

Table 1: Highlight results of our study
(*: all the identified issues are in latest versions of these applications)

RQ1: How are constraints specified in one software version?

How 2.1 per 100 LoC

Many? 1.4 per 1 data field

77% of data fields have constraints

Where?
76% in DB; 23% in application; 1% in front-end

24% of application constraints are missing in DB

RQ2: How are constraints specified across versions?

49% of versions contain constraint changes

>25% of changes tighten constraints on existing data fields

RQ3: What led to real-world constraint problems?

Where 21% of 114 studied issues

What 51% of 114 studied issues

When 10% of 114 studied issues

How 18% of 114 studied issues

RQ4: Can we identify constraint problems in latest version?

Where 1000+ string fields have length constraints in DB but not in app.

200+ fields forbidden to be null in app. but null by default in DB

88 fields required to be unique in app. but not so in DB

57 in(ex)clusion constraints specified in app. but missed in DB

133 conflicting length/numericality constraints between app. and DB

What 19 incorrect case-sensitivity constraints identified

How 2 missing error-message problems identified

API default error-message enhancement preferred in user study

shorter than 6 characters, can no longer log in and are shown with

the unhelpful łPlease use the required formatž error.

This example demonstrates that in a software world where noth-

ing endures but change, it is challenging to make long-living per-

sistent data endure frequent code changes, which may introduce

new or even conflicting requirements to persistent data fields. Such

a conflict can lead to upgrade failures, user-unfriendly error pages,

and software misbehavior, like that in the above examples.

In summary, effectivelymanaging constraints for the huge amount

of persistent data in database-backed web applications (short as

web applications) is critical and challenging. To understand the

challenges involved, we first perform a comprehensive study to

understand the specification, checking, maintenance, and violation

handling of data constraints in web applications.

1.2 Contributions

In this paper, we aim to answer four key research questions about

real-world database-backed web applications, as listed in Table 1 by

comprehensively studying the source code, the commit history, and

the issue-tracking system of 12 popular Ruby on Rails applications

that represent 6 most common web-application categories.

For RQ1, we wrote scripts to collect and compare constraints

expressed in various components of the latest versions of the 12

applications. We found that about three-quarter of all data fields

are associated with constraints. In total, there are hundreds to over

one thousand constraints explicitly specified in each application,

averaging 1.1ś3.6 constraints specified per 100 lines of code. Data

presence and data length are the two most common types of con-

straints, while complicated constraints like the relationship among

multiple fields also exist. We also found that hundreds to thousands

of constraints specified in the database are missing in the applica-

tion source code, and vice versa, which can lead to maintenance,

functionality, and performance problems. The details are presented

in Section 4.

For RQ2, we checked how data constraints change throughout

the applications’ development history. We found that about 32%

of all the code changes related to data constraints is about adding

new constraints or changing existing ones on data fields that have

already existed in software. These changes, regardless of whether

they are due to developers’ earlier mistakes or warranted by new

code features, can easily lead to upgrade and usage problems for

data that already exists in the database. The details are in Section 5.

For RQ3, we thoroughly investigated 114 real-world issues that

are related to data constraints. We categorize them into four major

anti-patterns: (1) inconsistency of constraints specified at different

places, which we refer to as the Where anti-pattern; (2) inconsis-

tency between constraint specification and actual data usage in

the application, which we refer to as the What anti-pattern; (3)

inconsistency between data/constraints between different applica-

tion versions,which we refer to as theWhen anti-pattern; and (4)

problems with how constraint-checking results are delivered (i.e.,

unclear or missing error messages), which we refer to as the How

anti-pattern. These four anti-patterns are all common and difficult

to avoid by developers; they led to a variety of failures such as

web-page crashes, silent failures, software-upgrade failures, poor

user experience, etc. The details are presented in Section 6.

For RQ4, we developed tools that automatically identify many

data-constraint problems in the latest versions of these 12 appli-

cations, as highlighted in Table 1. We found around 2,000 łWherež

problems, including many fields that have important constraints

specified in the database but not in the application or vice versa,

as well as over 100 fields that have length or numericality (i.e.,

numerical type and value range) constraints specified in both the

database and the application, but the constraints conflict with each

other. We also found 19 issues in which the field is associated

with case-insensitive uniqueness constraints, but are used by the

application in a case-sensitive way (the łWhatž anti-pattern), as

well as two problems related to missing error messages (the łHowž

anti-pattern). We manually checked around 200 randomly sampled

problems and found a low false positive rate (0ś10%) across dif-

ferent types of checks. Not to overwhelm application developers,

we reported 56 of these problems to them, covering all problem

categories. We received 49 confirmation from the developers (no

feedback yet to the other 7 reports), among which our proposed

patches for 23 of those problems have already been merged into

their applications or included in the next major release.

We also developed a Ruby library that improves the default error

messages of five Rails constraint-checking APIs. We performed a

user study with results showing that web users overwhelmingly

prefer our enhancement. The details are presented in Section 7.

Overall, this paper presents the first in-depth study of data con-

straint problems in web applications. Our study provides motiva-

tions and guidelines for future research to help developers better

manage data constraints. We have prepared a detailed replication

package for the data-constraint-issue study and the data-constraint

checking tools in this paper. This package is available on the web-

page of our open-source Hyperloop project [12], a project that aims

to solve database-related problems in ORM applications.

2

Table 2: Different types of constraints in web apps

Run-time check Source-code Specification Specification

location location language API

Front end View HTML Reg. expression

Application server

Model Ruby Built-in validation API

Model Ruby Custom validation API

Model/Controller Ruby Custom sanity check

Database server
Migration files Ruby ActiveRecord::Migration API

Migration files SQL SQL ALTER TABLE queries

2 BACKGROUND

2.1 Architecture of web applications

Applications built using the Ruby on Rails framework are struc-

tured using the model-view-controller (MVC) architecture. For

example, when a web user submit a form through a URL like

http://foo.com/wikis/new/title=release, a controller action

łwikis/createž is triggered. This action takes in the parameters

from the request (e.g., łreleasež in the URL as params[:title])

and interacts with the database by calling the ActiveRecord API

implemented by the Rails Object-Relational Mapping (ORM) frame-

work. Rails translates ActiveRecord function calls into SQL queries

(a write query in this case), whose results are then serialized into

model objects (e.g., the Wiki model) and returned to the controller.

The returned objects are then passed to the view files to generate

a webpage that is sent back to users. Each model is derived from

ActiveRecord, and is mapped to a database table by Rails. A view

file (ends with .erb or .haml) usually involves multiple languages

including HTML, JavaScript, and Ruby.

2.2 Constraints in web applications

We roughly categorize data constraints into three types based on

where they are checked and specified as shown in Table 2.

Front-end constraints.Developers can use regular expressions

to specify constraints about a particular HTML data-field inside

a view file, such as the pattern=‘.+’ for the title field in Fig-

ure 1. The majority of such constraints are related to persistent

data maintained by the database.

Such constraints are checked when the user submits a web form.

Failure to validate will cause the form submission to fail, with an

error message specified by developers shown next to the corre-

sponding HTML field, with all the previously filled contents remain

on the page.

Application constraints. Rails developers use validation func-

tions to specify constraints of data fields in model classes. Similar

mechanisms exist in other ORM frameworks, such as validator

functions in Django [6], and validator annotations in Hibernate

[11].

A validation function is automatically triggered every time when

the application saves an object of the corresponding model class

(i.e., when the ORM framework saves the corresponding record into

the database). Validation failure will cause the corresponding form

to fail. The error message associated with the validation function

will be shown to web users if developers put error checking and

error-message display code in the view file.

Rails validation functions include built-in ones, which cover

many common constraints like text-field lengths (i.e., validates_

length_of, as shown in Figure 1), content uniqueness (validates_

uniqueness_of), content presence (validates_presence_of), as

well as custom ones, where developers express more complicated

constraints like keeping a strict order among multiple fields.

Developers can also constrain a data field through custom sanity

checks, although they are uncommon in Rails.

Database constraints. Many data columns are associated with

constraints inside the database (DB), like the varchar(30) con-

straint shown in Figure 1. These constraints are specified in the ap-

plications’ migration files, which are used to alter database schema

over time. The majority of them (more than 99.5% in our studied

applications) are specified through Rails Migration APIs, and are

very rarely specified through SQL queries directly (<30 cases across

all 12 applications we checked).

These constraints are checked by the DB when an INSERT or

/UPDATE query to the corresponding columns is issued (either by

the application or DB administrator). If the check fails, the applica-

tion will throw an ActiveRecord::StatementInvalid exception

to indicate an underlying DB error. Unfortunately, in practice, de-

velopers almost never catch such exceptions (it is caught in only 4

cases across thousands of model object saves across the 12 applica-

tions we studied). Hence, once triggered, the web user’s session will

most likely crash, with all the filled-in contents lost with a cryptic

SQL error shown to users.

Why are the constraints distributed across components?

Front-end constraints are specified for web-form input data, which

is often related to DB record (e.g., used as query parameters, com-

pared with query results, etc.). Validation functions and DB con-

straints are specified only for database fields, and are checked right

before saving data into the DB. The expressiveness of these two

are similar Ð most constraints that are expressible using validation

functions can also be written using SQL queries or migration APIs,

and vice versa. Complicated constraints expressed using custom val-

idation functions can be expressed in the DB layer as CONSTRAINT

CHECKs or custom stored procedures. However, neither layer can

replace the other given the existence of łbackdoors,ž e.g., DB admin-

istrators updating data using the DB console, or sharing the same

DB across multiple applications. Both are common practices [4].

3 METHODOLOGY

3.1 Application selection

There are many ORM frameworks available (e.g., Ruby on Rails,

Django, Hibernate, etc.). Among them, Rails is the most popular on

Github. Thus, we studied 12 open-source Ruby on Rails applications,

including the top two most popular Ruby applications from six

major categories of web applications on GitHub: Discourse (Ds)

and Lobster (Lo) are forums; Gitlab (Gi) and Redmine (Re) are

collaboration pplications; Spree (Sp) and Ror ecommerce (Ro) are

Ecommerce applications; Fulcrum (Fu) and Tracks (Tr) are Task-

management applications; Diaspora (Da) and Onebody (On) are

social network applications; OpenStreetmap (OS) and FallingFruit

(FF) are map applications. All of them have been actively developed

for years, with hundreds to tens of hundreds of code commits.

3

Table 3: # of data-constraint issues in our study and the

total # of issues in the issue-tracking system

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS

Studied 14 1 16 30 31 2 1 1 11 5 0 2

Total 4607 220 18038 12117 4805 114 158 1470 3206 400 17 650

Table 4: # Data constraints in web applications

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS

DB 1403 137 1582 437 346 378 34 108 361 345 159 242

App 165 33 496 220 132 219 13 30 116 82 17 176

HTML 0 2 18 32 0 0 0 2 1 11 0 0

Total 1568 172 2096 689 478 597 47 140 478 438 176 418

LoC 62k 11k 122k 35k 31k 17k 1.7k 13k 21k 14k 7.8k 14k

#Col 1180 150 1384 338 456 384 53 107 510 268 171 228

#ColC 882 104 1140 297 312 272 32 82 348 228 146 174

%ColC 75% 69% 82% 88% 68% 71% 60% 77% 68% 85% 85% 76%

LoC: Lines of code. #Col: number of data columns stored in the database. #ColC .:

number of columns associated with constraints. Custom sanity check not considered.

3.2 Issue selection

Section 6 studies the root causes and symptoms of real-world data

constraint problems using 114 reports sampled from the above 12

applications’ issue-tracking systems. For the 9 applications that

have medium-size issue databases (i.e., 100ś5000 total reports), we

randomly sampled 100 reports for each. For Redmine and Gitlab,

which have more than 10,000 reports, we randomly sampled 200

reports for each. For FallingFruit, which only has 17 reports, we

took all of them. Among the resulting 1317 sampled reports, we

manually checked all the reports that contain keywords like łdata

format,ž łdata inconsistency,ž łdata constraint,ž łformat change,ž

łformat conflict,ž etc. We finally obtained 114 reports that are truly

related to data constraints, as shown in Table 3.

4 CONSTRAINTS IN ONE VERSION

To understand how many constraints are specified in software,

where they are located, and what they are about, we wrote scripts

to extract data constraints from the latest version of the 12 applica-

tions described in Section 3. Our scripts obtain a web application’s

Abstract Syntax Tree, check which Ruby validation APIs and mi-

gration APIs are used, and analyze their parameters.

In this paper, our script covers all types of constraints listed in

Table 2 except for Custom sanity checks and raw SQL constraints.

Both are rarely used in these applications (e.g., raw SQL constraints

are only specified in fewer than 30 times across all 12 applications).

Note that, when we report inconsistency or missing constraints,

we manually check to make sure the inconsistency/missing con-

straint is not caused by our script not covering these two types of

constraints.

4.1 How many constraints are there?

As shown in Table 4, there are many constraints in these appli-

cations. Across all applications, 60% - 88% of data columns are

associated with constraints and there exists 1.1 to 3.6 constraint

specifications for every 100 lines of code.

Summary. Data constraint specification widely exists in all

types of web applications. Their consistency, maintenance, and

handling affect the majority of the application data.

4.2 Where are the constraints?

As shown in Table 4, DB constraints are the most common, con-

tributing to 58ś90% of all the constraints. Application constraints

contribute 10ś42%, while front-end constraints are few. It is surpris-

ing that the number of DB constraints differs significantly compared

to application constraints, as both are supposed to be applied to

a given piece of persistent data (Section 2.2). Furthermore, incon-

sistencies between them can lead to application crashes as in the

example shown in Figure 1. This led to the next few study items.

What DB constraints are missing in applications? Table 5

examines over 4,000 DB constraints that are missing in applications.

Alarmingly, about one quarter of these missing constraints (more

than 1,000 in total) involve string/text data where developers did

not specify any length constraints in the application, yet length

constraints are imposed by the DB. For example, whenever creating

a table column of type łstringž using Rails migration API, by default,

Rails framework forces a length constraint of 255-character in the

database, yet many of these string fields have no length constraints

specified through application validation functions. This mismatch

could lead to severe problems: if a user tries to submit a long para-

graph/article in such a seemingly limitless field, his application will

crash due to a failed INSERT query, as shown in Figure 1. In fact, we

found many real-world issues reporting this problem (Sec. 6.1), ulti-

mately leading to developers adding the corresponding constraints

in the application layer.

About 2% of the missing constraints, 101 in total across the 12

applications, are associated with data fields that do not exist in the

application. Some of them are updated and read through external

scripts, but never through the web application; others are depre-

cated fields that have already been removed from the application

but not dropped yet from the DB. Although this does not lead to

immediate software misbehavior, these cases reflect challenges in

data maintenance and could cause functionality problems in the fu-

ture. In addition, they cause performance problems as the database

needs to maintain deprecated data.

About one third of the missing constraints are automatically

satisfied by Rails or the DB and are hence benign. This includes

presence and numericality constraints associated with foreign-key

fields (łForeignKeyž): foreign key fields are automatically generated

by Rails and satisfy presence and numericality constraints in the

DB. Meanwhile, there are also constraints that are guaranteed by

the DB (łSelfSatisfiedž), like presence constraints guaranteed by

non-null default values specified in the DB, uniqueness constraints

guaranteed by an auto-increment property in the DB, etc.

The remaining one third of the constraints ("other") are diffi-

cult to analyze automatically. Based on our manual sampling and

checking, most are already satisfied by how the application pro-

cesses and generates corresponding data fields. Although they do

not cause problems currently, developers should nonetheless be

informed about them, so that code changes can be tested against

these constraints to prevent regression failures.

4

Table 5: # Constraints in DB but not in Application

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS All

StrLength 243 21 406 49 182 47 18 21 101 69 74 28 1259 (28%)

AbsentData 21 0 40 2 2 2 2 1 22 7 2 0 101 (2%)

ForeignKey 266 31 271 82 27 99 7 27 61 91 16 30 1008 (22%)

SelfSatisfied 192 16 161 84 28 9 2 18 3 20 8 31 572 (13%)

Others 446 39 429 126 77 89 2 29 143 82 26 64 1552 (35%)

Table 6: # Constraints in Application but not in DB

(only built-in validation constraints are listed)

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS All

Presence 8 5 37 15 38 49 5 5 34 3 1 9 209 (51%)

Unique 3 1 12 18 19 5 0 4 16 1 0 9 88 (21%)

Inclusion/Exclusion 7 1 13 11 2 0 2 0 7 5 0 9 57 (14%)

RegEx 8 5 10 7 0 9 0 0 11 4 0 3 57 (14%)

Numeric 0 0 0 0 0 1 0 0 0 0 0 0 1 (0.2%)

False-positive analysis Besides the łOthersž row in Table 5, the

other 4 rows are counted by our static-checking script. To check the

accuracy of our script, we randomly examined 102 cases from these

4 rows. Among these cases, we found 7 false positives: 5 are not DB

constraints but are mistakenly identified due to syntax not handled

by our script; 2 łStrLengthž cases actually belong to łOthers,ž as the

length requirement is guaranteed by application semantics. These

102 cases include 58 łStrLengthž cases, among which 5 are false

positives Ð 3 are not DB constraints and 2 belong to łOthersž.

Which application constraints are not in database? Nearly

25% of the constraints specified through application validation are

missing in the DB. Table 6 breaks down the ones specified through

built-in validation functions based on the constraint type (412 in

total). These missing constraints allow users to directly change

persistent data using SQL queries in ways that are disallowed by

the application, causing functionality or even security problems.1

Furthermore, some of these missing constraints represent missed

query optimization opportunities, such as improving cardinality

estimation in query plan generation using such constraints [35].

About half of these missing constraints are presence constraints.

That is, a field f is required to be non-null in the application, but is

not required so in the DB Ð their default values are ironically set

to be null in the DB. When users or administrators directly insert

records into the DB without specifying the value for a field f , the

DB would accept these records and put null into f . Subsequently,

when such records are retrieved and used in the application that

assumes all f to be non-null, software failures could occur.

Another category of missing constraints that can easily cause

problems are uniqueness constraints. Without being specified in the

DB, a uniqueness constraint often cannot be guaranteed by the ap-

plication [13, 14]: web users could make concurrent update requests

1It is common that database administrators directly change database data using queries
and scripts, bypassing the application server.

Table 7: Top 5 popular types of different layer

DB Presence Length Numericality Uniqueness -

1822 (32.9%) 1784 (32.3%) 1650 (29.8%) 276 (5.0%) -

App. Presence Length Uniqueness Numericality Inclusion

888 (52.3%) 218 (12.8%) 209 (12.3%) 101 (5.9%) 67 (3.9%)

HTML Presence Length Format - -

52 (78.8%) 11 (16.7%) 3 (4.5%) - -

that save duplicate values into the DB, violating the uniqueness con-

straint and causing software failures and maintenance challenges.

Regular expression and inclusion/exclusion constraints are rarely

found in the DB layer. While these can be enforced via procedures

or ENUM types, they are not natively supported by the Rails DB

migration APIs and have to be explicitly specified via SQL, which

might be a reason why they tend to be missed in the DB. Inclu-

sion/exclusion constraints limit the value of a field to a small set

of constants and would be very useful in avoiding data corruption,

saving storage space, and improving database performance (e.g.,

through DB selectivity optimization) if they are present.

The single numeric constraint in Table 6 is a łphone numberž

field that is specified to be numeric in application but stored as a

łstringž in the database.

False-positive analysis We randomly sampled and examined 10

cases from each of the 4 main categories in Table 6 (Presence,

Unique, In/Ex-clusion, RegEx). 3 out of the 40 sampled cases are

false positives (2, 0, 0, 1 in the 4 categories, respectively)Ðsyntax

corner cases caused our script to identify 1 spurious presence con-

straint, and the remaining 2 are related to conditional constraints.

Summary. Hundreds and thousands of database constraints

do not exist in application, and vice versa. The majority of these

discrepancies can actually lead to bad user experience (missing

string length constraints), database maintenance challenges (data

fields that are no longer used in the application), code maintenance

challenges (constraints implicitly guaranteed by the application

logic), data corruptions, software failures, or sub-optimal database

performance (missing DB constraints). They can be avoided by

implementing constraints in the application and as SQL constraints

in the database. However, in practice inconsistencies are likely

inevitable if we only rely on developers’ manual effort. It would be

helpful to develop automated techniques that coordinate database

and application constraints.

4.3 What types of constraints are there?

Standard types. Table 7 shows the most popular constraint

types among all front-end, application built-in validation, and DB

constraints. The top 2 most popular types are consistently presence

and length.

Customvalidation constraint types. Custom validation func-

tions are used much less often than built-in ones, but are not rare,

contributing about 5% to slightly over 25% of all application valida-

tion functions across the 12 applications (avg. 18% across all apps).

We randomly sampled 50 custom validation functions and found

that more than half of them are used to check multiple fields at the

same time (27 out of 50), like the function presence_of_content

5

Table 9: Data-constraint issues in real-world apps

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OSM SUM

WHERE 3 0 3 7 8 0 1 0 0 2 0 0 24

WHAT
vs. code 0 1 8 11 14 1 0 0 4 2 0 0 41

vs. user 6 0 0 4 3 1 0 1 1 1 0 0 17

WHEN 3 0 4 1 3 0 0 0 1 0 0 0 12

HOW 2 0 1 7 3 0 0 0 5 0 0 2 20

SUM 14 1 16 30 31 2 1 1 11 5 0 2 114

1 order.line_items.each do |item|

2 item.variant.image

3 end

Error: undefined method `image‘ for nil:NilClass in line 2

class LineItem

validates_presence_of :variant, :order

end

(a) orders/_form.html.erb (b) constraint in line_item.rb

Figure 3: Constraint mismatch in Spree

on-line shopping system, has 4 issues caused by administrators

modifying database content through direct SQL requests. Discourse

[2] even has scripts that bypass model constraints to import other

forum applications’ data.

Figure 3 shows such an issue [21] in Spree. As shown in (b), each

LineItem is associated with a variant object and a presence con-

straint is used to ensure the existence of every associated variant.

This ensures that an expression like item.variant.image in (a) is

never null. However, this constraint does not exist in the database.

In this bug report, an adminstrator accidentally deleted a variant

record in the DB that is associated with a LineItem record, and

that led to a null pointer error when he tried to display an order

through the code in Figure 3a.

Summary. As shown by real-world issues, inconsistencies be-

tween application and database constraints cause problems, includ-

ing web page crashes and poor user experience. Considering the

hundreds and thousands of constraints that exist in the DB but not

in application and vice versa (see Section 4.2), this problem could be

much more severe and widespread than what reflected by the issue

reports. Automatically detecting such constraint inconsistencies

will be very helpful, which we further explore in Section 7.

6.2 WHAT is the constraint about?

The most common problem is a mismatch between how data is

supposed to be used in the application and the constraints imposed

on it. This accounts for 58 out of 114 issues.

6.2.1 Conflict with user needs. Users sometimes would relax an

existing constraint, such as increasing the input length of name field

in tracker from 30 to 100 (Redmine-23235 [17]). These contribute

to about 10% of the issues in our study. Developers usually satisfy

the users’ desires and change constraints accordingly.

Summary. For certain type of constraints, like the length con-

straint, it is difficult to have one setting that satisfies all users’ needs.

It would be helpful if refactoring routines can be designed to turn

a fixed-setting constraint into configurable.

errors.add(:value, :not_a_date) unless

value =~ /^\d{4}-\d{2}-\d{2}$/

+ && begin; value.to_date; rescue; false end

Figure 4: Type conflict example in Redmine

- user = User.where(username: username)

+ user = User.where("lower(name) = ?", name.downcase).first

class User

validates_uniqueness_of :email, :case_sensitive => false

Figure 5: Case sensitivity conflict example in Gitlab

6.2.2 Conflict with application needs. Many constraints are created

to guarantee program invariants that are crucial to applications’

functional correctness. Constraints that are insufficient or even con-

flicting with how the corresponding data is used by the application

contribute to more than one third of all the issues in our study.

Type conflicts. These constraints treat a data field as having

a general type, but the application uses the data field in a more

specialized way that demands tighter constraints. In one Redmine

issue [18], a user noticed that she can input invalid dates like ł2011-

10-33ž without triggering any errors. This problem happened be-

cause Redmine only used a regular expression ł\d{4}-\d{2}-\d{2}$ž

to make sure the input follows the łyyyy-mm-ddž format without

more detailed checking. To solve this problem, Redmine later added

łvalue.to_datež to check whether the input can really be converted

to a date or not in the custom validate function shown in Figure 4.

Case sensitivity conflicts. Uniqueness is a common constraint

associated with a data field to avoid duplication, like preventing

two users from having the same ID. A common problem is that a

field is written to the DB in a case-sensitive way of uniqueness,

while used or searched in a case-insensitive way, or vice versa. Such

inconsistency can lead to severe software misbehavior.

In a Gitlab issue [7], a user’s profile email is all in lower case, but

she committed code with an upper-case letter in her email, which

then cannot be matched to her profile. What is annoying was that

she was unable to add the different casing as an alias, as Gitlab said

the email was łalready in use.ž This happens because when a user-

email is stored into DB, the uniqueness checking is case insensitiveÐ

łabc@example.comž is treated the same as łABC@example.com.ž

However, when the application searches for code commit using

email as the index, the search is case sensitive Ð code committed

by łABC@example.comž cannot be retrieved by a search using

łabc@example.com.ž The patch made the search also case insen-

sitive, thus always converting the input email to pure-lowercase

before the search, as shown in Figure 5.

Boundary value conflicts. There are cases where certain val-

ues of a data field are allowed by the application logic, but disal-

lowed by the constraints. For example, in the typical checkout flow

of Spree, users would enter their delivery details, then proceed to a

payments page to enter discounts and payment details, and then fi-

nally arrive at a confirmation page. However, in one Spree issue[23],

a user complained that when she entered a discount coupon that

7

reduced the price to zeroÐwhich was actually a valid use caseÐthe

application did not allow him to proceed, and instead redirected

back to the delivery page. The source of the bug was a constraint

in the model layer (models/spree/order.rb) which incorrectly

required the value of the total field to be strictly greater than zero.

Summary. Failure symptoms of these bugs are quite different

from all the other types of bugs (WHERE, WHEN, HOW). They

can lead to severe software misbehavior or even disable an entire

feature of a web application. It would be ideal if a program analysis

tool can compare how a data field is used in software and identify

inconsistency between how it is used and how it is constrained.

This is challenging for generic data types and data usage, but is

feasible for specific types of problems, which we explore in Sec. 7.

6.3 WHEN is the constraint created?

When upgrading an application, sometimes newly added or changed

constraints might be incompatible with old data. 12 issues are

caused by such inconsistency across versions. The failure symp-

toms vary based on the different program context where the tighter

constraint is checked.

Read path. When a constraint is newly created or tightened

along a DB-record loading code path (e.g., front-end constraint or

application sanity-check changes), an incompatible new constraint

can cause failures in loading old data and hence severe function-

ality problems. The Diaspora example in Section 1 belongs to this

category: the password’s length requirement tightened and hence

invalidated many old passwords.

Write path. When a constraint is newly created or tightened

along a path that intends to save a record to the database (e.g., all

the application-validation constraints and database constraints),

the incompatibility between the new constraint and old data can

be triggered under the following two circumstances.

First, all the old data in the database will be checked against

the new set of DB constraints during a migration process during

application upgrade. Inconsistency between old data and new DB

constraints can cause an upgrade failure. For example, one Gitlab

issue [8] complains that they failed to upgrade from version 9.4.5 to

9.5.0 due to NotNullViolation during data migration. As shown in

Figure 6, the decription_html column was added to Gitlab before

version 9.4.5 (in the ł20160829...ž migration file) and was filled with

nulls by default.2 Later on, in the ł20170809...ž migration (shown

in the Figure 6), a non-null constraint was added to the column

through the API change_column_nullwith parameter false. This

caused many users’ upgrade to fail because there were many old

records with a default null in that column. The patch removed the

łnon nullž constraint to the description_html column, as shown

in Figure 6.

Second, even if all the old data is validated against DB constraints

and the application has successfully upgraded, the old data might

still conflict with new constraints specified through the application

validation APIs that did not exist in the prior version. This can lead

to problems when the application allows users to edit an existing

recordÐusers may have trouble in saving an edited record back. In

one Discourse issue [3], a user complained that she made a small

edit to an old post’s title, but was unable to save with an error

2When no default value is specified in add_column, null is used as the default value.

add_column table, "description_html", :text

20160829114652_add_markdown_cache_columns.rb

change_column_null :appearances, "description_html", false

20170809142252_cleanup_appearances_schema.rb

Solution.rb

- change_column_null :appearances, "description_html", false

+ change_column_null :appearances, "description_html", true

Figure 6: Old data conflicts with new constraints in Gitlab

message stating that the title was invalid. It turned out that, the

title’s length constraint has been changed from 30 to 20 characters in

the application’s validation function. That old post’s title contained

28 characters; the small edit did not change the title length. So, the

old post can still be loaded by the application, but cannot be saved

back after such small edits.

Summary. Given the frequent constraint addition and chang-

ing in web applications, it is inevitable that old data may become

incompatible with new constraints. It would be helpful if auto-

mated tools can provide warnings for developers when constraints

become tighter in a new version, particularly (1) if the migration

file has high probability to fail (e.g., specifying a constraint that

conflicts with a column’s default value), then developers should fix

the migration file; (2) if the application allows editing old data, then

developers should probably add explicit warning to users about the

risk of editing old data; and finally (3) the case of having tighter

constraints that limit the reading of old data should be avoided. We

explore this in Section 7.

6.4 HOW are the checking results delivered?

Constraint violation is common in web applications, as web users

cannot anticipate all the constraints in advance and will inevitably

input constraint-violating data. Consequently, delivering informa-

tive and friendly error messages is crucial to web applications’ user

experience. 20 issues in our study are about this problem.

These 20 issues are mostly related to application-validation con-

straints. Rails validation APIs provide default error messages that

are mostly clear.3 However, developers sometimes forgot to display

the error message associated with the validation APIs (8 cases)

and sometimes override the default message with uninformative

generic messages (12 cases), which led to user complaints. For ex-

ample, in a Diaspora issue [1], a user complained that when he tried

to post a long article, the posting failed with an unhelpful error

message łFailed to post!ž Developers found out that their code in

posts_controller forgot to render the error message defined in

post’s validation function. The patch fixed this problem and would

display the required length limit, as shown in Figure 7.

Summary. Developers should be reminded to display error mes-

sages associated with validation APIs. Future IDEs should automat-

ically synthesize default error checking and error-message display

code. Improving the quality of default and custom error message is

crucial to user experience. We will explore this in Section 7.

3Section 7 discusses cases when the default message is unclear and how we enhance it.

8

if post.errors

- render 'failed_to_post'

+ render @post.errors.messages[:text].to_sentence

app/controllers/posts_controller.rb

Figure 7: Unclear error message in Diaspora

7 SOLUTIONS & EVALUATION

We now discuss our experience in building tools to automatically

discover the anti-patterns discussed earlier. We focus on applying

them to the latest versions of the studied applications, as these

represent potential bugs that have not been discovered.

7.1 Where issues

As discussed in Section 4.2, our scripts can automatically find more

than 1000 string-length DB constraints that are missing in applica-

tion, and more than 400 application built-in-validation constraints

that are missing in the DB. We reported 16 of them covering differ-

ent types, with 12 of them already confirmed by developers from 3

applications (Lo, Ds, FF).

In addition, we extended our scripts to automatically find con-

flicting cases, where the same type of constraint, like length, is

specified for the same data field in both database and application,

but the exact constraint requirement is different.

As shown in Table 10, our checker reported 138 conflicting con-

straints in total. Our manual checking confirmed that 133 of them

are true conflicts and 5 are false positives.

These 133 conflicts include 84 cases where applications’ length

constraints are tighter than the DB’s, 4 cases in the other way,

1 case where the columns referenced by uniqueness constraints

did not exactly match, and 44 cases where the range or type of

numeric values allowed in DB did not match the corresponding

restriction in the model. For example, our results showed that, in the

Tracks application, there was a string field description in model

Todo for which the length in DB was limited to 255 characters,

but was limited to 300 in the model. We reported this mismatch to

developers and received confirmation that it was indeed a bug. As

another example, we found 5 instances in OpenStreetMap where

developers meant to require fields to be integers in both the DB

and application. However, developers had typos in their use of

validation APIs, which caused the application-level numericality

constraints to be silently ignored. We reported this to developers,

who then fixed the bug.

As an example of range mismatch, there was a case in Spree

where the field price must be greater than or equal to zero. How-

ever, in the DB, the field type was decimal which allows negative

values.

Among the 5 false positives, 3 were caused by our tool’s limited

ability in handling non-literal expressions, and the others were

related to our tool’s inability to distinguish between array length

and string length validations.

7.2 What issues

We built a checker to detect łcase-sensitivity conflictsž discussed in

Section 6.2.2. Our checker first identifies every field that has case

Table 10: # Mismatch constraints between DB-Model

Ds Lo Gi Re Sp Ro Fu Tr Da On FF OS

Length - DB looser 5 7 12 9 0 25 0 4 4 11 0 7

Length - DB tighter 0 0 0 0 0 3 0 1 0 0 0 0

Uniqueness 1 0 0 0 0 0 0 0 0 0 0 0

Numericality 4 0 24 1 6 0 3 0 0 0 3 3

False positives 0 0 2 3 0 0 0 0 0 0 0 0

Total 10 7 38 13 6 28 3 5 4 11 3 10

Table 11: Our enhancement to default error messages

Default Enhanced

inclusion_of łinvalidž łhave to take values from {A, B, ...}ž

exclusion_of łreservedž łcannot take values from {A, B, ...}ž

confirmation_of łinvalidž łCase does not match with earlier inputž

uniqueness_of łinvalidž łNot unique in case (in)sensitive comparisonž

associated ło is invalidž łfield f of object o is invalidž

insensitive constraints specified by the validation API validates_

uniqueness_of:field and case_sensitive:false, then checks

all the statements that issue a read query to load such a field to see

if the loading is ever done in a case sensitive way. To identify all

those read queries, we used an existing static analysis framework for

Rails [48]; to identify case-sensitive loading, we check whether the

query is directly ordered by the field (.order(‘field’)) or filtered

on the field (.where(field: params)) without case conversion.

Our checker found 19 issues in latest versions Ð 14 in Lobsters,

3 in Redmine, 2 in Tracks. Our manual checking confirmed these

are all bugs (no false positives). We also got confirmation from

developers of Lobsters and Redmine. Redmine has already added

our patch to their next major release 4.1.0.

7.3 When issues

Given two code versions, to detect inconsistency between old data

and new constraints, we extend our script that examines constraint

changes across versions (Section 5) to see if new constraints are

added or existing constraints are tightened. We then further check

whether the application allows editing existing DB data, whether

the default value conflicts with the new/changed constraint, and

whether the migration file updates the corresponding column in the

database, which is a commonway to avoid incompatibility problems.

Due to space constraints, we omit details of the algorithm.

We applied our checker to the 12 applications. It did not find

problems with the latest upgrade of these applications.

7.4 How issues

Improving built-in error messages. Rails built-in validation

APIs provide default error messages that are used by developers in

most cases, only overridden in 2% of the cases across all studied

applications. Consequently, having informative default messages is

crucial.

9

Table 12: User study results

Task-1 # input attempts w/ modified # attempts w/ default Decrease

Inclusion 2.2 3.1 30%

Associated 2.3 3.4 33%

Task-2 % of users prefer modified % prefer default No preference

Exclusion 74% 22% 4%

Confirmation 81% 8% 11%

Uniqueness 74% 16% 10%

We found that 5 APIs’ default messages can be more informative,

as shown in Table 11. For example, validates_confirmation_of

ensures that a field and its confirmation field have the same content.

Instead of only saying the input is łinvalid,ž we add information

on whether the matching failure is caused by case sensitivity, so

the user can decide whether to change just the case or the actual

value. As another example, validates_associated checks if every

field of a sub-object o, which is associated with another object, is

valid (e.g., a łphotož is a nested object of łprofilež, and has fields

łsource_urlž, łwidthž, łheightž). If the validation of any field of o

fails, the default message states only that the entire o is invalid.

Our enhancement lets the user know which specific field (e.g.,

łsource_urlž or łwidthž or łheightž) is incorrect and how to revise.

We have implemented a library (i.e., a Ruby gem) to overwrite

the Rails default error message with our advanced ones. Our gem

redefined the existing error message generation functions with

custom ones that incorporated more information.

User Study. To evaluate our error-message changes, we recruited

100 participants using Amazon Mechanical Turk (MTurk). The

participants are all live in US and are at least 18 years old with

higher than 95% MTurk Task Approval rate. We asked users to

perform two tasks. First, users provided answers to questions such

as, enter a title, first name, and last name; or try and enter a unique

value for a given category. If they fail to provide a valid answer,

we either provide them with the Rails default error message, or

our improved error message. In each case, we track the number

of retries required for the user to reach a valid input, and if they

cannot after 5 retries, we skip to the next question. Each user was

given 2 of these tasks. In the second task, we provide a webpage

screenshot of a question and an incorrect answer-input to that

question. The questions are based on the applications we studied.

We then show two options for error messages: the default message

and the improved message. We ask the user to rate which error

message would be more helpful in arriving at a valid input. Each

user was given 3 of these tasks.

As shown in Table 4, for the first task, our enhanced error mes-

sages reduced the number of tries users took to reach valid inputs

by about 30%; for the second task, we find 74ś81% of users preferred

our enhanced error messages, depending on the type of validation.

Detecting missed error messages. Developers are required

to provide error messages for custom validations through the API

object.errors.add(msg). We extend our script that identifies

custom validation functions to further check if an error message is

provided. We found one case in Diaspora where the error message

is missing. This is actually a severe problem: since Rails uses the

count of error messages to determine the validity of an object, an

invalid object can then be incorrectly treated as valid and lead to

application failures. We reported this bug to Diaspora developers,

who have confirmed that this is indeed a bug.

Detectingmissed error rendering. Since there aremanyways

to render error messages on a web page, it is difficult to automat-

ically detect this problem. We randomly chose 45 HTML pages

with forms across 12 applications, and manually checked if error

messages caused by invalid inputs were rendered. We found one

case where the message would never be rendered: on a page in

OpenStreetMap that asks users to input a URL, when the input has

an improper format, the web page marks the field with red color,

without rendering the error message associated with the constraint.

8 DISCUSSION

8.1 Impact of False Positives

Our scripts for checking constraints inconsistency across layers

has some false positives, of which the vast majority come from two

types of constraints: (1) string-length constraints in database, (2)

presence constraints in applications. The remaining false positives

are due to some validation/migration API call parameters being

derived from function calls or non-constant expressions, which we

do not currently evaluate.

Such false positives have limited impact on the paper’s findings

and are already considered in our finding presentation:

RQ1: This has little impact. The overall trends like many data

fields associated with constraints, DB containing most constraints

will not be affected by these small number of false positives.

RQ2: This has negligible impact. For instance, the number of

versions with constraint changes remains the same even if we do

not consider the above two types of constraints;

RQ3: There is no impact since the real-world issue study is con-

ducted manually;

RQ4: This has negligible impact. All findings in Table 1 still hold,

as they either are not related to those two types of constraints or are

reported with false positives already pruned or carefully considered.

For instance, although our script reported 1,650 database string

length constraints missing in the application, we intentionally only

highlight ł1000+ string fields ...ž, instead of 1,650, in Table 1, exactly

because we have taken the potential impact of false positives into

account.

8.2 Threats to Validity

Internal Threats to Validity: As discussed in Section 2.2 and 4,

we only considered DB constraints declared through Rails built-in

migration APIs, but not those through SQL queries, which are ex-

tremely rare (fewer than 30 across all 12 applications). Our analysis

covers only native DB types such as string, numeric, and datetime

types, and excludes non-native DB types such as JSON, spatial, or

IP format, which together account for less than 1% of all columns.

Front-end constraints specified through JavaScript files were not

considered. Finally, our static checkers have false positives as dis-

cussed in Section 4.2 and 7.

External Threats to Validity: The 12 applications in our study

clearly may not represent all real-world applications; the 114 issues

studied also may not represent all constraint-related issues in these

10

applications; the 100 participants of our user-study from MTurk

may not represent all real-world users. Overall, we have tried our

best to conduct an unbiased study.

As discussed in Section 2.2, other ORM frameworks, like Django

and Hibernate, also let developers specify application and database

constraints like that in Rails. We sampled 22 constraint-related issue

reports from the top 3 popular Django applications on Github, and

observed similar distributions, as shown below.

WHERE WHAT WHAT WHEN HOW SUM

vs.code vs.user

django-cms [5] 1 2 3 3 1 10

zulip [24] 1 4 2 0 0 7

redash [15] 0 2 0 0 3 5

9 RELATED WORK

Verifying data constraints. Prior work has investigated veri-

fying database-related constraints. ADSL [26] verifies data-model

related invariants (e.g., whether each todo object is associated

with a project object) using first order logic, while the invariants

are provided by users using their invariant language. Singh and

Wang [39, 42] check whether a set of DB constraints still hold

when DB schema evolves while Caruccio [27] conducts a survey of

related work in this domain. Pan [37] proposes a method to lever-

age symbolic execution to synthesize a database to verify different

types of constraints like query construction constraints, DB schema

constraints, query-result-manipulation constraints, etc.

Verifying web applications using constraints. Another line

of work focuses on using constraints provided by the DB or ap-

plication for application verification and synthesis, like verifying

the equivalence of two SQL queries[30, 31, 40], DB applications

[41], synthesizing a new DB program with a new scheme given the

original program with an old scheme [42], and handling chains of

interactive actions [32].

Other types of data constraints. Much previous research has

looked at how to specify security/privacy-related data constraints

and how to verify or enforce those constraints across different

components of database-backed applications [25, 33, 36, 46]. These

constraints are currently not supported by web application frame-

works, and are orthogonal to this study.

Leveraging constraints to improve performance. Using data-

base constraints to improve query performance is already widely

adopted in database systems. For example, Wang [34] leverages

foreign key constraints to accelerate the sampling of join queries.

Other work leverages DB data constraints to find an equivalent

but more efficient query plan, for instance, Chestnut [44] adds con-

straints as extra assumptions to help synthesize better query plans,

and Quro [43] leverages data access constraints to optimize transac-

tional applications. Although much work looked at how to leverage

data constraints, little work has been done on studying how the

constraints are defined and used in DB-backed applications, or what

are the common issues related to these data constraints. Our work

reveals that developers are spending a lot of effort managing con-

straints and suffer many problems that are hardly paid attention

to in research work. These findings open new research opportuni-

ties like automating constraint-consistency check or making the

constraint changes easier for developers.

Empirical study of web applications. Past empirical studies

looked at different aspects of web applications, like ORM-related

performance problems [28, 29, 45, 47] and client-side performance

problems [38] but not data-constraint problems.

10 CONCLUSION

Specifying and maintaining consistent and suitable constraints for

data is crucial to ensure the application correctness and usability.

In this paper, we thoroughly studied how data constraints have

been specified, maintained, and led to real-world issues in 12 repre-

sentative open-source DB-backed applications. Our study shows

that tooling support is needed to help developers manage data con-

straints, and our checker is the first step towards providing such

support.

ACKNOWLEDGEMENT

This work is supported in part by the NSF through grants CCF-

1837120, CNS-1764039, 1563956, 1514256, IIS-1546543, 1546083,

1651489, OAC-1739419, and the computation resource fromChameleon

cloud; DARPA award FA8750-16-2-0032; DOE award DE-SC0016260;

the Intel-NSF CAPA center; gifts fromAdobe, Google, and CERES re-

search center for Unstoppable Computing. We thank Madan Musu-

vathi and Suman Nath from Microsoft Research for inspiring us to

start this research direction.

11

REFERENCES
[1] Diaspora-5090. https://github.com/diaspora/diaspora/issues/5090.
[2] Discourse. A blog application.

https://github.com/discourse/discourse/.
[3] Discourse-89148. https://meta.discourse.org/t/89148.
[4] Discourse Import Scripts. A blog application.

https://github.com/discourse/discourse/tree/master/script/import_scripts.
[5] Django-cms. An enterprise content management system.

https://github.com/divio/django-cms/.
[6] Django Validator Function. https://docs.djangoproject.com/en/2.2/ref/validators/.
[7] Gitlab-24493. https://gitlab.com/gitlab-org/gitlab-ce/issues/24493.
[8] Gitlab-36919. https://gitlab.com/gitlab-org/gitlab-ce/issues/36919.
[9] Gitlab database migrate. https://github.com/gitlabhq/gitlabhq/tree/master/db/

migrate.
[10] Gitlab releases. https://about.gitlab.com/releases/.
[11] Hibernate Validator Annotation. https://hibernate.org/validator/documentation/

getting-started/.
[12] Hyperloop. https://hyperloop-rails.github.io/vibranium/.
[13] Rails Uniqueness API. https://github.com/rails/rails/blob/master/activerecord/lib/

active_record/validations/uniqueness.rb#L165/.
[14] Rails Uniqueness Problem. https://thoughtbot.com/blog/the-perils-of-uniqueness-

validations.
[15] Redash. An application to connect your company’s data.

https://github.com/getredash/redash/.
[16] redmine-24283. https://www.redmine.org/issues/24283.
[17] Redmine-25235. http://www.redmine.org/issues/25235/.
[18] Redmine-9394. http://www.redmine.org/issues/9394/.
[19] redmine, a project management application. https://redmine.org/. (????).
[20] Spree. A ecommerce application.

https://github.com/spree/spree/.
[21] Spree-3829. https://github.com/spree/spree/issues/3829.
[22] Spree-4123. https://github.com/diaspora/diaspora/issues/4123.
[23] Spree-6673. https://github.com/spree/spree/issues/6673.
[24] Zulip. A powerful team chat system.

https://github.com/zulip/zulip/.
[25] Muath Alkhalaf, Shauvik Roy Choudhary, Mattia Fazzini, Tevfik Bultan, Alessan-

dro Orso, and Christopher Kruegel. 2012. Viewpoints: differential string analysis
for discovering client-and server-side input validation inconsistencies. In Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis.
ACM, 56ś66.

[26] Ivan Bocić, Tevfik Bultan, and Nicolás Rosner. 2019. Inductive verification of data
model invariants in web applications using first-order logic. Automated Software
Engineering 26, 2 (2019), 379ś416.

[27] Loredana Caruccio, Giuseppe Polese, and Genoveffa Tortora. 2016. Synchroniza-
tion of queries and views upon schema evolutions: A survey. ACM Transactions
on Database Systems (TODS) 41, 2 (2016), 9.

[28] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed
Nasser, and Parminder Flora. 2014. Detecting Performance Anti-patterns for
Applications Developed Using Object-relational Mapping. In ICSE. 1001ś1012.

[29] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed
Nasser, and Parminder Flora. 2016. Finding and evaluating the performance
impact of redundant data access for applications that are developed using object-
relational mapping frameworks.. In ICSE. 1148ś1161.

[30] Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.
Cosette: An Automated Prover for SQL. In CIDR.

[31] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017. HoTTSQL:
Proving Query Rewrites with Univalent SQL Semantics. In PLDI. 510ś524.

[32] Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu, and Dayou Zhou. 2005.
A verifier for interactive, data-driven web applications. In Proceedings of the 2005
ACM SIGMOD international conference on Management of data. ACM, 539ś550.

[33] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun.
2016. Verena: End-to-end integrity protection for web applications. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 895ś913.

[34] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggre-
gation via random walks. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 615ś629.

[35] Guy Lohman. Is Query Optimization a “Solved” Problem? https://wp.sigmod.org/
?p=1075.

[36] Joseph P Near and Daniel Jackson. 2014. Derailer: interactive security analysis
for web applications. In Proceedings of the 29th ACM/IEEE international conference
on Automated software engineering. ACM, 587ś598.

[37] Kai Pan, Xintao Wu, and Tao Xie. 2014. Guided test generation for database
applications via synthesized database interactions. ACM Transactions on Software
Engineering and Methodology (TOSEM) 23, 2 (2014), 12.

[38] Marija Selakovic and Michael Pradel. 2016. Performance issues and optimizations
in javascript: an empirical study. In ICSE. 61ś72.

[39] Rohit Singh, Vamsi Meduri, Ahmed Elmagarmid, Samuel Madden, Paolo Papotti,
Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. 2017. Gener-
ating concise entity matching rules. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, 1635ś1638.

[40] ChenglongWang, Alvin Cheung, and Rastislav Bodík. 2018. Speeding up symbolic
reasoning for relational queries. PACMPL 2, OOPSLA (2018), 157:1ś157:25.

[41] Yuepeng Wang, Isil Dillig, Shuvendu K. Lahiri, and William R. Cook. 2017. Veri-
fying Equivalence of Database-driven Applications. In Proceedings of the ACM on
Programming Languages. 56:1ś56:29.

[42] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing
database programs for schema refactoring. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation. ACM,
286ś300.

[43] Cong Yan and Alvin Cheung. Leveraging Lock Contention to Improve OLTP
Application Performance. Proc. VLDB Endow. (2016), 444ś455.

[44] Cong Yan and Alvin Cheung. 2019. Generating Application-Specific Data Layouts
for In-memory Databases. Proc. VLDB Endow. (2019), 1513ś1525.

[45] Cong Yan, Junwen Yang, Alvin Cheung, and Shan Lu. 2017. Understanding
Database Performance Inefficiencies in Real-world Web Applications. In CIKM.

[46] Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cormac
Flanagan, and Stephen Chong. 2016. Precise, dynamic information flow for
database-backed applications. ACM SIGPLAN Notices 51, 6 (2016), 631ś647.

[47] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. How not to structure your database-backed web applications: a study of
performance bugs in the wild. In ICSE. 800ś810.

[48] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. PowerStation: Automatically detecting and fixing inefficiencies of database-
backed web applications in IDE. In FSE. 884ś887.

12

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Architecture of web applications
	2.2 Constraints in web applications

	3 Methodology
	3.1 Application selection
	3.2 Issue selection

	4 Constraints in one version
	4.1 How many constraints are there?
	4.2 Where are the constraints?
	4.3 What types of constraints are there?

	5 Constraints across versions
	6 Constraint-related issues
	6.1 WHERE is the constraint specified?
	6.2 WHAT is the constraint about?
	6.3 WHEN is the constraint created?
	6.4 HOW are the checking results delivered?

	7 Solutions & Evaluation
	7.1 Where issues
	7.2 What issues
	7.3 When issues
	7.4 How issues

	8 Discussion
	8.1 Impact of False Positives
	8.2 Threats to Validity

	9 Related work
	10 Conclusion
	References

