as the What anti-pattern; (3)
inconsistency between data/constraints between different applica-
tion versions,which we refer to as the When anti-pattern; and (4)
problems with how constraint-checking results are delivered (i.e.,
unclear or missing error messages), which we refer to as the How
anti-pattern. These four anti-patterns are all common and difficult
to avoid by developers; they led to a variety of failures such as
web-page crashes, silent failures, software-upgrade failures, poor
user experience, etc. The details are presented in Section 6.

For RQ4, we developed tools that automatically identify many
data-constraint problems in the latest versions of these 12 appli-
cations, as highlighted in Table 1. We found around 2,000 “Where”
problems, including many fields that have important constraints
specified in the database but not in the application or vice versa,
as well as over 100 fields that have length or numericality (i.e.,
numerical type and value range) constraints specified in both the
database and the application, but the constraints conflict with each
other. We also found 19 issues in which the field is associated
with case-insensitive uniqueness constraints, but are used by the
application in a case-sensitive way (the “What” anti-pattern), as
well as two problems related to missing error messages (the “How”
anti-pattern). We manually checked around 200 randomly sampled
problems and found a low false positive rate (0-10%) across dif-
ferent types of checks. Not to overwhelm application developers,
we reported 56 of these problems to them, covering all problem
categories. We received 49 confirmation from the developers (no
feedback yet to the other 7 reports), among which our proposed
patches for 23 of those problems have already been merged into
their applications or included in the next major release.

We also developed a Ruby library that improves the default error
messages of five Rails constraint-checking APIs. We performed a
user study with results showing that web users overwhelmingly
prefer our enhancement. The details are presented in Section 7.

Overall, this paper presents the first in-depth study of data con-
straint problems in web applications. Our study provides motiva-
tions and guidelines for future research to help developers better
manage data constraints. We have prepared a detailed replication
package for the data-constraint-issue study and the data-constraint
checking tools in this paper. This package is available on the web-
page of our open-source Hyperloop project [12], a project that aims
to solve database-related problems in ORM applications.

Table 2: Different types of constraints in web apps

Run-time check Source-code Specification Specification

location location language API
Front end View HTML Reg. expression
Model Ruby Built-in validation API
Application server yr,) Ruby Custom validation API
Model/Controller Ruby Custom sanity check

Migration files ~ Ruby
Migration files SQL

ActiveRecord::Migration API
SQL ALTER TABLE queries

Database server

2 BACKGROUND
2.1 Architecture of web applications

Applications built using the Ruby on Rails framework are struc-
tured using the model-view-controller (MVC) architecture. For
example, when a web user submit a form through a URL like
http://foo.com/wikis/new/title=release, a controller action
“wikis/create” is triggered. This action takes in the parameters
from the request (e.g., “release” in the URL as params[:title])
and interacts with the database by calling the ActiveRecord API
implemented by the Rails Object-Relational Mapping (ORM) frame-
work. Rails translates ActiveRecord function calls into SQL queries
(a write query in this case), whose results are then serialized into
model objects (e.g., the Wiki model) and returned to the controller.
The returned objects are then passed to the view files to generate
a webpage that is sent back to users. Each model is derived from
ActiveRecord, and is mapped to a database table by Rails. A view
file (ends with .erb or .haml) usually involves multiple languages
including HTML, JavaScript, and Ruby.

2.2 Constraints in web applications

We roughly categorize data constraints into three types based on
where they are checked and specified as shown in Table 2.

Front-end constraints. Developers can use regular expressions
to specify constraints about a particular HTML data-field inside
a view file, such as the pattern=¢.+’ for the title field in Fig-
ure 1. The majority of such constraints are related to persistent
data maintained by the database.

Such constraints are checked when the user submits a web form.
Failure to validate will cause the form submission to fail, with an
error message specified by developers shown next to the corre-
sponding HTML field, with all the previously filled contents remain
on the page.

Application constraints. Rails developers use validation func-
tions to specify constraints of data fields in model classes. Similar
mechanisms exist in other ORM frameworks, such as validator
functions in Django [6], and validator annotations in Hibernate
[11].

A validation function is automatically triggered every time when
the application saves an object of the corresponding model class
(i.e., when the ORM framework saves the corresponding record into
the database). Validation failure will cause the corresponding form
to fail. The error message associated with the validation function
will be shown to web users if developers put error checking and
error-message display code in the view file.

Rails validation functions include built-in ones, which cover
many common constraints like text-field lengths (i.e., validates_
length_of, as shown in Figure 1), content uniqueness (validates_
uniqueness_of), content presence (validates_presence_of), as
well as custom ones, where developers express more complicated
constraints like keeping a strict order among multiple fields.

Developers can also constrain a data field through custom sanity
checks, although they are uncommon in Rails.

Database constraints. Many data columns are associated with
constraints inside the database (DB), like the varchar(30) con-
straint shown in Figure 1. These constraints are specified in the ap-
plications’ migration files, which are used to alter database schema
over time. The majority of them (more than 99.5% in our studied
applications) are specified through Rails Migration APIs, and are
very rarely specified through SQL queries directly (<30 cases across
all 12 applications we checked).

These constraints are checked by the DB when an INSERT or
/UPDATE query to the corresponding columns is issued (either by
the application or DB administrator). If the check fails, the applica-
tion will throw an ActiveRecord: : StatementInvalid exception
to indicate an underlying DB error. Unfortunately, in practice, de-
velopers almost never catch such exceptions (it is caught in only 4
cases across thousands of model object saves across the 12 applica-
tions we studied). Hence, once triggered, the web user’s session will
most likely crash, with all the filled-in contents lost with a cryptic
SQL error shown to users.

Why are the constraints distributed across components?
Front-end constraints are specified for web-form input data, which
is often related to DB record (e.g., used as query parameters, com-
pared with query results, etc.). Validation functions and DB con-
straints are specified only for database fields, and are checked right
before saving data into the DB. The expressiveness of these two
are similar — most constraints that are expressible using validation
functions can also be written using SQL queries or migration APIs,
and vice versa. Complicated constraints expressed using custom val-
idation functions can be expressed in the DB layer as CONSTRAINT
CHECKs or custom stored procedures. However, neither layer can
replace the other given the existence of “backdoors,” e.g., DB admin-
istrators updating data using the DB console, or sharing the same
DB across multiple applications. Both are common practices [4].

3 METHODOLOGY

3.1 Application selection

There are many ORM frameworks available (e.g., Ruby on Rails,
Django, Hibernate, etc.). Among them, Rails is the most popular on
Github. Thus, we studied 12 open-source Ruby on Rails applications,
including the top two most popular Ruby applications from six
major categories of web applications on GitHub: Discourse (Ds)
and Lobster (Lo) are forums; Gitlab (Gi) and Redmine (Re) are
collaboration pplications; Spree (Sp) and Ror ecommerce (Ro) are
Ecommerce applications; Fulcrum (Fu) and Tracks (Tr) are Task-
management applications; Diaspora (Da) and Onebody (On) are
social network applications; OpenStreetmap (OS) and FallingFruit
(FF) are map applications. All of them have been actively developed
for years, with hundreds to tens of hundreds of code commits.

Table 3: # of data-constraint issues in our study and the
total # of issues in the issue-tracking system

Ds Lo Gi Re Sp Ro Fu Tr Da OnFF OS
Studied 14 1 16 30 31 2 1 1 11 50 2

Total 4607 220 18038 12117 4805 114 158 1470 3206 400 17 650

Table 4: # Data constraints in web applications

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS

DB 1403 137 1582 437 346 378 34 108 361 345 159 242
App 165 33 496 220 132 219 13 30 116 82 17 176
HTML 0 2 18 32 0 0 0 2 1 11 0 0

Total 1568 172 2096 689 478 597 47 140 478 438 176 418

LoC 62k 11k 122k 35k 31k 17k 1.7k 13k 21k 14k 7.8k 14k

#Col 1180 150 1384 338 456 384 53 107 510 268 171 228
#Colc 882 104 1140 297 312 272 32 82 348 228 146 174
%Colc 75% 69% 82% 88% 68% 71% 60% 77% 68% 85% 85% 76%

LoC: Lines of code. #Col: number of data columns stored in the database. #Colc.:

number of columns associated with constraints. Custom sanity check not considered.

3.2 Issue selection

Section 6 studies the root causes and symptoms of real-world data
constraint problems using 114 reports sampled from the above 12
applications’ issue-tracking systems. For the 9 applications that
have medium-size issue databases (i.e., 100-5000 total reports), we
randomly sampled 100 reports for each. For Redmine and Gitlab,
which have more than 10,000 reports, we randomly sampled 200
reports for each. For FallingFruit, which only has 17 reports, we
took all of them. Among the resulting 1317 sampled reports, we
manually checked all the reports that contain keywords like “data
format,” “data inconsistency,” “data constraint,” “format change,’
“format conflict,” etc. We finally obtained 114 reports that are truly
related to data constraints, as shown in Table 3.

4 CONSTRAINTS IN ONE VERSION

To understand how many constraints are specified in software,
where they are located, and what they are about, we wrote scripts
to extract data constraints from the latest version of the 12 applica-
tions described in Section 3. Our scripts obtain a web application’s
Abstract Syntax Tree, check which Ruby validation APIs and mi-
gration APIs are used, and analyze their parameters.

In this paper, our script covers all types of constraints listed in
Table 2 except for Custom sanity checks and raw SQL constraints.
Both are rarely used in these applications (e.g., raw SQL constraints
are only specified in fewer than 30 times across all 12 applications).
Note that, when we report inconsistency or missing constraints,
we manually check to make sure the inconsistency/missing con-
straint is not caused by our script not covering these two types of
constraints.

4.1 How many constraints are there?

As shown in Table 4, there are many constraints in these appli-
cations. Across all applications, 60% - 88% of data columns are
associated with constraints and there exists 1.1 to 3.6 constraint
specifications for every 100 lines of code.

Summary. Data constraint specification widely exists in all
types of web applications. Their consistency, maintenance, and
handling affect the majority of the application data.

4.2 Where are the constraints?

As shown in Table 4, DB constraints are the most common, con-
tributing to 58—-90% of all the constraints. Application constraints
contribute 10-42%, while front-end constraints are few. It is surpris-
ing that the number of DB constraints differs significantly compared
to application constraints, as both are supposed to be applied to
a given piece of persistent data (Section 2.2). Furthermore, incon-
sistencies between them can lead to application crashes as in the
example shown in Figure 1. This led to the next few study items.

What DB constraints are missing in applications? Table 5
examines over 4,000 DB constraints that are missing in applications.

Alarmingly, about one quarter of these missing constraints (more
than 1,000 in total) involve string/text data where developers did
not specify any length constraints in the application, yet length
constraints are imposed by the DB. For example, whenever creating
a table column of type “string” using Rails migration API, by default,
Rails framework forces a length constraint of 255-character in the
database, yet many of these string fields have no length constraints
specified through application validation functions. This mismatch
could lead to severe problems: if a user tries to submit a long para-
graph/article in such a seemingly limitless field, his application will
crash due to a failed INSERT query, as shown in Figure 1. In fact, we
found many real-world issues reporting this problem (Sec. 6.1), ulti-
mately leading to developers adding the corresponding constraints
in the application layer.

About 2% of the missing constraints, 101 in total across the 12
applications, are associated with data fields that do not exist in the
application. Some of them are updated and read through external
scripts, but never through the web application; others are depre-
cated fields that have already been removed from the application
but not dropped yet from the DB. Although this does not lead to
immediate software misbehavior, these cases reflect challenges in
data maintenance and could cause functionality problems in the fu-
ture. In addition, they cause performance problems as the database
needs to maintain deprecated data.

About one third of the missing constraints are automatically
satisfied by Rails or the DB and are hence benign. This includes
presence and numericality constraints associated with foreign-key
fields (“ForeignKey”): foreign key fields are automatically generated
by Rails and satisfy presence and numericality constraints in the
DB. Meanwhile, there are also constraints that are guaranteed by
the DB (“SelfSatisfied”), like presence constraints guaranteed by
non-null default values specified in the DB, uniqueness constraints
guaranteed by an auto-increment property in the DB, etc.

The remaining one third of the constraints ("other") are diffi-
cult to analyze automatically. Based on our manual sampling and
checking, most are already satisfied by how the application pro-
cesses and generates corresponding data fields. Although they do
not cause problems currently, developers should nonetheless be
informed about them, so that code changes can be tested against
these constraints to prevent regression failures.

Table 5: # Constraints in DB but not in Application

Table 7: Top 5 popular types of different layer

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS All
StrLength 243 21 406 49 182 47 18 21 101 69 74 28 1259 (28%)
AbsentData 21 0 40 2 2 2 2 1 22 7 2 0 101(2%)
ForeignKey 266 31 271 82 27 99 7 27 61 91 16 30 1008 (22%)
SelfSatisfied 192 16 161 84 28 9 218 3 20 8 31 572(13%)
Others 446 39 429 126 77 89 2 29 143 82 26 64 1552 (35%)

Table 6: # Constraints in Application but not in DB
(only built-in validation constraints are listed)

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS All
Presence 8 537153849 5 534 3 1 9209(51%)
Unique 3 1121819 5 0 416 1 0 9 88(21%)
Inclusion/Exclusion 7 11311 2 0 2 0 7 5 0 9 57(14%)
RegEx 8 510 7 0 9 0 011 4 0 3 57(14%)
Numeric 000O0O0OT1TUO0O0OTO0O OO0 0 1(.2%

False-positive analysis Besides the “Others” row in Table 5, the
other 4 rows are counted by our static-checking script. To check the
accuracy of our script, we randomly examined 102 cases from these
4 rows. Among these cases, we found 7 false positives: 5 are not DB
constraints but are mistakenly identified due to syntax not handled
by our script; 2 “StrLength” cases actually belong to “Others,” as the
length requirement is guaranteed by application semantics. These
102 cases include 58 “StrLength” cases, among which 5 are false
positives — 3 are not DB constraints and 2 belong to “Others”.

Which application constraints are not in database? Nearly
25% of the constraints specified through application validation are
missing in the DB. Table 6 breaks down the ones specified through
built-in validation functions based on the constraint type (412 in
total). These missing constraints allow users to directly change
persistent data using SQL queries in ways that are disallowed by
the application, causing functionality or even security problems.!
Furthermore, some of these missing constraints represent missed
query optimization opportunities, such as improving cardinality
estimation in query plan generation using such constraints [35].

About half of these missing constraints are presence constraints.
That is, a field f is required to be non-null in the application, but is
not required so in the DB — their default values are ironically set
to be null in the DB. When users or administrators directly insert
records into the DB without specifying the value for a field f, the
DB would accept these records and put null into f. Subsequently,
when such records are retrieved and used in the application that
assumes all f to be non-null, software failures could occur.

Another category of missing constraints that can easily cause
problems are uniqueness constraints. Without being specified in the
DB, a uniqueness constraint often cannot be guaranteed by the ap-
plication [13, 14]: web users could make concurrent update requests

!t is common that database administrators directly change database data using queries
and scripts, bypassing the application server.

DB Presence Length
1822 (32.9%) 1784 (32.3%) 1650 (29.8%)

Numericality ~Uniqueness -

276 (5.0%) -

App. Presence Length Uniqueness ~ Numericality Inclusion
888 (52.3%) 218 (12.8%) 209 (12.3%) 101 (5.9%) 67 (3.9%)

HTML Presence Length Format - -
52(78.8%) 11(16.7%) 3(4.5%) - -

that save duplicate values into the DB, violating the uniqueness con-
straint and causing software failures and maintenance challenges.

Regular expression and inclusion/exclusion constraints are rarely
found in the DB layer. While these can be enforced via procedures
or ENUM types, they are not natively supported by the Rails DB
migration APIs and have to be explicitly specified via SQL, which
might be a reason why they tend to be missed in the DB. Inclu-
sion/exclusion constraints limit the value of a field to a small set
of constants and would be very useful in avoiding data corruption,
saving storage space, and improving database performance (e.g.,
through DB selectivity optimization) if they are present.

The single numeric constraint in Table 6 is a “phone number”
field that is specified to be numeric in application but stored as a
“string” in the database.

False-positive analysis We randomly sampled and examined 10

cases from each of the 4 main categories in Table 6 (Presence,
Unique, In/Ex-clusion, RegEx). 3 out of the 40 sampled cases are
false positives (2, 0, 0, 1 in the 4 categories, respectively)—syntax
corner cases caused our script to identify 1 spurious presence con-
straint, and the remaining 2 are related to conditional constraints.

Summary. Hundreds and thousands of database constraints
do not exist in application, and vice versa. The majority of these
discrepancies can actually lead to bad user experience (missing
string length constraints), database maintenance challenges (data
fields that are no longer used in the application), code maintenance
challenges (constraints implicitly guaranteed by the application
logic), data corruptions, software failures, or sub-optimal database
performance (missing DB constraints). They can be avoided by
implementing constraints in the application and as SQL constraints
in the database. However, in practice inconsistencies are likely
inevitable if we only rely on developers’ manual effort. It would be
helpful to develop automated techniques that coordinate database
and application constraints.

4.3 What types of constraints are there?

Standard types. Table 7 shows the most popular constraint
types among all front-end, application built-in validation, and DB
constraints. The top 2 most popular types are consistently presence
and length.

Custom validation constraint types. Custom validation func-
tions are used much less often than built-in ones, but are not rare,
contributing about 5% to slightly over 25% of all application valida-
tion functions across the 12 applications (avg. 18% across all apps).
We randomly sampled 50 custom validation functions and found
that more than half of them are used to check multiple fields at the
same time (27 out of 50), like the function presence_of_content

Table 8: App. versions with constraint changes (#Versionc)

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS
#Version 316 19 1040 159 253 31 7 26 39 86 12 95
#Versionc 187 18 563 44 89 20 4 12 26 18 10 41
%Versionc 59% 95% 54% 28% 35% 65% 57% 46% 67% 21% 83% 43%

All types in Table 2 except for custom sanity checks are considered.
Red apps use a release as a version; Black apps use every 100 commits as a version.

in the StatusMessage model from Diaspora, which requires that
at least one of the fields text or photos be non-empty. These cus-
tom validations seldom have corresponding constraints in DB —
only 4 out of the 50 we sampled exist in DB.

Custom sanity check types. We also sampled 20 sanity checks
on input parameters from the controller code of 5 applications.
Among these 20 checks, the majority (17) are indeed checking in-
puts that are related to persistent data stored in the DB. Among
these 17, 5 are about data constraints, including presence and in-
clusion constraints, while the others are related to conditional data
update/re-processing. Among these 5 constraints, only 1 is specified
in an application validation function and none exists in the DB.

Summary. Although simple constraints like presence, length,
and numericality are the most common, more complicated con-
straints, such as those involving multiple fields, are also widely
used. Most of the custom constraints are missing from the DB,
while constraints reflected by sanity checks are often missing in
both the application and DB. Future research that can automatically
reason about custom sanity checks and custom validation functions
can greatly help to identify and add missing constraints.

5 CONSTRAINTS ACROSS VERSIONS

The software maintenance task for web applications comes with the
extra burden of database maintenance, including both data format
changes, like adding or deleting a table column, and data constraint
changes, like changing the length requirement of a password field.
In this section, we study how constraints evolve across versions
and the related data-maintenance challenges.

How often do constraint-related changes occur? We first
checked the first commit of each application, and found no data
constraints in all but 3 applications (Ds, Lo, FF). For all applications,
the majority of the constraints were added in later commits.

As shown in Table 8, 21-95% (avg. 49% across all apps) of code
versions contain data constraints that are different from those in
its previous version, indicating that constraint changes are com-
mon. Note that, for most applications, we treat one code release as
one version; for 4 applications that do not specify release/version
information, we treat every 100 code commits as one version.

What triggered changes? We categorize all the cross-version
changes about DB constraints and application validation constraints
into three types: (1) Add Column: adding constraints to a data col-
umn that did not exist in previous version; (2) Add Constraint:
adding constraints to an existing data column that was not asso-
ciated with that specific type of constraints, like adding a length
constraint to a data field that had no length constraint previously;

Change constriants [Add constraints [l Add columns

100%

75%

50%

25%

0%

Ds Lo Gi Re Sp Ro Fu Tr Da On FF os

Figure 2: Breakdown of # of adding/changing constraints

(3) Change Constraint: changing the detailed requirement of a con-
straint that already existed in previous version.

What is alarming from the result (Figure 2) is that the Add-
Column type only contributes to around or lower than 50% of
changes in 5 out of the 12 applications. On the other hand, 13-
67% of constraint changes (23% across all applications) are adding
new types of constraints to columns that already existed in earlier
versions (i.e., tightening the constraints), indicating that constraint
addition is often developers’ after-thoughts. Changing existing
constraints is much less common, but is still not rare, contributing
to more than 10% of constraint changes in 4 applications.

Summary. It is problematic that around or more than a quarter
of constraint-related code changes in most applications are about
adding constraints to already existing data columns. This indicates
a widely existing vulnerability that allows constraint-violating data
to be stored into the database before the correct constraints are im-
posed. Tools are needed to help developers add suitable constraints
whenever a new data column is created and warn of data that is
incompatible with the newly added constraints.

6 CONSTRAINT-RELATED ISSUES

We categorize 114 real-world issues into 4 types as shown in Table
9.

6.1 WHERE is the constraint specified?

As discussed, application and DB constraints for the same data
field can be inconsistent with each other. Such inconsistencies
contributed to 24 out of the 114 issues.

Application constraints looser than DB constraints. 13 out
of 24 issues fall into this category. In 12 of them, the constraint
is completely missing in application layer while the rest one is-
sue happens because the length constraint has a smaller value in
database layer than in application layer. In these cases, a record
saving operation would pass the application server’s checking but
fail in the DB, causing a web page crash with an unhandled raw DB
error thrown to end users, which is often difficult to understand
and causes poor user experience. The example discussed in Figure
1 is an illustration.

Application constraints stricter than DB constraints. 11
out of 24 issues fall into this category. In 9 of them, application
constraints are not defined in database layer at all while the rest
two are caused by that length constraint has smaller value in appli-
cation layer than in database layer. In these cases, the application
misbehaves as the administrator/user directly changes database
records through SQL queries in a way that violates application
constraints. This happens quite often. For example, Spree [20], an

Table 9: Data-constraint issues in real-world apps

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OSM SUM

errors.add(:value, :not_a_date) unless

+ && begin; value.to_date; rescue; false end

WHERE 30 3 7 8 0 1 0 0 2 0 0 24
wHaT Yhcode 0 1 8 1 M 1 0 0 4 2 0 0 4 Figure 4: Type conflict example in Redmine
vs.user 6 0 0 4 3 1 0 1 1 1 0 0 17
WHEN 30 4 1 3 0 0 0 1 0 0 0 12
HOW 2 0 1 7 3 0 0 0 5 0 0 220 _c_la_ ssUer
SUM 14 116 3 31 2 1 1 11 5 0 2 114 validates_uniqueness_of :email, :case_sensitive => false

Error: undefined method ‘image’ for nil:NilClass in line 2

1 orderline_items.each do |item| class Lineltem

(a) orders/_form.html.erb (b) constraint in line_item.rb

Figure 3: Constraint mismatch in Spree

on-line shopping system, has 4 issues caused by administrators
modifying database content through direct SQL requests. Discourse
[2] even has scripts that bypass model constraints to import other
forum applications’ data.

Figure 3 shows such an issue [21] in Spree. As shown in (b), each
LineItemis associated with a variant object and a presence con-
straint is used to ensure the existence of every associated variant.
This ensures that an expression like item.variant.image in (a) is
never null. However, this constraint does not exist in the database.
In this bug report, an adminstrator accidentally deleted a variant
record in the DB that is associated with a LineItem record, and
that led to a null pointer error when he tried to display an order
through the code in Figure 3a.

Summary. As shown by real-world issues, inconsistencies be-
tween application and database constraints cause problems, includ-
ing web page crashes and poor user experience. Considering the
hundreds and thousands of constraints that exist in the DB but not
in application and vice versa (see Section 4.2), this problem could be
much more severe and widespread than what reflected by the issue
reports. Automatically detecting such constraint inconsistencies
will be very helpful, which we further explore in Section 7.

6.2 WHAT is the constraint about?

The most common problem is a mismatch between how data is
supposed to be used in the application and the constraints imposed
on it. This accounts for 58 out of 114 issues.

6.2.1 Conflict with user needs. Users sometimes would relax an
existing constraint, such as increasing the input length of name field
in tracker from 30 to 100 (Redmine-23235 [17]). These contribute
to about 10% of the issues in our study. Developers usually satisfy
the users’ desires and change constraints accordingly.

Summary. For certain type of constraints, like the length con-
straint, it is difficult to have one setting that satisfies all users’ needs.
It would be helpful if refactoring routines can be designed to turn
a fixed-setting constraint into configurable.

- user = User.where(username: username)

+ user = User.where("lower(name) = ?", name.downcase).first

Figure 5: Case sensitivity conflict example in Gitlab

6.2.2 Conflict with application needs. Many constraints are created
to guarantee program invariants that are crucial to applications’
functional correctness. Constraints that are insufficient or even con-
flicting with how the corresponding data is used by the application
contribute to more than one third of all the issues in our study.

Type conflicts. These constraints treat a data field as having
a general type, but the application uses the data field in a more
specialized way that demands tighter constraints. In one Redmine
issue [18], a user noticed that she can input invalid dates like “2011-
10-33” without triggering any errors. This problem happened be-
cause Redmine only used a regular expression “\d{4}-\d{2}-\d{2}$”
to make sure the input follows the “yyyy-mm-dd” format without
more detailed checking. To solve this problem, Redmine later added
“value.to_date” to check whether the input can really be converted
to a date or not in the custom validate function shown in Figure 4.

Case sensitivity conflicts. Uniqueness is a common constraint
associated with a data field to avoid duplication, like preventing
two users from having the same ID. A common problem is that a
field is written to the DB in a case-sensitive way of uniqueness,
while used or searched in a case-insensitive way, or vice versa. Such
inconsistency can lead to severe software misbehavior.

In a Gitlab issue [7], a user’s profile email is all in lower case, but
she committed code with an upper-case letter in her email, which
then cannot be matched to her profile. What is annoying was that
she was unable to add the different casing as an alias, as Gitlab said
the email was “already in use.” This happens because when a user-
email is stored into DB, the uniqueness checking is case insensitive—
“abc@example.com” is treated the same as “ABC@example.com”
However, when the application searches for code commit using
email as the index, the search is case sensitive — code committed
by “ABC@example.com” cannot be retrieved by a search using
“abc@example.com.” The patch made the search also case insen-
sitive, thus always converting the input email to pure-lowercase
before the search, as shown in Figure 5.

Boundary value conflicts. There are cases where certain val-
ues of a data field are allowed by the application logic, but disal-
lowed by the constraints. For example, in the typical checkout flow
of Spree, users would enter their delivery details, then proceed to a
payments page to enter discounts and payment details, and then fi-
nally arrive at a confirmation page. However, in one Spree issue[23],
a user complained that when she entered a discount coupon that

reduced the price to zero—which was actually a valid use case—the
application did not allow him to proceed, and instead redirected
back to the delivery page. The source of the bug was a constraint
in the model layer (models/spree/order.rb) which incorrectly
required the value of the total field to be strictly greater than zero.

Summary. Failure symptoms of these bugs are quite different
from all the other types of bugs (WHERE, WHEN, HOW). They
can lead to severe software misbehavior or even disable an entire
feature of a web application. It would be ideal if a program analysis
tool can compare how a data field is used in software and identify
inconsistency between how it is used and how it is constrained.
This is challenging for generic data types and data usage, but is
feasible for specific types of problems, which we explore in Sec. 7.

6.3 WHEN is the constraint created?

When upgrading an application, sometimes newly added or changed
constraints might be incompatible with old data. 12 issues are
caused by such inconsistency across versions. The failure symp-
toms vary based on the different program context where the tighter
constraint is checked.

Read path. When a constraint is newly created or tightened
along a DB-record loading code path (e.g., front-end constraint or
application sanity-check changes), an incompatible new constraint
can cause failures in loading old data and hence severe function-
ality problems. The Diaspora example in Section 1 belongs to this
category: the password’s length requirement tightened and hence
invalidated many old passwords.

Write path. When a constraint is newly created or tightened
along a path that intends to save a record to the database (e.g., all
the application-validation constraints and database constraints),
the incompatibility between the new constraint and old data can
be triggered under the following two circumstances.

First, all the old data in the database will be checked against
the new set of DB constraints during a migration process during
application upgrade. Inconsistency between old data and new DB
constraints can cause an upgrade failure. For example, one Gitlab
issue [8] complains that they failed to upgrade from version 9.4.5 to
9.5.0 due to NotNullViolation during data migration. As shown in
Figure 6, the decription_html column was added to Gitlab before
version 9.4.5 (in the “20160829...” migration file) and was filled with
nulls by default.? Later on, in the “20170809..” migration (shown
in the Figure 6), a non-null constraint was added to the column
through the API change_column_null with parameter false. This
caused many users’ upgrade to fail because there were many old
records with a default null in that column. The patch removed the
“non null” constraint to the description_html column, as shown
in Figure 6.

Second, even if all the old data is validated against DB constraints
and the application has successfully upgraded, the old data might
still conflict with new constraints specified through the application
validation APIs that did not exist in the prior version. This can lead
to problems when the application allows users to edit an existing
record—users may have trouble in saving an edited record back. In
one Discourse issue [3], a user complained that she made a small
edit to an old post’s title, but was unable to save with an error

2When no default value is specified in add_column, null is used as the default value.

20160829114652_add_markdown_cache_columns.rb

add_column table, "description_html", :text

20170809142252_cleanup_appearances_schema.rb

change_column_null :appearances, "description_html", false

Solution.rb

- change_column_null :appearances, "description_html", false

+ change_column_null :appearances, "description_html", true

Figure 6: Old data conflicts with new constraints in Gitlab

message stating that the title was invalid. It turned out that, the
title’s length constraint has been changed from 30 to 20 characters in
the application’s validation function. That old post’s title contained
28 characters; the small edit did not change the title length. So, the
old post can still be loaded by the application, but cannot be saved
back after such small edits.

Summary. Given the frequent constraint addition and chang-
ing in web applications, it is inevitable that old data may become
incompatible with new constraints. It would be helpful if auto-
mated tools can provide warnings for developers when constraints
become tighter in a new version, particularly (1) if the migration
file has high probability to fail (e.g., specifying a constraint that
conflicts with a column’s default value), then developers should fix
the migration file; (2) if the application allows editing old data, then
developers should probably add explicit warning to users about the
risk of editing old data; and finally (3) the case of having tighter
constraints that limit the reading of old data should be avoided. We
explore this in Section 7.

6.4 HOW are the checking results delivered?

Constraint violation is common in web applications, as web users
cannot anticipate all the constraints in advance and will inevitably
input constraint-violating data. Consequently, delivering informa-
tive and friendly error messages is crucial to web applications’ user
experience. 20 issues in our study are about this problem.

These 20 issues are mostly related to application-validation con-
straints. Rails validation APIs provide default error messages that
are mostly clear.> However, developers sometimes forgot to display
the error message associated with the validation APIs (8 cases)
and sometimes override the default message with uninformative
generic messages (12 cases), which led to user complaints. For ex-
ample, in a Diaspora issue [1], a user complained that when he tried
to post a long article, the posting failed with an unhelpful error
message “Failed to post!” Developers found out that their code in
posts_controller forgot to render the error message defined in
post’s validation function. The patch fixed this problem and would
display the required length limit, as shown in Figure 7.

Summary. Developers should be reminded to display error mes-
sages associated with validation APIs. Future IDEs should automat-
ically synthesize default error checking and error-message display
code. Improving the quality of default and custom error message is
crucial to user experience. We will explore this in Section 7.

3Section 7 discusses cases when the default message is unclear and how we enhance it.

app/controllers/posts_controller.rb

if post.errors

+ render @post.errors.messages|:text].to_sentence

Figure 7: Unclear error message in Diaspora

7 SOLUTIONS & EVALUATION

We now discuss our experience in building tools to automatically
discover the anti-patterns discussed earlier. We focus on applying
them to the latest versions of the studied applications, as these
represent potential bugs that have not been discovered.

7.1 Where issues

As discussed in Section 4.2, our scripts can automatically find more
than 1000 string-length DB constraints that are missing in applica-
tion, and more than 400 application built-in-validation constraints
that are missing in the DB. We reported 16 of them covering differ-
ent types, with 12 of them already confirmed by developers from 3
applications (Lo, Ds, FF).

In addition, we extended our scripts to automatically find con-
flicting cases, where the same type of constraint, like length, is
specified for the same data field in both database and application,
but the exact constraint requirement is different.

As shown in Table 10, our checker reported 138 conflicting con-
straints in total. Our manual checking confirmed that 133 of them
are true conflicts and 5 are false positives.

These 133 conflicts include 84 cases where applications’ length
constraints are tighter than the DB’s, 4 cases in the other way,
1 case where the columns referenced by uniqueness constraints
did not exactly match, and 44 cases where the range or type of
numeric values allowed in DB did not match the corresponding
restriction in the model. For example, our results showed that, in the
Tracks application, there was a string field description in model
Todo for which the length in DB was limited to 255 characters,
but was limited to 300 in the model. We reported this mismatch to
developers and received confirmation that it was indeed a bug. As
another example, we found 5 instances in OpenStreetMap where
developers meant to require fields to be integers in both the DB
and application. However, developers had typos in their use of
validation APIs, which caused the application-level numericality
constraints to be silently ignored. We reported this to developers,
who then fixed the bug.

As an example of range mismatch, there was a case in Spree
where the field price must be greater than or equal to zero. How-
ever, in the DB, the field type was decimal which allows negative
values.

Among the 5 false positives, 3 were caused by our tool’s limited
ability in handling non-literal expressions, and the others were
related to our tool’s inability to distinguish between array length
and string length validations.

7.2 What issues

We built a checker to detect “case-sensitivity conflicts” discussed in
Section 6.2.2. Our checker first identifies every field that has case

Table 10: # Mismatch constraints between DB-Model

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS

Length-DBlooser 5 7 12 9 0 25 0 4 4 11 0 7
Length-DBtighter 0 0 0 0 0 3 0 1 0 0 0 0
Uniqueness 10 0 0 0 000 0 0 0 O
Numericality 4 024 1 6 0 3 0 0 0 3 3
False positives o 0 2 3 0 0 0 0O 0O 0 0 O
Total 10 738 13 6 28 3 5 4 11 3 10

Table 11: Our enhancement to default error messages

Default Enhanced

inclusion_of “invalid” “have to take values from {A, B, ...}

exclusion_of “reserved” “cannot take values from {A, B, ..}

confirmation_of “invalid” “Case does not match with earlier input”

uniqueness_of “invalid” “Not unique in case (in)sensitive comparison”

associated “o is invalid” “field f of object o is invalid”

insensitive constraints specified by the validation API validates_
uniqueness_of:field and case_sensitive:false, then checks
all the statements that issue a read query to load such a field to see
if the loading is ever done in a case sensitive way. To identify all
those read queries, we used an existing static analysis framework for
Rails [48]; to identify case-sensitive loading, we check whether the
query is directly ordered by the field (.order (‘field’)) or filtered
on the field (.where(field: params)) without case conversion.

Our checker found 19 issues in latest versions — 14 in Lobsters,
3 in Redmine, 2 in Tracks. Our manual checking confirmed these
are all bugs (no false positives). We also got confirmation from
developers of Lobsters and Redmine. Redmine has already added
our patch to their next major release 4.1.0.

7.3 When issues

Given two code versions, to detect inconsistency between old data
and new constraints, we extend our script that examines constraint
changes across versions (Section 5) to see if new constraints are
added or existing constraints are tightened. We then further check
whether the application allows editing existing DB data, whether
the default value conflicts with the new/changed constraint, and
whether the migration file updates the corresponding column in the
database, which is a common way to avoid incompatibility problems.
Due to space constraints, we omit details of the algorithm.

We applied our checker to the 12 applications. It did not find
problems with the latest upgrade of these applications.

7.4 How issues

Improving built-in error messages. Rails built-in validation
APIs provide default error messages that are used by developers in
most cases, only overridden in 2% of the cases across all studied
applications. Consequently, having informative default messages is
crucial.

Table 12: User study results

Task-1 # input attempts w/ modified # attempts w/ default Decrease
Inclusion 2.2 3.1 30%
Associated 23 3.4 33%
Task-2 % of users prefer modified % prefer default No preference
Exclusion 74% 22% 4%
Confirmation 81% 8% 11%
Uniqueness 74% 16% 10%

We found that 5 APIs’ default messages can be more informative,
as shown in Table 11. For example, validates_confirmation_of
ensures that a field and its confirmation field have the same content.
Instead of only saying the input is “invalid,” we add information
on whether the matching failure is caused by case sensitivity, so
the user can decide whether to change just the case or the actual
value. As another example, validates_associated checks if every
field of a sub-object o, which is associated with another object, is
valid (e.g., a “photo” is a nested object of “profile”, and has fields
“source_url”, “width”, “height”). If the validation of any field of o
fails, the default message states only that the entire o is invalid.
Our enhancement lets the user know which specific field (e.g.,
“source_url” or “width” or “height”) is incorrect and how to revise.

We have implemented a library (i.e., a Ruby gem) to overwrite
the Rails default error message with our advanced ones. Our gem
redefined the existing error message generation functions with
custom ones that incorporated more information.

User Study. To evaluate our error-message changes, we recruited
100 participants using Amazon Mechanical Turk (MTurk). The
participants are all live in US and are at least 18 years old with
higher than 95% MTurk Task Approval rate. We asked users to
perform two tasks. First, users provided answers to questions such
as, enter a title, first name, and last name; or try and enter a unique
value for a given category. If they fail to provide a valid answer,
we either provide them with the Rails default error message, or
our improved error message. In each case, we track the number
of retries required for the user to reach a valid input, and if they
cannot after 5 retries, we skip to the next question. Each user was
given 2 of these tasks. In the second task, we provide a webpage
screenshot of a question and an incorrect answer-input to that
question. The questions are based on the applications we studied.
We then show two options for error messages: the default message
and the improved message. We ask the user to rate which error
message would be more helpful in arriving at a valid input. Each
user was given 3 of these tasks.

As shown in Table 4, for the first task, our enhanced error mes-
sages reduced the number of tries users took to reach valid inputs
by about 30%; for the second task, we find 74-81% of users preferred
our enhanced error messages, depending on the type of validation.

Detecting missed error messages. Developers are required
to provide error messages for custom validations through the API
object.errors.add(msg). We extend our script that identifies
custom validation functions to further check if an error message is
provided. We found one case in Diaspora where the error message
is missing. This is actually a severe problem: since Rails uses the

count of error messages to determine the validity of an object, an
invalid object can then be incorrectly treated as valid and lead to
application failures. We reported this bug to Diaspora developers,
who have confirmed that this is indeed a bug.

Detecting missed error rendering. Since there are many ways
to render error messages on a web page, it is difficult to automat-
ically detect this problem. We randomly chose 45 HTML pages
with forms across 12 applications, and manually checked if error
messages caused by invalid inputs were rendered. We found one
case where the message would never be rendered: on a page in
OpenStreetMap that asks users to input a URL, when the input has
an improper format, the web page marks the field with red color,
without rendering the error message associated with the constraint.

8 DISCUSSION

8.1 Impact of False Positives

Our scripts for checking constraints inconsistency across layers
has some false positives, of which the vast majority come from two
types of constraints: (1) string-length constraints in database, (2)
presence constraints in applications. The remaining false positives
are due to some validation/migration API call parameters being
derived from function calls or non-constant expressions, which we
do not currently evaluate.

Such false positives have limited impact on the paper’s findings
and are already considered in our finding presentation:

RQ1: This has little impact. The overall trends like many data
fields associated with constraints, DB containing most constraints
will not be affected by these small number of false positives.

RQ2: This has negligible impact. For instance, the number of
versions with constraint changes remains the same even if we do
not consider the above two types of constraints;

RQ3: There is no impact since the real-world issue study is con-
ducted manually;

RQ4: This has negligible impact. All findings in Table 1 still hold,
as they either are not related to those two types of constraints or are
reported with false positives already pruned or carefully considered.
For instance, although our script reported 1,650 database string
length constraints missing in the application, we intentionally only
highlight “1000+ string fields ..”, instead of 1,650, in Table 1, exactly
because we have taken the potential impact of false positives into
account.

8.2 Threats to Validity

Internal Threats to Validity: As discussed in Section 2.2 and 4,
we only considered DB constraints declared through Rails built-in
migration APIs, but not those through SQL queries, which are ex-
tremely rare (fewer than 30 across all 12 applications). Our analysis
covers only native DB types such as string, numeric, and datetime
types, and excludes non-native DB types such as JSON, spatial, or
IP format, which together account for less than 1% of all columns.
Front-end constraints specified through JavaScript files were not
considered. Finally, our static checkers have false positives as dis-
cussed in Section 4.2 and 7.

External Threats to Validity: The 12 applications in our study
clearly may not represent all real-world applications; the 114 issues
studied also may not represent all constraint-related issues in these

applications; the 100 participants of our user-study from MTurk
may not represent all real-world users. Overall, we have tried our
best to conduct an unbiased study.

As discussed in Section 2.2, other ORM frameworks, like Django
and Hibernate, also let developers specify application and database
constraints like that in Rails. We sampled 22 constraint-related issue
reports from the top 3 popular Django applications on Github, and
observed similar distributions, as shown below.

WHERE WHAT WHAT WHEN HOW SUM

vs.code vs.user
django-cms [5] 1 2 3 3 1 10
zulip [24] 1 4 2 0 0 7
redash [15] 0 2 0 0 3 5

9 RELATED WORK

Verifying data constraints. Prior work has investigated veri-
fying database-related constraints. ADSL [26] verifies data-model
related invariants (e.g., whether each todo object is associated
with a project object) using first order logic, while the invariants
are provided by users using their invariant language. Singh and
Wang [39, 42] check whether a set of DB constraints still hold
when DB schema evolves while Caruccio [27] conducts a survey of
related work in this domain. Pan [37] proposes a method to lever-
age symbolic execution to synthesize a database to verify different
types of constraints like query construction constraints, DB schema
constraints, query-result-manipulation constraints, etc.

Verifying web applications using constraints. Another line
of work focuses on using constraints provided by the DB or ap-
plication for application verification and synthesis, like verifying
the equivalence of two SQL queries[30, 31, 40], DB applications
[41], synthesizing a new DB program with a new scheme given the
original program with an old scheme [42], and handling chains of
interactive actions [32].

Other types of data constraints. Much previous research has
looked at how to specify security/privacy-related data constraints
and how to verify or enforce those constraints across different
components of database-backed applications [25, 33, 36, 46]. These
constraints are currently not supported by web application frame-
works, and are orthogonal to this study.

Leveraging constraints to improve performance. Using data-
base constraints to improve query performance is already widely
adopted in database systems. For example, Wang [34] leverages
foreign key constraints to accelerate the sampling of join queries.
Other work leverages DB data constraints to find an equivalent
but more efficient query plan, for instance, Chestnut [44] adds con-
straints as extra assumptions to help synthesize better query plans,
and Quro [43] leverages data access constraints to optimize transac-
tional applications. Although much work looked at how to leverage
data constraints, little work has been done on studying how the
constraints are defined and used in DB-backed applications, or what
are the common issues related to these data constraints. Our work
reveals that developers are spending a lot of effort managing con-
straints and suffer many problems that are hardly paid attention

to in research work. These findings open new research opportuni-
ties like automating constraint-consistency check or making the
constraint changes easier for developers.

Empirical study of web applications. Past empirical studies
looked at different aspects of web applications, like ORM-related
performance problems [28, 29, 45, 47] and client-side performance
problems [38] but not data-constraint problems.

10 CONCLUSION

Specifying and maintaining consistent and suitable constraints for
data is crucial to ensure the application correctness and usability.
In this paper, we thoroughly studied how data constraints have
been specified, maintained, and led to real-world issues in 12 repre-
sentative open-source DB-backed applications. Our study shows
that tooling support is needed to help developers manage data con-
straints, and our checker is the first step towards providing such
support.

ACKNOWLEDGEMENT

This work is supported in part by the NSF through grants CCF-
1837120, CNS-1764039, 1563956, 1514256, 1I1S-1546543, 1546083,

1651489, OAC-1739419, and the computation resource from Chameleon

cloud; DARPA award FA8750-16-2-0032; DOE award DE-SC0016260;
the Intel-NSF CAPA center; gifts from Adobe, Google, and CERES re-
search center for Unstoppable Computing. We thank Madan Musu-
vathi and Suman Nath from Microsoft Research for inspiring us to
start this research direction.

REFERENCES

[16]
[17
[18
[19]
[20]

[21
[22
[23]
[24]

[25

[26

[27]

[28

[29

[30

[31

[32]

[33

[34

[35]

[36

[37]

[38

Diaspora-5090. https://github.com/diaspora/diaspora/issues/5090.

Discourse. A blog application.

https://github.com/discourse/discourse/.

Discourse-89148. https://meta.discourse.org/t/89148.

Discourse Import Scripts. A blog application.
https://github.com/discourse/discourse/tree/master/script/import_scripts.
Django-cms. An enterprise content management system.
https://github.com/divio/django-cms/.

Django Validator Function. https://docs.djangoproject.com/en/2.2/ref/validators/.
Gitlab-24493. https://gitlab.com/gitlab-org/gitlab-ce/issues/24493.

Gitlab-36919. https://gitlab.com/gitlab-org/gitlab-ce/issues/36919.

Gitlab database migrate. https://github.com/gitlabhq/gitlabhq/tree/master/db/
migrate.

Gitlab releases. https://about.gitlab.com/releases/.

Hibernate Validator Annotation. https://hibernate.org/validator/documentation/
getting-started/.

Hyperloop. https://hyperloop-rails.github.io/vibranium/.

Rails Uniqueness APIL https://github.com/rails/rails/blob/master/activerecord/lib/
active_record/validations/uniqueness.rb#L165/.

Rails Uniqueness Problem. https://thoughtbot.com/blog/the- perils- of-uniqueness-
validations.

Redash. An application to connect your company’s data.
https://github.com/getredash/redash/.

redmine-24283. https://www.redmine.org/issues/24283.

Redmine-25235. http://www.redmine.org/issues/25235/.

Redmine-9394. http://www.redmine.org/issues/9394/.

redmine, a project management application. https://redmine.org/. (????).

Spree. A ecommerce application.

https://github.com/spree/spree/.

Spree-3829. https://github.com/spree/spree/issues/3829.

Spree-4123. https://github.com/diaspora/diaspora/issues/4123.

Spree-6673. https://github.com/spree/spree/issues/6673.

Zulip. A powerful team chat system.

https://github.com/zulip/zulip/.

Muath Alkhalaf, Shauvik Roy Choudhary, Mattia Fazzini, Tevfik Bultan, Alessan-
dro Orso, and Christopher Kruegel. 2012. Viewpoints: differential string analysis
for discovering client-and server-side input validation inconsistencies. In Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis.
ACM, 56-66.

Ivan Boci¢, Tevfik Bultan, and Nicolas Rosner. 2019. Inductive verification of data
model invariants in web applications using first-order logic. Automated Software
Engineering 26, 2 (2019), 379-416.

Loredana Caruccio, Giuseppe Polese, and Genoveffa Tortora. 2016. Synchroniza-
tion of queries and views upon schema evolutions: A survey. ACM Transactions
on Database Systems (TODS) 41, 2 (2016), 9.

Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed
Nasser, and Parminder Flora. 2014. Detecting Performance Anti-patterns for
Applications Developed Using Object-relational Mapping. In ICSE. 1001-1012.
Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed
Nasser, and Parminder Flora. 2016. Finding and evaluating the performance
impact of redundant data access for applications that are developed using object-
relational mapping frameworks.. In ICSE. 1148-1161.

Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.
Cosette: An Automated Prover for SQL. In CIDR.

Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017. HoTTSQL:
Proving Query Rewrites with Univalent SQL Semantics. In PLDI. 510-524.

Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu, and Dayou Zhou. 2005.
A verifier for interactive, data-driven web applications. In Proceedings of the 2005
ACM SIGMOD international conference on Management of data. ACM, 539-550.
Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun.
2016. Verena: End-to-end integrity protection for web applications. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 895-913.

Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggre-
gation via random walks. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 615-629.

Guy Lohman. Is Query Optimization a “Solved” Problem? https://wp.sigmod.org/
2p=1075.

Joseph P Near and Daniel Jackson. 2014. Derailer: interactive security analysis
for web applications. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering. ACM, 587-598.

Kai Pan, Xintao Wu, and Tao Xie. 2014. Guided test generation for database
applications via synthesized database interactions. ACM Transactions on Software
Engineering and Methodology (TOSEM) 23, 2 (2014), 12.

Marija Selakovic and Michael Pradel. 2016. Performance issues and optimizations
in javascript: an empirical study. In ICSE. 61-72.

[39] Rohit Singh, Vamsi Meduri, Ahmed Elmagarmid, Samuel Madden, Paolo Papotti,

[40

[41

[43
[44
[45

[46

[47

Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. 2017. Gener-
ating concise entity matching rules. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1635-1638.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2018. Speeding up symbolic
reasoning for relational queries. PACMPL 2, OOPSLA (2018), 157:1-157:25.
Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. 2017. Veri-
fying Equivalence of Database-driven Applications. In Proceedings of the ACM on
Programming Languages. 56:1-56:29.

Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing
database programs for schema refactoring. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. ACM,
286-300.

Cong Yan and Alvin Cheung. Leveraging Lock Contention to Improve OLTP
Application Performance. Proc. VLDB Endow. (2016), 444-455.

Cong Yan and Alvin Cheung. 2019. Generating Application-Specific Data Layouts
for In-memory Databases. Proc. VLDB Endow. (2019), 1513-1525.

Cong Yan, Junwen Yang, Alvin Cheung, and Shan Lu. 2017. Understanding
Database Performance Inefficiencies in Real-world Web Applications. In CIKM.
Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cormac
Flanagan, and Stephen Chong. 2016. Precise, dynamic information flow for
database-backed applications. ACM SIGPLAN Notices 51, 6 (2016), 631-647.
Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. How not to structure your database-backed web applications: a study of
performance bugs in the wild. In ICSE. 800-810.

Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. PowerStation: Automatically detecting and fixing inefficiencies of database-
backed web applications in IDE. In FSE. 884-887.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Architecture of web applications
	2.2 Constraints in web applications

	3 Methodology
	3.1 Application selection
	3.2 Issue selection

	4 Constraints in one version
	4.1 How many constraints are there?
	4.2 Where are the constraints?
	4.3 What types of constraints are there?

	5 Constraints across versions
	6 Constraint-related issues
	6.1 WHERE is the constraint specified?
	6.2 WHAT is the constraint about?
	6.3 WHEN is the constraint created?
	6.4 HOW are the checking results delivered?

	7 Solutions & Evaluation
	7.1 Where issues
	7.2 What issues
	7.3 When issues
	7.4 How issues

	8 Discussion
	8.1 Impact of False Positives
	8.2 Threats to Validity

	9 Related work
	10 Conclusion
	References

