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ABSTRACT

Database applications are often developed with object-oriented lan-

guages while using relational databases as the backend. To accel-

erate these applications, developers would manually design cus-

tomized data structures to store data in memory, and ways to uti-

lize such data structures to answer queries. Doing so is brittle and

requires a lot of effort. Alternatively, developers might automate

the process by using relational physical design tools to create ma-

terialized views and indexes instead. However, the characteristics

of object-oriented database applications are often distinct enough

from traditional database applications such that classical relational

query optimization techniques often cannot speed up queries that

arise from such applications, as our experiments show.

To address this, we build CHESTNUT, a data layout generator for

in-memory object-oriented database applications. Given a mem-

ory budget, CHESTNUT generates customized in-memory data lay-

outs and query plans to answer queries written using a subset of

the Rails API, a common framework for building object-oriented

database applications. CHESTNUT differs from traditional query

optimizers and physical designers in two ways. First, CHESTNUT

automatically generates data layouts that are customized for the ap-

plication after analyzing their queries, hence CHESTNUT-generated

data layouts are designed to be efficient to answer queries from

such applications. Second, CHESTNUT uses a novel enumeration

and verification-based algorithm to generate query plans that use

such data layouts, rather than rule-based approaches as in tradi-

tional query optimizers. We evaluated CHESTNUT on four open-

source Rails database applications. The result shows that it can re-

duce average query processing time by over 3.6× (and up to 42×),

as compared to other in-memory relational database engines.

PVLDB Reference Format:

Cong Yan, Alvin Cheung. Generating Application-specific Data Layouts
for In-memory Databases. PVLDB, 12(11): 1513-1525, 2019.
DOI: https://doi.org/10.14778/3342263.3342630

1. INTRODUCTION
Rather than directly embedding SQL queries into application

code, database applications are increasingly written using object-

oriented programming languages (such as Java, Python, or Ruby)
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that rely on different means to translate data retrieval operations

into SQL, for instance object-relational mapping (ORM) frame-

works such as Hibernate [10], Django [8], or Rails [18]. The object-

oriented programming paradigm makes it easy to develop database

applications: data to be persistently managed are organized into

classes, each class is mapped to a relation, and each object instance

becomes a tuple. Operations involving persistent data in the ap-

plication are then converted into queries. For instance, a project

management application would organize its data into Project ob-

jects with a member field that stores each project’s corresponding

Issue objects. Projects and Issues are stored in separate relations,

with the association between them maintained using foreign key

project id stored in each Issue. Retrieving a Project with its asso-

ciated Issues then becomes a relational join across the project and

issue relations. The idea is that by utilizing relational databases,

such object-oriented database applications (OODAs) can leverage

relational query optimization techniques to become efficient.

In practice, however, OODAs often exhibit characteristics that

make them distinct from traditional transactional processing or an-

alytical applications. In particular:

• Nested data model. OODAs often come with objects contain-

ing fields of variable-length lists, making data model highly non-

relational. For instance, a project containing a list of associated

issues, and each issue containing a list of developers assigned to it,

etc. While variable-length lists are common in classical database

applications (e.g., storing the list of ordered items in the TPC-C

benchmark), OODAs, being object-oriented, makes it very easy to

create deep object hierarchies including circular ones. While this

has been pointed out in a previous benchmark [29], modern object-

oriented languages and frameworks have exacerbated the problem:

the object hierarchy can easily reach more than 10 levels, with

nearly half of the queries returning objects from multiple levels.

• Many-way materialized joins. Due to deep object hierar-

chies, simple object queries like retrieving Projects that contain

issues can turn into a long chain of multi-way joins when trans-

lated into relational queries. Unlike analytical applications where

such joins are also common, the join results are directly returned

in OODAs rather than aggregated. As an example, a single query

can involve as many as 6 joins in the OODAs used in evaluation,

and return as much as 5GB of data. This makes the data structures

used to store persistent data of crucial importance as standard row

or column stores are not the best fit.

• Serialization cost. As the database and application represent

data in different formats, moving data across them incurs serializa-

tion cost. This cost is pronounced in OODAs as queries often return

a long list of hierarchical objects which requires converting mate-

rialized join result into objects and nested objects. Serialization

easily takes longer than retrieving data, as our experiments show.



• Complex predicates. OODA queries include many complex

predicates, as many frameworks expose methods to filter collec-

tions of persistent objects that can be easily chained. For instance,

Project.where(create>‘10/30’).where(create<‘12/1’) returns all

Projects created in November. With each where call translated into

a selection predicate, the final query often contains many (poten-

tially overlapping or redundant) predicates as a result of passing a

collection through different method calls. In fact, in our OODA

evaluation corpus a single query can involve as many as 40 com-

parison predicates.

• Simple writes. Similar to transactional applications, most

writes in OODAs touch very few number of objects (one object

for each write query in our evaluation corpus). This makes write

optimization (e.g., batch updates) a secondary concern.

The above aspects make OODAs challenging to optimize using

standard query processing techniques. In this paper, we present

CHESTNUT, an in-memory data layout1 and query plan genera-

tor for OODAs. CHESTNUT leverages recent advances in program

analysis, symbolic execution, and solvers to automatically gener-

ate a custom data layout given application code. To use CHEST-

NUT, user provides as input OODA source code (written using a

subset of the Rails [18] API) and a memory budget. CHESTNUT

then searches for the best in-memory data layout that optimizes for

overall query performance, and outputs C++ code that loads data

from disk, executes queries using the data layout, and updates in-

memory data and disk storage for writes.2

Internally, CHESTNUT breaks down the data layout generation

problem into three parts: for each query it first enumerates differ-

ent representations for the stored objects (e.g., as standalone ob-

jects, pointers, or nested in other objects) and the data structures

(indexes or arrays), and then enumerates query plans that use these

data structures. The designs for different queries are then com-

bined to find the globally optimal one for the entire application.

Unlike traditional physical designers that only focus on index de-

signs, CHESTNUT considers tabular and nested layout to store the

data along with indexes, as well as customized query plans that uti-

lize the generated data layout. To make enumeration and search

tractable, CHESTNUT analyzes application code to determine its

query needs and creates a custom search space given the applica-

tion code. To search efficiently, CHESTNUT relies on two carefully

designed internal representations (IRs) to succinctly describe the

space of data layouts, and formulates the problem of finding the

best model as an Integer Linear Programming (ILP) problem. Fi-

nally, CHESTNUT leverages symbolic execution and verification to

determine how to use the optimal design to answer queries and gen-

erates executable code.

We have implemented a prototype of CHESTNUT, and used it

to compare with three state-of-the-art in-memory databases using

real-world OODAs. To our best knowledge, CHESTNUT is the first

optimizer for OODAs that searches for all three aspects of query ex-

ecution (data model, physical design, and execution) concurrently.

In sum, this paper makes the following contributions:

• We design an engine that finds the best data layout for OODAs.

Our engine does not rely on rule-based translation as classical op-

timizers. Instead, it analyzes the application code to generate a

custom search space for the storage model, and uses a novel enu-

meration and verification-based algorithm to generate query plans.

1
In this paper we use the term “data layout” to refer to both the data being stored (in

cases where only a subset of fields in an object and a subset of all objects are stored),

and the type of data structure used to store data in memory.
2

CHESTNUT currently focuses on data layout design and considers other database

features like concurrency control as future work.

• Given the search space, we formulate the search for the best

data layout as an ILP problem. We also devise optimization tech-

niques to reduce the problem size such that the ILP can be solved

efficiently, with an average of 3 minutes of solving time when de-

ployed on real-world applications (Section 8).

• We built a prototype of CHESTNUT and evaluated it on four

popular, open-source OODAs built with Ruby on Rails framework.

Compared to the original deployment using an in-memory version

of MySQL, CHESTNUT improves overall application performance

by up to 42× (with an average of 6×). It also outperforms popular

in-memory databases with an average speedup of 3.9× and 3.6×
respectively. CHESTNUT compares favorably even after additional

indexes and materialized views are deployed (Section 8).

In the following, we first discuss related work and how is CHEST-

NUT different from previous tools (Section 2). Next, we give an

overview of CHESTNUT (Section 3) and introduce the search space

of data layout and query plan (Section 4). Then we introduce

CHESTNUT’s algorithm to enumerate query plans (Section 5 and Sec-

tion 6) and ILP formulation (Section 7). We conclude by presenting

experiment results on four web applications in Section 8.

2. RELATED WORK
Data layout design. There is much prior work on automatic data

layout design. One line of work explores ways to store data rather

than the traditional row or column-major stores for each single ta-

ble. For instance, Hyrise [41] and H2O [26] store columns together

as column groups instead of individually. Widetable [47] uses a

denormalized schema to accelerate OLAP queries. ReCache [28]

uses dynamic caching to store data in tabular and nested layout to

accommodate heterogeneous data source like CSV and JSON data.

While prior work focuses on a restricted set of layouts, CHESTNUT

integrally explores tabular and nested data layout together with aux-

iliary indexes, and also how objects are nested within each other,

which field and subset of objects to store, etc. Such aspects are

important for OODAs as our experiments show. CHESTNUT also

synthesizes query plans from the generated data layout instead of

relying on standard relational query optimizer. Doing so allows

CHESTNUT’s plans to better utilize the new data layout.

Another line of work focuses on learning the best data structure.

For instance, Idreos et al. [42] design a key-value store that learns

the configuration parameters to each or combinations of elemen-

tary data structures given query patterns. While reducing query

execution time, such work focuses on queries with simple patterns

on a single table. Queries in OODAs, which CHESTNUT optimizes,

have complex query patterns involving many classes, and that leads

to new challenges in deciding how to store objects of different

classes and picking the optimal design across multiple queries.

Another approach is to use program synthesis [49, 48] to gen-

erate data structures from high-level specifications. While prior

work optimizes only a single query without trading off update and

memory, CHESTNUT handles workloads with many read and write

queries subject to a memory bound and also determines how to

share data structures among queries.

Physical design. Automated physical design for relational databases

is a well-studied topic. AutoAdmin [24, 32, 25, 31] finds best in-

dexes and materialized views by trying different possibilities and

asking the query optimizer for the cost. To reduce the number of

optimizer calls, it uses heuristics to consider only a small number of

candidates. In contrast, CHESTNUT employs a different approach

that opens the “black box” of the query optimizer and uses program

synthesis to enumerate query plans instead of “what-if” calls.

CHESTNUT is not the only work that leverages ILP solver for

physical design. Cophy [37] and CORADD [45] use ILP solvers to







Finally, indexes can be added to top-level arrays to map keys

to object pointers. CHESTNUT supports B-tree and hash indexes

created on all objects of one type, and also partial indexes on a

subset of objects as determined by a predicate (e.g., all open issues).

As shown above, topArray, nestedArray and index are de-

fined by three parameters: pred determines the set of objects to be

included in the data structure, key is the sorted order of an array

or index key, and value describes the objects or aggregation values

stored. For instance:

topArray(exists(issues, status=‘open’),created→Project)

is a top-level array that stores Project objects containing open is-

sues, and is sorted by the created field.

CHESTNUT’s data layout is inspired by its query interface. First,

because queries often filter objects of one class by examining their

associated objects, CHESTNUT supports creating predicates and in-

dex/order keys using associated objects. Moreover, because queries

often involve associated objects, CHESTNUT supports storing them

as nested arrays. As we will see in Section 8, these features al-

low CHESTNUT to greatly improve the performance of OODAs as

compared to traditional physical designers.

4.3 Query plan description
Given a data layout, CHESTNUT enumerates query plans to an-

swer each query in the application. As CHESTNUT’s data layouts

include nested data layouts that are not supported by relational

databases, CHESTNUT can no longer use their query plans for query

execution. We instead design an intermediate representation to rep-

resent CHESTNUT’s query plans as shown below. This intermediate

representation is designed to describe high-level operations on the

data structures such that the cost of a plan can be easily estimated,

while facilitating easy C++ code generation.
plan := (scoll)

∗
(ssdu)

∗
(ssetv)

∗
return v

coll := ds.scan(k1,k2) | ds.lookup(k)

scoll := for v in coll: (plan)

ssdu := sort(v) | distinct(v) | v′
=union(v1, ...)

ssetv := if expr(v) setv

setv := v=expr | v.append(expr) |

ds.insert(k,v) | ds.update(k,v) | ds.delete(k,v)

expr := v + v|v ∧ v|...|∗v|v.f|const

Each read query plan starts with a for loop that looks up from

an index or scans an array (scoll, where ds is a data structure),

followed by statements (ssdu) that perform sort, distinct, or union,

and returns a list of objects or aggregation result. The loop body

conditionally appends objects into the result object list or set the

value of variables like aggregation result (ssetv). Each scoll loop

may contain recursive subplans with nested loops that iterates over

data structures storing associated objects.

Unlike relational databases that need to convert query results

from relations to objects (i.e., deserialization), CHESTNUT’s query

plan returns objects and nested objects directly. Doing so reduces

the overhead of time-consuming deserialization and allows CHEST-

NUT’s query plan to be often faster than similar relational query

plans that require deserilization.

Likewise, a write query plan also starts with an index lookup or

array scan to find the object to update, followed by modification

of each identified object. Updating a nested object can be slower

than updating a relational tuple due to the overhead of locating the

object. Besides, multiple copies of an object may be stored which

makes a write query slower. However, since most updates in OODA

are single-object updates, the overhead of slower writes are small

compared to the gain from read queries, as we will see in Section 8.

5. QUERY PLAN GENERATION
We now discuss how CHESTNUT enumerates data layouts and

query plans efficiently and finds the optimal one for each read query.

After determining the best data layout, we discuss finding query

plans for write queries in Section 6.

5.1 Enumerate data layouts
CHESTNUT first enumerates data layouts that can be used to an-

swer a read query Q. This includes enumerating object represen-

tations, i.e., whether objects of one class are stored as top-level or

nested objects, as well as data structures to be used. Each design is

described using the language described in Section 4. Unlike tradi-

tional physical designers, CHESTNUT only enumerates data struc-

tures involving objects and predicates used in Q. As we will see,

doing so greatly reduces the size of the search space.

Algorithm 1 Object nesting enumeration

1: procedure ENUMERATEDS(Q,C,dsupper=null)

2: models←[] // data layouts to be returned

3: DSc ←[] // data structures to store objects of C

4: for key∈ {scalar fields of C used in Q} do

5: for pred∈{partial pred in Q with no param} do

6: if dsupper is null then

7: array← array(pred,key,C)

8: DSc.add(array)

9: DSc.add(B-tree(pred,key,ptr( array ))

10: DSc.add(hash(pred,key,ptr( array ))

11: else

12: DSc.add(array(pred,key,C,dsupper))

13: for a∈{C’s associated objects involved in Q} do

14: Qa ← sub-query/sub-predicate on a

15: for an ∈ EnumerateDS(Qa,ds) do

16: for ds∈DSc do

17: ds.addNested(an))
models.add(DSc)

18: for ds∈DSc do

19: ds.addNested(an.replace(value,ptr))

20: models.add(DSc)

21: for an ∈ EnumerateDS(Qa) do

22: models.add(an.addNested(DSc))

23: return models

The algorithm in shown in Algorithm 1. It takes Q as input,

the class C to generate designs for, and optionally a design dsupper
where C is to be nested within (C is initially set to be the base class

of Q and dsupper is set to null). It first enumerates the data struc-

tures to store C and saves them in DSc. On line 4, it enumerates

C’s fields used in Q’s predicates as the sort or index key for the

data structure to be created, e.g., created in Q1, and on line 5 the

predicates in Q that uses C and does not use input parameters, e.g.,

exists(issues,status=‘open’) in Q1’s predicates from Listing 1.

The data structures are then enumerated. If C is not to be nested in

another data structure (line 6), it then creates a top-level array using

the key and predicate (line 7), along with indexes on that array (line

8-10). Otherwise, C is nested in dsupper (line 12).

After enumerating the data structures to store C, we enumerate

the structures to store any associated class A of C that is used in

Q. CHESTNUT considers three ways to store A, which we illustrate

using the Project-Issue association in Q1:

1. Store Issues as a nested array within each Project. Issues of

one project can then be retrieved by visiting these nested objects.

2. Same as 1. but store pointers to a separate array of Issues. In

this case issues of a project are retrieved through pointers.

3. Store Issues as a top-level array, and keep a copy of project

as a nested object within each Issue. Issues of one project p are

then retrieved by visiting top-level Issues and finding those whose

nested project matches p.



These three designs are generated from lines 15 to 22 in Algo-

rithm 1. We iterate through the different data structures used to

store C and combine that with data structures storing A. For every

associated class A, the algorithm first extracts the subquery or the

subquery’s predicate from Q that uses A, e.g., the “status=‘open’”

predicate on the associated Issues. It calls EnumerateDS using the

sub-query or the predicate to recursively enumerate the data lay-

outs for A and A’s associated objects, and merges A into ds (i.e., the

data structure that stores C) using one of the three ways mentioned

above. The final layout is created by either nesting the associated

objects (line 17), nesting pointers (line 19), or nesting the parent

objects within the associated ones (line 22).

5.2 Enumerate query plans
Given the data layouts, CHESTNUT next enumerates query plans

for them. These plans are represented using the intermediate lan-

guage described in Section 4.3. Because of the huge variety of data

layouts that can be generated for each OODA, CHESTNUT does not

use rules to generate correct query plans as in traditional query op-

timizers. Instead, it enumerates as many plans as possible up to a

bound, and verifies if any of them is correct.

To illustrate, suppose we have a query Q with no associations,

written as Class.where(pred).order(f,...) as described in Sec-

tion 4. Suppose we are given a storage model containing a list of

data structures {ds0, ds1,. . .} storing objects of Q’s base class C.

CHESTNUT uses a skeleton that defines the “shape” of a query plan,

and enumerates only plans whose number of statements is smaller

than the number of disjunctions in Q’s predicate.6

The skeleton is shown as below:
plan := (op)+ (v’=union(v1,v2,...))?

(distinct(v’))? (sort(v’))?

op := for o in ds.scan/lookup(params):

(if predr v.append(o))

The skeleton consists of several operations (op) followed by op-

tional operations that merge and process the results from previous

operations: union, distinct, or sort. Each op performs a scan or

lookup on a data structure ds, and evaluates a predicate predr over

the input objects. The skeleton is instantiated by filling in the data

structure ds, the predicate predr , and the number of operations op

given the generated storage models.

If Q involves no associations, then all plans would be enumer-

ated by the above. If not, CHESTNUT enumerates sub-plans pla to

answer the predicate on the associated objects using the same pro-

cess as above, and merges the sub-plans into the loop body of pl to

produce the final nested-loop query plan for Q.

5.3 Verify query plans
We now have two ways to represent a query: as expressed using

the Rails API as described in Section 4, or as one of the CHEST-

NUT-generated query plans expressed using the intermediate lan-

guage described in Section 4.3. Our goal is to check the CHEST-

NUT-enumerated query plans to see which ones are semantically

equivalent to the input, i.e., they return the same results.

Testing can be used to check for plan equivalence: we gener-

ate random objects, pass them as inputs to the two plans, execute

the plans (using Rails for the input query, or as a C++ program for

the CHESTNUT-generated plan), and check if the two plans return

the same results. However, this is costly given the large number

of plans enumerated by CHESTNUT. CHESTNUT instead leverages

recent advances in symbolic reasoning [55, 36, 35] for verification.

6
The idea is that each loop generated by op answers one one clause in the disjunction,

and objects from different clauses are then unioned to generate the final result. If Q is

a conjunctive query, then one loop would be sufficient to retrieve all objects.

This is done by feeding the two plans with a fixed number (cur-

rently 4) of symbolic objects but with unknown contents. Execut-

ing the plans with symbolic objects will return symbolic objects,

but along with a number of constraints. For instance, given the

following CHESTNUT-generated query plan that scans through an

array of projects:

for p in projects.scan:

if p.created < '1/1':

v.append(p)

Executing this plan with an array of projects consisting of two

symbolic objects projects[0] = p0 with p0 = {created=c0} and

projects[1] = p1 with p1 = {created=c1} where the creation dates

c0 and c1 are unknown will return the following constraints:

if c0 < '1/1' && c1 < '1/1':

v[0] = p0 v[1] = p1

else if c0 >= '1/1' && c1 < '1/1':

v[0] = p1 v[1] = null

else if c0 < '1/1' && c1 >= '1/1':

v[0] = p0 v[1] = null

else # both projects are created >= '1/1':

v[0] = null v[1] = null

While we do not know the concrete contents of v after execution,

we know the constraints that describe what its contents should be

given the input. We execute the Rails and CHESTNUT-generated

plan to generate such constraints, send them to a solver [23] to

check for equivalence under all possible values of c1 and c2, and

retain only those plans that are provably equivalent. Checking such

constraints can be done efficiently: in our evaluation it takes less

than 1s to check when fewer than two associations involved.

5.4 An illustrative example
We now use Q1 in Listing 1 to illustrate query plan enumeration,

where it returns the Projects created later than a parameter param

that contain open Issues.

CHESTNUT first enumerates the data structures to construct data

layouts as described in Section 5.1. Figure 4(a) shows three data

layouts. In the first one, Issues are nested within each Project. A

few data structures to store Projects are shown from ds1 to ds3.

The keys of a data structure are fields used in Q1 like created in

ds1, and the predicates are partial predicates from Q without pa-

rameters such as exists(issue,status=‘open’) in ds1. Different

combinations of keys, predicates, and data structure types are enu-

merated. CHESTNUT similarly enumerates nested data structures

to store Issues like ds4 and ds5.

Other data layouts store the association between Projects and

Issues differently from layout 1. In layout 2, Projects store nested

Issue pointers that point to a top-level Issue array ds7, while in

layout 3, top-level Issues store nested Projects. These three lay-

outs shows the three ways to store associated class as described

in Section 5.1. In layouts 2 and 3, CHESTNUT also enumerates data

structures using different keys, predicate and data structure types,

with some of them are shown in Figure 4(a).

After the data layouts are enumerated, CHESTNUT then gener-

ates query plans as described in Section 5.2. Figure 4(b) shows

three examples of the enumerated plans. Since Q1’s predicate has

no disjunctions, CHESTNUT enumerates plans using the skeleton

with up to one op, and fills op with different ds and predr . In

(1), the skeleton is filled with ds0 (the Project array that stores

all Projects), and predr as p.created>param. In (2), ds1 and true

are used. Both (1) and (2) are complete plans as predrs does not in-

volve associated objects. In (3) however, the predicate exists(issues,

status=‘open’) involves associated issues (as shown in 1 ), so

CHESTNUT generates a sub-plan that stores the nested Issues to





Qw1=Project.where(exists(issues , id=?))

Qw2=Project.where(id=?).includes(issues)

Listing 3: Read query to find the project of a deleted issue

6.2 Generate plans for write query
CHESTNUT then uses the same search procedure described in Sec-

tion 5 to find plans for the read queries generated, and constructs a

write plan using the read results.

The algorithm to generate write plans is shown in Algorithm 2.

Lines 5-6 generate the two read queries as described above. It then

finds plans for these queries using the same process shown in Sec-

tion 5 (line 7-8). These read queries find all the entry objects in ds

that need to be updated. For each entry object, it first deletes the

entry from ds (line 12), updates the entry and recomputes the key,

predicate and value (line 13), and reinserts it into ds (line 14).

Algorithm 2 Generate plan for Qw to update ds

1: procedure GENWRITEPLAN(Qw, ds)

2: plan←[]

3: if not isAffected(ds) then

4: return

5: Qw1← ds.class.where(..., Qw.id)

6: Qw2← ds.class.where(..., obj.id)

7: plan.add stmt((EnumeratePlan(Qw1))

8: plan.add stmt((EnumeratePlan(Qw2))

9: objs←plan.result

10: for o ∈ objs do

11: o.update()

12: ds.delete(o)

13: (k, pred, v)←(ds.key(o),ds.pred(o),ds.value(o))

14: plan.add stmt(if pred ds.insert(k,v))

15: return plan

CHESTNUT first generates an update plan for every ds enumer-

ated for all input read queries. In this process it generates new

reconnaissance queries, whose data layouts may contain new data

structures not used by any input read query, thus do not have corre-

sponding update plans yet. CHESTNUT iteratively produces write

plans to update these new data structures until no new data struc-

tures and all write plans are added. In practice, this process con-

verges quickly, usually within just a few rounds.

7. FINDING SHARED DATA STRUCTURES
The above describes CHESTNUT’s data layout and plan enumer-

ation for all queries in the OODA. By formulating into an integer

linear programming (ILP) problem, we now discuss how CHEST-

NUT selects the best data layout from them by trading off between

query performance and memory usage.

The ILP consists of the following binary variables:

• each data structure is assigned a variable dsi to indicate whether

it is used in the chosen data layout.

• if dsi stores an object of class C, then each of C’s field f is

assigned a variable fdsi[f ] to indicate if f is stored in dsi (recall

that a data structure may store only a subset of an object’s fields).

• each plan for read query i is assigned a variable pij to indicate

if plan j is used for query i.

• each plan for write query i updating a data structure ds is as-

signed a variable pwijd to indicate if plan j is used to update the data

structure ds.

CHESTNUT estimates the memory cost of each data structure

dsi, denoted as Cds
i , as well as the execution time of each query

plan Cds
ij or C

p

ijd (for read or write plans, respectively) as described

in Section 5.5. It also calculates the size of field f as F ds[f ], and

estimates the number of elements in dsi as Nds
i .

CHESTNUT then adds the following constraints to the ILP:

• Each read query uses only one plan:
∑

j
pij = 1

• Each write query uses only one plan:
∑

j
pwijd = 1.

• Plan pij uses all the data structures ds1, . . . , dsN in its plan.

Similar constraints are created for write query plans: pij → ds1 ∧
. . . ∧ dsN .

• Plan pij uses object fields fds[t1], . . . , fds[tN ] in array ds in

the plan. A field is used when the plan has a ssetv statement

that evaluates a predicate, computes an aggregation that involves

that field, or adds an object to the result set where the field is

projected. Similar constraints are created for write query plans:

pij → fds[t1] ∧ . . . ∧ fds[tN ].

• If a data structure dsk is affected by a write query Qj , then at

least one update plan should be used: dsk → ∧j(∨iP
w
ijk).

• The total memory cost of used data structures and object fields

should be smaller than the user-provided bound M :
∑

i
Di ∗ C

D
i +

∑
ij
ND

i ∗ F
fj
Di
≤M .

The objective is then to minimize the total execution time of all

queries:

(
∑

i

∑

j

C
P
ijPijwi) + (

∑

i

∑

d

∑

j

DdC
P
ijdP

w
ijdwi)

where the sums are the total execution time of all read and write

queries, respectively. Each query i is associated with a weight wi to

reflect its execution frequency in the OODA, which can be provided

by developers or collected by a profiler.

We use the example shown in Figure 4 to illustrate. Assume the

application contains Q1 and Q2 shown in Listing 1. Due to space,

we only show two plans for Q1 (shown in Figure 4(b)) and a subset

of data structures enumerated by CHESTNUT (ds1, ds2 and ds3).

The following lists a subset of the ILP constraints, while the rest

involving other plans and data structures are constructed similarly.

• Q1 uses only one plan: p11 + p12 + ... = 1.

• Q2 uses only one plan to update ds1: pw211 + pw212 + .. = 1.

• Q1’s plan1 uses ds1: p11 → ds1.

• Q1’s plan2 uses ds2 and ds3: p12 → ds2 ∧ ds3.

• Q1’s plan2 uses fields created in ds2 and status in ds3: p12 →
fds2[created] ∧ fds3[status].

• ds1 is updated by Q2: ds1 → pw211 ∨ ....

• ds3 is updated by Q2: ds3 → Pw
231 ∨ ....

• Total memory consumed does not exceed bound: ds1 ∗C
ds
1 +

ds2 ∗C
ds
2 + ...+ fds2[created] ∗N

ds
2 + fds3[status] ∗N

ds
3 ... ≤M .

• Goal: min(p11 ∗ C
p
11 ∗ w1 + p12 ∗ C

p
12 ∗ w1 + ...)

The ILP’s solution sets a subset of variables of dsi, fdsi[f ], pij ,

pwijd to 1 to indicate the data structures and plans to use, along with

a subset of fields to store in each data structure. CHESTNUT then

generates C++ code for the chosen plans and data structures us-

ing the STL library and Stx-btree library [19]. For query plans, it

translates each IR statement in the query plan into C++. We omit

the details due to space.

8. EVALUATION
CHESTNUT is implemented in Python with gurobi [9] as the ILP

solver, and uses the static analyzer described in [57] to collect the

object queries. We evaluate CHESTNUT using open-source Rails

OODAs.

8.1 Experiment setup

8.1.1 Application corpus

Similar to prior work [58], we categorize the top-100 starred

Rails applications on GitHub into 6 categories based on their tags.

We then pick 4 categories, project management, chatting service,

forum, and web scraping, and pick one of the top-2 applications



from each category as our evaluation corpus. All of the four cho-

sen applications are professionally developed. They are selected

as “trending” Rails applications [16, 20, 4], and widely used by

companies, individual users [22, 21] and prior research [39, 59].

• Kandan [12] is an online chatting application structured with

classes User, Channel, Activity, etc. Users can send messages in

Channels. Each Channel lists Activitys, where an activity is often a

message. Queries in this application contain simple predicates, but

retrieve a deep hierarchy of nested objects. For example, Kandan’s

homepage lists channels with their activities and creators of each

activity. The corresponding data is retrieved using a query that re-

turns a list of Channels with nested Activitys, where each Activity

contains nested Users.

• Redmine [17] is a collaboration platform like GitHub struc-

tured around Project, Issue, etc. Each project belongs to a Module

and contains properties like issue tracking. The Tracker class is

used to manage what can be tracked in a project, such as issue up-

dates, and has a many-to-many relationship with Projects.

This relationship is maintained by a mapping table with two columns,

project id and tracker id. Such associations result in many-way

materialized joins as well as complex predicates predicates to re-

trieve the associated objects. In addition, Redmine’s queries also

use disjunctions extensively. For instance, it uses nested sets [14]

as trees to organize each project and its children projects. A query

that retrieves projects in a subtree with ID within the range (p1, p2)

is done using the predicate left>=p1 OR right<=p2, where left,

right Project’s fields. Such range predicates are often combined

with others and are difficult for relational databases to optimize

well. We will discuss this later in the evaluation.

• Lobsters [13] is a forum application like Hacker News. Per-

sistently stored classes include User, Story, Tag, etc. Users share

URLs as stories and add tags to them. Lobsters has similar query

patterns as Redmine, with many-to-many associations. For exam-

ple, a Story has many Tags, and the same Tag can be added to many

Storys. As a result, many queries are multi-way joins.

• Huginn [11] is a system to build agents to perform automated

web scraping tasks. It persistently stores Agents, each with a set

of Delayed jobs to automatically run in the backend to watch these

Agents, and records Events when any update happens. Its queries

retrieve a hierarchy of nested objects, as well as aggregations to

render the current state of an Agent in various ways.

Table 1: Application statistics

Application # of classes # read queries # write queries

Kandan 6 10 6
Redmine 12 24 6
Lobsters 7 26 10
Huginn 6 16 7

We select the top-10 most popular pages from each application.

These pages are chosen by running a crawler from prior work [58].

The crawler starts from the application’s homepage and randomly

clicks on links or fills forms on a current page to go to a next page.

This random-click/fill process is repeated for 5 minutes, and we

collect the top 10 mostly-visited pages. Table 1 shows the total

number of classes and distinct read and write queries involved in

the popular pages. We collect the queries executed when generating

these pages from the SQL query log, and trace back to the object

queries defined in the application. These object queries then serve

as input workload to CHESTNUT.

We populate the application’s database with synthetic data using

the methodology described in [58]. Specifically, we collect real-

world statistics of each application based from its public website

or similar website to scale data properly as well as to synthesize

database contents and application-specific constraints. We scale

the size of the application data to be 5GB-10GB, which is close to

the size of data reported by the the application deployers [5, 6].

8.1.2 Baseline database engines

We compare the CHESTNUT-generated database with relational

in-memory databases, including MySQL, PostgreSQL and a com-

mercial database.

• MySQL (version 5.7). The original applications use MySQL

as the default backend database, so we use the same setting as the

baseline and add the same indexes that the developers specified in

the application.

• PostgreSQL (version 12). We use an indexing tool [7] to ana-

lyze the query log and automatically add more indexes besides the

ones that come with the application. We set the buffer pool size for

MySQL and PostgreSQL to be larger than the total of data and in-

dexes (20GB) such that data stays in memory as much as possible.

We use the default value for other settings.

• System X. We further use a commercial high-performance in-

memory column-store database as the third comparison target. We

add the same set of indexes we use in PostgresSQL as suggested by

the automatic indexing tool.

• CHESTNUT. When using CHESTNUT, we measure the actual

total size of tables and indexes used by PostgreSQL and set it as the

memory bound for CHESTNUT. We replace the database engine

and Rails’ serialization code with CHESTNUT, and connect to a

backend MySQL database to persist data.

We measure the time from issuing the query until the result con-

verted into Ruby objects as the query time. Hence query time

includes both data-retrieving time, i.e., the time to execute the

queries, and deserialization time, i.e., the time to convert query re-

sults into ruby objects. For relational databases, Rails deserializes

the query result from relational tables into (nested) Ruby objects.

CHESTNUT’s query plans return results as C++ (nested) objects,

and uses protocol buffer [15] to convert them into Ruby objects.

All evaluations are performed on a server with 128 2.8GHz pro-

cessors and 1056GB memory. In our current prototype CHESTNUT

does not support transactions, so we run queries sequentially and

measure their latency.

8.2 Performance Comparison
Figure 5 shows the performance comparison across OODAs. We

focus on slow queries takes longer than 100ms to execute in the

original application setting as they are often performance bottle-

necks. To get a better understanding of such queries, we show the

breakdown of data retrieval and deserialization time in Figure 5.

We show only the summary, i.e., the min, max and mean times of

the remaining read and write queries as they execute quickly.

The results show that using the automatic indexing tool improves

the performance for half of the slow queries by up to 163×. In-

terestingly, unlike OLAP queries where in-memory column stores

can substantially accelerate queries, System X does not achieve

similar speedup for OODA’s queries. As discussed in Section 1,

this is because query results in OODAs are often not aggregated

but returned as lists of objects where all columns are projected.

Rather than speeding up queries, columnar store instead adds the

non-trivial overhead of row materialization. Compared to other re-

lational database engines, CHESTNUT shows better performance in

all slow queries, with an average speedup of 6×, 3.9×, and 3.6×
against the MySQL, PostgreSQL, and System X respectively.

The memory consumption comparison is shown in Table 2. It

shows the size of the application data and the maximum runtime

memory used by PostgreSQL (e.g., tables, indexes and intermedi-

ate tables) and CHESTNUT’s engine (e.g., data layout). Despite





Channel.includes(activities, includes(user))

.order(id).limit(50)

for c in dsc.scan:

c0 = c

for a in c.dsa.scan:

a0 = *a

a0.user = *((*a).user)

c0.activities.append(a0)  

v.append(c0)

return v

dsc:	array[id->Channel]

SELECT * FROM channel ORDER BY id LIMIT 50;

SELECT * FROM activity WHERE channel_id IN (…);

SELECT * FROM user WHERE id IN (…);

dsa:	nestedArray[ptr(Activity)]

topArray[User]

topArray[Activity]

(a)

(b)

(c)

Figure 6: Case study of Kandan-Q1. (a) shows the original query.

(b) shows the corresponding SQL queries. (c) shows the data layout

(left) and the query plan (right) generated by CHESTNUT.

duplicated trackers, the query then groups by Tracker’s id, fol-

lowed by DISTINCT to generate a list of unique trackers. This many-

way join takes over 8s to finish in the original application, 592ms

after indexes are added in PostgreSQL, and 98ms with System X.

As this query does not have user-provided parameters, its results

can be pre-computed. The CHESTNUT-generated data layout does

exactly this: it stores the Trackers that satisfy the query predicate

into an array such that the query plan only scans this array, as shown

in Figure 9(c). Doing so reduces the query time to only 0.2ms.

However, the data layout chosen by CHESTNUT brings extra

overhead to update queries. A query that removes an issue-tracking

module from a project slows down from 1ms to 76ms, since the

write query plan now needs to re-examine a tracker’s projects to see

if that tracker contains other active, issue-tracking-enabled projects

other than the one to be removed. However, the write query’s over-

head is relatively small comparing to the read queries, and the over-

all application performance application is still improved.

Case 3: Redmine-Q8. The query is shown in Figure 10(a). It re-

trieves projects of a user-provided status in a subtree whose range is

defined by the left and right parameters. When the selectivities of

predicate “status=? AND left>=?” and “status=? AND right<=?”

are small, indexing on (status, left) and (status, right) can

accelerate the query compared to a full table scan. CHESTNUT-

generated data layout creates these two indexes on Projects. The

corresponding query plan performs a range scan on each index and

unions the results, taking only 69ms to finish. Query optimizers

in MySQL, PostgreSQL, and System X are unable to use such in-

dexes for this query. Their query plans scan the entire project ta-

ble even when the indexes are created, resulting in over 180ms to

finish for all engines. Our investigation reveals that the plans will

leverage these indexes only when the query is rewritten using UNION

instead of OR, which is not how Rails generates queries. In contrast,

CHESTNUT uses custom enumeration and symbolic reasoning to

find query plans rather than looking for particular query patterns to

optimize. As a result, it finds better query plans as compared to the

relational engines.

8.3 Comparison with materialized views
We next compare CHESTNUT’s data layouts with materialized

views (MVs). We use MVs to optimize the slow queries executed

using relational database engines even after indexes are added. For

each of these queries, we manually create different combinations of

views and indexes in System X to the best of our abilities and pick

those that give the best performance. Since MVs are designed to

optimize a single query, it is often a union of all query results under

different parameter values, indexed by the fields that are involved

in the query to compare to user-provided parameters. For example,

the best MV for Q1 shown in Listing 1 is a table of all Projects con-

taining open issues, with a clustered index created on field created.

We measure the amount of memory used to create MVs for each

query, and use it as the memory bound for CHESTNUT.

Both MVs and CHESTNUT selectively determine which subset

of data to store, but MVs still use tabular layout and return rela-

tional query results. Instead, CHESTNUT chooses from both tab-

ular and nested data layouts, as well as their combinations, and

generate query plans that return objects. When using MVs, the bot-

tleneck for slow queries is again object deserialization. Although

MVs greatly accelerate the relational query, the overall query time

is still dominated by deserialization. CHESTNUT’s query plan in-

stead returns nested objects directly without changing the data rep-

resentation, significantly reducing deserialization time. The result

is shown in Figure 7, where CHESTNUT’s query plan outperforms

its relational counterpart by 3.69× on average.

8.4 Scaling to larger data sets
In this experiment we show how CHESTNUT performs when we

scale the application’s data. We scale Kandan’s data to 50GB,

and the evaluation result is shown in Figure 11. With larger data

sets, the time spent in deserialization becomes more dominant, and

CHESTNUT’s ability to speed up data deserialization becomes very

significant. Over the four slow read queries, CHESTNUT achieves

an average speedup of 9.2× compared to MySQL, 6.6× to Post-

greSQL and 6.5× to System X on the 5GB dataset, but speedup

increases to 20×, 12.3×, and 12× respectively once data increases

to 50GB.

8.5 Evaluation on TPC­H
To isolate the effect of data deserialization, we next evaluate

CHESTNUT using eight analytical queries from the TPC-H [54]

benchmark. Most TPC-H queries can be expressed using the Rails

API in the stylized form as shown in Listing 2. We use CHEST-

NUT to find the best data layout for each query and compare the

performance with System X (column store without indexes). Since

these queries do not return objects, we do not include deserializa-

tion when measuring the query time, thus allowing us to study the

quality of CHESTNUT-generated data layouts and plans.

The result is shown in Figure 8. CHESTNUT-generated database

is slower in Q3 and Q6. In comparison to System X’s column-

oriented data store and custom machine code generation, CHEST-

NUT uses a slow sort from C++ STL and table scans over C++

vectors. For other queries, however, CHESTNUT is more efficient

due to the better layout it finds compared to columnar tables. For

example, a partial index on Q5 reduces the query time by over 90%

because Q5’s predicate involves many joined relations where the

join predicates can be pre-computed because they do not involve

user-provided parameters.

8.6 Search and verification time
We run CHESTNUT on a machine with 256 cores and 1056GB

memory using 32 threads, and measure the time used to find the

best data layout.

Table 3 shows the total number of query plans enumerated by

CHESTNUT (before and after pruning) and the time taken to find

the best layout. The total running time includes plan enumeration

and verification (described in Section 6), as well as ILP solving

(described in Section 7). CHESTNUT enumerates a large number of

plans even for a few queries, up to millions. With the pruning op-

timization described in Section 5.6, however, the number is greatly

reduced by 53-96%. This reduction makes the ILP solving finishes

quickly, as quick as 3min in average.
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