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Diffuse scattering occurring in the Bragg diffraction pattern of a long-range-

ordered structure represents local deviation from the governing regular lattice.

However, interpreting the real-space structure from the diffraction pattern

presents a significant challenge because of the dramatic difference in intensity

between the Bragg and diffuse components of the total scattering function. In

contrast to the sharp Bragg diffraction, the diffuse signal has generally been

considered to be a weak expansive or continuous background signal. Herein,

using 1D and 2D models, it is demonstrated that diffuse scattering in fact

consists of a complex array of high-frequency features that must not be averaged

into a low-frequency background signal. To evaluate the actual diffuse scattering

effectively, an algorithm has been developed that uses robust statistics and

traditional signal processing techniques to identify Bragg peaks as signal outliers

which can be removed from the overall scattering data and then replaced by

statistically valid fill values. This method, described as a ‘K-space algorithmic

reconstruction’ (KAREN), can identify Bragg reflections independent of prior

knowledge of a system’s unit cell. KAREN does not alter any data other than

that in the immediate vicinity of the Bragg reflections, and reconstructs the

diffuse component surrounding the Bragg peaks without introducing discontin-

uities which induce Fourier ripples or artifacts from underfilling ‘punched’ voids.

The KAREN algorithm for reconstructing diffuse scattering provides demon-

strably better resolution than can be obtained from previously described punch-

and-fill methods. The superior structural resolution obtained using the KAREN

method is demonstrated by evaluating the complex ordered diffuse scattering

observed from the neutron diffraction of a single plastic crystal of CBr4 using

pair distribution function analysis.

1. Introduction

Diffraction of X-rays, neutrons and electrons provides a

powerful tool with which to understand the structure of

materials. Resolving the physical structure at the origin of a

diffraction pattern, as first articulated by Laue (Friedrich et al.,

1913) and Bragg (1913), has enabled dramatic advances in the

understanding of chemical structure and bonding. At the same

time, the ordered beauty of a solved crystal structure also

frequently creates a ‘bias of the picture’, leading to miscon-

ceptions or over-simplifications that imply the average struc-

ture solved from the Bragg diffraction of a crystal is ‘the

structure’ of the system. The Bragg diffraction, resulting from

the average long-range crystalline structure, is discrete, sharp

and intense. However, surrounding the sharp Bragg diffrac-

tion, much weaker diffuse scattering is frequently also

observed. It is this weak diffuse scattering that gives insight

into the system’s real structural, compositional, electronic and/

ISSN 1600-5767

# 2020 International Union of Crystallography

electronic reprint



or magnetic variations, which are often the key to interesting

intrinsic material properties (Welberry & Weber, 2015; Weber,

2014).

Deciphering the origin of diffuse scattering is complex. In

part this is because the distinction between Bragg and diffuse

scattering is somewhat arbitrary. The diffraction pattern is the

magnitude of the Fourier transform of the physical structure

of a material. Bragg scattering is observed for periodic struc-

tures, and corresponds to the scattering from the long-range

periodic structure. As such it is often described as a series of �
functions, i.e. g(r*) =

P
R* �(r* � R*). Diffuse scattering is all

the other scattering, the result of any deviations from the long-

range periodic structure for which the measured diffraction

intensity can be represented by equation (1),

Itotal ¼ IBragg þ Idiffuse: ð1Þ

The arbitrary distinction between Bragg and diffuse scattering

can be represented by a simple 1D schematic with a regular

periodic structure described as

Only Bragg diffraction will be observed for this ideal structure,

consistent with the lattice constant a. If this system undergoes

a Peierls distortion, for example, tending toward dimerization

described schematically as

the primary scattering will still identify the original a lattice

constant. However, weak scattering will be observed half way

between each of the original Bragg peaks, consistent with a

doubled unit cell, a0 = 2a. If the distortion is small and/or not

regular, the resulting interference pattern is less defined,

appearing diffuse, whereas if the dimerization is more

pronounced and regular, then a new long-range periodic

structure is described, and what were diffuse features become

defined as weak Bragg peaks.

There are a vast number of possible perturbations to an

average structure, resulting in a much more complex diffuse

structure, and thus many real systems exhibit a much less clear

distinction between what is diffuse and what is Bragg scat-

tering. Nevertheless, deviations from the ideal structure are

often critical features with respect to defining the properties of

a material (Egami & Billinge, 2012). Thus, there is a strong

desire to understand the real structural perturbations that give

rise to diffuse scattering patterns.

In conventional usage, deviations from the regular periodic

structure that give rise to the diffuse scattering have been

described as ‘local structure’, which is contrasted with the

‘average structure’. The concept of ‘local structure’ has

become particularly prevalent in descriptions of pair distri-

bution function (PDF) analysis of total scattering (Egami &

Billinge, 2012). While the short-range pair correlations

observed in a PDF describe the local structure, it is equally

important to recognize that they too are representations of the

average structure. Herein, local variation from the long-range

periodic structure causes diffuse scattering, but all diffraction,

both Bragg and diffuse, is a result of the interference pattern

created by waves diffracted by the ensemble of particles

making up the entire sample. The averaging inherent in a

diffraction experiment is also a fundamental property of the

Fourier transform and arises as a consequence of the projec-

tion-slice theorem (Bracewell, 1990). Thus, it is important to

clarify that all diffraction represents average structure, i.e.

Bragg scattering represents average long-range periodic

structure, and diffuse scattering represents average perturba-

tion from this long-range periodic structure.

Because diffuse scattering is generally three to six orders of

magnitude less intense than Bragg scattering, physical

measurement further complicates its study. This is particularly

detrimental when diffuse features are in the immediate vici-

nity of strong Bragg peaks. Diffuse scattering was observed in

early diffraction studies using film techniques, which captured

spatial resolution of diffuse scattering reasonably effectively,

but the dynamic range of the film significantly limited quan-

tification (Welberry & Weber, 2015; Weber, 2014). Subsequent

diffractometers equipped with single-point scintillation

detectors, while excellent for quantification of the intensity of

the diffracted signal, are not well suited to comprehensive

mapping of reciprocal space because of their small spatial

coverage. More recent developments of area detectors, such as

image plates, CCDs and CMOS detectors used on in-house

X-ray laboratory and synchrotron sources, improve the ability

to both spatially map and quantify the intensity of diffuse

scattering, although artifacts due to pixel saturation or pixel-

to-pixel bleeding are frequently introduced (Goossens et al.,

2005). The hybrid photon-counting PILATUS detectors, with

a substantially greater dynamic range, appear to reduce some

of the artifacts for synchrotron measurements (Weber et al.,

2008). We find the continuous readout counting afforded with

neutron scattering using an array of time-of-flight detectors on

the CORELLI and TOPAZ diffraction instruments at the

Spallation Neutron Source (SNS), Oak Ridge National

Laboratory, is less likely to saturate and thus reduces the

number of artifacts created by intensity bleeding into neigh-

boring pixels.

However, even with careful measurement of both Bragg

and diffuse scattering, the Bragg diffraction dominates the

real-space structural interpretation due to the significant

intensity differential. After the transformation from reciprocal

to real space through a Fourier transform, strong features, like

Bragg peaks, continue to dominate the transformed pattern

while the signal of interest remains insignificant. Thus, there is

value in developing methods to separate Bragg and diffuse

scattering to afford their independent analysis.

A punch-and-fill method has been employed to separate

Bragg and diffuse scattering (Kobas et al., 2005a,b). This

method requires prior knowledge of the material’s unit cell

such that the Bragg reflections can be subtracted from, or

‘punched out’ of, the total diffraction pattern according to the

known lattice spacing with an arbitrary punch diameter, w(r*),

selected to remove the strongest Bragg reflections completely.

Application of this punch-and-fill strategy has included
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Patterson analysis of only the punched diffraction pattern, or

evaluation of diffraction patterns for which various inter-

polated functions fill the punched holes (Weber & Simonov,

2012; Sangiorgio et al., 2018; Roth & Iversen, 2019; Krogstad et

al., 2019). It has been stated that ‘ . . . punching the Bragg

reflections mainly removes the high-frequency part of scat-

tering intensity. The low-frequency part, which mostly corre-

sponds to the overall distribution of diffuse scattering, is

hardly affected by this procedure.’ (Kobas et al., 2005a). The

latter assumption that the diffuse scattering is primarily

represented by the low-frequency part of the scattering is the

basis used to justify a low-frequency fill function. However,

both the punch-only and punch-and-fill strategies introduce

artifacts and/or bias into the interpretation of the chemical or

physical origin of the diffuse scattering.

Patterson and PDF analyses of diffraction data rely on the

Fourier transformation of the scattering function; therefore

sharp discontinuities created by punching out the Bragg

reflections generate severe ripple artifacts in the real-space

data. Such ripples are a consequence of the Gibbs phenom-

enon, a behavior of any eigenfunction series at a jump

discontinuity (Eric W. Weissstein, Gibbs Phenomenon, from

MathWorld – A Wolfram Web Resource, http://mathworld.

wolfram.com/GibbsPhenomenon.html). To minimize the

Fourier ripple, or Gibbs artifacts, the holes may be filled

before Fourier transformation. Only filling with a smooth

function will prevent the introduction of Fourier ripples.

Because of the presumption that ‘diffuse scattering is by far

broader than the Bragg profiles, . . . interpolation of the

diffuse beneath the Bragg scattering [is suggested to] provide

a reasonable approximation to the real diffuse intensities.’

(Weber & Simonov, 2012). Thus, one strategy to fill the

punched scattering pattern is to apply a Gaussian convolution

to the punched data to interpolate missing data (Arnold

et al., 2014; https://docs.mantidproject.org/nightly/algorithms/

DeltaPDF3D-v1.html). Alternative strategies interpolate only

the punched region with an isotropic Gaussian (Krogstad et

al., 2019). However, as will be demonstrated below, diffuse

scattering is not necessarily a smooth continuous isotropic

function.

We find that there is a need for an alternative strategy to

separate Bragg from diffuse scattering that (i) does not

introduce discontinuities which produce Fourier ripples, (ii)

does not introduce bias as to the nature of the diffuse scat-

tering, (iii) is not dependent on a fixed arbitrary window to

remove Bragg scattering and (iv) does not require prior

knowledge of the material’s unit cell in order to determine the

Bragg intensity that should be subtracted. To accomplish this,

we have consulted signal-processing literature (Pearson et al.,

2016) to develop a novel strategy, KAREN (K-space algo-

rithmic reconstruction), whereby Bragg peaks are identified as

signal outliers. Once Bragg peak locations are determined, the

peaks are removed and the removed regions are reconstructed

to match the underlying diffuse scattering. Importantly, we will

show that KAREN does not modify or alter any non-outlier

data and thus introduces the minimum possible bias into the

measured data. In addition, robust statistical estimators used

for outlier detection are insensitive to measurement-related

noise, making them well suited for handling difficult-to-

measure signals.

2. What is the signal to be measured?

Before describing the details of our algorithm to separate

Bragg and diffuse scattering, it is useful to consider the

expected manifestation of diffuse scattering. A majority of

reports describing diffuse scattering suggest it to be ‘broad’,

‘continuous’, ‘streak-like’ etc. With respect to the evaluation of

crystalline systems, the ‘broad continuous’ presumption is

reinforced by the modest-to-low pixel resolution of detectors,

by experimental methods that continuously rotate the crystal

during measurement and/or by evaluation of polycrystalline

powders. ‘Jitter’ or speckling in the data is frequently assumed

to be noise, for which application of a low-pass filter (Goos-

sens et al., 2005) or smoothing polynomial (Juhás et al., 2013) is

frequently applied. Notably, however, the calculated inverse

Fourier transform of physical images only becomes broad and

continuous for isolated objects. As is clearly visible in the

various 2D optical transforms shown in the Atlas of Optical

Transforms (Harburn et al., 1975), the Fourier transforms of

ensembles become increasingly speckled with the increasing

number of components in the physical image.

Consider, for example, the diffraction from the long-range-

ordered pattern of Gaussians with an FWHM of 7.5 units and

separated by 30 units shown in Fig. 1(a). The Fourier trans-

form of that ideal 1D ‘crystal’, the Bragg diffraction, is given in

Fig. 1(b). Keeping the average structure constant but inserting

a grain boundary for which the first half of the Gaussians are

shifted by three units to the left and the second half of the

peaks are shifted by three units to the right, the diffraction

pattern of Fig. 1(c) is calculated. Here, each of the previous

Bragg peaks is split, and the base of each Bragg peak is

significantly broadened by an apparent diffuse background.

Alternatively, again with a constant average structure, let

every other Gaussian be randomly shifted left or right by up to

three units. The corresponding diffraction pattern is given in

Fig. 1(d). The diffraction pattern for the 1D crystal with each

Gaussian randomly shifted left or right by up to three units is

given in Fig. 1(e), and that for the random distortion with a

grain boundary (i.e. the first half of the Gaussians shifted by a

random amount up to three units to the left and the second

half of the Gaussians shifted by a random amount up to three

units to the right) is shown in Fig. 1( f).

Consistent with the common average periodic structure of

each of these models, there is very little variation in the Bragg

scattering between that of the ideal crystal and the distorted

crystals. It is further important to recognize that the average

diffuse scattering, represented by the smoothed dotted lines in

Figs. 1(c)–1( f), is essentially equivalent for each of the

perturbed model structures. Importantly, the jitter in these

calculated data is not noise. It is a direct result of the specific

perturbations, and thus provides critical data that must be

preserved to obtain an accurate analysis of the diffuse scat-

tering in order to understand the local perturbations.
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The complexity of the diffraction patterns increases, and

thus the separation of diffuse from Bragg scattering becomes

more complicated, for higher-dimensional systems. Consider

the area described by Figs. 2(a) and 2(b), which each have an

equivalent number of filled pixels. In Fig. 2(a) the filled pixels

are randomly distributed on 10.5% of the odd values on a

square spiral emanating from the center. In Fig. 2(b) the same

number of pixels are filled in the pattern of an Ulam spiral, i.e.

a square spiral emanating from the center of the area for

which each pixel corresponding to a prime number is filled.

The calculated diffraction patterns for each image are given as

Figs. 2(c) and 2(d), respectively. Both exhibit the same Bragg

scattering, but their patterns of diffuse scattering are distinct,

with the Ulam spiral model exhibiting notably ordered

patterns of diffuse scattering. The diffuse scattering is more

than 50 times less intense than the Bragg scattering, as seen in

the supporting information (Fig. S1).

Radially integrating each of these images [Figs. 2(e) and

2( f), respectively, equivalent to 1D powder diffraction

patterns] reveals a more Bragg-like structure for the Ulam

spiral, but the underlying diffuse scattering from the two

models is nearly equivalent and reasonably presumed to be a

broad continuous function. By contrast, evaluating the diag-

onal cross section through each of these images [Figs. 2(g) and

2(h), respectively], like the images of Figs. 2(c) and 2(d),

clearly demonstrates that the details of the perturbation from

the average structure are found in the jitters of the diffuse

scattering.

research papers

162 James Weng et al. � KAREN: a methodology to separate Bragg and diffuse scattering J. Appl. Cryst. (2020). 53, 159–169

Figure 2
(a) Pixels randomly distributed on 10.5% of the odd values of a square
spiral. (b) Pixels distributed along an Ulam spiral. (c) and (d) 2D
diffraction patterns, and (e) and ( f ) 1D radially integrated patterns,
calculated for the pixel distributions in panels (a) and (b), respectively.
(g) and (h) Diagonal cross sections of the diffraction images in panels (c)
and (d), respectively. Panels (e)–(g) are plotted on an expanded intensity
scale to accentuate the diffuse scattering. Full-scale plots of panels (g)
and (h) are given in Fig. S1.

Figure 1
(a) A hypothetical 1D crystal of Gaussians with FWHM = 7.5 units and
separated by 30 units. (b) The diffraction pattern of the ideal 1D crystal.
(c)–( f ) Diffraction patterns of perturbed 1D crystals (red) superimposed
on the diffraction of the ideal average lattice (black) with (c) the first half
of Gaussians shifted to the left by 3 units and the second half shifted to
the right by 3 units; (d) every other Gaussian randomly shifted left or
right by up to 3 units; (e) each Gaussian randomly shifted left or right by
up to 3 units; and ( f ) the first half of the Gaussians shifted to the left
randomly by up to 3 units and the second half of the Gaussians shifted to
the right randomly by up to 3 units. Insets present the second and third
peaks on an expanded Q scale, which more clearly demonstrates the peak
splitting observed in panels (c) and ( f ). The dotted black lines are the
same smoothed diffuse function overlaid on each pattern.
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Notably, no simple punch function can effectively remove

the Bragg scattering from the diffuse in these patterns.

Furthermore, applying a Gaussian convolution, like collapsing

the higher-order diffraction data into a 1D powder pattern,

averages the diffuse scattering such that it would not be

possible to distinguish the distinct structural perturbations.

Thus, to best analyze diffuse scattering, it is necessary to

obtain high-resolution 3D scattering data from single-

crystalline samples. Furthermore, to analyze such diffuse data,

it is necessary to remove the Bragg scattering without

manipulation of the underlying diffuse scattering.

3. KAREN

KAREN is a single-stage nonlinear digital filter which is based

on the Hampel filter (Pearson et al., 2016). The Hampel filter is

a decision filter that operates on the central value in the data

window by replacing outliers with the median of all values in

the window. An implementation of KAREN was recently

integrated into the MANTID software suite (Arnold et al.,

2014).

The total scattering intensity, Itotal, is described as the sum of

the IBragg and Idiffuse components [equation (1)]. Because

Bragg peaks are significantly more intense than the diffuse

scattering components, the total scattering intensity may be

considered to be some function with arbitrarily positioned

outliers, i.e. the Bragg peaks.

With KAREN, the voxels of the reciprocal-space volume

corresponding to the 3D diffraction intensity are evaluated for

outliers. Using Hampel filter methods, the voxel in the center

of a moving window is determined to be an outlier if its

intensity exceeds three standard deviations (3�) of the

intensity of the other voxels contained within the window. In

KAREN, an N � N � N cubic moving window is employed,

with N selected to be the width of the primary diffuse scat-

tering features.

The value for � is estimated from the median absolute

deviation, MAD, by equation (2),

� ’ 1:4826 � MAD: ð2Þ
The value 1.4826 is a scaling factor derived from the

assumption that the data within the window are normally

distributed (Rousseeuw & Croux, 1993). The MAD for some

set of values X is defined by equation (3),

MAD ¼ median Xi � median ðXÞ�� ��� �
: ð3Þ

The MAD [equation (3)] and the MAD estimate of � [equa-

tion (2)] are robust statistics for which the inclusion of outliers

does not significantly change their values. This is in contrast to

common calculations of the standard deviation {i.e.

� ¼ ½Pn
i¼1ðxi � xÞ2=ðn� 1Þ�1=2}, which can be significantly

shifted by the inclusion of even a single corrupted value.

Testing with randomly generated normally distributed data

indicates that roughly 20% of a data set may consist of outliers

before the values returned for the MAD, or � from equation

(2), are significantly altered.

Voxels identified as outliers are determined to be the Bragg

scattering, as distinct from the diffuse scattering. The diffuse

scattering intensity underneath the Bragg scattering voxel is

assumed to be statistically insignificant with respect to the

Bragg scattering intensity. The compilation of all outlier voxels

is defined as IBragg. Before analysis such as �-PDF (i.e. PDF

analysis of only the Bragg diffraction), the Bragg peaks should

ideally be fitted by a Voigt function, for example, so as not to

introduce termination artifacts into the Fourier analysis.

Importantly, by defining Bragg scattering as the outliers of the

total scattering function, no prior knowledge of the material’s

unit cell is required. As such, the above-noted arbitrary

distinction between the Bragg and diffuse scattering of a

Peierls distorted system is moot, being determined only by the

user-defined statistical threshold for outlier identification. This

method for Bragg peak identification may be particularly

advantageous for the evaluation of modulated crystalline

structures, as it allows separation of scattering induced by

structural modulation from scattering created by other dis-

ordering effects.

By contrast, the diffuse scattering component of the outlier

voxels is significant with respect to identification of the overall

diffuse scattering. Thus, to obtain the complete Idiffuse it is

necessary to reconstruct the diffuse scattering component of

the outlier voxels. Because analysis of the diffuse scattering

frequently relies on Fourier techniques, it is critical that the

reconstruction method does not introduce sharp discontin-

uities between the non-outlier voxels and the reconstructed

voxels.

While various fitting routines can be used to reconstruct the

void remaining after outlier subtraction, computational effi-

ciency must also be considered, given the total number of

voxels that must be evaluated in a given diffraction pattern.

Were computational time not a factor, reconstruction of the

void resulting from removal of IBragg could effectively be

accomplished by using solutions of the heat equation or

biharmonic equation, for example, as is commonly employed

for image reconstruction (Schönlieb, 2012). Alternatively, the

void can be reconstructed by convolution with a Gaussian

kernel (Krogstad et al., 2019). However, these methods

increase the computational time by about three orders of

magnitude, thus demanding a more computationally efficient

approximation.

It is reasonable to assume that the actual Idiffuse underneath

the Bragg peak should be between a maximum of the (median

+ 3�) of all voxels in the defined window and a minimum of

the median of all voxels in the window. In the window, the

maximum of (median + 3�) is the threshold used to distinguish

Bragg and diffuse scattering. A minimum of the median is

assumed, since to suggest otherwise would consider the diffuse

scattering under the Bragg scattering to be lower in intensity

than the surrounding diffuse scattering. Applying these

approximations to actual data for the perovskite PMN

[Pb(Mg1/3Nb2/3)O3], collected on the CORELLI instrument at

the SNS (Krogstad et al., 2018) (Fig. 3), it is observed that

reconstruction of the outlier-subtracted voids with the

(median + 3�) is likely to over-estimate the diffuse component
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underneath the Bragg peak [Figs. 3(c) and 3( f)], whereas

reconstruction with only the median of the Hampel window

under-represents the diffuse scattering intensity and results in

significantly distorted peak shapes [Figs. 3(b) and 3( f)]. The

value of the median, like the standard deviation, is sensitive to

outliers, though less so than the latter. In particular, when, as is

observed for the diffuse scattering of PMN, the diffuse scat-

tering is localized into anisotropic and reasonably sharp star or

cross-like patterns for which there is no diffuse intensity in

much of the 3D window, reconstruction by replacement with

the median leads to speckle artifacts where portions of the

reconstructed intensity are lower than the surrounding region.

By contrast, addition of the MAD to the median significantly

attenuates outlier and anisotropic effects. Evaluating a variety

of simulated and actual diffraction patterns, empirically we

find that reconstruction by replacing outlier voxels with the

(median + 2.2 MAD) reasonably reconstructs the diffuse

scattering with minimal distortion [Figs. 3(d) and 3( f)]. This

value of the (median + 2.2 MAD) is approximately the

(median + 1.5�). Notably, the Fourier transform of the diffuse

scattering data exhibits no substantive difference between

reconstructions based on the more computationally intensive

use of solutions to a differential equation such as the heat

equation and those based on the simple (median + 2.2 MAD)

approximation. Furthermore, it is important to recognize that

reconstruction leaving too much Bragg intensity in the diffuse

function has a minimal effect on subsequent PDF analysis,

since it contributes to existing positive pair correlations. By

contrast, as will be demonstrated below, deficient reconstruc-

tion of the diffuse scattering creates novel features in the

diffuse structure factor which introduce artifacts in the PDF

corresponding to physically impossible correlations.

4. KAREN versus punch-and-fill
The diffuse scattering corresponding to the plastic crystalline

phase of CBr4 provides an excellent proving ground with

which to compare and contrast KAREN and prior methods

used to separate the Bragg and diffuse scattering. Plastic

crystals of CBr4 are soft and easily deformable. The plastic

crystalline phase exhibits a high overall symmetry, but is also

characterized by a high degree of orientational and displacive

disorder. Details of the structural disorder remain a subject of

some debate (Folmer et al., 2008; Temleitner & Pusztai, 2010;

Timmermans, 1961). Due to the structural disorder, the diffuse

scattering contribution is very significant compared with the

Bragg scattering and is therefore a good example to study in

this context.

Neutron diffraction data of CBr4 were collected and

analyzed. Specifically, the data were analyzed with KAREN

and with the punch-only and the punch-and-fill methods

(Weber et al., 2008; Kobas et al., 2005a,b; Weber & Simonov,

2012; Krogstad et al., 2019).

A sample of CBr4, sufficient to form a 2 cm long ingot in a

2 mm diameter Kapton tube, was mounted on the TOPAZ

beamline (Spallation Neutron Source, Oak Ridge National

Laboratory). Analogously to previous work (Folmer et al.,

2008; Dill, 2013), a single plastic crystal was grown in situ by

heating the sample under a stream of argon using an Oxford

Cryostream up to the melting point (383 K), and then

quenching in situ at 6 K min�1 to a crystal growth isotherm

Tiso = 355 K. Cross sections of the collected reciprocal space,

(111)* and (100)*, and a full 3D rendering are given in Fig. 4.

(A movie of the 3D reciprocal space is provided as supporting

information.) The presence of relatively intense anisotropic

sheets and volumes of diffuse scattering provides a challenging
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Figure 3
(100)* cross section of the reciprocal-space volume of the neutron diffraction of PMN, collected on CORELLI (elastic only; Ye et al., 2018). The powder
rings correspond to the diffraction from the Al sample canister. (a) Total scattering, i.e. Bragg + diffuse. Bragg scattering outliers are removed and
replaced with (b) the median value of the window, (c) the median + 3�, the threshold for outlier detection, and (d) the median + 2.2 MAD. (e) A 1D plot
along the [100]* vector, with the total scattering represented as a black line, the median reconstruction (red), the median + 3� (green) and median +
2.2 MAD (blue). ( f ) The data from panel (e) replotted on an expanded y scale.
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test data set for the separation of Bragg and diffuse scattering.

Notably, all the anisotropic structure information of the

diffuse scattering is lost if the diffraction volume is integrated

and collapsed to one dimension, or if a polycrystalline sample

were evaluated as is typical for a majority of PDF analyses.

Furthermore, while in the 3D volume the Bragg diffraction

features are clearly outliers, when integrated to one dimension

it would be extremely difficult to extract Bragg and diffuse

components [Fig. 4(d)], particularly for the weaker Bragg

reflections between 4 and 6 Å�1.

Multiple methods to separate the diffuse scattering

component from the total 3D scattering data were applied, for

which (100)* cross sections are shown in Fig. 5 and Fig. S2. The

original data are given in Fig. 5(a). The data were evaluated

using the full KAREN algorithm, whereby the outlier voxels

are replaced by the (median + 2.2 MAD) [Fig. 5(b)], and with

a modified KAREN algorithm, whereby the outlier voxels are

replaced by the median of the surrounding region (not

shown).

Previous punch methods require prior knowledge of the

unit cell, such that an isotropic hole of defined radius can be

punched in the structure factor data at calculated reciprocal-

lattice positions to remove the Bragg components (Kobas et

al., 2005a,b). In Fig. S2(c) lattice-determined Bragg reflections

are removed with an 8-pixel spherical punch. Notably, this

method imposes the same fixed punch on regions of reciprocal

space where no Bragg intensity is measured, which will be

shown to create artifacts in the PDF. We also evaluated a

variable-punch method in which only the KAREN-identified

outliers are removed [Fig. S2(e)], by which any anisotropy,

variable size and absences of the Bragg reflections are

accounted for.

The initial punch-and-fill implementation (Kobas et al.,

2005a,b) as implemented in the MANTID software suite (https://

docs.mantidproject.org/nightly/algorithms/DeltaPDF3D-v1.html)

applies a Gaussian convolution over the whole scattering

pattern to fill the punched voids [Fig. S2(d)]. Here the type of

Gaussian convolution can significantly impact the interpolated

fill. When implemented with a simple Gaussian convolution,

such as found in the SciPy signal library (https://docs.scipy.org/

doc/scipy/reference/signal.html), even relatively large Gaus-

sian kernels do not completely fill the punched voids. By
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Figure 5
The (100)* cross section of the diffuse scattering of CBr4. (a) Original
data. (b) KAREN reconstructed diffuse scattering. (c), (d) Bragg
scattering removed (c) with a fixed 8-pixel punch filled by convolution
with a Gaussian kernel and (d) with a fixed 12-pixel punch filled by
convolution with a Gaussian kernel. (e) A 1D plot along the [100]* vector
of the unmodified total scattering (black), the KAREN reconstructed
diffuse scattering (green), the KAREN reconstructed diffuse scattering
with a median-only fill (purple), the 8-pixel punch and HC-fill
reconstructed diffuse scattering (blue), and the 12-pixel punch and HC-
fill reconstructed diffuse scattering (red). Gaussian kernels with � = 1
were used for interpolation.

Figure 4
Total neutron scattering of plastic crystalline CBr4. (a) The (111)* cross section. (b) The (200)* cross section. (c) A 3D rendering, looking just off the
[100]* axis. (d) A 1D diffraction pattern, corresponding to integration over the full reciprocal-space volume (black) and the independent integration of
the Bragg scattering (red). The inset shows an expanded intensity scale.
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contrast, the Astropy convolution library (Price-Whelan et al.,

2018) introduces a method to replace missing data during

convolution such that incomplete filling effects are minimized.

With the Astropy convolution method, the punched voids are

completely filled, but the magnitude of the interpolated resi-

dual diffuse scattering under the punched Bragg peak is

significantly dependent on the size of the punched void. The

MANTID punch-and-fill implementation uses the Astropy

convolution library, and hereafter in this article will be

referred to as the whole-pattern convolution fill, WPC-fill.

The punch-and-fill method described by Krogstad et al.

(2019) also fills the voids using the Astropy convolution library

(Price-Whelan et al., 2018), but only utilizes the convoluted

values from the punched regions, leaving the remainder of the

data unmodified. Hereafter this method will be referred to as

the hole-convolution fill (HC-fill) method. In this article, the

punch–HC-fill method is implemented using 8-pixel and 12-

pixel spherical punches and a Gaussian kernel of � = 1, with

data shown in Figs. 5(c) and 5(d), respectively. For this data

set, the use of either a smaller punch diameter (6 pixels) with

the same � = 1 Gaussian kernel, or a larger � = 2 Gaussian

kernel with a punch diameter of either 6 or 8 pixels, creates

ringing artifacts which appear as a checkerboard pattern in the

calculated PDF, making the data uninterpretable (Fig. S3).

As highlighted by the 1D [100]* cuts through these images

[Fig. 5(e) and Fig. S2(g)], the punch-only, KAREN and punch–

HC-fill implementations leave the majority of the measured

diffraction pattern intact. By contrast, while removing the

discontinuities of the punch, the WPC-fill also removes all of

the jitter from the pattern, imposing an isotropic character on

the pattern. Notably, the various methods reconstruct

different amounts of diffuse scattering underneath the

punched Bragg reflections. As apparent from Fig. 5(e), the

reconstructed diffuse scattering obtained by the HC-fill

method is substantially dependent on the size of the punched

holes. Furthermore, both the HC-fill and WPC-fill methods

reconstruct the diffuse scattering under the Bragg peaks to a

value that is comparable to that provided by the KAREN

algorithm only when a median fill is applied [Figs. 3(f) and 5(e)].

The effectiveness of each of these methods to extract the

unique diffuse scattering is most apparent upon evaluation of

the �-PDF, the PDF calculated from only the diffuse

component of the scattering (Weber & Simonov, 2012). The

�-PDF, calculated from only the Bragg scattering and indica-

tive of the fully ordered part of the structure, is not particu-

larly sensitive to the separation and reconstruction methods

used. It is useful to consider the positive and negative

contributions of the �-PDF independently. Real vectors

between the same elements contribute to positive correlations

and real vectors between different elements contribute to

negative correlations.

Movies of a full rotation of the 3D �-PDF of plastic crys-

talline CBr4 showing negative correlations for a 9.4 Å cubic

real-space volume, calculated from the KAREN, fixed and

variable punch-only methods, and the punch–HC-fill method

reconstructions, are given as supporting information. Selected

(100) cross sections showing both positive and negative

correlations, calculated to 30 Å, are shown in Fig. 6 and Fig. S4.

Because the KAREN [Fig. 6(a)], punch-only [Figs. S4(b) and

S4(c)] and punch–HC-fill [Figs. 6(b) and 6(c)] strategies do not

alter any of the data outside of the punched regions, i.e.

retaining all of the measured jitter in the diffuse scattering as

well as the low-frequency components, the short-range struc-

tures revealed by these methods are extremely similar.

Details of the structure of the plastic crystalline phase of

CBr4 will be discussed in a subsequent paper. Nevertheless,
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Figure 6
The (100) cross section of the �-PDF of plastic crystalline CBr4 calculated to r = 30 Å from neutron scattering data after removal of the Bragg scattering
and reconstruction of the diffuse scattering using (a) the KAREN algorithm, (b) the punch–HC-fill method with an 8-pixel diameter punch and
interpolation by a � = 1 Gaussian kernel, and (c) the punch–HC-fill method with a 12-pixel diameter punch and interpolation by a � = 1 Gaussian kernel.
Intensity is plotted on a log scale, with positive correlations red and negative correlations blue. In these renderings, the origin of the �-PDF has been set
to zero.
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here we note that each of the methods that do not alter the

diffuse scattering outside of the punched regions clearly

resolve the paired dodecahedron in the center of the negative

�-PDF corresponding to the paired six possible positions of

the C—Br vectors (i.e. oriented along the [110] directions, but

split due to the 109� Br—C—Br bond angle) (Folmer et al.

2008; Dill, 2013). As clearly seen in the cross-section plots of

Fig. 6, the cross-like extended order along the [110] directions

is also consistent with earlier literature suggesting that the C—

Br bonds tend to be localized along the [110] directions of the

unit cell (Folmer et al. 2008; Dill, 2013; Coulon & Descamps,

1980; More et al., 1980).

Notably, while the core nearest-neighbor structure is not

significantly different from any of the punch-and-fill methods,

the higher-r features are significantly dependent on the

method of fill. The WPC-fill approach reveals very little

higher-r structure, although this loss of structural detail is less

significant for the variable r punch afforded by filling only the

outlier holes identified by the KAREN method [Figs. S4(b)

and S4(d)].

Consistent with the residual Bragg intensity that remains

with the KAREN extraction of the diffuse scattering, positive

correlations are observed in the �-PDF on the lattice sites.

More importantly with respect to the structural origins of the

diffuse scattering, the �-PDF surrounding each of these

lattice sites also reveals a pattern of correlations consistent

with the dodecahedron resulting from the various C—Br

orientations. By contrast, the �-PDF of the diffuse scattering

from the punch–HC-fill methods introduces novel negative

correlations at lattice sites [Figs. 6(b) and 6(c)]. These negative

structure correlations are more sharply manifest for the

largest punch diameters, and become even more dominant in

the �-PDF patterns from the punch-only methods [Figs. S4(a)

and S4(c)]. The punch-only methods further reveal an alter-

nation between negative and positive correlations at lattice

sites as a function of the punch diameter, with the modulation

and their magnitude being dependent on the size and shape of

the punch function [Figs. S4(e) and S4( f)]. Notably, in CBr4,

lattice-site correlations will always correspond to same-atom

to same-atom correlations, and thus should only result in

positive correlations. Negative correlations would suggest

there are CBr4 molecules with missing constituent atoms,

which is not physically reasonable. The formation of such

chemical species in situ by beam damage, i.e. the CBr3 radical,

is easily observable as a color change from transparent to

orange. Such was never observed for any of our neutron

scattering experiments, but both the color change and novel

pair correlations are observed for synchrotron X-ray diffrac-

tion experiments.

Because there is no known plausible physical structural

origin for negative correlations on lattice sites in CBr4, and

because the observed negative correlations in the calculated

�-PDFs are highly dependent upon the size and shape of the

punch functions, it is highly likely that they are artifacts

introduced by an incomplete modeling of the diffuse scat-

tering underneath the Bragg peaks. While the punch function

does remove the high-frequency features associated with

Bragg peaks, the incomplete reconstruction of intensity in the

punch regions of reciprocal space also introduces a regular

pattern of negative scattering distributed in the exact positions

of the calculated Bragg peaks. This is most apparent for the

punch-only methods, for which the discontinuities of the

punched voids create new high-frequency features resulting in

Gibbs phenomenon artifacts in the Fourier analysis. The initial

WPC-fill methods with the SciPy convolution (Kobas et al.,

2005a,b) do not sufficiently compensate for the zero intensity

of the punched pixels, leaving a regular array of holes

throughout the structure, even in regions where there may

have been no significant Bragg scattering. The WPC-fill with

the Astropy convolution and the punch–HC-fill methods

better compensate for the zero intensity of the punched voids,

although when applied with a fixed lattice-predetermined

punch, isotropic Gaussian spheres are regularly placed

throughout the reciprocal lattice, constituting a significant

contributor to the lattice-site artifacts in the �-PDF. As

apparent in Fig. 5(e), the HC-fill method, particularly for the

larger punch diameters, still underfills the diffuse scattering in

the Bragg-subtracted void, i.e. less than or equivalent to the

median of the surrounding diffuse scattering. If too small a

punch diameter is used with the HC-fill method, minimizing

the underfill artifacts, new artifacts are introduced, as

previously described for Fig. S3.

Both the fixed-punch and incomplete-fill methods thus

appear to be origins of lattice-site artifacts in �-PDFs. Fourier

analysis of just a set of reciprocal-lattice-site distributed punch

reconstructions, whether abrupt voids from the punch-only

methods or incompletely filled regions by other methods,

would yield positive lattice-site correlations. This is probably

the origin of the large r positive lattice-site correlations most

visible in the fixed-punch-only �-PDF in Figs. S4(e) and S4( f).

However, these punch reconstructions are essentially a virtual

element (one with a negative scattering length when under-

filled) that is introduced into the system. As such, lattice

correlations between real atoms and the virtual element result

in a modulated pattern of negative and positive correlations at

the lattice sites in the �-PDFs.

These examples demonstrate that incomplete back-filling of

diffuse intensity into the voids resulting from Bragg subtrac-

tion creates severe artifacts in the �-PDF. By contrast,

incomplete subtraction of Bragg intensity (or over-filling

subtracted voids) only slightly intensifies the already existing

real positive lattice correlations in the �-PDF, while minimal

artifacts are introduced. Because of this, we find that the

�-PDF analysis is relatively insensitive to the nature of the fill

function, provided that (i) no sharp discontinuities are intro-

duced that will be manifest as Fourier ripples, (ii) any recon-

struction fill of the diffuse scattering under the Bragg

scattering over- as opposed to under-estimates the intensity of

the diffuse scattering, and (iii) none of the diffuse scattering

data are modified other than immediately underneath the

outlier-identified Bragg data. Specifically, we found that

reconstructing the outlier-identified Bragg voids with the

computationally simple (median + 2.2 MAD), or using the

computationally more complex parabolic partial differential
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heat equation, yielded equivalent �-PDF functions, although

the former requires three orders of magnitude less computa-

tional time. Similarly, we expect that the punch–HC-fill

method could also provide an appropriate level of fill were the

size of the punch and Gaussian kernel scaled to the size of the

punched Bragg peak, and if the punch and reconstruction

were only applied to regions with actual Bragg scattering (e.g.

identified as signal outliers) rather than being applied

equivalently at all reciprocal-lattice sites where Bragg inten-

sity may not be experimentally observed.

5. Summary

It has long been established that, while Bragg scattering

describes a crystalline material’s ideal lattice structure, the

real structure, resulting from various perturbations to that

ideal lattice, gives rise to diffuse scattering. Using model

systems of 1D and 2D lattices, we have shown that, though

much less intense than Bragg scattering, high-frequency jitter

in diffuse scattering data contains critical information for

resolving the actual structure. These data challenge the

common perception that diffuse scattering is only contained in

the low-frequency component of the scattering pattern, and

further indicate that low-pass filters or other smoothing

functions should not be applied to diffuse scattering data. For

the best understanding of diffuse scattering, it is important to

employ the highest detector resolution possible.

Though the distinction between Bragg and diffuse scat-

tering is largely defined by some arbitrary intensity threshold,

to understand the real-structure deviation from an ideal lattice

it is useful to separate the Bragg and diffuse scattering, so that

the latter can be evaluated independently. It is further

demonstrated that the voids created by subtracting the Bragg

scattering must be reconstructed such that no sharp dis-

continuities are introduced, and the reconstruction must not

underfill the void so as to avoid introduction of processing

artifacts upon calculation of the 3D �-PDF. To accomplish

this, the KAREN algorithm was developed to identify Bragg

diffraction as signal outliers which can be removed from the

overall scattering data and then replaced by a statistically valid

fill value. Importantly, the KAREN algorithm is not depen-

dent upon prior knowledge of a system’s unit cell. Thus, this

method will be invaluable for evaluating complex systems such

as modulated structures and/or quasicrystals where prior

knowledge of the structure is not easily obtained by experi-

ment. The KAREN method for uniquely separating the

diffuse from the total scattering is here applied to resolve the

complex ordered diffuse scattering exhibited by the plastic

crystalline phase of CBr4. The 3D �-PDF clearly demon-

strates that the plastic crystalline phase is not a rotor phase.

Rather, the CBr4 molecules are disordered about 12 orienta-

tions, with the C—Br bonds oriented along the [110] lattice

vectors.
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