Generating Application-Specific Data Layouts for
In-memory Databases

Cong Yan

University of Washington
congy@cs.washington.edu

ABSTRACT

Database applications are often developed with object-oriented lan-
guages while using relational databases as the backend. To accel-
erate these applications, developers would manually design cus-
tomized data structures to store data in memory, and ways to uti-
lize such data structures to answer queries. Doing so is brittle and
requires a lot of effort. Alternatively, developers might automate
the process by using relational physical design tools to create ma-
terialized views and indexes instead. However, the characteristics
of object-oriented database applications are often distinct enough
from traditional database applications such that classical relational
query optimization techniques often cannot speed up queries that
arise from such applications, as our experiments show.

To address this, we build CHESTNUT, a data layout generator for
in-memory object-oriented database applications. Given a mem-
ory budget, CHESTNUT generates customized in-memory data lay-
outs and query plans to answer queries written using a subset of
the Rails API, a common framework for building object-oriented
database applications. CHESTNUT differs from traditional query
optimizers and physical designers in two ways. First, CHESTNUT
automatically generates data layouts that are customized for the ap-
plication after analyzing their queries, hence CHESTNUT-generated
data layouts are designed to be efficient to answer queries from
such applications. Second, CHESTNUT uses a novel enumeration
and verification-based algorithm to generate query plans that use
such data layouts, rather than rule-based approaches as in tradi-
tional query optimizers. We evaluated CHESTNUT on four open-
source Rails database applications. The result shows that it can re-
duce average query processing time by over 3.6 (and up to 42x),
as compared to other in-memory relational database engines.

PVLDB Reference Format:

Cong Yan, Alvin Cheung. Generating Application-specific Data Layouts
for In-memory Databases. PVLDB, 12(11): 1513-1525, 2019.

DOIL: https://doi.org/10.14778/3342263.3342630

1. INTRODUCTION

Rather than directly embedding SQL queries into application
code, database applications are increasingly written using object-
oriented programming languages (such as Java, Python, or Ruby)

>|<Work done while at the University of Washington.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 11

ISSN 2150-8097.

DOIL: https://doi.org/10.14778/3342263.3342630

Alvin Cheung
UC Berkeley
akcheung@cs.berkeley.edu

that rely on different means to translate data retrieval operations
into SQL, for instance object-relational mapping (ORM) frame-
works such as Hibernate [10], Django [8], or Rails [18]. The object-
oriented programming paradigm makes it easy to develop database
applications: data to be persistently managed are organized into
classes, each class is mapped to a relation, and each object instance
becomes a tuple. Operations involving persistent data in the ap-
plication are then converted into queries. For instance, a project
management application would organize its data into Project ob-
jects with a member field that stores each project’s corresponding
Issue objects. Projects and Issues are stored in separate relations,
with the association between them maintained using foreign key
project_id stored in each Issue. Retrieving a Project with its asso-
ciated Issues then becomes a relational join across the project and
issue relations. The idea is that by utilizing relational databases,
such object-oriented database applications (OODAs) can leverage
relational query optimization techniques to become efficient.

In practice, however, OODAs often exhibit characteristics that
make them distinct from traditional transactional processing or an-
alytical applications. In particular:

e Nested data model. OODAs often come with objects contain-
ing fields of variable-length lists, making data model highly non-
relational. For instance, a project containing a list of associated
issues, and each issue containing a list of developers assigned to it,
etc. While variable-length lists are common in classical database
applications (e.g., storing the list of ordered items in the TPC-C
benchmark), OODAs, being object-oriented, makes it very easy to
create deep object hierarchies including circular ones. While this
has been pointed out in a previous benchmark [29], modern object-
oriented languages and frameworks have exacerbated the problem:
the object hierarchy can easily reach more than 10 levels, with
nearly half of the queries returning objects from multiple levels.

e Many-way materialized joins. Due to deep object hierar-
chies, simple object queries like retrieving Projects that contain
issues can turn into a long chain of multi-way joins when trans-
lated into relational queries. Unlike analytical applications where
such joins are also common, the join results are directly returned
in OODAs rather than aggregated. As an example, a single query
can involve as many as 6 joins in the OODAs used in evaluation,
and return as much as 5GB of data. This makes the data structures
used to store persistent data of crucial importance as standard row
or column stores are not the best fit.

e Serialization cost. As the database and application represent
data in different formats, moving data across them incurs serializa-
tion cost. This cost is pronounced in OODAs as queries often return
a long list of hierarchical objects which requires converting mate-
rialized join result into objects and nested objects. Serialization
easily takes longer than retrieving data, as our experiments show.

e Complex predicates. OODA queries include many complex
predicates, as many frameworks expose methods to filter collec-
tions of persistent objects that can be easily chained. For instance,
Project.where(create>‘10/30’) .where(create<‘12/1’) returns all
Projects created in November. With each where call translated into
a selection predicate, the final query often contains many (poten-
tially overlapping or redundant) predicates as a result of passing a
collection through different method calls. In fact, in our OODA
evaluation corpus a single query can involve as many as 40 com-
parison predicates.

e Simple writes. Similar to transactional applications, most
writes in OODAs touch very few number of objects (one object
for each write query in our evaluation corpus). This makes write
optimization (e.g., batch updates) a secondary concern.

The above aspects make OODAs challenging to optimize using
standard query processing techniques. In this paper, we present
CHESTNUT, an in-memory data layout' and query plan genera-
tor for OODAs. CHESTNUT leverages recent advances in program
analysis, symbolic execution, and solvers to automatically gener-
ate a custom data layout given application code. To use CHEST-
NUT, user provides as input OODA source code (written using a
subset of the Rails [18] API) and a memory budget. CHESTNUT
then searches for the best in-memory data layout that optimizes for
overall query performance, and outputs C++ code that loads data
from disk, executes queries using the data layout, and updates in-
memory data and disk storage for writes.”

Internally, CHESTNUT breaks down the data layout generation
problem into three parts: for each query it first enumerates differ-
ent representations for the stored objects (e.g., as standalone ob-
jects, pointers, or nested in other objects) and the data structures
(indexes or arrays), and then enumerates query plans that use these
data structures. The designs for different queries are then com-
bined to find the globally optimal one for the entire application.
Unlike traditional physical designers that only focus on index de-
signs, CHESTNUT considers tabular and nested layout to store the
data along with indexes, as well as customized query plans that uti-
lize the generated data layout. To make enumeration and search
tractable, CHESTNUT analyzes application code to determine its
query needs and creates a custom search space given the applica-
tion code. To search efficiently, CHESTNUT relies on two carefully
designed internal representations (IRs) to succinctly describe the
space of data layouts, and formulates the problem of finding the
best model as an Integer Linear Programming (ILP) problem. Fi-
nally, CHESTNUT leverages symbolic execution and verification to
determine how to use the optimal design to answer queries and gen-
erates executable code.

We have implemented a prototype of CHESTNUT, and used it
to compare with three state-of-the-art in-memory databases using
real-world OODAs. To our best knowledge, CHESTNUT is the first
optimizer for OODA s that searches for all three aspects of query ex-
ecution (data model, physical design, and execution) concurrently.
In sum, this paper makes the following contributions:

e We design an engine that finds the best data layout for OODAs.
Our engine does not rely on rule-based translation as classical op-
timizers. Instead, it analyzes the application code to generate a
custom search space for the storage model, and uses a novel enu-
meration and verification-based algorithm to generate query plans.

'n this paper we use the term “data layout” to refer to both the data being stored (in
cases where only a subset of fields in an object and a subset of all objects are stored),
and the type of data structure used to store data in memory.

2CHESTNUT currently focuses on data layout design and considers other database
features like concurrency control as future work.

e Given the search space, we formulate the search for the best
data layout as an ILP problem. We also devise optimization tech-
niques to reduce the problem size such that the ILP can be solved
efficiently, with an average of 3 minutes of solving time when de-
ployed on real-world applications (Section 8).

e We built a prototype of CHESTNUT and evaluated it on four
popular, open-source OODAs built with Ruby on Rails framework.
Compared to the original deployment using an in-memory version
of MySQL, CHESTNUT improves overall application performance
by up to 42 x (with an average of 6x). It also outperforms popular
in-memory databases with an average speedup of 3.9x and 3.6
respectively. CHESTNUT compares favorably even after additional
indexes and materialized views are deployed (Section 8).

In the following, we first discuss related work and how is CHEST-
NUT different from previous tools (Section 2). Next, we give an
overview of CHESTNUT (Section 3) and introduce the search space
of data layout and query plan (Section 4). Then we introduce
CHESTNUT’s algorithm to enumerate query plans (Section 5 and Sec-
tion 6) and ILP formulation (Section 7). We conclude by presenting
experiment results on four web applications in Section 8.

2. RELATED WORK

Data layout design. There is much prior work on automatic data
layout design. One line of work explores ways to store data rather
than the traditional row or column-major stores for each single ta-
ble. For instance, Hyrise [41] and H2O [26] store columns together
as column groups instead of individually. Widetable [47] uses a
denormalized schema to accelerate OLAP queries. ReCache [28]
uses dynamic caching to store data in tabular and nested layout to
accommodate heterogeneous data source like CSV and JSON data.
While prior work focuses on a restricted set of layouts, CHESTNUT
integrally explores tabular and nested data layout together with aux-
iliary indexes, and also how objects are nested within each other,
which field and subset of objects to store, etc. Such aspects are
important for OODAs as our experiments show. CHESTNUT also
synthesizes query plans from the generated data layout instead of
relying on standard relational query optimizer. Doing so allows
CHESTNUT’s plans to better utilize the new data layout.

Another line of work focuses on learning the best data structure.
For instance, Idreos et al. [42] design a key-value store that learns
the configuration parameters to each or combinations of elemen-
tary data structures given query patterns. While reducing query
execution time, such work focuses on queries with simple patterns
on a single table. Queries in OODAs, which CHESTNUT optimizes,
have complex query patterns involving many classes, and that leads
to new challenges in deciding how to store objects of different
classes and picking the optimal design across multiple queries.

Another approach is to use program synthesis [49, 48] to gen-
erate data structures from high-level specifications. While prior
work optimizes only a single query without trading off update and
memory, CHESTNUT handles workloads with many read and write
queries subject to a memory bound and also determines how to
share data structures among queries.

Physical design. Automated physical design for relational databases
is a well-studied topic. AutoAdmin [24, 32, 25, 31] finds best in-

dexes and materialized views by trying different possibilities and

asking the query optimizer for the cost. To reduce the number of

optimizer calls, it uses heuristics to consider only a small number of

candidates. In contrast, CHESTNUT employs a different approach

that opens the “black box” of the query optimizer and uses program

synthesis to enumerate query plans instead of “what-if” calls.

CHESTNUT is not the only work that leverages ILP solver for
physical design. Cophy [37] and CORADD [45] use ILP solvers to

find the best indexes and materialized views to add within a mem-
ory bound. NoSE [51] uses ILP to discover column families for
NoSQL queries. Bruno et al. [30] use ILP to find the best sort or-
der and pre-joined views for column store, and BIGSUBS [43] uses
ILP to select common subexpressions that benefit the workload the
most if materialized. These projects show that ILP is an attrac-
tive way to solve physical design problems. However, as CHEST-
NUT searches not just over relational (1NF) designs but also non-
relational ones like nested objects and partial indexes, its formula-
tion is different from prior work due to the nature of the problem.
Machine learning models are also used for physical design. Prior
work [50, 52, 46] uses reinforcement learning to decide on join or-
der. They reuse the query optimizer and replaces heuristics with
machine learning models to utilize historical query performance to
fine-tune plan choices. CHESTNUT replaces heuristics with effi-
cient plan enumeration of the search space. It can find better plans
as optimizers often do not have comprehensive rewriting rules.
Object-oriented and document databases. CHESTNUT leverages
data structure concepts from object-oriented database systems [27,
441], such as the nested object model. Previous physical designers
for OODBs focus on devising a language to describe the physical
design [40, 38] or a single storage design that aims to optimize
all OODAs [3]. Instead, CHESTNUT tailors the storage design to
each application. CHESTNUT also proposes a language for storing
objects and for query plan, but uses it for verification purposes.
Other NoSQL stores like document databases also store data in
non-tabular format. However, the data model of document-oriented
DBMS is different from OODAs. Document database’s data model
fixes the way how data are nested as defined by its JSON schema.
Besides, document databases often support only limited query APIs,
unlike Rails. These aspects make document databases unsuitable
for OODAs given the complexity of such applications’ query needs.
Program analysis for database applications. Previous research
has used program analysis to help improve database applications,
especially database applications that embed SQL queries in object-
oriented programs. QURO [56] reorders queries without changing
application semantics, Powerstation [59] replaces inefficient ORM
API uses, QBS [34] optimizes query compilation by converting
functionalities written in object-oriented languages into database
queries, and StatusQuo [33] moves functionalities between the ap-
plication and the database. In contrast, CHESTNUT takes the queries
already compiled by Rails as input and finds the best data lay-
out. We believe techniques from prior work can be combined with
CHESTNUT to further improve the performance of OODAs.

3. OVERVIEW

In this section we give an overview of CHESTNUT using an ex-
ample abridged from a project management application Redmine.
This application [17] includes two classes to be managed persis-
tently, Project and Issue, with a one-to-many association from
project to issues, i.e., one Project can contain multiple Issue in-
stances, but each Issue belongs to at most one Project. Listing 1
shows the definition of two classes and two queries using Rails
API [18] supported by CHESTNUT: Q1 returns Projects created
later than a parameter p1 that contain open issues,’ and Q2 updates
an issue with id equals to p2 and changes its status to ‘close’.

class Project:

has_many: issues=>Issue # issues is a list of Issue
objects, can be retrieved as a field of Project
uint id

date created

exists” is a short-hand expression introduced by CHESTNUT that filters projects
based on their associated issues. The query can be written using standard Rails API as
Project.where("created>?",p).joins(issues, "status="open’").distinct.

class Issue:
has_one: project=>Project
uint id
string status
Q1 = Project.where(created>? AND exists(issues,status=
open'), pl)
Q2 = Issue.update(p2, status:'close')

Listing 1: An example application

object-oriented

A - INSERT

queries In memony UPDATE -

OODA app-specific | ————— N’
result as database DELETE v

objects v

T
Application server Backend

Figure 1: Using CHESTNUT’s data layout for OODAs.

To use CHESTNUT, developer provides the input OODA code
and a memory budget. CHESTNUT then generates the implemen-
tation of an in-memory data layout, consisting of data structures to
hold data in memory, indexes to speed up queries, and code that
leverages the data structures and indexes to answer queries embed-
ded in the OODA. The total size of the data structures and indexes
is subject to the provided memory budget. Figure 1 shows how the
OODA can use the CHESTNUT-generated database. Like other in-
memory databases, data is first loaded from persistent storage to
in-memory data layout created by CHESTNUT. Embedded queries
are implemented using CHESTNUT-generated code, with the results
from writes propagated to persistent storage, and read results re-
turned back to the application as in standard relational databases.

Internally, CHESTNUT searches for different ways to organize in-
memory data given the application code. Figure 2 shows a few data
layouts that CHESTNUT considers for Q1. In (a), the Projects and
Issues are stored in two separate arrays, as in standard relational
databases. Given this layout, to answer Q1, we scan the Projects
array, and repeatedly scan the Issues array for each Project to
find the associated open issues. Indexes can be used to avoid re-
peated scans. In (b), a B-tree index is created on the created field
of Project to quickly find those newly-created Projects, while an
index on the foreign key project_id of Issue can be used to find
Issues associated with a Project.

We test the data layout above with 400K projects and 8M issues
(altogether 3.2GB of data). Q1 takes 15s with 3.2GB of memory,
and 9s with 3.6GB of memory to finish using (a) and (b), respec-
tively. We can do better, however. Figure 2 (¢) and (d) show another
design that CHESTNUT considers, where (c) stores a nested array
of Issues within each Project object, and the Projects are further-
more sorted on created. With (c), checking whether an open issue
exists in a project can be done by checking the nested objects with-
out scanning a separate Issues array. Using this layout, Q1 finishes
in 7.4s with 3.2GB of memory. Q1 can run even faster with layout
(d), which only stores Projects that contain open issues, and sorted
by created. Using (d), Q1 requires only one range scan on the
Projects array and finishes in 0.3s using only 0.2GB of memory.
Note that as (c) stores nested objects, and (d) keeps only a subset of
the Projects in memory as determined by Q1’s predicate, neither
of them would be considered by relational physical designers, but
are within CHESTNUT’s search space of designs.

We now briefly describe how CHESTNUT finds the best data lay-
out. CHESTNUT first analyzes the OODA code and extracts all
query componenets written with the query APIs. It then enumerates
query plans for each individual read query, with each plan using a
different data layout. To do so, it first enumerates object nestings,
i.e., how associated objects are stored (such as Projects and the
embedded Issues in Figure 2). It then generates data structures for
each nest level that can be used to answer the query. These object

array[Project]

btree[roject]
[T T 1 I

btree[pri'lii id->Issue]
| F § |
(a) (b)

array[exists(issues, status==‘open’),
created->Project]
nestedArray[Issue]

l 71:[; ‘::l:: | E I \ | I:I:I:D
(c) (d)

Figure 2: Example of data layouts for Q1. A green box shows a
Project object and a blue shaded box shows an Issue object. A
triangle shows an index created on the array of objects.

array[lssue]

array[created->Project]

nestings and data structures define the search space of data layouts.
To generate query plans, CHESTNUT enumerates over the space of
query plans using the data structures. Such enumeration generates
many invalid plans, and CHESTNUT verifies each plan against the
query and retains only the valid ones. CHESTNUT also uses a few
heuristics to prune out plans that are unlikely to be the best.

All data structures enumerated above can be potentially used to
answer a read query, which need to be updated properly for writes.
CHESTNUT generates plans for each write query on every data
structure introduced when enumerating read plans. It first gener-
ates “reconnaissance” queries* that fetch the objects to be updated
as well as other relevant data, and searches plans for these recon-
naissance queries by treating them as normal read queries. During
this process, new data structures may be introduced and they also
need to be updated. CHESTNUT repeats the process until no new
data structure is introduced and every seen data structure can be
properly updated.

CHESTNUT formulates the problem of finding the data layout
that optimizes overall OODA query performance as an ILP prob-
lem. Solving the ILP tells us which data structure to use for the data
layout and the plan chosen for every query. CHESTNUT then gener-
ates C++ code that implements an in-memory application-specific
database based on this result.

Application
source code P ILP Code
prinine H Solver H gen
Input Chestnut Output
Figure 3: Workflow of CHESTNUT

The overall workflow of CHESTNUT is shown in Figure 3. We
next describe each step in detail.

4. DATA LAYOUT AND QUERY PLAN

In this section we introduce the search space for data layouts and
query plans.

4.1 Query Interface

CHESTNUT supports queries written using a subset of the Rails
API [18], including commonly used query operations such as se-
lection, projection, aggregation, etc [2]. As a review, all queries in
Rails start with a class name (we refer to it as the “base class”),
which by itself returns a list of all persistent objects of that class.
Functions can be applied to the returned list, e.g., where and find
along with a predicate, which is similar to relational selection. Join
functions (e.g., includes, joins) are used in Rails queries to retrieve
objects and their embedded (i.e., associated) fields, for instance,

C++ code for

* app-specific
in-memory DB

* A reconnaissance query is a read query that performs all the necessary reads to dis-
cover the set of objects to be updated given a write query, as introduced in [53].

given the has_many association [1] between Projects and Issues,
Project.includes(:issues) returns all projects that and their asso-
ciated issues. Further predicates can be specified to filter the join
result, for instance Q1 shown in Listing 1 returns only projects with
open issues using the CHESTNUT-provided exists shorthand.

When CHESTNUT analyzes the queries in the input OODA, it
first rewrites them into a stylized form for easy processing as shown
in Listing 2. A read query always starts from the base class, fol-
lowed by filters, ordering, and aggregation, then retrieval of asso-
ciated objects that are returned from subqueries. A subquery is
similar to a read query except that it can only retrieve associated
objects of the base class (e.g., issues that belongs to a project). For
write queries, CHESTNUT rewrites them into queries that updates
one object one at a time. As discussed in Section 1, OODAs often
update a single object at a time, hence we leave the implementation
of batch updates as future work.

readQ := Class.where(...).order(..).aggr(...)
.includes(association, subQ)
writeQ := Class. (insert|update|delete)(id,...)

Listing 2: Stylized CHESTNUT queries with Rails APIs in bold.

4.2 Data layout search space

As mentioned in Section 3, CHESTNUT searches for the best
data layout given a set of queries. A data layout describes how
CHESTNUT-managed objects are stored in memory (e.g., as a sim-
ple or nested array), including indexes to be added. CHESTNUT
customizes the search space for each set of queries. To make search
effective, we represent the search space using the language shown

below.
dataStructure = topArray | nestedArray | index
topArray = array(pred, key->value)
nestedArray = nested_array(pred, key->value, nested)
index = indexType(pred, key->topArray)
value = obj | pointer(topArray) | aggr(obj)
indexType = b-tree | hash
pred = predApred | predVpred | —pred
e==e |...| e in {e,...} | e between [e,e]|
exists(associatedObj, pred)
e = constant | parameter | f
key = {31 {f..}
f = field | (associatedObj.)™.field

In the above, topArray, nestedArray, and index are data struc-
tures that CHESTNUT enumerates during search. Top-level arrays
store objects of a single class (e.g., Project), pointers to objects
in another array,® or aggregation result. Top-level arrays can store
only a subset of objects of the class (e.g., projects created earlier
at a given time, as specified as the predicate pred), and the objects
stored can also contain only a subset of its fields (e.g., those that are
projected). Top-level arrays can also be sorted. The predicate pred
can involve associated objects as defined by has_many association
using exists (e.g., Q1 in Listing 1), or associated objects defined by
has_one as a normal class field (e.g., Issue.where(project.name=?)).
The field used in the predicate or order key can be the field of ob-
ject stored in the array or the field of an associated object, as de-
fined by has_one association. If the array stores aggregated values,
it may store a single aggregated value over a list of objects if key is
null (e.g., array(status=‘open’,null—count(issues)) stores the
count of all open issues), or aggregated values for each group (e.g.,
array(status—count(issues)) stores an array of (status, count)
pair for each status and its count).

Meanwhile, nested arrays store values of associated objects as an
array within another object. They are the same as top-level arrays
except that they store only objects associated with those in another
nested or top-level array.

5 . .
CHESTNUT currently does not support chained pointers.

Finally, indexes can be added to top-level arrays to map keys
to object pointers. CHESTNUT supports B-tree and hash indexes
created on all objects of one type, and also partial indexes on a
subset of objects as determined by a predicate (e.g., all open issues).

As shown above, topArray, nestedArray and index are de-
fined by three parameters: pred determines the set of objects to be
included in the data structure, key is the sorted order of an array
or index key, and value describes the objects or aggregation values
stored. For instance:

topArray(exists(issues, status=‘open’),created—Project)

is a top-level array that stores Project objects containing open is-
sues, and is sorted by the created field.

CHESTNUT’s data layout is inspired by its query interface. First,
because queries often filter objects of one class by examining their
associated objects, CHESTNUT supports creating predicates and in-
dex/order keys using associated objects. Moreover, because queries
often involve associated objects, CHESTNUT supports storing them
as nested arrays. As we will see in Section 8, these features al-
low CHESTNUT to greatly improve the performance of OODAs as
compared to traditional physical designers.

4.3 Query plan description

Given a data layout, CHESTNUT enumerates query plans to an-
swer each query in the application. As CHESTNUT’s data layouts
include nested data layouts that are not supported by relational
databases, CHESTNUT can no longer use their query plans for query
execution. We instead design an intermediate representation to rep-
resent CHESTNUT’s query plans as shown below. This intermediate
representation is designed to describe high-level operations on the
data structures such that the cost of a plan can be easily estimated,
while facilitating easy C++ code generation.

plan = (Scoll)™ (Ssdu)”™ (Ssetv)™ return v
coll = ds.scan(ky,k2) | ds.lookup(k)

Scoll = for v in coll: (plan)

Ssdu = sort(v) | distinct(v) | v’=union(wy,...)
Ssetv = if expr(v) setv

setv = w=expr | v.append(expr) |

ds.insert(k,v) | ds.update(k,v) | ds.delete(k,v)
expr = v4v|lvAv|...|*v|v.f|const

Each read query plan starts with a for loop that looks up from
an index or scans an array (Scou, wWhere ds is a data structure),
followed by statements (ss4.,) that perform sort, distinct, or union,
and returns a list of objects or aggregation result. The loop body
conditionally appends objects into the result object list or set the
value of variables like aggregation result (ssetv). Each scon loop
may contain recursive subplans with nested loops that iterates over
data structures storing associated objects.

Unlike relational databases that need to convert query results
from relations to objects (i.e., deserialization), CHESTNUTs query
plan returns objects and nested objects directly. Doing so reduces
the overhead of time-consuming deserialization and allows CHEST-
NUT’s query plan to be often faster than similar relational query
plans that require deserilization.

Likewise, a write query plan also starts with an index lookup or
array scan to find the object to update, followed by modification
of each identified object. Updating a nested object can be slower
than updating a relational tuple due to the overhead of locating the
object. Besides, multiple copies of an object may be stored which
makes a write query slower. However, since most updates in OODA
are single-object updates, the overhead of slower writes are small
compared to the gain from read queries, as we will see in Section 8.

5. QUERY PLAN GENERATION

We now discuss how CHESTNUT enumerates data layouts and

query plans efficiently and finds the optimal one for each read query.

After determining the best data layout, we discuss finding query
plans for write queries in Section 6.

5.1 Enumerate data layouts

CHESTNUT first enumerates data layouts that can be used to an-
swer a read query (). This includes enumerating object represen-
tations, i.e., whether objects of one class are stored as top-level or
nested objects, as well as data structures to be used. Each design is
described using the language described in Section 4. Unlike tradi-
tional physical designers, CHESTNUT only enumerates data struc-
tures involving objects and predicates used in Q). As we will see,
doing so greatly reduces the size of the search space.

Algorithm 1 Object nesting enumeration

1: procedure ENUMERATEDS(Q,C,dSypper=null)

2: models<—[] // data layouts to be returned

3 DS, «[]// data structures to store objects of C

4: for key€ {scalar fields of C used in Q} do

5: for prede{partial pred in) with no param} do
6.

7

8

if dsupper is null then
array<— array(pred, key,C)
DS..add(array)

9: DS..add(B-tree(pred,key,ptr(array))
10: DS..add(hash(pred,key,ptr(array))
11: else
12: DS..add(array(pred,key,C,dsupper))
13: for ac{C’s associated objects involved in Q} do
14: Qo < sub-query/sub-predicate on a
15: for an € EnumerateDS(Q,,ds) do
16: for dseDS. do
17: ds.addNested(an))

models.add(DS.)
18: for dseDS. do
19: ds.addNested(an.replace(value,ptr))
20: models.add(DS.)
21: for an € EnumerateDS(Q,) do
22: models.add(an.addNested(DS.))
23: return models

The algorithm in shown in Algorithm 1. It takes @ as input,
the class C to generate designs for, and optionally a design dsupper
where C is to be nested within (C is initially set to be the base class
of @ and dsypper is set to null). It first enumerates the data struc-
tures to store C and saves them in DS.. On line 4, it enumerates
C’s fields used in @’s predicates as the sort or index key for the
data structure to be created, e.g., created in Q1, and on line 5 the
predicates in @ that uses C and does not use input parameters, e.g.,
exists(issues,status=‘open’) in Q1’s predicates from Listing 1.
The data structures are then enumerated. If C is not to be nested in
another data structure (line 6), it then creates a top-level array using
the key and predicate (line 7), along with indexes on that array (line
8-10). Otherwise, C is nested in dsypper (line 12).

After enumerating the data structures to store C, we enumerate
the structures to store any associated class A of C that is used in
(). CHESTNUT considers three ways to store A, which we illustrate
using the Project-Issue association in Q1:

1. Store Issues as a nested array within each Project. Issues of
one project can then be retrieved by visiting these nested objects.

2. Same as 1. but store pointers to a separate array of Issues. In
this case issues of a project are retrieved through pointers.

3. Store Issues as a top-level array, and keep a copy of project
as a nested object within each Issue. Issues of one project p are
then retrieved by visiting top-level Issues and finding those whose
nested project matches p.

These three designs are generated from lines 15 to 22 in Algo-
rithm 1. We iterate through the different data structures used to
store C and combine that with data structures storing A. For every
associated class A, the algorithm first extracts the subquery or the
subquery’s predicate from () that uses A, e.g., the “status=‘open’”
predicate on the associated Issues. It calls EnumerateDS using the
sub-query or the predicate to recursively enumerate the data lay-
outs for A and A’s associated objects, and merges A into ds (i.e., the
data structure that stores C) using one of the three ways mentioned
above. The final layout is created by either nesting the associated
objects (line 17), nesting pointers (line 19), or nesting the parent
objects within the associated ones (line 22).

5.2 Enumerate query plans

Given the data layouts, CHESTNUT next enumerates query plans
for them. These plans are represented using the intermediate lan-
guage described in Section 4.3. Because of the huge variety of data
layouts that can be generated for each OODA, CHESTNUT does not
use rules to generate correct query plans as in traditional query op-
timizers. Instead, it enumerates as many plans as possible up to a
bound, and verifies if any of them is correct.

To illustrate, suppose we have a query () with no associations,
written as Class.where(pred).order(f,...) as described in Sec-
tion 4. Suppose we are given a storage model containing a list of
data structures {dso, ds1,... } storing objects of Q’s base class C.
CHESTNUT uses a skeleton that defines the “shape” of a query plan,
and enumerates only plans whose number of statements is smaller
than the number of disjunctions in Q’s predicate.®

The skeleton is shown as below:

plan = (op)™ (v’=union(vi,va,...))?
(distinct(v’))? (sort(v’))?
op := for o in ds.scan/lookup(params):

(if pred, v.append(0))

The skeleton consists of several operations (op) followed by op-
tional operations that merge and process the results from previous
operations: union, distinct, or sort. Each op performs a scan or
lookup on a data structure ds, and evaluates a predicate pred, over
the input objects. The skeleton is instantiated by filling in the data
structure ds, the predicate pred.., and the number of operations op
given the generated storage models.

If @ involves no associations, then all plans would be enumer-
ated by the above. If not, CHESTNUT enumerates sub-plans pl, to
answer the predicate on the associated objects using the same pro-
cess as above, and merges the sub-plans into the loop body of pl to
produce the final nested-loop query plan for ().

5.3 Verify query plans

We now have two ways to represent a query: as expressed using
the Rails API as described in Section 4, or as one of the CHEST-
NUT-generated query plans expressed using the intermediate lan-
guage described in Section 4.3. Our goal is to check the CHEST-
NUT-enumerated query plans to see which ones are semantically
equivalent to the input, i.e., they return the same results.

Testing can be used to check for plan equivalence: we gener-
ate random objects, pass them as inputs to the two plans, execute
the plans (using Rails for the input query, or as a C++ program for
the CHESTNUT-generated plan), and check if the two plans return
the same results. However, this is costly given the large number
of plans enumerated by CHESTNUT. CHESTNUT instead leverages
recent advances in symbolic reasoning [55, 36, 35] for verification.

6The idea is that each loop generated by op answers one one clause in the disjunction,
and objects from different clauses are then unioned to generate the final result. If @ is
a conjunctive query, then one loop would be sufficient to retrieve all objects.

This is done by feeding the two plans with a fixed number (cur-
rently 4) of symbolic objects but with unknown contents. Execut-
ing the plans with symbolic objects will return symbolic objects,
but along with a number of constraints. For instance, given the
following CHESTNUT-generated query plan that scans through an
array of projects:

for p in projects.scan:
if p.created < '"1/1":
v.append(p)

Executing this plan with an array of projects consisting of two
symbolic objects projects[0] = po with po = {created=ce} and
projects[1] = p1 with p1 = {created=c1} where the creation dates
c0 and c1 are unknown will return the following constraints:

if co < '"1/1' && c1 < "1/1':
viel = pe v[1] = pI
else if co >= "1/1"' && c1 < "1/1":
v[@]l = p1 v[1] = null
else if co < "1/1'" && c1 >= "1/1":
v[@] = po v[1] = null
else # both projects are created >= '"1/1"':
v[e] = null v[1] = null

While we do not know the concrete contents of v after execution,
we know the constraints that describe what its contents should be
given the input. We execute the Rails and CHESTNUT-generated
plan to generate such constraints, send them to a solver [23] to
check for equivalence under all possible values of ¢1 and c2, and
retain only those plans that are provably equivalent. Checking such
constraints can be done efficiently: in our evaluation it takes less
than 1s to check when fewer than two associations involved.

5.4 Anillustrative example

We now use Q1 in Listing 1 to illustrate query plan enumeration,
where it returns the Projects created later than a parameter param
that contain open Issues.

CHESTNUT first enumerates the data structures to construct data
layouts as described in Section 5.1. Figure 4(a) shows three data
layouts. In the first one, Issues are nested within each Project. A
few data structures to store Projects are shown from ds; to dss.
The keys of a data structure are fields used in Q1 like created in
ds1, and the predicates are partial predicates from () without pa-
rameters such as exists(issue,status=‘open’) in ds;. Different
combinations of keys, predicates, and data structure types are enu-
merated. CHESTNUT similarly enumerates nested data structures
to store Issues like ds4 and dss.

Other data layouts store the association between Projects and
Issues differently from layout 1. In layout 2, Projects store nested
Issue pointers that point to a top-level Issue array ds7, while in
layout 3, top-level Issues store nested Projects. These three lay-
outs shows the three ways to store associated class as described
in Section 5.1. In layouts 2 and 3, CHESTNUT also enumerates data
structures using different keys, predicate and data structure types,
with some of them are shown in Figure 4(a).

After the data layouts are enumerated, CHESTNUT then gener-
ates query plans as described in Section 5.2. Figure 4(b) shows
three examples of the enumerated plans. Since Q1’s predicate has
no disjunctions, CHESTNUT enumerates plans using the skeleton
with up to one op, and fills op with different ds and pred,. In
(1), the skeleton is filled with dso (the Project array that stores
all Projects), and pred,. as p.created>param. In (2), ds; and true
are used. Both (1) and (2) are complete plans as pred,s does not in-
volve associated objects. In (3) however, the predicate exists(issues,
status=‘open’) involves associated issues (as shown in @), SO
CHESTNUT generates a sub-plan that stores the nested Issues to

dsO: topArray[Project]

ds1: topArray[exists(issue, status="open’), created->Project]
ds2: topArray[created->Project]

ds3: B-tree[created->ptr(ds0)]

ds4: nestedArray[Issue]
ds5: nestedArray[status="op4

[

Storage model 1

n’,Issue]

ds0, ds1, ds2, ds3, ...

ds5: nestedArray[ptr(ds7)]

| NN N RN |

N|

ds7: topArray[Issum
Ixxtxxjxxtxxjxxtxxx\\x\\

Storage model 2

ds0, ds1, ds2, ds3, ...

CT T T T T T 11

ds7: topArray[lssue]
ds8: topArray(status=‘open’, project_id->Issue]

=

Nninik

N\ RN
NN

Storage model 3

\
\
\
\

(a) Example storage models enumerated by Chestnut

dsO: topArray[Project]

(1) Example plan 1, verified as invalid

for p in ds@.scan():
if p.created > param

v.append(p)

for p in dsl.scan(param, MAXTIME):
if true

v.append(p)

ds1: topArray[exists(issue,
status=="open’), created->project]

LT T T 1]

(2) Example plan 2, verified as valid

ds2: topArray[created->Project] for p in ds2.scan(param, MAXTIME):
1 E:I:D if exists(issue, status==‘open’)
v.append(p)

has_open_issue = false

for i in p.ds4.scan():

if i.status==‘open’:
has_open_issue = true

ds4: nestedArray[Issue]

AR AN

(3): Example plan 3. @ shows a filled skeleton, @ shows a sub-plan to
answer the predicate on Issue, and @ is merged into @ as nested loop (@).

(b) Example query plans enumerated given Q1 and storage model 1

Figure 4: Example of how CHESTNUT enumerates data structures and plans for Q1. A green box shows a Project and a blue box an Issue.

fill a skeleton, as shown in @ The sub-plan is then merged into
the loop of @ to form a complete plan.

Each plan is then verified against Q1 as described in Section 5.3.
The solver determines that plan 1 is invalid and discarded (as it does
not evaluate the partial predicate exists(issues, status=‘open’)
in Q1), while plan 2 and 3 are valid and retained.

5.5 Plan cost estimation

To find the optimal plan, CHESTNUT estimates the execution
time of a plan using a cost model, and assumes that predicate se-
lectivities are provided. The plan cost is then estimated as the num-
ber objects visited in the plan. For instance, the cost of the plan
1 shown in Figure 4(b) is Nprojects (i.€., number of Projects) as
each Project is visited once when scanning dso; the cost of plan
3 iS Nprojects * Nissueperproject /2 as the top-level loop visits
Nprojects /2 Projects (assuming the value of created is evenly dis-
tributed), and each nested loop Visits Nissue_per_project nested is-
sues. Other cost models can be used with CHESTNUT as well.

5.6 Reducing search space size

CHESTNUT’s enumeration algorithm produces a large number
of query plans for each query. CHESTNUT uses three heuristics to
prune away plans that are unlikely to be the optimal ones.

First, as mentioned in Section 5.1, CHESTNUT only enumerates
layouts involving classes used in the queries. A layout storing an
associated class A as top-level and C nested in A (e.g., layout 3 in Fig-
ure 4(a)) is discarded if the association is only used in one direction
in the application, for instance, queries only retrieve Issues given
Projects but not vice versa. Furthermore, if no query retrieves the
associated objects directly, then any layout that stores them as top-
level arrays (like layout 2 in Figure 4(a)) is also dropped.

Second, CHESTNUT drops plans that are subset of others. For
example, if p performs the same scans on the same data structure
ds twice while there exists another plan p’ that only scans ds once,
then p is redundant and is dropped.

Third, if the plans for one query have the same set of shared data
structures, then CHESTNUT only keeps the best ones in terms of
either least memory consumption or plan execution time. To do so,
CHESTNUT groups the plans enumerated for one query by the set
of data structures they share with other queries. For each group,
CHESTNUT drops all plans other than those that has minimum ex-
ecution time or uses a data layout with minimum memory cost.

These pruning heuristics can greatly reduce CHESTNUT s execu-
tion time, as we will discuss in Section 8.6.

6. HANDLING WRITE QUERIES

After enumerating plans for read queries, CHESTNUT generates
plans for writes. As mentioned in Section 1, OODAs often make in-
dividual object updates, hence CHESTNUT currently supports single-
object writes (i.e., insert, delete, or update), and translates multi-
object writes into a sequence of single-object writes.

To generate plans for writes, CHESTNUT first executes “recon-
naissance” read queries [53] to retrieve the objects that are updated.
After that, CHESTNUT enumerates plans for these reconnaissance
queries, whose results are then used to generate a write plan.

6.1 Generating reconnaissance queries

Given a write query (., on object o of class C and a data structure
ds, ds will be updated if ds’s predicate, key, or value involves C,
or ds contains nested object of class C. For example, if an Issue is
updated, Issue arrays and indexes, data structures whose key uses
Issue’s field and arrays containing nested Issue will be updated.

CHESTNUT generates up to two reconnaissance queries for each
ds. The first retrieves the affected object in ds using o’s id (de-
noted as 0g4s), and the second retrieves associated objects of 045 to
compute the new key and predicate of o4s. We use Q2 updating
ds1 as shown in Section 3 to illustrate. The first query (Qw1 below)
retrieves the project in ds1 containing the issue to be updated. The
second one (Qw2) retrieves that project’s issues to recompute if that
project contains any other open issues.

Qwl=Project.where(exists(issues, id=?))
Qw2=Project.where(id=?).includes(issues)

Listing 3: Read query to find the project of a deleted issue

6.2 Generate plans for write query

CHESTNUT then uses the same search procedure described in Sec-
tion 5 to find plans for the read queries generated, and constructs a
write plan using the read results.

The algorithm to generate write plans is shown in Algorithm 2.
Lines 5-6 generate the two read queries as described above. It then
finds plans for these queries using the same process shown in Sec-
tion 5 (line 7-8). These read queries find all the entry objects in ds
that need to be updated. For each entry object, it first deletes the
entry from ds (line 12), updates the entry and recomputes the key,
predicate and value (line 13), and reinserts it into ds (line 14).

Algorithm 2 Generate plan for @, to update ds
1: procedure GENWRITEPLAN(Q.,, ds)
2: plan<[]
3 if not isAffected(ds) then
4: return
5: Qwl<« ds.class.where(..., Q4 .id)
6.
7
8

Qw24 ds.class.where(..., obj.id)
plan.add_stmt((EnumeratePlan(Qw1))
plan.add_stmt((EnumeratePlan(Qw?2))

9: objs<—plan.result
10: for o € objs do
11: o.update()
12: ds.delete(o)
13: (k, pred, v)<—(ds.key(0),ds.pred(o),ds.value(o))
14: plan.add_stmt(if pred ds.insert(k,v))
15: return plan

CHESTNUT first generates an update plan for every ds enumer-
ated for all input read queries. In this process it generates new
reconnaissance queries, whose data layouts may contain new data
structures not used by any input read query, thus do not have corre-
sponding update plans yet. CHESTNUT iteratively produces write
plans to update these new data structures until no new data struc-
tures and all write plans are added. In practice, this process con-
verges quickly, usually within just a few rounds.

7. FINDING SHARED DATA STRUCTURES

The above describes CHESTNUT’s data layout and plan enumer-
ation for all queries in the OODA. By formulating into an integer
linear programming (ILP) problem, we now discuss how CHEST-
NUT selects the best data layout from them by trading off between
query performance and memory usage.

The ILP consists of the following binary variables:

e cach data structure is assigned a variable ds; to indicate whether
it is used in the chosen data layout.

e if ds; stores an object of class C, then each of C’s field f is
assigned a variable fgs,[s) to indicate if f is stored in ds; (recall
that a data structure may store only a subset of an object’s fields).

e each plan for read query % is assigned a variable p;; to indicate
if plan j is used for query .

e cach plan for write query ¢ updating a data structure ds is as-
signed a variable p;, to indicate if plan j is used to update the data
structure ds.

CHESTNUT estimates the memory cost of each data structure
ds;, denoted as C*, as well as the execution time of each query
plan C’fljs or ij 4 (for read or write plans, respectively) as described

in Section 5.5. It also calculates the size of field f as FsU1 and
estimates the number of elements in ds; as Nfls.

CHESTNUT then adds the following constraints to the ILP:

e Each read query uses only one plan: Ej pij =1

e Each write query uses only one plan:) j pija = 1.

e Plan p;; uses all the data structures dsy, . ..,dsy in its plan.
Similar constraints are created for write query plans: p;; — ds1 A
...Adsn.

e Plan p;; uses object fields fusf¢,],- - -, fas[ty] iN array ds in
the plan. A field is used when the plan has a ssetv Statement
that evaluates a predicate, computes an aggregation that involves
that field, or adds an object to the result set where the field is
projected. Similar constraints are created for write query plans:
Dij = fasig] N - A fasien]-

o If a data structure dsy, is affected by a write query)5, then at
least one update plan should be used: dsr. — A;(ViPj).

e The total memory cost of used data structures and object fields
should be smaller than the user-provided bound M: Y~ D; * chP+
>, NP« Ff) < M.

The objective is then to minimize the total execution time of all
queries:

QD ChEPyw) + (DY Y DaCliaPaws)
J “ od g

i

where the sums are the total execution time of all read and write
queries, respectively. Each query i is associated with a weight w; to
reflect its execution frequency in the OODA, which can be provided
by developers or collected by a profiler.

We use the example shown in Figure 4 to illustrate. Assume the
application contains Q1 and Q2 shown in Listing 1. Due to space,
we only show two plans for Q1 (shown in Figure 4(b)) and a subset
of data structures enumerated by CHESTNUT (ds1, ds2 and ds3).
The following lists a subset of the ILP constraints, while the rest
involving other plans and data structures are constructed similarly.
Q1 uses only one plan: p11 + pi2 + ... = 1.

Q2 uses only one plan to update ds1: p3;; + p3ia + .. = 1.
Q1’s planl uses ds1: p11 — ds1.

Q1’s plan2 uses ds2 and ds3: pi12 — dsa A dss.

Q1’s plan2 uses fields created in ds2 and status in ds3: p12 —

fd32 [created] A fd33 [status]-

e dsl is updated by Q2: ds1 — p511 V ...

e ds3 is updated by Q2: ds3 — P31 V

e Total memory consumed does not exceed bound: ds; * C{* +
dsz * CZdS + ot fdsg[created] * N2ds + fdsg[status] * NSdS < M.

e Goal: min(p11 * CT) x w1 + p12 x CTy x w1 + ...)

The ILP’s solution sets a subset of variables of ds;, fas,[f], Dij
Pija to 1 to indicate the data structures and plans to use, along with
a subset of fields to store in each data structure. CHESTNUT then
generates C++ code for the chosen plans and data structures us-
ing the STL library and Stx-btree library [19]. For query plans, it
translates each IR statement in the query plan into C++. We omit
the details due to space.

8. EVALUATION

CHESTNUT is implemented in Python with gurobi [9] as the ILP
solver, and uses the static analyzer described in [57] to collect the
object queries. We evaluate CHESTNUT using open-source Rails
OODA:s.

8.1 Experiment setup

8.1.1 Application corpus

Similar to prior work [58], we categorize the top-100 starred
Rails applications on GitHub into 6 categories based on their tags.
We then pick 4 categories, project management, chatting service,
forum, and web scraping, and pick one of the top-2 applications

from each category as our evaluation corpus. All of the four cho-
sen applications are professionally developed. They are selected
as “trending” Rails applications [16, 20, 4], and widely used by
companies, individual users [22, 21] and prior research [39, 59].

e Kandan [12] is an online chatting application structured with
classes User, Channel, Activity, etc. Users can send messages in
Channels. Each Channel lists Activitys, where an activity is often a
message. Queries in this application contain simple predicates, but
retrieve a deep hierarchy of nested objects. For example, Kandan’s
homepage lists channels with their activities and creators of each
activity. The corresponding data is retrieved using a query that re-
turns a list of Channels with nested Activitys, where each Activity
contains nested Users.

e Redmine [17] is a collaboration platform like GitHub struc-
tured around Project, Issue, etc. Each project belongs to a Module
and contains properties like issue tracking. The Tracker class is
used to manage what can be tracked in a project, such as issue up-
dates, and has a many-to-many relationship with Projects.

This relationship is maintained by a mapping table with two columns,
project_id and tracker_id. Such associations result in many-way
materialized joins as well as complex predicates predicates to re-
trieve the associated objects. In addition, Redmine’s queries also
use disjunctions extensively. For instance, it uses nested sets [14]
as trees to organize each project and its children projects. A query
that retrieves projects in a subtree with ID within the range (p1, p2)
is done using the predicate left>=p1 OR right<=p2, where left,
right Project’s fields. Such range predicates are often combined
with others and are difficult for relational databases to optimize
well. We will discuss this later in the evaluation.

e Lobsters [13] is a forum application like Hacker News. Per-
sistently stored classes include User, Story, Tag, etc. Users share
URLs as stories and add tags to them. Lobsters has similar query
patterns as Redmine, with many-to-many associations. For exam-
ple, a Story has many Tags, and the same Tag can be added to many
Storys. As a result, many queries are multi-way joins.

e Huginn [11] is a system to build agents to perform automated
web scraping tasks. It persistently stores Agents, each with a set
of Delayed_jobs to automatically run in the backend to watch these
Agents, and records Events when any update happens. Its queries
retrieve a hierarchy of nested objects, as well as aggregations to
render the current state of an Agent in various ways.

Table 1: Application statistics

Application # of classes # read queries # write queries
Kandan 6 10 6
Redmine 12 24 6
Lobsters 7 26 10
Huginn 6 16 7

We select the top-10 most popular pages from each application.
These pages are chosen by running a crawler from prior work [58].
The crawler starts from the application’s homepage and randomly
clicks on links or fills forms on a current page to go to a next page.
This random-click/fill process is repeated for 5 minutes, and we
collect the top 10 mostly-visited pages. Table 1 shows the total
number of classes and distinct read and write queries involved in
the popular pages. We collect the queries executed when generating
these pages from the SQL query log, and trace back to the object
queries defined in the application. These object queries then serve
as input workload to CHESTNUT.

We populate the application’s database with synthetic data using
the methodology described in [58]. Specifically, we collect real-
world statistics of each application based from its public website
or similar website to scale data properly as well as to synthesize

database contents and application-specific constraints. We scale
the size of the application data to be 5GB-10GB, which is close to
the size of data reported by the the application deployers [5, 6].

8.1.2 Baseline database engines

We compare the CHESTNUT-generated database with relational
in-memory databases, including MySQL, PostgreSQL and a com-
mercial database.

e MySQL (version 5.7). The original applications use MySQL
as the default backend database, so we use the same setting as the
baseline and add the same indexes that the developers specified in
the application.

e PostgreSQL (version 12). We use an indexing tool [7] to ana-
lyze the query log and automatically add more indexes besides the
ones that come with the application. We set the buffer pool size for
MySQL and PostgreSQL to be larger than the total of data and in-
dexes (20GB) such that data stays in memory as much as possible.
We use the default value for other settings.

e System X. We further use a commercial high-performance in-
memory column-store database as the third comparison target. We
add the same set of indexes we use in PostgresSQL as suggested by
the automatic indexing tool.

e CHESTNUT. When using CHESTNUT, we measure the actual
total size of tables and indexes used by PostgreSQL and set it as the
memory bound for CHESTNUT. We replace the database engine
and Rails’ serialization code with CHESTNUT, and connect to a
backend MySQL database to persist data.

We measure the time from issuing the query until the result con-
verted into Ruby objects as the query time. Hence query time
includes both data-retrieving time, i.e., the time to execute the
queries, and deserialization time, i.e., the time to convert query re-
sults into ruby objects. For relational databases, Rails deserializes
the query result from relational tables into (nested) Ruby objects.
CHESTNUT’s query plans return results as C++ (nested) objects,
and uses protocol buffer [15] to convert them into Ruby objects.

All evaluations are performed on a server with 128 2.8GHz pro-
cessors and 1056GB memory. In our current prototype CHESTNUT
does not support transactions, so we run queries sequentially and
measure their latency.

8.2 Performance Comparison

Figure 5 shows the performance comparison across OODAs. We
focus on slow queries takes longer than 100ms to execute in the
original application setting as they are often performance bottle-
necks. To get a better understanding of such queries, we show the
breakdown of data retrieval and deserialization time in Figure 5.
We show only the summary, i.e., the min, max and mean times of
the remaining read and write queries as they execute quickly.

The results show that using the automatic indexing tool improves
the performance for half of the slow queries by up to 163 x. In-
terestingly, unlike OLAP queries where in-memory column stores
can substantially accelerate queries, System X does not achieve
similar speedup for OODA’s queries. As discussed in Section 1,
this is because query results in OODAs are often not aggregated
but returned as lists of objects where all columns are projected.
Rather than speeding up queries, columnar store instead adds the
non-trivial overhead of row materialization. Compared to other re-
lational database engines, CHESTNUT shows better performance in
all slow queries, with an average speedup of 6, 3.9%, and 3.6
against the MySQL, PostgreSQL, and System X respectively.

The memory consumption comparison is shown in Table 2. It
shows the size of the application data and the maximum runtime
memory used by PostgreSQL (e.g., tables, indexes and intermedi-
ate tables) and CHESTNUT’s engine (e.g., data layout). Despite

0.13s

- 0.10 0.10
® 100% r = original -
£ 2 =3 postgres |~ 0,08 5 0.08
5 80% = systemx | g
° B chestnut | =] = 1
2 so%d o 0.06 v 0.06
E = 0.04 = 0.04
g % g g
B 20%- / I 9 0.02 T @ 0.02 1 é
£ Z = /% - 0.00 - ¥ T ! 0.00 == " -
Q4 original postgres system X chestnut original postgres system X chestnut
slow read queries short read queries write queries
(a) Kandan
16.2s 20.8s 8.2s 5.08 15.0s 5.65 0.4s 0.4s 40.0s 0.10 0295 0.13s 0.10 0.23s
T 100% =1 original | ' '
B =3 postgres S 0.08) 0.08
5 80% = systemx | g
o B chestnut ~ J ~ d
2 so%d v 0.06 2 0.06
£ £ £
= S 0.04 1 S 0.04 1
= 40% A 9 9
g 6% 4% % %
E 20% 0.7% 1% 02% ©0.02 1 @ 0.02 4
° <0.1% I 0.6% 0.1% i_
0% r . s - v " r 0.00 -—+ ; . 0.00 1 —
Q1 Q2 Q3 Q4 Q! Q6 Q7 Q8 Q9 original postgres system)(‘ chestnut original pos!.gres syste‘m)(chestnut
slow read queries short read queries write queries
(b) Redmine
2.9s 7.4s 150.25 0.1s 195 0.3 0.7s 0.55 0.10 0.155 0.10 0385 0.27s
T 100% == =1 original | ' '
2 so% %7 = oo | § 0% 7%
4 system Q Q
g %%% B chestnut 2z 4 2 4
2 60%- éé% E 0.06 GE, 0.06
3 O = =
S a0% ééé 5 0041 5 0041
2 /% 7 4% % I3
S % 0.02 - © 0.02 4
S 0% : YL 77 W77 g : — [000l== = =~ £ 0.00 4
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 original postgres system X chestnut original postgres system X chestnut
slow read queries short read queries write queries
(c) Lobsters
0.2s 31.4s 12s 18s 0.1s 0.9s
- 0.10 0.10
© 100% | 1 original
= b . 3 postgres | - 0.08 - < 0.08
5 80% - 2% =3 systemX | @ 4
2 %%% B chestnut 2 0.06 1 o 0.06 1
5 60% %%% g g
£ Loud %%% = 0.04 = 0.04
14 / [Q
> x x
B 20% %%% v 0.02 g @ 0.02 4 i
°© 1.0% é
0% T % %% f 0.00 T T T T 0.00 % T @ T
Q4 Q5 Q6 original postgres system X chestnut original postgres system X chestnut
slow read queries short read queries write queries
(d) Huginn

Figure 5: Query performance comparison. Figures on the left shows the relative time of slow queries compared to the original. The original
query time is shown as text on the top. Each bar is divided into the top part showing the data-retrieving time and the shaded bottom part
showing the deserialization time. Figures on the right shows the summary of other short read queries and write queries.

Table 2: Comparison of runtime memory cost

App data size PostgreSQL CHESTNUT
Kandan 5.1GB 7.2GB 5.8GB
Redmine 5.9GB 8.3GB 7.4GB
Lobsters 9.8GB 14.5GB 13.7GB
Huginn 6.0G 9.8G 9.0G

using smaller amount of memory than PostgreSQL, CHESTNUT
still achieves significant performance gain in comparison, as shown
in Figure 5.

We next present case studies to analyze why CHESTNUT’s data
layout delivers better performance on OODA’s queries.

Case 1: Kandan-Q1. This query, shown in Figure 6(a), retrieves
the first 50 Channels ordered by its id, where each Channel includes
its associated Activitys and each Activity includes its associated
User. The Rails-generated SQL queries are shown in Figure 6(b).
They first select from the channel table, then use the foreign key
channel_id to select from the activity table, followed by a third se-
lection from the user table using the values of the user_id column
in the second query result as parameter. The cost of combining the
tuples from these tables to generate the final query results is pro-
hibitively expensive. Rails would 1) create Channel objects from
the result of the first query, 2) create Activity objects from the sec-

ond query, 3) group Activity by channel_id and insert into Channel
as nested object, 4) similarly create nested User object inside each
Activity. In our evaluation, with one channel having 10K activities
on average, deserialization alone takes 55s to finish, which is much
longer than query execution time.

CHESTNUT instead generates a layout that stores Channel objects
in an array sorted by id, a nested array of associated Activity point-
ers within each Channel object, and User pointer in each Activity,
as shown in Figure 6(c). To answer this query, CHESTNUT’s query
plan scans the Channel array. Inside this scan loop, it uses a nested
loop to retrieve Activity objects via pointers stored in each Channel,
and then retrieves User objects via pointer stored in each Activity.
Although such nested-loop query plan is slower than System X
(7.5s compared to 1.7s), skipping object materialization greatly re-
duces deserialization time from 55s to 1.5s.

Case 2: Redmine-Q3. This query, shown in Figure 9(a), re-
trieves the Trackers that relate to active projects that contains issue-
tracking module. Rails generates a query that contains three joins
as shown in (b). The first two joins retrieve the associated Projects
for each Tracker through the mapping table project_tracker. The
third join is a semijoin that selects Projects within the issue-tracking
module. Since the inner joins produce a denormalized table with

Channel.includes(activities, includes(user)) (a)
.order (id).1imit(50)

SELECT * FROM channel ORDER BY id LIMIT 50;

SELECT * FROM activity WHERE channel_id IN (..); (b)
SELECT * FROM user WHERE id IN (..);

ds,: array[id->Channel]

for c in ds..scan:
ds,: nestedArray[ptr(Acfivity)] Cp=C
OO T 1] 1 for a in c.ds,.scan: (©)
i a, = *a
ap.user = *((*a).user)
Cy.activities.append(a,)
v.append(cy)
return v

topArray[Activity]

topArray[User]

Figure 6: Case study of Kandan-Q1. (a) shows the original query.
(b) shows the corresponding SQL queries. (c) shows the data layout
(left) and the query plan (right) generated by CHESTNUT.

duplicated trackers, the query then groups by Tracker’s id, fol-
lowed by DISTINCT to generate a list of unique trackers. This many-
way join takes over 8s to finish in the original application, 592ms
after indexes are added in PostgreSQL, and 98ms with System X.

As this query does not have user-provided parameters, its results
can be pre-computed. The CHESTNUT-generated data layout does
exactly this: it stores the Trackers that satisfy the query predicate
into an array such that the query plan only scans this array, as shown
in Figure 9(c). Doing so reduces the query time to only 0.2ms.

However, the data layout chosen by CHESTNUT brings extra
overhead to update queries. A query that removes an issue-tracking
module from a project slows down from 1ms to 76ms, since the
write query plan now needs to re-examine a tracker’s projects to see
if that tracker contains other active, issue-tracking-enabled projects
other than the one to be removed. However, the write query’s over-
head is relatively small comparing to the read queries, and the over-
all application performance application is still improved.

Case 3: Redmine-Q8. The query is shown in Figure 10(a). It re-
trieves projects of a user-provided status in a subtree whose range is
defined by the left and right parameters. When the selectivities of
predicate “status=? AND left>=?" and “status=? AND right<=?"
are small, indexing on (status, left) and (status, right) can
accelerate the query compared to a full table scan. CHESTNUT-
generated data layout creates these two indexes on Projects. The
corresponding query plan performs a range scan on each index and
unions the results, taking only 69ms to finish. Query optimizers
in MySQL, PostgreSQL, and System X are unable to use such in-
dexes for this query. Their query plans scan the entire project ta-
ble even when the indexes are created, resulting in over 180ms to
finish for all engines. Our investigation reveals that the plans will
leverage these indexes only when the query is rewritten using UNION
instead of OR, which is not how Rails generates queries. In contrast,
CHESTNUT uses custom enumeration and symbolic reasoning to
find query plans rather than looking for particular query patterns to
optimize. As a result, it finds better query plans as compared to the
relational engines.

8.3 Comparison with materialized views

We next compare CHESTNUT’s data layouts with materialized
views (MVs). We use MVs to optimize the slow queries executed
using relational database engines even after indexes are added. For
each of these queries, we manually create different combinations of
views and indexes in System X to the best of our abilities and pick
those that give the best performance. Since MVs are designed to
optimize a single query, it is often a union of all query results under
different parameter values, indexed by the fields that are involved
in the query to compare to user-provided parameters. For example,

the best MV for Q1 shown in Listing 1 is a table of all Projects con-
taining open issues, with a clustered index created on field created.
We measure the amount of memory used to create MVs for each
query, and use it as the memory bound for CHESTNUT.

Both MVs and CHESTNUT selectively determine which subset
of data to store, but MVs still use tabular layout and return rela-
tional query results. Instead, CHESTNUT chooses from both tab-
ular and nested data layouts, as well as their combinations, and
generate query plans that return objects. When using MVs, the bot-
tleneck for slow queries is again object deserialization. Although
MVs greatly accelerate the relational query, the overall query time
is still dominated by deserialization. CHESTNUT’s query plan in-
stead returns nested objects directly without changing the data rep-
resentation, significantly reducing deserialization time. The result
is shown in Figure 7, where CHESTNUT’s query plan outperforms
its relational counterpart by 3.69x on average.

8.4 Scaling to larger data sets

In this experiment we show how CHESTNUT performs when we
scale the application’s data. We scale Kandan’s data to 50GB,
and the evaluation result is shown in Figure 11. With larger data
sets, the time spent in deserialization becomes more dominant, and
CHESTNUT’s ability to speed up data deserialization becomes very
significant. Over the four slow read queries, CHESTNUT achieves
an average speedup of 9.2x compared to MySQL, 6.6 X to Post-
greSQL and 6.5x to System X on the SGB dataset, but speedup
increases to 20, 12.3x, and 12 X respectively once data increases
to 50GB.

8.5 Evaluation on TPC-H

To isolate the effect of data deserialization, we next evaluate
CHESTNUT using eight analytical queries from the TPC-H [54]
benchmark. Most TPC-H queries can be expressed using the Rails
API in the stylized form as shown in Listing 2. We use CHEST-
NUT to find the best data layout for each query and compare the
performance with System X (column store without indexes). Since
these queries do not return objects, we do not include deserializa-
tion when measuring the query time, thus allowing us to study the
quality of CHESTNUT-generated data layouts and plans.

The result is shown in Figure 8. CHESTNUT-generated database
is slower in Q3 and Q6. In comparison to System X’s column-
oriented data store and custom machine code generation, CHEST-
NUT uses a slow sort from C++ STL and table scans over C++
vectors. For other queries, however, CHESTNUT is more efficient
due to the better layout it finds compared to columnar tables. For
example, a partial index on Q5 reduces the query time by over 90%
because QS5’s predicate involves many joined relations where the
join predicates can be pre-computed because they do not involve
user-provided parameters.

8.6 Search and verification time

We run CHESTNUT on a machine with 256 cores and 1056GB
memory using 32 threads, and measure the time used to find the
best data layout.

Table 3 shows the total number of query plans enumerated by
CHESTNUT (before and after pruning) and the time taken to find
the best layout. The total running time includes plan enumeration
and verification (described in Section 6), as well as ILP solving
(described in Section 7). CHESTNUT enumerates a large number of
plans even for a few queries, up to millions. With the pruning op-
timization described in Section 5.6, however, the number is greatly
reduced by 53-96%. This reduction makes the ILP solving finishes
quickly, as quick as 3min in average.

[postgres+index [postgres+matview

3 system X+matview
61.68s 8.36s 1.29s 8.90s 4.56s 0.77s 0.24s 0.31s 0.56s

g roo% g %) 7, 7
7 22 Z

a 7% % %% 2 Y %

o 7 U o ’
e 6%y 72 7 7 o 7 /

o 7 G wad G 7
o o 7 g % v /
Eas%l G G 1) 7 ’
£ " 7 T o 7
s v % A 5 G 7
) 9 G/ AL G e G 7
521 7 0 a7 /2 0.9% o
2z RO R 7
= i 7708 7 U Ujs U 7

Z

2% 27 !

o
X

~

Tracker.where(exists(projects, status!=‘inactive’
AND exists(modules, name=‘issue_tracking’)))

(@)

SELECT DISTINCT * FROM tracker t INNER JOIN project_tracker pt
ON pt.tracker_id = t.id
INNER JOIN project p ON p.id = pt.project_id WHERE
(p.status != 'inactive' AND EXISTS (b)
(SELECT 1 AS one FROM module m
WHERE m.project_id = p.id AND m.name='issue_tracking'))
GROUP BY t.id;

ds,: array[exists(projects, status!=‘inactive’
AND exists(modules, name=‘issue_tracking’)),

Tracker]
N I
Figure 9: Case study of Redmine-Q3.

for t in ds,.scan:
v.append(t) (c)
return v

Project.where(status=? AND (left>=? OR right<=?)) (a)

SELECT * FROM project WHERE status=? AND

(left>=? OR right<=?) (b)

for p in ds,.scan:
Vo-append(p)

init(v,)

for p in ds,,.scan: (©)
v;.append(p)

v=distinct(union(vy,v,))

return v

Figure 10: Case study of Redmine-QS.

025 8.65 0.10 0.2950.185

ds,;: btree[(status,left)->Project]
dsy,: btree[(status,right)->Project]

0.10

3 orig
3 pg 0.08 0.08
=3 x
. ch 0.06 0.06
0.04 0.04
n.9%
0.02 0.02 E
0.00 0.00 ;
Q3 Q4 orig pg x chn oig pg x chn

Slow read queries short read queries write queries

Figure 11: Scaling Kandan’s data to 50G.

While solving ILP is fast, the majority of CHESTNUT’s running
time lies in plan enumeration and verification. This part varies
greatly depending on the query pattern. It becomes slow when a
query involves many associations. An association between classes
C1 and C> involved in a query predicate produces a large sym-
bolic expression to encode the mapping. When many associations
involved, the number of mapping expressions grows exponentially.
Verifying complicated expression takes longer and slows down plan
synthesis. For a query involving six associations, verifying one
plan can take over Smin. Fortunately, verification can often be done
in parallel, as discussed in Section 5.3.

Plan synthesis can also be slow when the query predicate in-
volves many disjunctions (e.g., many ORs are involved). As plan
synthesis enumerates all plans from small a size up to a bound de-
termined by the number of disjunctions (described in Section 5.2),
lots of disjunctions leads to a large upper bound, hence many more
plans to be enumerated and verified.

Meanwhile, the reason for CHESTNUT’s relatively longer run-
ning time on TPC-H and Lobsters is due to the two reasons men-

AR agyy

N
AL ERRRRRRRRRR Y|

Q1 K-Q2 KQ4 RQ2 RQ4 RQ5 RQ7 LQL LQ2
Figure 7: Comparison with hand-tuned materialized views on individual slow queries.

B chestnut
x [system X [chestnut
136.49s 1.98s g 150% 278.2%
H
22 7
247
é?é @ s 0.21s 0.31s 0. 0.14s 0.15s 0.16s
?% o 100%
% S
%% o
%? E 50% -
7% s
. ¢
7% =] Ly
% g 0% r -
%é] Ql Q3 Q4 Q5 Q6 Q12 Ql4 Q19

103 L-Q5
Figure 8: Evaluation on TPC-H.

Table 3: The number of query plans before and after pruning, and
CHESTNUT’s running time.

App # query plans running time unoptimized
Orig prunel+ | plan ILP total mode
prune2 enum solve # query plans

Kandan 405 191 <Imin <Imin Imin 34

Redmine | 78K 5K 9min Imin 10min | 46

Lobsters | 2031K 166K 42min 12min S4min | 117

Huginn 9K 880 3min <Imin 3min 41

TPC-H 143K 667 48min <Imin 48min | 43

tioned above. Some queries in TPC-H involve many associations,
for instance, Q5 involves six associations; some has multiple dis-
junctions. Kandan has the shortest running time because it is a
small application with the fewest number of classes and associ-
ations, and the query predicates are simpler. For Redmine, al-
though it also has queries with disjunctions and associations, it is
fast because many sub-queries in Redmine shares the same predi-
cate. CHESTNUT caches the plans synthesized for each query and
sub-query, and reuses the plans when seeing the same (sub-)query
without synthesizing from start, so the running time is shorter than
TPC-H and Lobsters which barely have any shared sub-queries.
Despite pruning, CHESTNUT still takes a while to compile a few
applications. To help developers view and test data layouts quickly,
CHESTNUT can run in an “unoptimized” mode where the search
space of data layouts is restricted to use only row-major tabular lay-
out with foreign key indexes. For all applications, CHESTNUT enu-
merates much fewer plans (as shown on the last column of Table 3)
and the total running time under this mode is less than 1 minute.
We envision developers running CHESTNUT in unoptimized mode
to get a preliminary design, and rerun CHESTNUT in full mode once
their application is ready for deployment to obtain the best results.

8.7 Discussion and future work

CHESTNUT currently has a few limitations. First, it does not
handle concurrency control and multi-threading. Second, CHEST-
NUT’s data layout may not be able to adapt to code and data distri-
bution changes, and will need to recompile the application from the
start. While incremental data layout update is an interesting work,
we believe running CHESTNUT under the “unoptimized” mode will
help developers get data layouts quickly during development time.

9. CONCLUSION

In this paper we presented CHESTNUT, a generator for in-memory
database for OODAs. CHESTNUT searches for customized differ-
ent types of data layouts to improve the performance of queries.
Our experiments show that CHESTNUT can improve application’s
query performance by up to 42 x using real-world applications.

10. ACKNOWLEDGEMENTS

This work is supported in part by the NSF through grants IIS-
1546083, 1IS-1651489; DARPA award FA8750-16-2-0032; DOE
award DE-SC0016260; and gifts from Adobe, Google, and Intel.

11.

[

[2]
[3]
[4]
[5]
[6]

[7

[8]

[9]
[10]
(1]
[12]
[13]
[14]

[15]

[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]

[25]

[26]
[27]
(28]
[29]
[30]
(31]
[32]
(33]
[34]
[35]
[36]
[37]
(38]

[39]

REFERENCES

Active record association.
https://guides.rubyonrails.org/association_basics.html.
Active record query interface.
https://guides.rubyonrails.org/active_record_querying.html.
Comparing oodb with LINQ.
https://msdn.microsoft.com/en-us/library/aa479863.aspx.
Curated list of awesome rails lists.
https://project-awesome.org/ekremkaraca/awesome-rails.
Database size reported by web developers.
https://meta.discourse.org/t/slow-sql-queries/16604.
Database size reported by web developers.
http://www.redmine.org/issues/23318.

Dexter, an automatic indexer for postgres.
https://github.com/ankane/dexter.

Django, a python web application framework.
https://www.djangoproject.com/.

Gurobi ilp solver. http://www.gurobi.com/.

Hibernate, an orm framework for java. http://hibernate.org/orm/.
Huginn, an agent monitor. https://github.com/huginn/huginn.
Kandan, a chatting application. https://github.com/kandanapp/kandan.
Lobsters, a forum application. https://github.com/lobsters/lobsters.
Nested set model, a model to represent tree using relational table.
https://en.wikipedia.org/wiki/Nested_set_model.

Protocol buffer, a language-neutral, platform-neutral extensible mechanism for
serializing structured data.
https://developers.google.com/protocol-buffers.

ranking of popular open source rails applications.
http://www.opensourcerails.com/.

Redmine, a project management application.
https://github.com/redmine/redmine.

Ruby on rails, a ruby web application framework.
https://rubyonrails.org/.

Stx-btree library. https://github.com/bingmann/stx-btree.

top7 forceful rails apps for business management.
https://www.cleveroad.com/blog/

effective-ruby-on-rails-open-source-apps-to-help-your-business.

who uses huginn. https://github.com/huginn/huginn/wiki/
Companies-and-People-Using-Huginn.

who uses redmine.
http://www.redmine.org/projects/redmine/wiki/weareusingredmine.
Z3 theorem prover. https://github.com/Z3Prover/z3.

S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated selection of
materialized views and indexes in sql databases. In PVLDB, pages 496-505,
2000.

S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizontal
partitioning into automated physical database design. In SIGMOD, pages
359-370, 2004.

1. Alagiannis, S. Idreos, and A. Ailamaki. H20: A hands-free adaptive store. In
SIGMOD, pages 1103-1114, 2014.

M. Atkinson, D. DeWitt, D. Maier, F. Bancilhon, K. Dittrich, and S. Zdonik.
The object-oriented database system manifesto. Elsevier, 1990.

T. Azim, M. Karpathiotakis, and A. Ailamaki. Recache: Reactive caching for
fast analytics over heterogeneous data. PVLDB, 11(3):324-337, 2017.

J. A. Blakeley, W. J. McKenna, and G. Graefe. Experiences building the open
oodb query optimizer. In SIGMOD, pages 287-296, 1993.

N. Bruno and S. Chaudhuri. Automatic physical database tuning: A
relaxation-based approach. In SIGMOD, 2005.

N. Bruno and S. Chaudhuri. Constrained physical design tuning. PVLDB,
19(1):4-15, 2008.

S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index selection tool
for microsoft sql server. In PVLDB, pages 146-155, 1997.

A. Cheung and O. Arden. Statusquo: Making familiar abstractions perform
using program analysis. In CIDR, 2013.

A. Cheung, A. Solar-Lezama, and S. Madden. Optimizing database-backed
applications with query synthesis. In PLDI, pages 314, 2013.

S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette: An automated prover for
SQL. In CIDR, 2017.

S. Chu, K. Weitz, A. Cheung, and D. Suciu. HoTTSQL: Proving query rewrites
with univalent SQL semantics. In PLDI, pages 510-524, 2017.

D. Dash, N. Polyzotis, and A. Ailamaki. Cophy: A scalable, portable, and
interactive index advisor for large workloads. PVLDB, 4(6):362-372, 2011.

L. Fegaras and D. Maier. An algebraic framework for physical OODB design.
In DBLP, pages 6-8, 1995.

J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Aradjo, M. Ek, E. Kohler, M. F.
Kaashoek, and R. Morris. Noria: dynamic, partially-stateful data-flow for
high-performance web applications. In USENIX, pages 213-231, 2018.

[40]
[41]

[42]

[43]
[44]

[45]

[46]
[47]
[48]
[49]
[50]
(511

[52]

(53]

[54]
[55]
[56]
[57]

[58]

[591

D. Gluche and M. Scholl. Physical design in OODBMS. In Grundlagen von
Datenbanken, pages 21-25, 1996.

M. Grund, J. Kriiger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden.
Hyrise: A main memory hybrid storage engine. PVLDB, 4(2):105-116, 2010.
S. Idreos, N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, A. Ross, J. Lennon,
V. Jain, H. Gupta, D. Li, et al. Design continuums and the path toward
self-designing key-value stores that know and learn. In CIDR, 2019.

A. Jindal, K. Karanasos, S. Rao, and H. Patel. Selecting subexpressions to
materialize at datacenter scale. PVLDB, 11(7):800-812, 2018.

W. Kim and F. H. Lochovsky. Object-oriented concepts, databases, and
applications. ACM Press/Addison-Wesley Publishing Co., 1989.

H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik. Coradd:
Correlation aware database designer for materialized views and indexes.
PVLDB, 3(1):1103-1113, 2010.

A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. In CIDR, 2019.
Y. Li and J. M. Patel. Widetable: An accelerator for analytical data processing.
PVLDB, 7(10):907-918, 2014.

C. Loncaric, M. D. Ernst, and E. Torlak. Generalized data structure synthesis. In
ICSE, 2018.

C. Loncaric, E. Torlak, and M. D. Ernst. Fast synthesis of fast collections. In
PLDI, pages 355-368, 2016.

R. Marcus and O. Papaemmanouil. Towards a hands-free query optimizer
through deep learning. In CIDR, 2019.

M. J. Mior, K. Salem, A. Aboulnaga, and R. Liu. Nose: Schema design for
nosql applications. In /CDE, pages 181-192, 2016.

J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state
representations for query optimization with deep reinforcement learning. In
DEEM, pages 4:1-4:4, 2018.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi.
Calvin: Fast distributed transactions for partitioned database systems. In
SIGMOD, pages 1-12, 2012.

Transaction Processing Performance Council. The TPC-H benchmark.
http://www.tpc.org/information/benchmarks.asp, 1999.

C. Wang, A. Cheung, and R. Bodik. Speeding up symbolic reasoning for
relational queries. PACMPL, 2(OOPSLA):157:1-157:25, 2018.

C. Yan and A. Cheung. Leveraging lock contention to improve OLTP
application performance. PVLDB, 9(5):444-455, 2016.

C. Yan, J. Yang, A. Cheung, and S. Lu. Understanding database performance
inefficiencies in real-world web applications. In CIKM, 2017.

J. Yang, C. Yan, P. Subramaniam, S. Lu, and A. Cheung. How not to structure
your database-backed web applications: A study of performance bugs in the
wild. In ICSE, pages 800-810, 2018.

J. Yang, C. Yan, P. Subramaniam, S. Lu, and A. Cheung. PowerStation:
Automatically detecting and fixing inefficiencies of database-backed web
applications in ide. In ESEC/FSE, pages 884-887, 2018.

	Introduction
	Related work
	overview
	Data Layout and Query Plan
	Query Interface
	Data layout search space
	Query plan description

	Query Plan Generation
	Enumerate data layouts
	Enumerate query plans
	Verify query plans
	An illustrative example
	Plan cost estimation
	Reducing search space size

	Handling Write Queries
	Generating reconnaissance queries
	Generate plans for write query

	Finding shared data structures
	Evaluation
	Experiment setup
	Application corpus
	Baseline database engines

	Performance Comparison
	Comparison with materialized views
	Scaling to larger data sets
	Evaluation on TPC-H
	Search and verification time
	Discussion and future work

	Conclusion
	Acknowledgements
	References

