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Abstract

Directed breeding of horticultural crops is essential for increasing yield, nutritional content and
consumer-valued characteristics such as shape and color of the produce. However, limited
genetic diversity restricts the amount of crop improvement that can be achieved through
conventional breeding approaches. Natural genetic changes in cis-regulatory regions of genes
play important roles in shaping phenotypic diversity by altering their expression. Utilization of
CRISPR/Cas editing in crop species can accelerate crop improvement through introduction of
genetic variation in a targeted manner. The advent of CRISPR/Cas-mediated cis-regulatory
region engineering (cis-engineering) provides a more refined method for modulating gene
expression and creating phenotypic diversity to benefit crop improvement. Here, we focus on the
current applications of CRISPR/Cas-mediated cis-engineering in horticultural crops. We describe
strategies and limitations for its use in crop improvement, including de novo cis-Regulatory
Element (CRE) discovery, precise genome editing and transgene-free genome editing. In
addition, we discuss the challenges and prospects regarding current technologies and
achievements. CRISPR/Cas-mediated cis-engineering is a critical tool for generating
horticultural crops that are better able to adapt to climate change and providing food for an

increasing world population.

1 Introduction

Horticultural crops comprise vegetables, fruits, ornamental flowers as well as aromatic and
medicinal plants, thereby providing essential resources to society. For example, the availability
and consumption of a wide variety of vegetables and fruits allow us to meet our daily dietary
needs. Moreover, we enlighten our days with the abundance of floriculture products for aesthetic
uses and visual enjoyment. Collectively, horticultural crops make essential contributions to
humankind while also providing the economic engines that drive the success of societies all over

the world'.

Despite their collective importance, the improvement of many horticultural crops has lagged
behind most agronomic crops such as rice, corn and soybean. Yet, improvement of horticultural

crops for traits such as resistance to biotic and abiotic stresses, yield and health-related nutrients
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would benefit the entire sector. Genetic diversity is a critical source for crop improvement.
However, this diversity is often limiting especially for certain species®. The limited genetic
diversity could result in significant obstacles for further improvement by conventional breeding
approaches. Research in several crops has demonstrated that much of the genetic changes
underlying traits of economic importance reside in the cis-regulatory regions of genes>*. These
changes appear to have been selected during domestication, resulting in desirable traits caused by
altered gene expression®®. The CRISPR/Cas-based platform offers a powerful tool by
engineering cis-regulatory regions (cis-engineering) to introduce genetic diversity that could
potentially accelerate crop improvement®!2. Despite the importance of regulatory changes in
genes, the application of CRISPR/Cas-mediated cis-engineering has only been explored
sporadically. The genome sequence for at least 181 horticultural species is available!'® and
genome editing has been used to generate primarily knockout mutations in at least 25 of them'*,
These achievements demonstrate the feasibility of applying CRISPR/Cas-mediated cis-

engineering to expand the phenotypic diversity of many horticultural crops.

2 Natural variation in cis-regulatory regions resulting from the

domestication of horticultural crops

Cis-regulatory regions are non-coding DNA sequences that control the transcription of genes'>.

These cis-regulatory sequences consist of combinations of CREs that affect gene expression
level often in a spatiotemporal manner'>!7. Single Nucleotide Polymorphism (SNPs), insertions,
deletions, inversions and epigenetic variations are the most common natural variation in cis-
regulatory regions that are associated with domestication. Some examples from horticultural

crops are discussed below.

2.1 SNPs
Genomic studies in horticultural crops have generated insights into the role of SNP in shaping
phenotypic diversity among individuals'®. During tomato (Solanum lycopersicum) domestication,

selection frequently occurred for fruit size and shape, traits that show extensive variation and
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large increases over that of the wild relatives®. Increases in fruit weight are thought to be
controlled by SNPs in the promoter of FW2.2 (SICNR) and FW3.2 (SIKLUH)*'*%, The Ic allele
contains two SNPs in a 15-bp repressor element downstream of tomato WUSCHEL (SIWUS).
The SNPs are proposed to prevent the binding of the MADS box transcription factor
AGAMOUS which is required to recruit the repressive Polycomb proteins to shut down SIWUS
expression thereby ultimately resulting in larger fruits**!*2, In another example in tomato, two
SNPs in the promoter of Slcyc-B are highly associated with high B-carotene content®.

In citrus (Citrus reticulata), a recent report found a SNP in a miniature inverted-repeat
transposable element (MITE) in the promoter of CAROTENOID CLEAVAGEDIOXYGENASE 4b
(CCD4) to be sufficient to increase the expression of this gene, resulting in red coloration of fruit
peel?*. In pepper (Capsicum chinense), a SNP in the promoter of MYB31 is associated with a
hyperfunctional W-box in the promoter leading to stronger binding of WRKY9. This stronger

binding is associated with enhanced expression of MYB3! resulting in extremely pungent

peppers®.

2.2 Insertions

Insertions are sources of genetic diversity that can alter gene expression by introducing new or
disrupting existing CREs. Especially transposable elements (TEs) play important roles in
creating genomic variation by altering gene regulation®®?’. TE-induced variations in cis-
regulatory region are also important in the shaping of domestication-related phenotypes in many
horticultural crops. One example is the tomato fruit shape gene SUN. The transposition event at
the sun locus mediated by the Rider retrotransposon placed a copy of SUN in addition to Rider
itself in the intron of DEFLI. The ancestral copy of SUN on chromosome 10 is lowly expressed
but its derived copy on chromosome 7, where the sun locus maps, is highly expressed?®. The
high expression of SUN on chromosome 7 is thought to be from the promoter of DEFLI that
would now serve as an enhancer of SUN, leading to the elongated tomato fruit?®. Another Rider
insertion in the first intron of SEPALLATA4 (SEP4) leads to a jointless pedicel, reduced fruit
dropping, which facilitates mechanical harvesting®®. In grape (Vitis vinifera), the insertion of the
Gretl retrotransposon in the VvMYBAI promoter leads to its inactivation resulting in a white
berry phenotype®!. In blood oranges (Citrus sinensis), the insertion of a Copia-like

retrotransposon controls the expression of Ruby and the cold-dependency of anthocyanin
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production in the fruit*2. In cauliflower (Brassica oleracea var botrytis), a 695-bp Harbinger
DNA transposon insertion in the MYB2 promoter increases expression of this gene and resulting
in a purple phenotype®. Additionally, the differentiation of winter and spring genotypes in
rapeseed (Brassica napus L.) primarily arose from a MITE transposon insertion in the upstream

region of BnFLC.A10%.

Other examples of insertions that are possibly associated with TE activity are found as well. For
instance, ej2" (enhancer-of-jointless 2) is a weak loss-of-function allele, which was selected
during tomato domestication and caused by a 564-bp insertion in the 5™ intron of tomato EJ2.
The mutation results in unbranched inflorescences with exceptionally large sepals®’. In tomato,
an 8-bp insertion in the promoter of bHLHS59 significantly increased its expression in accessions
producing high-Ascorbic acid levels®. In apple (Malus x domestica), multiple repeats of a 23-bp
motif in the promoter of MYB10 generate, an autoregulatory locus, which is sufficient to account
for increased expression and ectopic accumulation of anthocyanins in red-fleshed apples>®.
Another example from apple is that a 36-bp insertion in MdSAUR37 promoter contributed to
high fruit malate content?’. In cucumber (Cucumis sativus L.), a 10-bp fragment was replaced by
an 812-bp fragment in the promoter of CsHDZIV11/CsGL3 at the few spines I (fs1) locus giving

rise to higher expression of CsGL3 and fewer fruit spines’®.

2.3 Deletions and Inversions

Deletions are common genetic changes that provide a wealth of domesticated-related phenotypic
diversity. One remarkable example is a 31 kb deletion upstream of tomato OVATE Family
Protein 20 (SIOFP20). The deletion is associated with reduced expression of SIOFP20 and
contributes to natural fruit shape variation in the tomato germplasm®. A 3-bp deletion in the
promoter of tomato AI-ACTIVATED MALATE TRANSPORTERY (SI-ALMTY) was selected
during tomato domestication. The deletion disrupts the repression of SI-ALMT9 by SI-WRKY42.
This results in increased SI-ALMT9 gene expression levels thereby conferring high fruit malate
contents and aluminum tolerance in tomato*’. Flowering time is an important trait for cucumber
domestication. A 39.9-kb deletion and a 16.2-kb deletion located 16.5-kb upstream of cucumber
FLOWERING LOCUS T (CsFT) are both associated with higher CsFT expression levels and

earlier flowering*'. The CsFT locus was selected during cucumber domestication and has been
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important in its adaptation to higher latitudes for cultivation*'. Therefore, deletions can confer
desirable traits through either decreased gene expression by removing enhancers and binding
sites of activators; or increased gene expression by removing repressors and binding sites of

repressors.

Genomic inversions also play a role in plant domestication as they could have widespread cis-
regulatory effects*2. One of the remarkable examples of variation in locule number is controlled
by a nearly 300 kb inversion a the fasciated (fas) locus in tomato. The fas locus is characterized
by disruption of the promoter region of tomato CLAVATA 3 (SICLV3), leading to downregulation

of the gene and larger fruit with increased number of locules?>*3.

2.4 Epigenetic variations

Natural epigenetic variations contribute to heritable phenotypic diversity that is not caused by
modification in the DNA sequence*#’. One of the best examples of an epiallelic variant that
impacts an important agronomical trait is the Colorless Non-Ripening (cnr) allele in tomato. The
epiallele of LeSPL-CNR is responsible for colorless fruits with a substantial loss of cell-to-cell
adhesion*®. In cnr mutants, hyper-methylation was found along a 286 bp CRE located
approximately 2.4 kb upstream from the first ATG of LeSPL-CNR. This change in methylation
status likely explains the reduced expression level of LeSPL-CNR and the ripening defects in cnr
fruits*®. Another epigenetic mutation is found in the promoter of the tomato SITAB2 gene. The
mutation controls pigment production in tomato leaves that are affected by DNA methylation
level in the promoter of the gene®. Vitamin E 3 (VTE3) is another natural occurring epiallele
controlling vitamin E accumulation in tomato fruits>®. The V'TE3 expression in fruits is regulated
by DNA methylation in the promoter region of the gene®. Additional examples include the

31553 and sex

control of anthocyanin accumulation in apple and pear (Pyrus communis) fruit skin
determination in melon (Cucumis melo)**. There is also increasing evidence that promoter DNA
methylation plays an important role in regulating tomato fruit ripening>>-¢, Notably, the tomato
DML?2 is critical for tomato fruit ripening by mediating DNA hypomethylation in promoters of

hundreds of genes during development®.
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Taken together, these studies highlight,the importance of genetic and epigenetic divergence in
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cis-regulatory regions, including the upstream regions, introns and downstream regions of genes.
Therefore, natural genetic variants, epialleles and functional CREs in cis-regulatory regions are
excellent genome editing targets to create novel variants for the improvement of horticultural

Crops.

3 Recent progress in CRISPR/Cas-mediated cis-engineering in

plants

So far, the most frequent application of CRISPR/Cas has been to target coding sequences with
the goals to create null alleles”’*®. Although this application greatly facilitates heritable alleles
for reverse genetics studies, selection of loss-of-function mutations in coding regions may result
in pleiotropic or deleterious effects*%%°. Compared to coding sequences, modulating gene
expression by cis-engineering is more likely to benefit crop improvement with less detrimental

pleiotropic effects®! 1175761,

To date, at least twelve articles described successful CRISPR/Cas-mediated cis-engineering via
genome editing for 14 genes in seven plants species, including seven genes in three horticultural
crops (Fig. 1A). In addition, CRISPR/Cas-mediated cis-engineering also been achieved to edit
the epigenome. However, only handful cases have been described in Arabidopsis that show

62.63 and histone acetylation®. Because of the

epigenome editing by altering DNA methylation
few examples in epigenome editing, the following sections will only describe the applications of

cis-engineering of DNA.
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Figure 1 Current applications of CRISPR/Cas-mediated cis-engineering.

(A) Summarization of current applications of CRISPR/Cas-mediated cis-engineering in plants;

(B) A continuum of phenotypic variation can be achieved by multiplexed CRISPR/Cas9 promoter targeting

and sensitized genetic screen;

(C) Disruption of CREs with genome editing can generate gain-of-function and reduced or loss-of-function

alleles;

(D) HDR-mediated promoter insertion/swapping conferring higher gene expression resulting in desirable traits.
LOBI, LATERAL ORGAN BOUNDARIES 1; YUC3, YUCCA3; ARGOSS, Auxin-Regulated Gene Involved in
Organ Size 8; ANTI, Anthocyanin 1; WUS, WUSCHEL; CLV3, CLAVATA3; S, COMPOUND
INFLORESCENCE; SP, SELF PRUNING; CRE, Cis-Regulatory Element; PRO, promoter.

3.1 Promoter disruption
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In tomato, a multiplexed CRISPR/Cas9 targeted the promoters of genes that control fruit size,
inflorescence branching and plant architecture'!. Importantly, the editing of promoters did
neither exploit nor require prior knowledge regarding the structure of promoters and other
regulatory sequences. Therefore, cis-engineering is generally applicable for diverse genes and
traits in many crops. Notably, a CRISPR/Cas9-driven sensitized genetic screen approach can
recover a collection of cis-regulatory alleles with a continuum of phenotypic effects!! (Fig. 1B),

providing an avenue for expanding genetic diversity in crops.

3.2 CRE disruption/deletion
Functional CREs in cis-regulatory regions are obvious targets for expanding genetic diversity.
However, only handful of cases have been reported in plants in which the CRE disruption/deletion

was successfully applied to regulate target gene expression.

The rice RAV2 gene is transcriptionally regulated by high-salinity. CRISPR/Cas cis-engineering
was used to target the GT-1 element in the promoter of OsRAV2 and the results strongly indicate
that the GT-1 element controls the salt response of this gene®. In barley (Hordeum vulgare), the
promoter of HvPAPhy _a, was targeted for three CREs, namely GCNa, Ska-1 and RY®. The lines
with mutations in the targeted region showed a significant reduction in phytase activity,
indicative of the importance of these CREs for the expression of the gene. Similarly, the edited
deletion of a 149 bp regulatory fragment containing a pathogen-induced element in the promoter
of Xal3 improved rice disease resistance without affecting rice fertility ® (Fig. 1C). This result is
advantageous compared to the knockout mutant of Xa/3 that showed a sterile phenotype, which
is obviously undesirable in crop improvement. Three recent studies in Duncan grapefruit (Citrus
paradisi Macf.) and Wanjincheng orange (Citrus sinensis Osbeck) reported that canker-resistant
plants were created through CRISPR/Cas editing of the PthA4 effector binding CREs in the
promoter of Lateral Organ Boundaries 1 (LOBI)®%.

The CRISPR/Cas-mediated cis-engineering was also utilized to modify known CREs in introns
and downstream of genes. The disruption of the CArG element including the two causative SNPs
downstream of SIWUS is the one of the remarkable examples recreating gain-of-function

alleles''"° (Fig. 1C). In Arabidopsis, a CTCTGYTY motif in the intron of YUCCA3 (YUC3) was
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identified by ChIP-seq and is crucial for recruiting RELATIVE OF EARLY FLOWERING 6
(REF6) to its target loci’'7. The deletion of four repeats of this motif leads to diminished
binding of REF6 at the mutant loci. In addition, a 450 bp CRE in the 2" intron of Arabidopsis
AGAMOUS was deleted by CRISPR/Cas9 and verified as the activator of AG gene expression.
The deletion of this CRE resulted in early flowering because of a 40 % decrease in its

expression’”,

3.3 Promoter insertion/swapping

Promoter insertion and swapping can be achieved by homology-directed repair (HDR) with
potentially great importance to crop improvement (Fig. 1D). However, HDR has been
challenging due to its low efficiency in higher plants*®7. So far only three cases have been
reported in which the promoters were accurately inserted or swapped by CRISPR/Cas9-mediated
HDR"678, A 35S promoter was inserted upstream of Anthocyanin 1 (ANTI), resulting in
enhanced anthocyanin accumulation and intensely purple tomato tissues’®. In maize, the HDR

pathway was used tol insert as well as swap }the native GOS2 promoter in the 5’-untranslated

region of the native ARGOSS. The edited plants show, increased expression of ARGOSS and

higher grain yield under drought stress conditions in field trials’’. Additionally, glyphosate
tolerant cassava (Manihot esculenta) was generated by a promoter swap of the 5-

enolpyruvylshikimate-3-phosphate synthase (ESPS) gene’s.

These encouraging achievements lshowl the potential for using CRISPR/Cas-mediated cis-

engineering to improve crop yield, quality and stress resistance.

4 Strategies for application of cis-engineering in horticultural crops

improvement

4.1 de novo CRE discovery
Prior knowledge of CREs in cis-regulatory region is helpful to apply cis-engineering in crop
improvement. Many previously described CREs, especially transcription factor binding sites

(TFBSs), in plant promoters can be identified by submitting sequences to various databases
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[ Deleted: or ]
[ Deleted: ed ]

Commented [QL2]: Here we use the present tense. In the
last paragraph of Secrion 2, we said ‘these studies
highlighted’, should | change the ‘highlighted’ to ‘highlight’?




290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

including TRANSFAC?, PLACE®, PlantCARE?', JASPAR Core PLANTAE®, PlantTFDB®3
and Plant Regulomics®. After the TFBSs have been predicted, the regions can be validated by
either in vitro methods based on DNA-protein interaction, such as DNA electrophoretic mobility
shift assay (EMSA), DNA pull-down and yeast one hybrid (Y 1H) assays, or in vivo Chromatin
immunoprecipitation (CHIP)-based methods, e.g. CHIP with DNA microarray (CHIP-chip) and
CHIP-sequencing (CHIP-seq).

However, the vast majority of CREs are unknown or poorly characterized, highlighting the
pressing need for de novo CRE discovery. The availability of genomic and transcriptomic data
for many horticultural crops allows the identification of novel CREs using bioinformatics-based
and experimental approaches!>3336, The de novo CRE discovery is based on sequence
conservation that exists among groups of genes that are co-expressed as well as gene families

within a single genome, and among orthologs of multiple species®®38,

Genes that show similar expression patterns or are in the same gene family are likely to be
tightly co-regulated and/or functionally related. Therefore, clustering co-expressing genes and
identification of gene families are helpful to explore conserved CREs and uncover their functions
for transcriptional regulation. The shared CREs can be identified by the well-established
methods such as Multiple Em for Motif Elicitation (MEME)® and eXhaustive evaluation of
matriX motifs (XX motif)***!. An ensemble strategy was used for de novo soybean cyst
nematode (SCN)-inducible motif discovery in the upstream regulatory sequences of 18 co-
expressed genes®?. Another strategy to identify conserved CREs is by comparing promoter
sequences of orthologous genes from different species. Phylogenetic footprinting and variations

of the technique are designed for the CRE discovery approach®>-’

. mVISTA is a commonly used
tool for comparative analysis of genomic sequences®®. The comparison of the CLV3 promoters in
tomato with three other Solanaceae species, S. pennellii, potato (S. tuberosum) and pepper (C.
annuum) was performed using mVISTA. This resulted in the identification of three putative
CREs between tomato and pepper, and four CREs between tomato and potato!!. Complementary
to bioinformatics-based approaches are experimental approaches, e.g. deconstructive and
reconstructive approaches, by which numerous inducible and tissue specific CREs are

characterized®>®.
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4.2 Choice of appropriate approach for CRISPR/Cas-mediated cis-engineering

CRISPR/Cas-based technologies offer multiple strategies to engineer cis-regulatory regions
according to the prior knowledge of the target region or given purpose. If no prior knowledge of
the target region exists, multiplexed CRISPR/Cas-mediated promoter targeting can be applied to
putative ‘negative regulators’ of the desirable traits by creating a collection of reduced-function
alleles (Fig. 1B). In addition, a well-defined promoter can be exchanged with the promoter of the
gene of interest to increase expression level or change temporal/spatial expression pattern of the
gene (Fig. 1D). For a given CRE in a target region of interest, the CRE can be disrupted or
deleted on the basis of the random indel mutations introduced by NHEJ repair pathway!!-6%:66-
6870.7374 (Fig 1C).

CRISPR/Cas-mediated point mutations and CRE swaps are also important approaches to
manipulate gene expression (Fig. 2). Apart from the above-mentioned SNPs that underlied the
domestication of crops, numerous studies also documented that single nucleotide alterations in
regulatory sequences can be sufficient to produce substantial effects on gene expression*!100-102,
For example, in soybean, nucleotide mutations in the core and flanking sequences of G-box
element lead to both increases and decreases in gene expression in both native and synthetic
promoters'®. In apple, the presence of R6 motif, a binding site of MdMYBI0, in the promoter of
MdMYBI0 results in auto-activation of the gene and elevated anthocyanins®®. The synthetic
promoters of pear MYB10 and Arabidopsis MYB75 harboring the R6 motif significantly increase
the expression of these genes leading to elevated anthocyanin levels in transgenic plants of pear

and Arabidopsis'%*

. Moreover, the insertion of the R6 motif into the promoter of the gene
encoding an anthocyanin biosynthetic enzyme F3’5'H and a vitamin C biosynthesis gene GDP-L-
Galactose phosphorylase (GGP) of kiwifruit (Actinidia eriantha) altered the anthocyanin profile
and increased vitamin C content in a MYB0-dependent manner, respectively'®. Therefore, the
R6 motif can be harnessed to generate new diversity in many horticultural species to increase

anthocyanin content (Fig. 2B).
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(A) CRISPR/Cas-mediated point mutations can be achieved by base editor or HDR-mediated CRE swapping;
In some Capsicum species, a mutated W-box in the MYB31 promoter is not recognized by the activator
WRKYO9. Base editor and CRE swapping can change the motif TTGGC to W-box (TTGAC), which can be
bound by WRKY?9, resulting in increased expression of MYB3/ and higher pungency level.

(B) The R6 motif insertion mediated by HDR confers trans-regulation by flavonoid-related MYBs, which can
bind the R6-containing promoters of the genes encoding enzymes of the anthocyanin biosynthetic pathway,
resulting in enhanced expression of these genes and higher anthocyanin levels. CRE, Cis-Regulatory Element;

F35°H, flavonoid 35 '-hydroxylase.

4.3 Transgene-free genome editing

Transgene-free genome editing is the preferred choice for the application of cis-engineering for
crop improvement and commercialization of genome-edited crops. Genome editing with stable
expression of CRISPR/Cas DNA involves the integration of the construct into the host genome,
raising concerns about undesirable off-target changes and biosecurity 3%!%°-197, Genetic
segregation by selfing or crossing can be used to obtain transgene-free edited plants. Recently,
several strategies have been developed to accelerate the removal of transgene components while
retaining the desired mutations. These strategies include the integration of fluorescent
markers!%19 herbicide-dependent isolation system!!? and the programmed self-elimination

system!6,

An alternative approach for creating transgene-free edited plants is transient expression of

CRISPR/Cas DNA as have been reported in many crops including wheat!%>!!! barley''?,

115 116

tetraploid potato' !>, tomato''® and cotton''®. Compared to stable transformation of

CRISPR/Cas DNA, transient expression is especially useful in certain horticultural crops that are

vegetatively propagated, self-incompatible, polyploid and/or have long juvenile stages'!”.

Given that traditional breeding, including chemical and physical induced mutagenesis, and
DNA-based genome-editing may introduce off-target mutations, editing in a DNA-free manner
via preassembled Cas9 protein-gRNA ribonucleoproteins (RNPs) is an increasingly popular

approach due to higher specificity, and low off-target mutations further alleviating public
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concerns'!#12! RNPs have been adopted in the transformation of protoplasts in some
horticultural crops, such as lettuce (Lactuca sativa L.)'??, petunia'®, apple and grape'?* and

125

potato'“>. However, regeneration of mature plants from the edited protoplasts is still challenging

for most of the horticultural crops.

Currently, available transgene-free genome editing approaches are primarily conducted through

traditional transformation methods that require tissue culture which is a labor-intensive process.

Therefore, tissue culture-free methods are highly desirable and necessary for transgene-free
genome editing. In planta transformation takes advantage of natural biological processes, which
makes it a valuable alternative to in vitro tissue culture and regeneration'?®'’. Various plant
cells or tissues can be the ideal transformation targets, especially germline or meristematic cells,
axillary or apical buds. Recently, in planta particle bombardment (iPB) has been used to deliver
CRISPR/Cas9 DNA into shoot apical meristems (SAMs) resulting in transgene-free homozygous

mutated wheat plants!'?®

. Moreover, recent efforts have been made to deliver RNPs into embryo
cells in maize'?® and wheat!% by particle bombardment and into zygotes by PEG-Ca*"-mediated

transfection in rice'?!.

5 Challenges and prospects

5.1 Genome complexity of horticultural crops

The genome sizes of horticultural crops are diverse, ranging from ~200Mb in some crops, e.g.
peach (Prunus persica), to over 30 Gb in garlic (4/lium sativum) and onion (Allium cepa)">.
Many horticultural crops underwent polyploidy, posing extra challenges for genome editing
using CRISPR/Cas technologies. Genome editing of polyploid crops requires increased
efficiency to edit multiple alleles simultaneously. Even so, CRISPR/Cas technologies have been
successfully applied in many polyploid crops due to continuous improvements including highly
active Cas nuclease, multiplex genome editing and efficient expression systems®>'3%!13! In case
of octoploid and highly heterozygous cultivated strawberry (Fragaria * ananassa cv.
Camarosa), all five alleles of FaTM6 were successfully edited using CRISPR/Cas9-mediated
dual sgRNA approach!*. Although the genome of F. x ananassa is not yet available, the diploid

wild strawberry F. vesca reference genome was employed to analyze the allelic variation in the
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FaTMG6 locus. In this regard, a workflow has been proposed for CRISPR/Cas-mediated
mutagenesis for plant species that lack genome sequence information, or feature high
heterozygosity or ploidy levels'33. This workflow could be also applicable for many horticultural

Crops.

5.2 High-throughput de novo discovery of CREs in their native context

Currently, experimental validation of predicted CREs largely rely on in vitro techniques that are
low accuracy and slow throughput. In recent years, new applications such as DNase-seq (DNase
I hypersensitive sites sequencing), ATAC-seq (Assay for Transposase-Accessible Chromatin
using sequencing) and CHIP-seq, have significantly increased our understanding of

102

transcriptional regulatory elements °~. However, these techniques only provide circumstantial

evidence and cannot assess the function of CREs in their native context!'%?

. As a complementary
approach, CRISPR/Cas-based tiling screen approach was developed in mammalian cells to
pinpoint functional CREs in their endogenous context'*. The strategy is to densely tile gRNAs
across a cis-regulatory region to map functional regulatory elements'313, Although the
CRISPR/Cas-based tiling screen approach hasn’t been applied for pinpointing CREs at a large

scale in plants, its feasibility was demonstrated in tomato by Rodriguez-Leal, et al. !!.

5.3 Efficient and precise genome editing

Efficient precise genome editing is required to achieve cis-engineering at the nucleotide level.
Base editors, including cytidine base editors (CBEs) and adenine base editors (ABEs), are
efficient tools for introducing base substitutions at target sites beyond double-strand breaks

(DSBs)!2140:141 {ntil now, only CBEs have been optimized and applied for gene function studies

115,142 114,115

in horticultural crops, including tomato , potato and watermelon!#®. Although base

editors are good alternatives to HDR-mediated point mutations, it has been challenging to
achieve knock-in and replacement of desired CRESs in plants. Much efforts have been made to
improve the efficiency of HDR through donor design and modulating repair pathways'3'.
Recently, a fast and precise multiplexing genome editing method was developed in moss

)44

(Physcomitrella patens)'**. Co-transformation of CRISPR/Cas9 and oligonucleotide templates
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introduced various mutations into the moss genome with high accuracy and efficiency. It will be

interesting to apply such a fast and efficient technology in crops.

5.4 Epigenome editing

The natural epimutations in plants illustrate the potential to further generating phenotypic
variation**. However, only a small number of natural epialleles have been described in
horticultural crops**3%-34, Fortunately, nuclease-dead Cas (dCas)-mediated epigenome editing
technologies hold great promise to expand phenotypic diversity in crops**°. While some
epialleles can be stably inherited over several generations, others epialleles are transient*!143-147,
Thus, the stable transmission of editing induced epigenetic changes to the offspring remains
unclear**!¥8, In addition, the expression of CRISPR components may be needed to maintain the
trait in the offspring, limiting its application for crop improvement. Further development of
CRISPR-based editing tools and the identification of valuable epialleles in horticultural crops

will contribute to the application of epigenome editing for expanding phenotypic diversity.

6 Concluding remarks

We need to continuously improve horticultural commodities to meet the rising demand for food
and ornamental production. The widespread applications of CRISPR/Cas technologies in
horticultural crops opens the possibility for accelerating new variety development®'%14,
Engineering cis-regulatory regions using CRISPR/Cas allows the creation of novel variants
resulting in quantitative variation and thus holds great potential for creating phenotypic diversity.
However, cis-engineering is in the beginning stages, and complex relationships between
regulation of gene expression by different CREs and the resulting phenotypic changes remains to
be fully elucidated'""'>!#°. Therefore, using these CRISPR/Cas techniques to screen for desirable
traits at the phenotypic level rather than detecting gene expression differences is practical for
crop improvement (Fig. 3). Although challenges remain, the application of CRISPR/Cas-
mediated cis-engineering for horticultural crops improvement will further enhanced breeding

efforts to improve crop yield, resilience and commercially desirable traits.
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Figure 3 Strategies for applying CRISPR/Cas-mediated cis-engineering via genome editing in

horticultural crops.
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