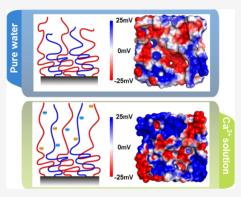
LANGMUIR

pubs.acs.org/Langmuir Article

Molecular Understanding of Ion Effect on Polyzwitterion Conformation in an Aqueous Environment

3 Yuan Xiang, Rong-Guang Xu, and Yongsheng Leng*

Cite This: https://dx.doi.org/10.1021/acs.langmuir.0c01287


ACCESS

III Metrics & More

Article Recommendations

SI Supporting Information

4 **ABSTRACT:** Polyzwitterions (PZs) are promising materials for the antifouling in 5 reverse osmosis and nanofiltration membrane technology for water treatment. 6 Fundamental understanding of the structure and molecular interactions involving 7 zwitterions is crucial to the optimal design of antifouling in membrane separation. 8 Here we employ the umbrella sampling and molecular dynamics simulations to 9 investigate molecular interactions between sulfobetaine/carboxybetaine zwitterions and different metal ions $(Na^+, K^+, and Ca^{2+})$ in an aqueous solution. The simulation 11 results show that these ions can form stable or metastable contact ionic/solvent-12 shared-ionic pairs with zwitterions. Simulations at different grafting densities of PZ 13 brush arrays reveal complex competitive association mechanisms, which are 14 attributed to nonbonded electrostatic and van der Waals interactions among 15 zwitterions, water molecules, and different metal ions in an aqueous environment. 16 While the high-grafting density of the PZ brush array leads to a strong branch

17 association between different zwitterions in water, this association is decreased at intermediate- and low-grafting densities due to 18 strong zwitterion—water interactions. More importantly, adding ions into water at intermediate- and low-grafting densities further 19 breaks down the zwitterion branch association, resulting in a randomly oriented and dispersed branch configuration with significant 20 swelling of the polymers. The degree of swelling depends on the type of ions, which further changes the surface electrostatic 21 potential of PZ coatings.

1. INTRODUCTION

22 Reverse osmosis and nanofiltration (RO/NF) membrane 23 separation is considered to be a very promising technique to 24 address the global portable water shortage.1 25 membrane techniques also have their own deficiencies. One 26 critical issue is related to the membrane fouling, 4,5 which is 27 caused by accumulating foreign substances on the membrane 28 surface, resulting in a substantial decline of membrane 29 performance, such as reduced water flux and low effluent 30 quality. In recent years, substantial efforts have been invested 31 in the fundamental understanding of membrane fouling^{6–12} 32 and the development of relevant technologies. Among these, 33 modifying the surface chemistry of the membrane, such as 34 grafting antifouling monomers onto the membrane surface, has 35 attracted much attention. It has been shown that this technique 36 could be used to not only reduce surface fouling, but also 37 improve the chlorine tolerance, salt rejection, and thermal 38 stability of the RO/NF membranes. 13-1

Poly(ethylene glycol) (PEG) and polyzwitterion (PZ) are two typical materials used for antifouling through the surface grafting technique. They have the strong capability to bind water molecules, which is believed to be a key factor in antifouling applications. Compared with PEG coating, PZ coatings, such as poly(sulfobetaine) and poly(carboxybetaine), could be better candidates for antifouling materials due to their intriguing properties. The localized, opposite charge groups

within a PZ chain could bind water molecules even stronger 47 than a PEG chain molecule. Further, PZ coatings are 48 chemically more stable than PEG coating. These two 49 appealing properties make the PZ coatings very promising 50 materials in antifouling applications. In addition to membrane 51 technology application, they are now used in marine coating, 52 drug delivery, and biomedical applications. 53

To improve the antifouling performance of PZ coatings and 54 to design next-generation antifouling materials, a fundamental 55 understanding of the structural and molecular interactions 56 involved in PZ coating is essential. Metal ions such as Na⁺, K⁺, 57 and Ca²⁺ are ubiquitous in seawater desalination and 58 wastewater reclamation processes. The effect of these ions 59 on the structural properties of PZ coating is a fundamental 60 question that needs to be answered. Further, the grafting 61 density of PZ coatings on a membrane surface will also 62 influence the surface structural and morphological properties. 63 Understanding different pair interactions, including zwitter-

Received: May 1, 2020 Revised: June 5, 2020 Published: June 7, 2020

Branch

PA membrane

surface

65 ion—zwitterion, zwitterion—ion, and zwitterion—water inter-66 actions, is crucial to the development of antifouling materials in 67 membrane separations.

Experimental studies in this area have been focusing on

69 grafting PZ coatings with a few rapid and low-cost 70 methods, ^{29–31} such as chemical vapor deposition, ³² click 71 chemistry, ³³ and concentration-polarization-enhanced radical 72 graft polymerization method.³⁴ Several computational molec-73 ular simulations also revealed the hydration behaviors of 74 zwitterions and their interactions with different foulants. 35-39 In this work, we perform molecular simulations to study two 76 types of zwitterions, sulfobetaine and carboxybetaine, and 77 investigate three fundamental aspects relevant to their 78 hydration structure and antifouling properties: (1) using 79 umbrella sampling to calculate free-energy profiles between 80 zwitterion and different metal ions in aqueous solution (which 81 are ubiquitous during seawater desalination and wastewater 82 reclamation) to characterize their fundamental molecular 83 interactions; (2) investigating the effect of grafting density 84 on the hydration structure of zwitterion brush arrays; and (3) 85 studying the ion effect on the swelling behavior, the so-called 86 anti-polyelectrolyte property of the zwitterion brush array and 87 its ion responsivity due to surface electrostatic potential 88 changes. This work sheds new light on the molecular

2. MATERIALS AND METHODS

91 materials.

2.1. Molecular Models. 2.1.1. Polyzwitterion Model. Zwitterions have two oppositely charged functional groups. In a sulfobetaine or carboxybetaine molecule, the sulfonate group $(-SO_3^-)$ or the carboxylate group $(-COO^-)$ carries a negative charge, while the quaternary ammonium group $(-N(CH_3)_3^+)$ in both the molecules carries a positive charge (Figure 1a). PZ coatings on a polyamide membrane surface are modeled by the zwitterion brush arrays with different grafting densities (Figure 1b). These sulfobetaine/ carboxybetaine brush models are built based on the click chemistry method. Details of building these brush models are described in Section S1, Supporting Information.

89 interactions between zwitterion coatings and their working

90 environment, which is crucial for designing future antifouling

We consider short sulfobetaine or carboxybetaine brushes, with 104 each brush containing five zwitterion branches (Figure 1c). Two 105 saturated benzene rings are used to represent the root of the brush 106 and the polyamide membrane, as shown in Figure 1b. We use the 107 optimized potentials for liquid simulations (OPLSs) all-atom force 108 field^{41,42} to describe the interatomic interactions among zwitterions 109 and between zwitterion and other species in aqueous solution. OPLS 110 is well parameterized for most organic molecules and ions in aqueous 111 solutions. Atomic partial charges in zwitterions are further recalibrated by quantum mechanical density functional theory calculations using B3LYP/6-31G** functional and basis set and by the CHarges from 114 ELectrostatic Potentials using a Grid (CHELPG)-based method.⁴³ 115 For two or three -CH₂- spacer groups between oppositely charged 116 groups in zwitterions, we find that recalibrated partial charges have 117 only slight changes compared to OPLS charges, consistent with 118 previous studies. 44 These recharacterized partial charges will be used 119 in our simulations. Because of the different sizes among sulfonate 120 (-SO₃⁻), carboxylate (-COO⁻), and quaternary ammonium (-N- $(CH_3)_3^+$ groups, the charge densities of these groups are about -4.5, -5.3, and 3.0 e/nm^3 , respectively, as shown in Figure 1a.

2.1.2. Aqueous Solution. The flexible simple point charge (SPC) water model^{45,46} and Aqvist SPC-compatible ion potential parameters ters⁴⁷ for the Na⁺, K⁺, and Ca²⁺ ions are employed in our simulations. For halide Cl⁻ anion, we use the potential parameters developed by Joung et al.⁴⁸

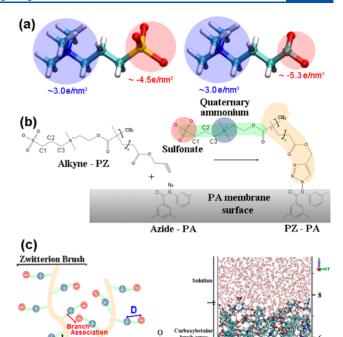


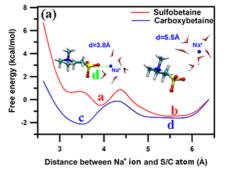
Figure 1. (a) Molecular structures of sulfobetaine (left) and carboxybetaine (right). Colors: red, O; white, H; light blue, C; dark blue, N; and yellow, S; charge densities of different zwitterion groups are shown in the figure; (b) click chemistry synthesize method of grafting sulfobetaine zwitterion onto a polyamide membrane surface. Three hydrocarbon -CH₂- groups (indicated by C1-C3) are arranged between the sulfonate (red area) and quaternary ammonium groups (blue area); and (c) the structures of the zwitterion brushes. The definitions of the zwitterion brush and branch are illustrated in this panel. The branch association between the oppositely charged groups is shown by a red double arrow. The distance, D, shown in blue represents the distance between the quaternary ammonium C atoms and either sulfonate or carboxylate O atoms within the same zwitterion branch, which is beyond 5 Å. The right panel shows a snapshot of the carboxybetaine brush array with intermediate grafting density in water.

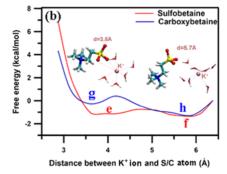
2.2. Simulation Methods. We use the LAMMPS computational 128 package⁴⁹ to perform umbrella sampling and molecular dynamics 129 (MD) simulations. In MD, periodic boundary conditions are applied 130 in three dimensions. The particle—particle particle—mesh solver is 131 used to calculate the long-range electrostatic interactions.⁵⁰ The cutoff 132 distance for the short-range Lennard-Jones interactions is set to 10 Å. 133 The equations of motion of the particles are propagated through the 134 velocity Verlet algorithm with a time step of 1 fs in a constant-*NVT* 135 ensemble. The temperature is controlled at 300 K using the Nosé— 136 Hoover thermostat.³¹

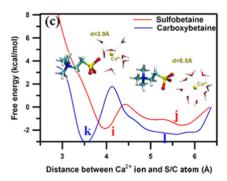
The umbrella sampling method 52,53 is used for free-energy 138 calculations between sulfobetaine/carboxybetaine molecules and 139 three different metal ions, Na⁺, K⁺, and Ca²⁺, which are balanced 140 by Cl⁻ anions in aqueous solution. The detailed information about 141 the umbrella sampling method is given in Section S2, Supporting 142 Information.

For each sulfobetaine or carboxybetaine molecule, three 144 independent MD simulation runs are performed at 300 K and 1 145 atm pressure in an NPT ensemble, in which one monovalent ion Na^+ 146 or K^+ and one Cl^- anion or one divalent Ca^{2+} ion and two Cl^- anions 147 are added to the simulation system. A total of 1600 water molecules 148 are included in the system. In each case, a total of N = 40 succeeding 149

150 umbrella sampling intervals are arranged between d=2 and 12 Å 151 distance. A harmonic spring with a spring constant of $2 \text{ kcal/(mol Å}^2)$ 152 is used in the sampling. Molecular configurations are sampled by 153 gradually changing the equilibrium distance of the spring within each 154 sampling interval of 0.25 Å. The simulation time for each interval is 2 155 ns.


3. RESULTS


3.1. Free Energy between Zwitterion and Different Metal lons in Water. Of the three fundamental interactions of zwitterion—zwitterion, zwitterion—ion, and zwitterion—is water contact pairs, the second plays a major role in the disruption of zwitterion association in a salt solution. S4-58 Early studies have already investigated the zwitterion—ion association in water by calculating radial distribution functions, coordination numbers, and association lifetimes. To provide a more fundamental understanding of this interaction, we use the umbrella sampling technique this interaction, we use changes versus the distance between the zwitterion molecules and different metal ions (Na+, K+, or Ca2+) in water. Interactions between zwitterion quaternary ammonium groups and Cl- anions are not further studied because of their nonspecific binding feature.


The atomic distance, d, between metal ions and S atom in 172 sulfobetaine or between metal ions and carboxylate C atom in 173 carboxybetaine is used as a single collective variable for umbrella sampling (Figures 2a and S1c, the green dashed 175 lines). Figure 2a-c shows free-energy variations versus the 176 atomic distance d between sulfobetaine/carboxybetaine 177 zwitterions and three different metal ions. To make a 178 connection with previous simulation studies, 38 two -CH₂-179 spacer groups are considered between the oppositely charged 180 groups in a zwitterion. The free-energy value at larger distance 181 d = 6.5 Å is used as the reference point. For zwitterion–Na⁺ 182 interaction (Figure 2a), the sulfobetaine profile exhibits a local 183 minimum at about 3.9 Å, followed by a deeper and broader 184 energy valley at 5.0-6.0 Å distance. The energy barrier 185 between these two minima is around 1.33 kcal/mol, 186 corresponding to the transition from the so-called contact 187 ionic pair (CIP) to the solvent-shared ionic pair (SSIP) 188 between the sulfonate and Na⁺ ion (see the inset molecular 189 configurations in Figure 2a, also see Figure S1a,b in the 190 Supporting Information). The CIP configuration shows that 191 one oxygen atom in the sulfonate group and five water 192 molecules in the first hydration shell coordinate Na⁺ ion to 193 form a monodentate configuration. In the SSIP configuration, 194 Na⁺ ion has six water molecules in the first hydration shell, in 195 which two of them also have an association with the sulfonate 196 group. The SSIP configuration is energetically more favorable 197 than the CIP configuration, with a further free energy decrease 198 by about 0.95 kcal/mol. Dissociation of this SSIP requires 199 overcoming a second energy barrier of 1.41 kcal/mol at 5.9-200 6.5 Å distance, as shown in Figure 2a.

Compared with sulfobetaine— Na^+ association, Figure 2a 202 shows that the carboxybetaine— Na^+ association has a much 203 lower free energy at CIP configuration than at SSIP 204 configuration. These two configurations are shown in Figure 205 S1c,d, suggesting that CIP is more energetically favorable than 206 SSIP by 0.49 kcal/mol. The energy barrier for SSIP 207 dissociation is about 1.60 kcal/mol, slightly higher than that 208 of sulfobetaine— Na^+ dissociation.

209 In Figure 2b, the sulfobetaine—K⁺ interaction has similar 210 free energies at CIP and SSIP configurations and the energy

Figure 2. Variations of the free energy versus the atomic distance, d, between zwitterions (sulfobetaine or carboxybetaine) and (a) Na⁺; (b) K⁺; and (c) Ca²⁺ ions in a salt solution. The atomic distance, d, is defined as the distance between the metal ion and the S atom in the sulfobetaine or the C atom in the carboxybetaine zwitterion. The insets show typical binding structures between sulfobetaine and metal ions. Point a–l correspond to the CIP or SSIP configurations, as shown in Figure S1a–l, respectively.

barrier between them is only about 0.59 kcal/mol. This energy 211 barrier is comparable to the ambient thermal energy $k_{\rm B}T$ (~0.6 212 kcal/mol), indicating that the transition between CIP and SSIP 213 could be easily proceeded at room temperature. For the 214 carboxybetaine-K+ interaction, the free energy of SSIP is 215 further lower than that of its CIP configuration, indicating that 216 SSIP is more energetically favorable. The overall less barriers 217 for the CIP → SSIP transition and the SSIP dissociation of 218 zwitterion- K^+ interaction, compared to zwitterion- Na^+ 219 interaction, are attributed to the relatively lower hydration 220 energy of K⁺ (-64.5 kcal/mol) than that of Na⁺ (-94.8 kcal/ 221 mol). The CIP and SSIP configurations of zwitterion—K⁺ ion 222 are shown in Figure S1e-h. Interestingly, in the CIP 223 configurations, both sulfonate and carboxylate groups largely 224 adopt the so-called bidentate configuration with K⁺ ion (Figure 225 S1e,g), in which two oxygen atoms from the sulfonate or 226 carboxylate group equally coordinate K+ ion in its first 227

228 hydration shell. These two oxygen atoms, together with other 229 five water molecules, form the first hydration shell of K^+ ion in 230 aqueous solution, consistent with other studies. $^{61-63}$

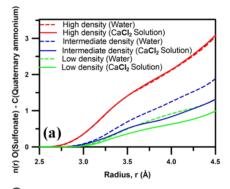
In Figure 2c, both sulfobetaine and carboxybetaine show a 232 very strong CIP binding than their SSIP binding with Ca²⁺ 233 divalent ion. The CIP \rightarrow SSIP transition barriers are also 234 higher than other cases of monovalent ion binding. These 235 energy barriers are 1.97 and 4.66 kcal/mol for sulfobetaine-236 and carboxybetaine-Ca²⁺ interactions, respectively. Molecular 237 configurations of CIP and SSIP configurations are shown in 238 Figure S1i-l. Similar to the interactions with Na⁺ ion, 239 monodentate configuration is dominant in CIP configuration, 240 in which one oxygen atom from the sulfonate or carboxylate 241 group replaces one of the eight hydration water molecules in 242 the first hydration shell of Ca²⁺. Dissociation barriers of SSIPs 243 for the sulfonate— and carboxylate—Ca²⁺ interactions are 1.54 244 and 2.36 kcal/mol, respectively. These very high energy 245 barriers, as expected, are due to the much higher hydration 246 energy of Ca^{2+} ion (-311 kcal/mol) than those of monovalent 247 ions (Na⁺ and K⁺).⁶⁰

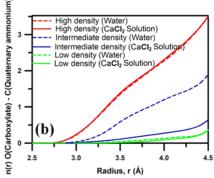
Our free-energy simulation results discussed above could reveal the mechanism of previous studies, which showed that the association lifetime for the carboxybetaine— Na^+ pair is lifetime of carboxybetaine— Na^+ pair, while the association lifetime of carboxybetaine— K^+ is slightly shorter than the sulfobetaine— K^+ pair. Moreover, it is shown that even for the same functional group but in different material environments, the binding with the same metal ions exhibits different behaviors in aqueous solution. For example, in our previous studies, we reported that the carboxylate group in polyamide prefers to form a bidentate CIP configuration with Ca^{2+} ions in aqueous solution. Here, the carboxylate group in carboxybetaine tends to form only monodentate configuration with Ca^{2+} ions.

3.2. Polyzwitterion Association in Water and in CaCl₂
Salt Solution. Three grafting densities of the zwitterion brush
(Figure 1b) are considered to investigate zwitterion branch
associations. The relevant low-, intermediate-, and high-density
definitions of the grafting of PZ coatings on a polyamide
membrane surface simulation systems are given in Table 1.

Table 1. Three Grafting Densities of the Zwitterion Brush Arrays Used in Simulations

	number of zwitterion brushes	area per brush (nm²)	distance between brushes (nm)
low density	9	3.24	1.8
intermediate density	9	1.44	1.2
high density	16	0.64	0.8

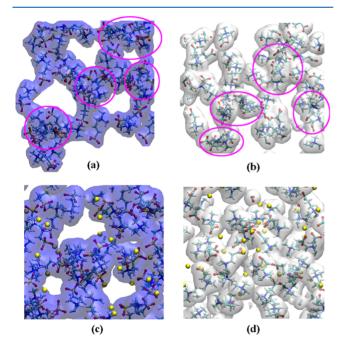

268 These grafting density numbers correspond to the material 269 volume density estimates based on Fourier transform infrared 270 (FTIR) spectra measurements (\sim 1 g/cm³), assuming that the 271 coating thickness is around a few micrometers in the 272 experiment. As will be seen later in Figure S3, the 273 intermediate- and high-grafting densities in our simulations 274 correspond to 0.74 and 1.6 g/cm³.


The procedure of building the zwitterion brush array is described in Section S1, Supporting Information. When studying the branch association in NaCl/KCl/CaCl₂ solution, NaCl/KCl/CaCl₂ solution, NaCl/KCl/CaCl₂ solution, are added to the system, resulting in a 0.3 M salt solution. A total of 2 ns

equilibrium run is performed for each system, followed by data 280 collection and configuration analysis.

Figure S2 shows typical molecular configurations of the 282 hydrated carboxybetaine brush arrays in water at three grafting 283 densities (for the intermediate grafting density, see also Figure 284 1c). In general, both sulfobetaine and carboxybetaine brush 285 arrays exhibit vertically aligned self-assembled structures at a 286 high grafting density, while at intermediate and low grafting 287 densities, they tend to be more randomly oriented. To quantify 288 the degree of association among zwitterion branches, we 289 calculate the coordination number of each O atom in either 290 sulfonate or carboxylate groups surrounded by C atoms in the 291 quaternary ammonium groups, within a distance of 3.5 Å. This 292 is because upon a zwitterion association, the distance between 293 the quaternary ammonium C and the sulfonate/carboxylate O 294 atoms between two different zwitterions is well within the 295 range of 3-3.5 Å (see the red arrow in Figure 1c), much 296 smaller than the corresponding distance between the relevant 297 atoms in the same zwitterion branch, which is larger than 5 Å 298 (see the blue arrow in Figure 1c).

As we find that the divalent Ca²⁺ ion in CaCl₂ solution has a 300 significant effect on zwitterion association compared to Na⁺ 301 and K⁺ ions in NaCl and KCl solutions, in the following 302 discussion we focus on a comparative study on the zwitterion 303 association in water and in CaCl₂ solutions. Figure 3 shows 304 f3


Figure 3. Coordination numbers between (a) oxygen atoms in sulfonate and carbon atoms in quaternary ammonium and (b) oxygen atoms in carboxylate and carbon atoms in quaternary ammonium, in water and $CaCl_2$ solution at different grafting densities.

variations of the C coordination number around each O atom 305 in sulfobetaine/carboxybetaine in both water and $CaCl_2$ 306 solutions. In Figure 3a, the degree of sulfobetaine branch 307 association is seen to increase with the grafting density. For 308 instance, at 3.5 Å distance in water, only 0.50 quaternary 309 ammonium C atom is associated with a sulfonate O atom in 310 the low-grafting-density array, while in the high-grafting- 311

312 density array, this coordination number is increased to 1.42. 313 Figure 3b shows that the carboxybetaine association in water is 314 also higher in the high-grafting-density array than in the low-315 grafting-density array. This dependence of zwitterion associa-316 tion on the grafting density is attributed to the hydration state, 317 as discussed in our previous studies.⁴⁰ We find that both 318 sulfonate and carboxylate groups in a high-grafting-density 319 state are less hydrated than in a low-grafting-density state. In 320 such a scenario, the dissociation energy between two 321 zwitterion branches is much higher than that in a fully 322 hydrated state, ⁴⁰ resulting in a strong branch association. 323 Figure 3b shows that in the low-grafting-density state, the zwitterion association of carboxybetaine is even weaker, as the 325 relevant C coordination number around each O atom of the 326 carboxylate group in water is only about 0.05 at the 3.5 Å 327 distance, much smaller than that of sulfobetaine due to the 328 larger hydration energy of the carboxylate group.³

In CaCl₂ solution, Figure 3a,b shows that in the high-330 grafting-density state, the ion effect of Ca²⁺ on the zwitterion 331 association is almost negligible. In the intermediate-grafting-332 density state, sulfobetaine has a mild decrease of branch 333 association compared with in pure water, while carboxybetaine 334 exhibits a dramatic decline in branch association. In the low-335 grafting-density state, sulfobetaine still has a moderate decline 336 in branch association, while carboxybetaine has almost no 337 change.

To visualize and understand the particular zwitterion 339 dissociation in water and in CaCl₂ solution in the 340 intermediate-grafting-density state, in Figure 4, we show

Figure 4. Top-view snapshots at the intermediate grafting density of (a) sulfobetaine branches in water; (b) carboxybetaine branches in water; (c) sulfobetaine branches in $CaCl_2$ solution; and (d) carboxybetaine branches in $CaCl_2$ solution. The blue and white surfaces represent van der Waals contours of sulfobetaine and carboxybetaine branches, respectively, which are used to estimate the surface coverages. The typical branch association is marked by the purple circles in Panels (a) and (b). Colors: red, O; white, H; light blue, C; dark blue, N; and yellow, S. Ca^{2+} ions are represented by the yellow balls.

molecular conformation changes of the sulfobetaine and 341 carboxybetaine brush arrays in water and in CaCl₂ solution. 342 Figure 4a,b shows the top views of the zwitterion brush arrays 343 in water with a moderate association. Representative local 344 aggregations of branches are highlighted with purple circles. 345 The degree of association can be quantified by the surface 346 coverage of zwitterions. A higher degree of branch association 347 corresponds to a lower surface coverage, defined as the ratio of 348 the projection of the van der Waals branch surface to the area 349 of horizontal plane of the simulation box. In pure water, we 350 find that the surface coverages of the two types of zwitterion 351 branches are all around 70%. Figure 4c shows the equilibrium 352 conformation of sulfobetaine branches in CaCl₂ solution. Ca²⁺ 353 ions (yellow balls in the figure) form either CIP or SSIP with 354 the sulfonate groups, resulting in some dissociation of 355 sulfobetaine aggregations, as evidenced by the increased 356 surface coverage from 70 to about 81%. For carboxybetaine, 357 Figure 4d shows more significant branch dissociation in CaCl₂ 358 solution, corresponding to a more randomly oriented and 359 dispersed phase. The surface coverage of carboxybetaine is 360 increased from 70% in water to 90% in CaCl₂ solution. This is 361 consistent with the larger decline in the O-C coordination 362 number in carboxybetaine than in sulfobetaine in CaCl₂ 363 solution (Figure 3). According to our calculations, 24 ± 5 364 out of a total of 45 Ca²⁺ ions are associated with the sulfonate 365 groups through either CIP or SSIP configurations. This 366 associated ion number is increased to $35 \pm 6 \text{ Ca}^{2+}$ ions for 367 the carboxylate groups, indicating that Ca²⁺ ion has a much 368 stronger interaction with carboxybetaine than with sulfobe- 369 taine, consistent with previous free-energy calculations (Figure 370

It is worth noting that the probability of Ca^{2+} cations 372 simultaneously associating with multiple zwitterion branches 373 gradually increases from low to high grafting density, giving 8, 374 10, and 12%, respectively. These numbers are higher than 375 those of monovalent ions (Na^+ or K^+) that can simultaneously 376 associate with multiple zwitterion branches, which vary from 3 377 to 5% at low to high grafting densities. To summarize, at 378 intermediate grafting density, strong zwitterion—ion interactions disrupt the zwitterion association, resulting in a more 380 dispersed phase in salt solutions.

It is somewhat surprising that for carboxybetaine with a low 382 grafting density, adding ions has almost no effect on zwitterion 383 association (Figure 3b). This is because carboxybetaine 384 branches are already fully hydrated and there is almost no 385 branch association in water. When 24 ions are present, the 386 formation of CIP or SSIP with the carboxylate groups in the 387 salt solution has almost no effect on the further zwitterion 388 dissociation. In contrast, sulfobetaine tends to keep branch 389 association even at a low grafting density (Figure 3a), and 24 390 ions certainly play a role in further dissociating the zwitterion 391 brushes.

Our simulation results could explain a recent experimental 393 finding that sulfobetaine hydrogels have a much smaller 394 equilibrium water content than that of carboxybetaine in the 395 fully swollen state. 66 396

3.3. Anti-polyelectrolyte Behavior and Surface Elec- 397 trostatic Potentials of Polyzwitterion Arrays. The ion- 398 induced zwitterion dissociation increases the thickness of the 399 PZ brush arrays. This polymer swelling phenomenon, the so- 400 called "anti-polyelectrolyte" behavior, has been reported by 401 several researchers. In pure water, the PZ brushes are 402 usually in a relatively collapsed state due to zwitterion 403

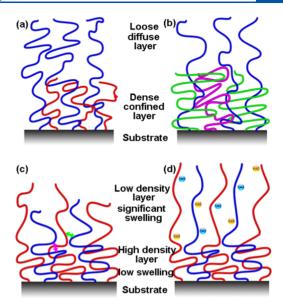
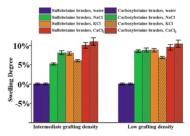
404 association. However, upon increasing the ionic strength of the 405 solution, the PZ brushes adopt a more expanded conformation 406 due to the screening effect of the electrostatic interactions 407 among them. This anti-polyelectrolyte behavior is seen to be 408 the most pronounced for the intermediate-grafting-density 409 brush arrays, as discussed previously.

In Figure S3a,b, we show the density distributions of the sulfobetaine and carboxybetaine brush arrays at intermediate grafting density in water and in CaCl₂ solution. If we define the water—PZ boundary as the distance at which the density of water molecules is about 80% of its bulk value (1 g/cm³), then we find that the thicknesses of the sulfobetaine arrays in water and in CaCl₂ solution are 2.27 and 2.50 nm, respectively (marked by the red and black horizontal arrows in Figure S3a), significant solutions for this PZ coating. The carboxybetaine two different solutions for this PZ coating. The carboxybetaine brush arrays in water and in CaCl₂ solution share very similar values (Figure S3b). In Figure S3a,b, we also show the density distributions of Ca²⁺ and Cl⁻ ions within the PZ coating and in CaCl₂ solution. These density distributions exhibit no 424 significant difference in different regions.

For comparison, in Figure S3c,d, we plot the same material density distributions at the high grafting density of the PZ density distributions at the high grafting density of the PZ arrays. It is seen that zwitterion densities in water and in CaCl₂ solution are almost indistinguishable, while those of Ca²⁺ and delay Cl⁻ are mainly located outside the PZ coating. This is because at high grafting density of the zwitterion brush array, it is rather difficult for both water molecules and different ions to penetrate into the dense PZ coating due to geometric constraints and strong zwitterion association. This phenomal enon also explains why Ca²⁺ ions have almost no effect on O—coordination numbers shown in Figure 3a,b (red lines) at this high grafting density.

The material density distributions shown in Figure S3 can 438 explain some ion effects on the swelling of zwitterion coatings 439 observed in experiments. In general, the density of a zwitterion 440 coating on a substrate is inhomogeneous in the vertical 441 thickness direction due to the following two reasons, as 442 illustrated in Figure 5a,b: (1) the lengths of the zwitterion 443 brushes are different as the molecular weight of each brush is 444 difficult to be precisely controlled in experiments and (2) some 445 brushes have more twisted conformations than others. Thus, 446 the whole region of a PZ coating could be broadly divided into 447 two subregions: the dense confined layer near the substrate 448 and the relatively loose diffuse layer far from the substrate. As 449 the ion effect on swelling behavior depends on the polymer 450 density (Figures 3 and S3), different regions will have different 451 hydration behaviors. The schematics of the ion effect on the 452 conformation of a PZ coating in an electrolyte solution is 453 illustrated in Figure 5c,d. In the dense layer, the internal 454 branch association is dominant, preventing the hydrated salt 455 ions from permeation into the dense layer. In contrast, the ions 456 can easily access the loose diffuse layer far from the substrate, 457 resulting in significant polymer swelling due to ion-induced branch dissociation. The implication of our simulation is that 459 these results can explain the multiple-region structure of 460 zwitterion coating and different hydration behaviors in 461 different regions in salt solution, which are observed in recent 462 neutron reflectivity⁶⁹ and spectroscopic ellipsometry experi-463 ments. 70

Figure 6 shows the effect of electrolyte solution on the swelling degree of the zwitterion brush arrays, defined as the percent increase of PZ thickness relative to the one in pure

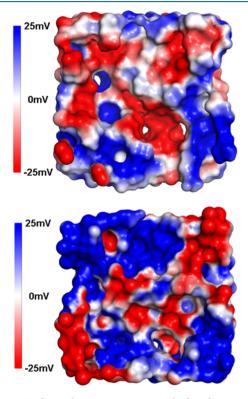

Figure 5. Schematics of the origin of the inhomogeneous density distribution of PZ coatings in the vertical thickness direction due to (a) different brush lengths and (b) some brushes having more twisted conformations than others. Panels (c) and (d) illustrate different coating conformations in water and in salt solution, respectively. The yellow and blue balls in (d) represent ions and anions in aqueous solution. The green arrow in (c) indicates the association between different brushes, and the purple arrow shows the self-association within the same brush. For clarity, the detailed conformation of branches in each brush is not shown in the panels.

Figure 6. Swelling degrees of sulfobetaine and carboxybetaine brush arrays in water (defined as zero) and in different electrolyte solutions at intermediate and low grafting densities.

water. As shown in the figure, the swelling degree of the 467 zwitterion brush arrays at intermediate and low grafting 468 densities depends on the type of ions present in aqueous 469 solutions, as observed in previous experimental studies. 68,71 470 The swelling degree varies from 5 to 10.5% for both 471 sulfobetaine and carboxybetaine at the two grafting densities. 472 As expected, the carboxybetaine brush array has the highest 473 swelling degree in CaCl₂ solution. These results, however, are 474 somewhat less than the experimental results from spectro- 475 scopic ellipsometry measurements, 68 which is typically about 476 several tens percent. The reason is that we only consider the 477 ion-induced dissociation between different brushes (the green 478 arrow shown in Figure 5c) due to the short brush models used 479 in our simulations. In fact, ion-induced dissociation could also 480 happen within the same brush if it is long enough and heavily 481 twisted (the purple arrow shown in Figure 5c). The latter may 482 lead to more significant swelling. In 0.3 M electrolyte solutions, 483 the order of swelling degree for the sulfobetaine brushes is Na⁺ 484 < K⁺ < Ca²⁺, which follows the Hofmeister series^{68,72} and is in 485 good agreement with the spectroscopic ellipsometry measure- 486

487 ments. ⁶⁸ For the carboxybetaine brushes, however, the order of 488 swelling degree is $K^+ < Na^+ < Ca^{2+}$, which does not comply 489 with the Hofmeister series but is consistent with the free-490 energy profiles shown in Figure 2. This figure suggests that the 491 CIP configuration is more favorable for carboxybetaine— Na^+ 492 and carboxybetaine— Ca^{2+} binding than carboxybetaine— K^+ 493 binding. Therefore, the free energy of zwitterion—ion 494 interaction could be another indicator to characterize the 495 ion-induced brush dissociation and the swelling of PZ coatings. 496 The ion effect on the swelling of PZ coating also changes the 497 surface electrostatic potential, a character of its membrane ion 498 responsivity. ⁷³ This phenomenon is particularly significant for 499 the carboxybetaine brush array in $CaCl_2$ solution. Figure 7

Figure 7. Surface electrostatic potential distributions of the carboxybetaine brush array (represented by a van der Waals surface) at intermediate grafting density in (a) water and (b) 0.3 M CaCl₂ solution.

500 shows the surface electrostatic potential distributions of the carboxybetaine brush array (represented by the van der Waals 502 surface) in pure water and in 0.3 M CaCl₂ solution at an 503 intermediate grafting density. These potentials are calculated 504 by averaging over 2 ns MD equilibrium runs. The blue region 505 shows the positive surface potential and the red region shows 506 the negative surface potential distributions. In water, the area 507 of the positive potential region is roughly equal to that of the 508 negative potential region. The total average of the surface 509 potential of the whole area is 0 ± 3 mV, signifying a neutral 510 surface. In CaCl₂ solution, however, the positive potential 511 region is increased significantly, accompanied by the reduction 512 of the negative region. The total average of the surface 513 potential is increased to 16 ± 5 mV. Although the change of 514 the PZ surface electrostatic potential in electrolyte aqueous 515 solutions was reported in experiments, 73 there is no consensus 516 of the underline mechanisms due to the complex electrostatic 517 interactions among electrolytes, water, and different charge

groups in the zwitterion brushes. Our simulation results 518 suggest that the strong carboxylate-Ca²⁺ binding and the 519 nonspecific quaternary ammonium-Cl⁻ binding due to the 520 large size and thus low charge density of the quaternary 521 ammonium group (Figure 1a) could explain the increased 522 surface electrostatic potential of the carboxybetaine brush array 523 in CaCl₂ solution. More specifically, the dominant binding 524 configurations of carboxylate-Ca²⁺ CIPs and much dispersed 525 Cl⁻ anions in PZ coating result in more Ca²⁺ ions present in 526 the zwitterion brush array, compared to less Cl⁻ anions 527 existing in the same region, which makes the PZ coating 528 positively charged on its surface. According to our calculations, 529 we find that on average, there are about 93% of all Ca²⁺ ions 530 located in the PZ array, whereas about 89% of all Cl⁻ anions 531 present in the same brush array. Consequently, such a PZ 532 coating should be considered as a responsive layer, for which 533 the surface morphology, hydration behavior, and surface 534 electrostatic potential could be controlled by the ions in 535 electrolyte solutions.

4. CONCLUSIONS

The present study provides a further molecular understanding 537 of the hydration behavior of zwitterion coatings on membrane 538 surfaces. Polyzwitterions are promising antifouling materials in 539 reverse osmosis and nanofiltration membrane technology for 540 water treatment. However, the detailed molecular structure 541 properties of zwitterion coatings and their interaction with 542 different species in the aqueous environment have not yet been 543 fully understood. We investigate through umbrella sampling 544 and MD simulations the interactions between sulfobetaine/ 545 carboxybetaine zwitterions and three different metal ions (Na⁺, 546 K^+ , and Ca^{2+}), as well as the ion effect on the overall hydration 547 structure of different PZ coatings at different grafting densities. 548 The simulation results show that carboxybetaine is more 549 energetically favorable to form the CIP configuration with Na⁺ 550 and Ca2+ and the SSIP configuration with K+, whereas 551 sulfobetaine is more favorable to form the SSIP configuration 552 with Na⁺ and the CIP configuration with Ca²⁺. More 553 specifically, at the intermediate grafting density, Ca2+ ions in 554 a CaCl₂ solution can further break down zwitterion branch 555 associations, resulting in the swelling of PZ polymer coatings. 556 The swelling degree can reach as high as 10.5% for both 557 sulfobetaine and carboxybetaine brush arrays. Additionally, ion 558 effect also changes the surface electrostatic potential of PZ 559 coatings, from almost neutral in water to a positive surface 560 potential in CaCl₂ electrolyte solution.

The present work provides valuable information on the 562 interactions involving zwitterion coatings in relevant environ-563 mental and industry implementations, benefiting the molecular 564 design of antifouling materials. For instance, when designing a 565 zwitterion coating, one should prevent zwitterion materials 566 from grafting into membrane pore surfaces, as the swelling of 567 the zwitterion material in the moderate ionic strength solutions 568 will induce a significant flux decline of the membrane. The 569 Moreover, pretreatment of feed solutions containing high 570 concentrations of divalent metal ions is important before 571 applying PZ coatings. This is because these divalent ions will 572 change the surface electrostatic potential of PZ coatings, 573 leading to the deterioration of their antifouling performance 574 against negatively charged foulants, 575 such as alginate and 575 humic acid molecules.

ASSOCIATED CONTENT

78 Supporting Information

579 The Supporting Information is available free of charge at 580 https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01287.

Methods of building polyzwitterion model (Section S1) 581 and umbrella sampling (Section S2); detailed binding 582 structures between zwitterions and different metal ions 583 in aqueous solution (Figure S1); snapshots of the 584 carboxybetaine brush arrays with three different grafting 585 densities in water (Figure S2); and density distributions 586 of the zwitterion brush arrays in water and in CaCl₂ 587 solution (Figure S3) (PDF) 588

589 AUTHOR INFORMATION

590 Corresponding Author

Yongsheng Leng — Department of Mechanical & Aerospace
Engineering, The George Washington University, Washington,
District of Columbia 20052, United States; ⊚ orcid.org/00000002-3558-5016; Phone: 202-994-5964; Email: leng@
gwu.edu

596 Authors

Yuan Xiang — Department of Mechanical & Aerospace
 Engineering, The George Washington University, Washington,
 District of Columbia 20052, United States; orcid.org/
 0000-0002-4665-3360

Rong-Guang Xu — Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States

604 Complete contact information is available at: 605 https://pubs.acs.org/10.1021/acs.langmuir.0c01287

606 Notes

601

602

603

607 The authors declare no competing financial interest.

608 ACKNOWLEDGMENTS

609 This work was supported by the National Science Foundation 610 (NSF 1817394) and the resources of the National Energy 611 Research Scientific Computing Center, a DOE Office of 612 Science User Facility supported by the Office of Science of the 613 U.S. Department of Energy under Contract no. DE-AC02-614 05CH11231.

615 REFERENCES

- 616 (1) Elimelech, M.; Phillip, W. A. The future of seawater desalination: 617 Energy, technology, and the environment. *Science* **2011**, 333, 712–618 717.
- 619 (2) Zhao, S.; Zou, L.; Tang, C. Y.; Mulcahy, D. Recent 620 developments in forward osmosis: Opportunities and challenges. *J. Membr. Sci.* **2012**, *396*, 1–21.
- 622 (3) Greenlee, L. F.; Lawler, D. F.; Freeman, B. D.; Marrot, B.; 623 Moulin, P. Reverse osmosis desalination: Water sources, technology, 624 and today's challenges. *Water Res.* **2009**, *43*, 2317–2348.
- 625 (4) Lee, K. P.; Arnot, T. C.; Mattia, D. A review of reverse osmosis 626 membrane materials for desalination-development to date and future 627 potential. *J. Membr. Sci.* **2011**, 370, 1–22.
- 628 (5) Tang, C. Y.; Chong, T. H.; Fane, A. G. Colloidal interactions and 629 fouling of nf and ro membranes: A review. *Adv. Colloid Interface Sci.* 630 **2011**, *164*, 126–143.
- 631 (6) Eslami, H.; Muller-Plathe, F. Molecular dynamics simulation of 632 water influence on local structure of nanoconfined polyamide-6,6. *J.* 633 *Phys. Chem. B* **2011**, *115*, 9720–9731.

- (7) Harder, E.; Walters, D. E.; Bodnar, Y. D.; Faibish, R. S.; Roux, B. 634 Molecular dynamics study of a polymeric reverse osmosis membrane. 635 *J. Phys. Chem. B* **2009**, *113*, 10177–10182.
- (8) Hughes, Z. E.; Gale, J. D. A computational investigation of the 637 properties of a reverse osmosis membrane. *J. Mater. Chem.* **2010**, 20, 638 7788-7799.
- (9) Kotelyanskii, M.; Wagner, N. J.; Paulaitis, M. E. Building large 640 amorphous polymer structures: Atomistic simulation of glassy 641 polystyrene. *Macromolecules* **1996**, 29, 8497–8506.
- (10) Nadler, R.; Srebnik, S. Molecular simulation of polyamide 643 synthesis by interfacial polymerization. *J. Membr. Sci.* **2008**, 315, 100–644 105.
- (11) Ridgway, H. F.; Orbell, J.; Gray, S. Molecular simulations of 646 polyamide membrane materials used in desalination and water reuse 647 applications: Recent developments and future prospects. *J. Membr. Sci.* 648 **2017**, 524, 436–448.
- (12) Wei, T.; Zhang, L.; Zhao, H. Y.; Ma, H.; Sajib, M. S. J.; Jiang, 650 H.; Murad, S. Aromatic polyamide reverse-osmosis membrane: An 651 atomistic molecular dynamics simulation. *J. Phys. Chem. B* **2016**, 120, 652 10311–10318.
- (13) Rana, D.; Matsuura, T. Surface modifications for antifouling 654 membranes. Chem. Rev. 2010, 110, 2448–2471.
- (14) Li, D.; Wang, H. Recent developments in reverse osmosis 656 desalination membranes. *J. Mater. Chem.* **2010**, 20, 4551–4566.
- (15) Perreault, F.; Tousley, M. E.; Elimelech, M. Thin-film 658 composite polyamide membranes functionalized with biocidal 659 graphene oxide nanosheets. *Environ. Sci. Technol. Lett.* **2014**, *1*, 71–660 76.
- (16) Bai, L. M.; Liu, Y. T.; Bossa, N.; Ding, A.; Ren, N. Q.; Li, G. B.; 662 Liang, H.; Wiesner, M. R. Incorporation of cellulose nanocrystals 663 (cncs) into the polyamide layer of thin-film composite (TFC) 664 nanofiltration membranes for enhanced separation performance and 665 antifouling properties. *Environ. Sci. Technol.* 2018, 52, 11178–11187.
- (17) Hao, X. J.; Gao, S. S.; Tian, J. Y.; Sun, Y.; Cui, F. Y.; Tang, C. Y. 667 Y. Calcium-carboxyl intrabridging during interfacial polymerization: A 668 novel strategy to improve antifouling performance of thin film 669 composite membranes. *Environ. Sci. Technol.* **2019**, 53, 4371–4379. 670
- (18) Vaisocherová, H.; Yang, W.; Zhang, Z.; Cao, Z. Q.; Cheng, G.; 671 Piliarik, M.; Homola, J.; Jiang, S. Y. Ultralow fouling and 672 functionalizable surface chemistry based on a zwitterionic polymer 673 enabling sensitive and specific protein detection in undiluted blood 674 plasma. *Anal. Chem.* **2008**, 80, 7894–7901.
- (19) Yang, W.; Chen, S. F.; Cheng, G.; Vaisocherova, H.; Xue, H.; 676 Li, W.; Zhang, J. L.; Jiang, S. Y. Film thickness dependence of protein 677 adsorption from blood serum and plasma onto poly(sulfobetaine)- 678 grafted surfaces. *Langmuir* 2008, 24, 9211–9214.
- (20) Zhang, Z.; Chao, T.; Chen, S.; Jiang, S. Superlow fouling 680 sulfobetaine and carboxybetaine polymers on glass slides. *Langmuir* 681 **2006**, 22, 10072–10077.
- (21) Jiang, S.; Cao, Z. Ultralow-fouling, functionalizable, and 683 hydrolyzable zwitterionic materials and their derivatives for biological 684 applications. *Adv. Mater.* **2010**, *22*, 920–932.
- (22) Gaberc-Porekar, V.; Zore, I.; Podobnik, B.; Menart, V. 686 Obstacles and pitfalls in the pegylation of therapeutic proteins. 687 Curr. Opin. Drug Discovery Dev. 2008, 11, 242–250.
- (23) Chang, Y.; Chang, W. J.; Shih, Y. J.; Wei, T. C.; Hsiue, G. H. 689 Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane 690 with highly effective blood compatibility via atmospheric plasma- 691 induced surface copolymerization. ACS Appl. Mater. Interfaces 2011, 692 3, 1228–1237.
- (24) Chen, S. F.; Zheng, J.; Li, L. Y.; Jiang, S. Y. Strong resistance of 694 phosphorylcholine self-assembled monolayers to protein adsorption: 695 Insights into nonfouling properties of zwitterionic materials. *J. Am.* 696 Chem. Soc. **2005**, 127, 14473–14478.
- (25) Schlenoff, J. B. Zwitteration: Coating surfaces with zwitterionic 698 functionality to reduce nonspecific adsorption. *Langmuir* **2014**, *30*, 699 9625–9636.

- 701 (26) Yang, W. J.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M.; Rittschof, 702 D. Polymer brush coatings for combating marine biofouling. *Prog.* 703 *Polym. Sci.* **2014**, *39*, 1017–1042.
- 704 (27) Koc, J.; Schonemann, E.; Arnuthalingam, A.; Clarke, J.; Finlay, 705 J. A.; Clare, A. S.; Laschewsky, A.; Rosenhahn, A. Low-fouling thin 706 hydrogel coatings made of photo-cross-linked polyzwitterions. 707 *Langmuir* **2019**, 35, 1552–1562.
- 708 (28) Ma, M. Q.; Zhang, C.; Chen, T. T.; Yang, J.; Wang, J. J.; Ji, J.; 709 Xu, Z. K. Bioinspired polydopamine/polyzwitterion coatings for 710 underwater anti-oil and -freezing surfaces. *Langmuir* **2019**, 35, 1895—711 1901.
- 712 (29) Chang, Y.; Shih, Y. J.; Lai, C. J.; Kung, H. H.; Jiang, S. Y. Blood-713 inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes 714 in human whole blood. *Adv. Funct. Mater.* **2013**, *23*, 1100–1110.
- 715 (30) Sin, M. C.; Chen, S. H.; Chang, Y. Hemocompatibility of 716 zwitterionic interfaces and membranes. *Polym. J.* **2014**, *46*, 436–443.
- 717 (31) Lin, S.; Li, Y.; Zhang, L.; Chen, S.; Hou, L. Zwitterion-like, 718 charge-balanced ultrathin layers on polymeric membranes for 719 antifouling property. *Environ. Sci. Technol.* **2018**, *52*, 4457–4463.
- 720 (32) Yang, R.; Xu, J.; Ozaydin-Ince, G.; Wong, S. Y.; Gleason, K. K. 721 Surface-tethered zwitterionic ultrathin antifouling coatings on reverse 722 osmosis membranes by initiated chemical vapor deposition. *Chem.* 723 *Mater.* **2011**, 23, 1263–1272.
- 724 (33) Yu, H.-Y.; Kang, Y.; Liu, Y.; Mi, B. Grafting polyzwitterions 725 onto polyamide by click chemistry and nucleophilic substitution on 726 nitrogen: A novel approach to enhance membrane fouling resistance. 727 *J. Membr. Sci.* **2014**, *449*, 50–57.
- 728 (34) Bernstein, R.; Belfer, S.; Freger, V. Bacterial attachment to ro 729 membranes surface-modified by concentration-polarization-enhanced 730 graft polymerization. *Environ. Sci. Technol.* **2011**, *45*, 5973–5980.
- 731 (35) Chan, W.-F.; Chen, H.-y.; Surapathi, A.; Taylor, M. G.; Hao, 732 X.; Marand, E.; Johnson, J. K. Zwitterion functionalized carbon 733 nanotube/polyamide nanocomposite membranes for water desalina-734 tion. *ACS Nano* **2013**, *7*, 5308–5319.
- 735 (36) Du, H. B.; Qian, X. H. The hydration properties of 736 carboxybetaine zwitterion brushes. *J. Comput. Chem.* **2016**, *37*, 737 877–885.
- 738 (37) Nagumo, R.; Ito, T.; Akamatsu, K.; Miura, R.; Suzuki, A.; 739 Tsuboi, H.; Hatakeyama, N.; Takaba, H.; Miyamoto, A. Molecular 740 dynamics simulations for microscopic behavior of water molecules in 741 the vicinity of zwitterionic self-assembled monolayers. *Polym. J.* **2012**, 742 *44*, 1149–1153.
- 743 (38) Shao, Q.; He, Y.; Jiang, S. Y. Molecular dynamics simulation 744 study of ion interactions with zwitterions. *J. Phys. Chem. B* **2011**, *115*, 745 8358–8363.
- 746 (39) Shao, Q.; He, Y.; White, A. D.; Jiang, S. Y. Difference in 747 hydration between carboxybetaine and sulfobetaine. *J. Phys. Chem. B* 748 **2010**, 114, 16625–16631.
- 749 (40) Xiang, Y.; Xu, R. G.; Leng, Y. S. Molecular simulations of the 750 hydration behavior of a zwitterion brush array and its antifouling 751 property in an aqueous environment. *Langmuir* **2018**, *34*, 2245–2257. 752 (41) Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J. Development 752 and testing of the only all storm force field on conformational
- 753 and testing of the opls all-atom force field on conformational 754 energetics and properties of organic liquids. *J. Am. Chem. Soc.* **1996**, 755 *118*, 11225–11236.
- 756 (42) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. 757 L. Evaluation and reparametrization of the opls-aa force field for 758 proteins via comparison with accurate quantum chemical calculations 759 on peptides. *J. Phys. Chem. B* **2001**, *105*, 6474–6487.
- 760 (43) Breneman, C. M.; Wiberg, K. B. Determining atom-centered 761 monopoles from molecular electrostatic potentials the need for high 762 sampling density in formamide conformational-analysis. *J. Comput.* 763 *Chem.* 1990, 11, 361–373.
- 764 (44) Shao, Q.; Jiang, S. Y. Effect of carbon spacer length on 765 zwitterionic carboxybetaines. *J. Phys. Chem. B* **2013**, 117, 1357–1366. (45) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; 767 Hermans, J. *Interaction Models for Water in Relation to Protein* 768 *Hydration*; D. Riedel Publishing Co.: Dordrecht, The Netherlands, 769 1981.

- (46) Teleman, O.; Jonsson, B.; Engstrom, S. A molecular dynamics 770 simulation of a water model with intramolecular degrees of freedom. 771 *Mol. Phys.* **1987**, *60*, 193–203.
- (47) Áqvist, J. Ion water interaction potentials derived from free-773 energy perturbation simulations. J. Phys. Chem. A. 1990, 94, 8021–774 8024.
- (48) Joung, I. S.; Cheatham, T. E., 3rd Determination of alkali and 776 halide monovalent ion parameters for use in explicitly solvated 777 biomolecular simulations. *J. Phys. Chem. B* **2008**, *112*, 9020–9041. 778
- (49) Plimpton, S. Fast parallel algorithms for short range molecular 779 dynamics. *J. Comput. Phys.* **1995**, 117, 1–19.
- (50) Hockney, R. W.; Eastwood, J. W. Computer Simulation Using 781 Particles; Taylor and Francis Group: London, U.K., 1988.
- (51) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; 783 Clarendon Press: Oxford, 1987.
- (52) Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.; 785 Rosenberg, J. M. The weighted histogram analysis method for free- 786 energy calculations on biomolecules. I. The method. *J. Comput. Chem.* 787 **1992**, *13*, 1011–1021.
- (53) Torrie, G. M.; Valleau, J. P. Nonphysical sampling distributions 789 in monte carlo free-energy estimation: Umbrella sampling. *J. Comput.* 790 *Phys.* **1977**, 23, 187–199.
- (54) Gröger, G.; Stepanenko, V.; Würthner, F.; Schmuck, C. Step-792 wise self-assembly of a small molecule with two orthogonal binding 793 interactions leads to single stranded linear polymers in DMSO. *Chem.* 794 *Commun.* **2009**, 698–700.
- (55) Rehm, T. H.; Schmuck, C. Ion-pair induced self-assembly in 796 aqueous solvents. *Chem. Soc. Rev.* **2010**, *39*, 3597–3611.
- (56) Rodler, F.; Linders, J.; Fenske, T.; Rehm, T.; Mayer, C.; 798 Schmuck, C. pH-switchable vesicles from a serine-derived guanidi- 799 niocarbonyl pyrrole carboxylate zwitterion in DMSO. *Angew. Chem.,* 800 *Int. Ed.* **2010**, 49, 8747–8750.
- (57) Rybtchinski, B. Adaptive supramolecular nanomaterials based 802 on strong noncovalent interactions. ACS Nano 2011, 5, 6791–6818. 803
- (58) Schmuck, C.; Wienand, W. Highly stable self-assembly in 804 water: Ion pair driven dimerization of a guanidiniocarbonyl pyrrole 805 carboxylate zwitterion. *J. Am. Chem. Soc.* **2003**, *125*, 452–459.
- (59) Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, 807 D.; Raiteri, P.; Donadio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R. A.; 808 Parrinello, M. Plumed: A portable plugin for free-energy calculations 809 with molecular dynamics. *Comput. Phys. Commun.* **2009**, *180*, 1961—810 1972.
- (60) Hummer, G.; Pratt, L. R.; Garcia, A. E. Free energy of ionic 812 hydration. *J. Phys. Chem. B.* **1996**, *100*, 1206–1215.
- (61) Chen, H. Y.; Ruckenstein, E. Hydrated ions: From individual 814 ions to ion pairs to ion clusters. *J. Phys. Chem. B* **2015**, *119*, 12671–815 12676.
- (62) Carrillo-Tripp, M.; Saint-Martin, H.; Ortega-Blake, I. A 817 comparative study of the hydration of na+ and k+ with refined 818 polarizable model potentials. *J. Chem. Phys.* **2003**, *118*, 7062–7073. 819
- (63) Rowley, C. N.; Roux, B. The solvation structure of na+ and k+ 820 in liquid water determined from high level ab initio molecular 821 dynamics simulations. *J. Chem. Theory Comput.* **2012**, *8*, 3526–3535. 822
- (64) Xiang, Y.; Liu, Y. L.; Mi, B. X.; Leng, Y. S. Hydrated polyamide 823 membrane and its interaction with alginate: A molecular dynamics 824 study. *Langmuir* **2013**, *29*, 11600–11608.
- (65) Xiang, Y.; Liu, Y. L.; Mi, B. X.; Leng, Y. S. Molecular dynamics 826 simulations of polyamide membrane, calcium alginate gel, and their 827 interactions in aqueous solution. *Langmuir* **2014**, *30*, 9098–9106. 828
- (66) Zhao, W. Q.; Zhu, Y. N.; Zhang, J. M.; Xu, T.; Li, Q. S.; Guo, 829 H. S.; Zhang, J. W.; Lin, C. G.; Zhang, L. A comprehensive study and 830 comparison of four types of zwitterionic hydrogels. *J. Mater. Sci.* **2018**, 831 53, 13813–13825.
- (67) Xue, W.; Huglin, M. B.; Liao, B. Observations on the swelling 833 characteristics of the zwitterionic hydrogel of poly(1-3-sulfopropyl)-2- 834 vinyl-pyridinium-betaine hydrogel. *Eur. Polym. J.* **2006**, 42, 3015—835 3023.
- (68) de Grooth, J.; Ogieglo, W.; de Vos, W. M.; Gironès, M.; 837 Nijmeijer, K.; Benes, N. E. Swelling dynamics of zwitterionic 838

I

- 839 copolymers: The effects of concentration and type of anion and 840 cation. *Eur. Polym. J.* **2014**, *55*, *57*–*65*.
- 841 (69) Kobayashi, M.; Ishihara, K.; Takahara, A. Neutron reflectivity 842 study of the swollen structure of polyzwitterion and polyeletrolyte 843 brushes in aqueous solutione. *J. Biomater. Sci., Polym. Ed.* **2014**, 25, 844 1673–1686.
- 845 (70) Yang, Z. F.; Zhang, S. W.; Tarabara, V. V.; Bruening, M. L. 846 Aqueous swelling of zwitterionic poly(sulfobetaine methacrylate) 847 brushes in the presence of ionic surfactants. *Macromolecules* **2018**, *51*, 848 1161–1171.
- 849 (71) Lee, W. F.; Tsai, C. C. Synthesis and solubility of the 850 poly(sulfobetaine)s and the corresponding cationic polymers .2. 851 Aqueous-solution properties of poly n,n'-dimethyl(acrylamido 852 propyl) ammonium propane sulfonate. *Polymer* 1995, 36, 357–364. 853 (72) Marcus, Y. Effect of ions on the structure of water: Structure 854 making and breaking. *Chem. Rev.* 2009, 109, 1346–1370.
- 855 (73) Birkner, M.; Ulbricht, M. Ultrafiltration membranes with 856 markedly different ph- and ion-responsivity by photografted 857 zwitterionic polysulfobetain or polycarbobetain. *J. Membr. Sci.* **2015**, 858 494, 57–67.
- 859 (74) Xiang, T.; Luo, C.-D.; Wang, R.; Han, Z.-Y.; Sun, S.-D.; Zhao, 860 C.-S. Ionic-strength-sensitive polyethersulfone membrane with 861 improved anti-fouling property modified by zwitterionic polymer via 862 in situ cross-linked polymerization. *J. Membr. Sci.* **2015**, 476, 234–863 242.
- 864 (75) Mi, L.; Giarmarco, M. M.; Shao, Q.; Jiang, S. Divalent cation-865 mediated polysaccharide interactions with zwitterionic surfaces. 866 *Biomaterials* **2012**, 33, 2001–2006.