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We investigate the particle-antiparticle symmetry of the gravitationally coupled Dirac
equation, both on the basis of the gravitational central-field problem and in general
curved space—time backgrounds. First, we investigate the central-field problem with the
help of a Foldy—Wouthuysen transformation. This disentangles the particle from the
antiparticle solutions, and leads to a “matching relation” of the inertial and the gravita-
tional mass, which is valid for both particles as well as antiparticles. Second, we sup-
plement this derivation by a general investigation of the behavior of the gravitationally
coupled Dirac equation under the discrete symmetry of charge conjugation, which is
tantamount to a particle — antiparticle transformation. Limitations of the Einstein
equivalence principle due to quantum fluctuations are discussed. In quantum mechanics,
the question of where and when in the Universe an experiment is being performed can
only be answered up to the limitations implied by Heisenberg’s Uncertainty Principle,
questioning an assumption made in the original formulation of the Einstein equivalence
principle. Furthermore, at some level of accuracy, it becomes impossible to separate
nongravitational from gravitational experiments, leading to further limitations.
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1. Introduction

A significant motivation for antimatter tests of gravity is that the equivalence prin-
ciple has never been tested for antiparticles. We aim to give an account of the
implications of the gravitationally coupled Dirac equation for antiparticles, moti-
vated by a couple of ongoing experiments at CERN.'® Here, we investigate, in
detail, the relation of the inertial mass of spin-1/2 particles and antiparticles, based
on the Dirac equation which, as is well known to atomic theorists? but perhaps less
well known in the general relativity community, describes both particles as well as
the corresponding antiparticles simultaneously. We observe that, a priori, it is the
inertial, not the gravitational, mass which enters the Dirac equation. However, we
will attempt to show that, by coupling the Dirac equation to curved space—time,
it is possible to identify the relation of the inertial mass to the gravitational mass,
for both particles and antiparticles. A number of consequences of our results are
discussed.

Dirac is sometimes quoted as saying that the equation named after him
“more intelligent than its inventor.” Indeed, the Dirac equation solved a number of
problems simultaneously: (i) It provided the necessary linearization of the Klein—

10,11 g

Gordon equation, thus solving problems connected with the negative probabilities
otherwise encountered in the context of the Klein—-Gordon equation. The linear-
ization also enabled physicists to formulate a Hamiltonian operator for spin-1/2
particles.!? (ii) The Dirac equation immediately led to a consistent description of
an intrinsic degree of freedom of an elementary particle, namely, the spin of the
electron (and also, of the spin of the positron). (iii) The Dirac equation predicted
the existence of particles of the same (inertial!) mass, but opposite charge, namely,
the existence of spin-1,/2 antiparticles. Indeed, the existence of the positron was con-
firmed after the Dirac equation was invented.' For an illustrative and interpretive
discussion of some interesting properties of the Dirac equation, see Ref. 14.

One might ask: If the Dirac equation makes a definite prediction about the
charge of the antiparticles, then why could the Dirac equation not be used in order
to make a definitive prediction about the gravitational mass of the antiparticles?
One should remember that conceivable gravitational matter—antimatter repulsion
has been investigated in a number of theoretical papers (see, e.g. Ref. 15).

The answer is as follows: (i) First, one has to realize that the mass which
enters the free Dirac equation (no coupling to either electromagnetic or gravita-
tional fields), constitutes the inertial (not the gravitational) mass of the particle.
After a transformation which disentangles the particle from the antiparticle, known
as the Foldy-Wouthuysen transformation,'® one can derive the energy-momentum
relation for both particles as well as antiparticles. One then immediately realizes
that the Dirac equation predicts the same inertial mass for both kinds of particles.

(ii) The second step is to couple the Dirac particle to an external electromag-
netic field, and carry out the Foldy—Wouthuysen transformation, which in this case
becomes a little more involved. After disentangling the particle from the antiparticle

1950180-2



Int. J. Mod. Phys. A 2019.34. Downloaded from www.worldscientific.com
by 131.151.31.102 on 01/16/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

Equivalence principle for antiparticles and its limitations

Hamiltonian, one realizes that the electric charge of the Dirac antiparticle has to be
equal in magnitude, but opposite in sign, to that of the particle. In order to address
a possible misunderstanding right from the start, let us also remember that, in
order to derive antiparticle properties from the Dirac equation, it is not necessary
to quantize the Dirac field: Namely, the negative-energy solutions of the Dirac
equation are interpreted as antiparticle solutions, in view of the reinterpretation
principle.'>'7 In that sense, there is no such thing as a “single-particle Dirac the-
ory”: Rather, the solutions of the equation itself describe particles (positive energy)
as well as antiparticles (negative energy). Recall that, historically, the prediction of
the existence of the positron (with all of its electromagnetic as well as inertial prop-
erties) on the basis of the Dirac equation'®!! was followed by the discovery of the
positron,™® long before the concept field-quantization was introduced in theoretical
physics.'®

(iii) The third step then is to couple the Dirac equation to a gravitational field.
Here, too, a possible misunderstanding needs to be addressed right from the start:
One might think that it is necessary to quantize gravity. However, that is not the
case. General relativity is a classical theory which promotes space—time to a curved
structure; events are described by space—time coordinates. In consequence, the wave
function of a particle (in general relativity) becomes a function of the space—time
coordinates.! 24 One then has to couple the Dirac particle to the curved space-
time. The foundations of that endeavor have been laid by Tetrode,?® Fock and
Ivanenko, 2528 Weyl,?? and Brill and Wheeler3? (for an excellent historic account
of the early developments, see Ref. 31). One needs to introduce a covariant cou-
pling of the Dirac particles, with respect to changes in local Lorentz frames.2”:32
These changes in local Lorentz frames (space—time is locally flat) assume the role
of a (local) SO(1,3) gauge transformation, which can be formulated for spin-1/2

27,30,32-34 This is analogous to the electromagnetic case, where the gauge

particles.
transformation is that of the underlying U(1) gauge theory. Expressed differently,
the gravitational field, in this case, assumes the same role as a classical, external,
electromagnetic field entering the Dirac equation (e.g. an external Coulomb field),
and does not need to be quantized.

After applying the Foldy—Wouthuysen transformation to the gravitationally
coupled Dirac equation, one obtains the effective particle and antiparticle Hamil-
tonians. Expressed differently, one starts with a theory in which the mass parameter
assumes the role of the inertial mass, for both particles as well as antiparticles, and
hopes to end up with two Hamiltonians: the first of these is applicable to the
particle, while the second Hamiltonian describes the gravitational coupling of the
antiparticle. It is then of interest to analyze in which manner the (inertial) mass
of the particle (and antiparticle) enter the final, gravitationally coupled effective
particle and antiparticle Hamiltonians, i.e. to investigate the relationship of the
gravitational and inertial masses. Under favorable circumstances, one should be
able to determine the functional relationship of the inertial mass and the gravita-
tional mass, for both the particle and the antiparticle.
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Again, in order to avoid further possible misunderstandings, we should remem-
ber that, quite recently, in very remarkable experiments, the equality of the charge-
to-inertial-mass ratio of protons and antiprotons has been experimentally verified
to unprecedented precision.??36 These results, however, do not have any connection
to the gravitational mass of the antiparticles, which is the subject of the current
investigation.

As a last possible interjection, one might point out that many particles used in
fundamental physics experiments on the properties of antimatter, actually consti-
tute composite particles. For example, the mass of antiprotons mostly is the mass
equivalent of the extra energy of the quarks and gluons in a region within the
antiproton, as compared to the rest energy of the quarks alone in the quantum
chromodynamic vacuum, accounts for about 99% of the mass of the proton. As
the free quarks contribute little to the hadron masses, the identical inertial masses
of protons and antiprotons are thus due mostly to the color (and electroweak)
interactions which have the same strengths between charges as between anticharges
(proton versus antiproton). In the context of the current investigation, what matters
is that, for purposes of the description of quantum electrodynamic bound states,
protons (and antiprotons) can be described to excellent accuracy by an effective
Dirac equation which includes form factors (see, e.g. Ref. 37). On the level of the
effective Dirac equation, protons and antiprotons are thus amenable to an analysis
based on the same formalism as originally devised for point-like spin-1/2 particles
(electrons and positrons).

We organize the paper as follows. In Sec. 2, we discuss the derivation of the
gravitationally coupled Dirac equation in great detail. The equivalence principle for
antimatter is explored in Sec. 3. Conclusions are reserved for Sec. 4. Three appen-
dices round off the paper. Appendix A is devoted to a discussion of the differences
between the gravitational and electrostatic central-field problems. Limitations of
Einstein’s Equivalence Principle (EEP) due to quantum effects are discussed in
App. B. The relationship of our investigations to the Penrose conjecture is treated
in App. C. Units with A = ¢¢ = ¢ = 1 are used throughout the paper unless
otherwise stated.

2. Formalism for Gravitational Coupling

2.1. Free Dirac equation

10-12

First of all, we should recall the free Dirac equation, which in covariant form

reads as
(10 — ) = 0. (1)
The mass parameter in the free Dirac equation is the inertial mass m; (further

remarks on this point are given in the following). Throughout this article, we use
the Dirac matrices v* in the Dirac representation,

1 0 0 o
0 2x2
v = ( 0 ]]_2><2) 5 Y= ( = 0) ) (2)
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where the ¢ are the Pauli matrices. We can convert this equation into a noncovariant
form, and write the free Dirac Hamiltonian Hgp as

HFD:a'ﬁ+6mla 5:705 62:[3’7 (3)

Let us calculate the square of the noncovariant form of the free Dirac equation
101 = Hppt. Using the fact that {a, 8} = 0, one obtains

~02 = [(@- P+ Bmr)*]p = (P> +mi)ib. (4)

For stationary states, one can replace i0; — FE, and thus —9? — E?2. The dispersion

relation
=2 =4
N p D
E =4 2 2 — 4 B 5
\/ D%+ m3 (m1—|— oy 8md + ) (5)

dictates that m; should be interpreted as the inertial mass, not the gravitational
mass. Restoring SI units temporarily, we see that the first term mj is just the rest-
mass energy my c?, while the second term describes the Schrédinger energy, and
the third gives the relativistic correction.

In fact, the (unitary) Foldy—Wouthuysen (FW) transformation'® brings the free
Dirac (FD) equation into diagonal form,

HFW :UHFDUil _ V ]_52er% I].Q><2 0
o 0 —/DP?+m7 oo

_(Hep 0
_< 0 —HFD>’ ©

where 15y is the two-dimensional unit matrix. Here, H;D is the (2 x 2) particle
Hamiltonian, while Hpp, is the (2 x 2) antiparticle Hamiltonian. The minus sign
is due to the reinterpretation principle3®3? for antiparticles, which implies that an
antiparticle with eigenvalue —F of the time derivative operator id; is interpreted
as an antiparticle state with physical energy FE.

The transformation U is constructed, in the general case, as

. @
_iS _
U=e”, S=-ip Sy (7)

where O is the “odd” part [in (2 x 2) bispinor space] of the Dirac Hamiltonian. In
general, the elimination of the odd operators is based on the identity

[8,80] =0, (8)
which holds for a general odd matrix O. For the free Dirac Hamiltonian (3), one sets
O=a-p, (9)
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which eliminates the term of first order in the momenta in Eq. (3). The relativistic
correction terms are obtained if one uses instead
(@-p)°

O:_’."g NN~a - -p—
a-po(|p|) ~a-p 62

b

(10)

In summary, one obtains the equivalent free Dirac Hamiltonians H;D and Hpp, for
particles and antiparticles,

Hyy, = Hyp, = \/P%+mFlaxs. (11)

The same inertial mass my enters both H;D and Hpy.

2.2. Covariant gravitational coupling

The theoretical formulation of the gravitational coupling of Dirac particles was
developed when scientists were trying to understand the connection of Einstein’s
general theory of relativity to quantum mechanics?> 3" (see also Ref. 31); a particu-
larly pointed formulation is the “geometrization” of “Dirac’s theory of the electron”
as the title of Ref. 27 suggests. The positron was not mentioned in the title of the
publication,?” for obvious reasons: it had not even been discovered yet.!3

Now, let us try to present a derivation of the gravitational coupling terms for
antiparticles; we will concentrate on the leading terms, namely, those relevant to
the nonrelativistic limit. The gravitational coupling of the Dirac equation entails
two replacements as compared to Eq. (1),

Y= 0y =V, =0,-T,, (12)
where the curved-space Dirac matrices 4* fulfill “local” commutation relations given

in Eq. (15). These depend on the space-time coordinates. The spin-connection
matrix I', describes the space-time curvature. The Dirac equation assumes the

form
(i7"Vu —mr)p =0 (13)
under gravitational coupling. We recall that the free-space Dirac matrices fulfill
{v*, v} = 2¢" = 2 diag(1,-1,—-1,-1). (14)
By contrast, the curved-space Dirac matrices fulfill
{777} =29""(2), (15)
where g*¥(x) is the metric of curved space-time. One sets?7-30:33:34
= ehy?, (16)
where the €!y are the coefficients of the vierbein or “tetrad,” 33,34 and coefficients in
the anholonomic basis are denoted by capital Latin letters A, B,...=0,1,2, 3.
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Roughly speaking, the derivation of the gravitational coupling proceeds as fol-
lows. As space—time is locally flat, one should be able to change the local Lorentz
frames, and therefore, the vierbein coefficients, without changing the physics. By

12 one is able to change the local phase

comparison, for quantum electrodynamics,
of the wave function independently at any point in space-time, provided one also
performs a concomitant gauge transformation of the electromagnetic four-vector
potentials.

On the basis of these considerations, one can derive a spinor representation of
the local Lorentz group. One then formulates a covariant derivative with respect to
the group SO(1, 3) of local Lorentz transformation, in accordance with the gauge
principle. The paradigm is that the covariant derivative of the spinor-Lorentz trans-
formation of the Dirac bispinor, formulated in the transformed coordinates, is equal
to the spinor-local-Lorentz-transformation of the covariant derivative of the same
Dirac bispinor. This can be formulated as follows:

V' =(Vuy), ¢ =80, (Vud) =SV, (17)

32,40

A closer inspection of the problem reveals that this condition is fulfilled if one

sets

1
_ AB AB _ _A vB
FM_Z“M oap, w, =e, Ve, (18)

, and the spin matrices are

where the Ricci rotation coefficients are denoted as wl’:‘B

oAB = %[%47 ~g]. The covariant derivative acts as follows:
vB vB v B
V,ue’? =0,e"” + 17 ,e’7 . (19)

Here, the I'};  are the Christoffel symbols.
A change in the vierbein e} — €’} amounts to a local Lorentz transformation,
and the V), in Eq. (17) is understood as V}, = 9, — I}, (which entails no change in

Ou, but a change in the Ricci rotation coefficients),
i 1AB 1AB _ 1A

ro_ 1 124
Fuf4w# OAB, W, fe#v#e

o (20)

3. Equivalence Principle for Antiparticles
3.1. Central-field problem

The general formalism outlined in Sec. 2.2 has to be applied in practice. In a “weak”
gravitational field described by a potential ®, one has the metric,?44!

ds? = g, da* dz¥ = (1 4+ 2®)dt* — (1 — 2®)d7?

2GM 2GM
- (1 - C’;) de® — (1+ i)dv“z, (21)
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where in the case of a central gravitational potential, one has ® = —GM/r. An
evaluation of the Christoffel symbols, and of the spin connection matrices, leads to

£,20:24,41

the following resul which holds to first order in the gravitational coupling

constant:

1
Hea = 5{1+2<1>,a P+ Pm(14+ D)

1 2GmM M
:2{1—%,a-p’}+6m1(1—G>. (22)
T T

At the risk of oversimplification, we can say that the anticommutator term
involving a - p comes from the gravitational covariant derivative, while the term
Bm(1—GmM/r) is due to the replacement of the flat-space Dirac matrices by their
curved-space equivalents.

The functional form of the second term in Eq. (22) can be derived very easily by
considering the Dirac equation for particles at rest, where there is no momentum
operator at all. One applies the replacement (12) to the Dirac matrices, in the form
~% — 39, The free Dirac equation for particles and antiparticles at rest is simply

70 = mry. (23)
In curved space (central-field problem), one replaces
1700y = mpp — i7°00 = myv (24)

where in view of Eq. (21),

[ 1
50 — \/g00~0 — O~ (1—®)°. 2
0 gy 1 2‘1)’7 ( )'7 (5)

In the latter term, we have expanded the square root to first order in ®. One notes
that g°° is a coefficient of the inverse metric g"”, where g"”g,, = 6*,. Hence, with

57" = 1, keeping track of upper and lower indices carefully, we have

1000 = it =P 1+ @) = g (1= S5 ) (26)

This simple consideration, at the risk of some over-simplification, rederives the
second term on the right-hand side of Eq. (22). It means that the leading gravita-
tional interaction term in a central field follows from the metric-induced modifica-
tion of the Dirac v° matriz alone, without any recourse to Christoffel symbols or
gravitational connection matrices.

In order to derive the equivalence principle in leading order, it is sufficient to
approximate Eq. (22) by

S o, GM
HG—a~p+ﬂm1(1+¢>)—a~p+ﬂm[<1—r), (27)
because the kinetic term already contains a momentum and is of higher order.
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If we add a nontrivial potential to the free Dirac Hamiltonian, as in Eq. (27),
then it is not possible any more to diagonalize the Dirac Hamiltonian in bispinor
space exactly. Rather, one employs a perturbative approach, with a Foldy-
Wouthuysen transformation that eliminates the odd contributions, order-by-order
in the momenta.!?:38 A single step of the FW transformation, using [see Eq. (7)]

a-p

U =-exp(iS), S=-ip (28)

2m I ’
then is sufficient to obtain the Foldy—Wouthuysen transformed, gravitationally cou-
pled Hamiltonian

i2

HG™ = UHGU™" = Hg +i[S, He] + 5 S, S, Holl + -, (29)

which reads as follows:

ﬁ2

ng = ﬁ[QmI + mlfb]
ij ’ITLIM
— =G Toxo 0
2my r

= o o
0 <pcmf >1
2my T

HE 0
- ( oG _H5> . (30)

So, the particle and antiparticle Hamiltonians are equal,

=2

- mrM
HEZHG:(;W—G ; >ﬂ2x2~ (31)

Note that the Newtonian central-field term (—Gmj;M/r) is obtained naturally in
this Hamiltonian, for both particles as well as antiparticles. The emergence of the
matrix 1o implies that the energy is independent of the spin of the particle.

Let us remember that Newton stated that the property of a body called “mass”
(“inertial mass”) has to be proportional to the “weight” (which enters the gravita-
tional force law), a principle otherwise known as the “weak equivalence principle”
(WEP). Upon choosing the physical value of the gravitational constant G appropri-
ately, one finds the exact equivalence mg = my of the gravitational mass mqg and
the inertial mass m; of a particle. The EEP states that (i) WEP is valid, (ii) the
outcome of any local nongravitational experiment is independent of the velocity of
the freely-falling reference frame in which it is performed (local Lorentz invariance,
LLI), and (iii) the outcome of any local nongravitational experiment is independent
of where and when in the universe it is performed (local position invariance, LPT).
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We know that the classical Hamiltonian for a particle subject to a central gravi-
tational potential is??

32 maM
Hgo = (2p _qmhe ) (32)
mr r

where we neglect the spin (which does not exist in a classical theory), and denote the
gravitational mass by m¢. By the correspondence principle, the quantum analogue
is obtained from Eq. (32) by interpreting the momentum p in Eq. (32) as the
momentum operator p = —iV.

A comparison of Egs. (31) and (32) reveals that

mg = my (particles), (33a)
mg = my (antiparticles), (33b)

thus establishing the equivalence principle in the Newtonian form, for antiparticles,
at least within a leading-order calculation.

3.2. Coupling to a general background

We now investigate the general case, where the Dirac particle is not necessarily cou-
pled to a static central field, but is coupled to a general (dynamic) background, with
a (possibly time-dependent) space—time metric, which gives rise to time-dependent
connection matrices I';, [see Eq. (18)].

From nonrelativistic quantum mechanics, we know that the electromagnetic
coupling can be described by the covariant coupling p — p — e/_f, where A is the
vector potential of the electromagnetic field. The general electromagnetically and
gravitationally coupled Dirac equation, for arbitrary electromagnetic four-vector
potentials A, and arbitrary connection matrices I',, reads as

[’Vt{i(au —Ty) —eAu} —mily =0, (34)

where the four-vector potential has components A* = (@,ff), and e denotes the
electron charge. We note the scalar potential ® and the vector potential A (see
Chap. 8 of Ref. 43). Recall the I', matrices from Eq. (18):

i i

shasl. ()

Now, let us carry out the charge conjugation, which is tantamount to the

AB _

L AB A vB
FN—iwu OAB, W, eMVMe , OAB =

particle — antiparticle transformation. Under transposition and complex conju-
gation, one obtains

et ()T (=18, - edn) + i (7#)F = mi) =0, (36)

where the differential operator acts on the v to the left. We remember that I',, is
matrix-valued. The Hermitian adjoint 1";1’ of Iy, is calculated as follows:

i i
Df = —gwi’ols = —gwn”oan’ = T’ (37)
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where one has used the result

i i
oty = -5 Vi) = -5 [V v37°, /v A°]A°
i
=3 Y5, 7417° = —20547° =100 457°. (38)

Here, we recall that we use the Dirac representation, given in Eq. (2), where one has
the relationship v°(y4) 7% = 44. One can immediately infer that 0 (5#)T0 = 5#
(for the curved-space matrices, which are related to the flat-space v* by the vierbein
coeffcients €/y). An insertion of 7% matrices, using the identity (y°)? = 1, leads to

(@) () (—10, — eAy) — ir°Tn (3 F = my]7° = 0. (39)

For absolute clarity, observe that the sign change in the prefactor multiplying the
I', matrix, as compared to Eq. (36), is due to Eq. (37). This leads to the equation

3 (=19, — eA,) — T, 5" —my] = 0. (40)
Under an additional transposition, one obtains
()" (=10, — eA,) = i(3)"TF = my[$7 =0, (41)

One introduces the charge conjugation matrix C' = i424° (in the Dirac representa-
tion) with the defining property

C(’VA)Tcil = _’yAv C(’S’M)Tcil = _’?uv (42)

so that the charge conjugated spinor is 1¢ (x) = C%T(z). In the Dirac representa-
tion, a possible choice is C' = iy?4Y. Insertion of the identity matrix in the form
1 =C7!C in Eq. (41) leads to

[C(W)To—l(—iaH —eA,) —ic(y)TcterTot — m,} coT =0.  (43)

One calculates the identity

o _ifi -
Cr,Cc™' = 4{2w330[7§,7§]0 1}

i

- 4{;@‘3 (78, _’YA]} =Ty (44)

The charge conjugated (particle — antiparticle transformed) Dirac equation ful-
filled by ¢ (x) thus reads as

[(—7")(—10, — eA,) — i7", — my|yC(2) = 0, (45)
or alternatively as

(7{i(0, — T) + eA,} —mr|yC(z) = 0. (46)
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The only difference between the original Dirac equation (34) and Eq. (46) is the
sign of the physical charge e of the particle. The sign and the functional form of
the gravitational coupling term remains the same.

Note that ¢¢(z) = C¥T(z) = C(¥Ty")T(x) = C1%*(x) involves a com-
plex conjugation. By way of example, let us assume that (x) is proportional to
exp(—iEt + ik - 7), with a positive energy eigenvalue E > 0. In this case, 1" (z)
and, thus, ¢ (z) will be proportional to exp(iEt — ik - 7), with a negative eigen-
value of the time derivative operator i0;. The latter form is the characteristic de-
pendence for an antiparticle wave function. Let us note that the comparison of
Eqgs. (34) and (46) reveals that the gravitational coupling term is invariant under

the particle — antiparticle transformation in a general dynamic space-time back-

A

MB and connection

ground whose metric gives rise to Ricci rotation coefficients w
matrices I',,.

Furthermore, we note that both Eqgs. (34) and (46) contain the inertial mass
term mj. In principle, neither of these equations say anything about the identifi-
cation of the inertial with the gravitational mass. However, their comparison and
the retention of the sign as well as the entire functional form of the gravitational
coupling term in unchanged form under the particle — antiparticle transforma-
tion, shows that if the equivalence m; = m¢ for antiparticles holds in one special
example case (e.g. the central-field problem, see Sec. 2.2), then it must hold for any
general space—time geometry (including all relativistic correction terms). Additional
considerations regarding the relativistic terms, for the special case of a central-field
problem, can be found in Ref. 19.

4. Conclusions

Let us briefly review the most important results of the current investigation. In
Sec. 2, we present the formalism of gravitational coupling for spin-1/2 particles on
which this paper is based. First, recall that the Dirac Hamiltonian describes par-
ticles and antiparticles simultaneously (Subsec. 2.1) and recover a few details on
the free Dirac equation. The covariant coupling to curved space-time (gravitational
coupling) is discussed in Subsec. 2.2. We then derive the equivalence principle for
antiparticles in an illustrative way (in Sec. 3), based on the Foldy—Wouthuysen
transformed Dirac Hamiltonian. In Subsec. 3.1, the central-field problem is investi-
gated, and the derivation culminates in Eq. (31), where the particle and antiparticle
Hamiltonians in a gravitational field are given. Illustrative remarks on the dif-
ferences between the electrostatic and gravitational central-field problems are given
in App. A. The derivation is generalized to arbitrary curved space—time backgrounds
in Subsec. 3.2, for a general Dirac particle, coupled to both electromagnetic as well
as gravitational fields. The electromagnetic coupling term reverses sign under the
particle — antiparticle transformation, as it should, while the gravitational term
retains its sign and its full functional form. The conclusions of Subsec. 2.2 imply
that m; = m¢ for the central-field problem (“matching”), and the considerations
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of Subsec. 3.2 generalize this finding to arbitrary (possibly dynamic) curved space
times.

In summary, Sec. 3 is devoted to a derivation of the (weak) equivalence prin-
ciple for antiparticles, showing the equivalence of the inertial and gravitational
mass m; = mg for antiparticles. Within the Dirac formalism, any deviation of the
gravitational mass of antiparticles as compared to the gravitational mass of particles
is thus constrained by the very precise available comparisons of the corresponding
inertial masses, which are available for some elementary particles.?>36 Conversely,
if a deviation of the gravitational mass of an antiparticle from that of a particle
should be found in an upcoming experiment, then we would have a clear motivation
for fundamentally changing our physical picture of the gravitational interaction in
general — not only for antiparticles, but conceivably, also for particles.

This paper is rounded off by two more appendices. The first of these, App. B,
is devoted to an illustration of the limitations of the Einstein equivalence princi-
ple, for both particles as well as antiparticles. As already mentioned, the Einstein
equivalence principle states, among other postulates, that the outcome of any local
nongravitational experiment is independent of where and when in the universe it
is performed (local position invariance, LPI). One of the “compatibility issues” of
this postulate, with respect to the uncertainty principle, is that, at some level of
precision, one cannot tell any more with absolute certainty where precisely the
experiment was performed, because of the nonvanishing positional uncertainty of
the wave function. Another “incompatibility” of the separation of nongravitational
and gravitational experiments is found when we consider that at some level of accu-
racy, one cannot separate a nongravitational from a gravitational experiment any
more. Even the electron spin, which would flip in a transition from, say, an nP; o
to an nPs/y level in hydrogen, couples to gravity (here, n is the principal quantum
number). These observations lead to tiny deviation of atomic clock comparisons
at different places in a gravitational potential, from the formula (B.1) that would
otherwise be implied if the equivalence principle had no incompatibilities with quan-
tum mechanics. Reassuringly, we can say that deviations from Eq. (B.1), given in
Eq. (B.2), are numerically small.?

Finally, we also look at the Penrose conjecture in App. C, which is motivated by
the observation that an “uncertain” quantum distribution of mass, as implied by the
Heisenberg uncertainty relation, implies an uncertainty in the solution of the Ein-
stein equations due to the quantum effects. The latter leads to an “uncertainty” in
the determination of space-time curvature in the vicinity of the quantum mechan-
ical wave function. This uncertainty can only be resolved once the wave function
collapses. Our analysis, presented in App. C, allows us to interpret the Penrose
conjecture as the “principle of reasonable determinability of the space—time metric,
in view of the uncertainty of the mass distribution associated with any quantum
mechanical wave packet.” We find that the collapse times implied by the Pen-
rose conjecture [see Egs. (C.1) and (C.2)], for typical quantum systems, are longer
than the age of the Universe. The good news derived from this observation is that,
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apparently, in practical applications, the collapse of the wave function, due to other
physical phenomena, happens on such short time scales that the concomitant un-
certainty in the determination of the space-time curvature around the massive,
quantum mechanical objects, is negligible. If collapse always happens on time scales
shorter than would be postulated in the framework of the Penrose conjecture, then
the “principle of reasonable determinability of the space-time metric” is always
fulfilled in practice — because of reasons that have nothing to do with gravity
but with our apparent inability to produce coherent superpositions of macroscopic
quantum objects.
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Appendix A. (Naive) Insertion of a Gravitational Potential

Let us briefly review why it is not consistent to simply insert the gravitational
potential into the Dirac Hamiltonian. This procedure would otherwise conceivably
lead to a Hamiltonian of the functional form

M
a .p‘+5mI—Gmi , (A1)

which differs from Eq. (27). One might be tempted to consider the Hamil-
tonian (A.1) because of its analogy to the Dirac—Coulomb Hamiltonian, which
forms the basis for the description of the relativistic hydrogen atom. The latter
Hamiltonian reads as

Lo, Za
HDc:prJrﬂm]fT, (A.2)

where Z is the nuclear charge, and « is the fine-structure constant.!? One imme-
diate question which comes to mind is why one cannot simply insert the static
gravitational potential into the Dirac Hamiltonian, in analogy to Eq. (A.1), as one
would do for the Coulomb potential in Eq. (A.2). The answer is, in short, that the
Coulomb potential insertion can be traced to the U(1) covariant derivative, in the
sense of the replacement 9, — i0, — e A, [see Egs. (A.3) and (A.4)], where A,
is the external four-vector potential, but gravity is not a U(1) gauge theory like
quantum electrodynamics (QED).

In order to put things into perspective, we note that the Coulomb potential
makes its way into the Dirac Hamiltonian by way of the covariant derivative, which
amounts to a replacement of the partial derivative by the U(1) covariant derivative

10, — iD, = i0, — €A. (A.3)
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For = 0 (timelike component), this implies that

10, — 19, — e((_Z€)> , (A.4)

477

where Z is the nuclear charge number, and e is the electron charge (e? = 47wa in
natural units).

By contrast, note that the gravitational interaction is not based on a U(1) gauge
theory. A gauge transformation under gravitational coupling of a Dirac particle en-
sures the covariance with respect to local Lorentz transformations [gauge group
SO(1,3)], not U(1) gauge transformations.?>30 For absolute clarity, we should
remark that a Foldy—Wouthuysen transformation of the electrostatically coupled
Hamiltonian (A.2) leads to two Hamiltonians, one for the particle, the other, for
the antiparticle. These describe the behavior of the electron and positron, respec-
tively, in a central binding Coulomb field. They constitute special cases of the more
general Eq. (5) of Ref. 24. For the central-field gravitational problem, the start-
ing point of the corresponding investigation has to be the Hamiltonian given in
Eq. (22).

Appendix B. Limitations of Einstein’s Equivalence Principle

After our intensive investigations of the relation of the equivalence principle to
particle — antiparticle transformations, one might ask about further possible
limitations to the general validity of Einstein’s Equivalence Principle. In view of
the relations derived in Subsec. 3.2 (particle-antiparticle symmetry), conceivable
limitations would equally affect both particles and antiparticles. Roughly speaking,
one might ask if a fully deterministic theory, like general relativity, could be fully
compatible with a nondeterministic theory, like quantum mechanics, given that the
latter has to accommodate Heisenberg’s uncertainty principle.

As already mentioned, but recalled for convenience, the EEP states that (i) the
outcome of any local nongravitational experiment is independent of the velocity
of the freely-falling reference frame in which it is performed (local Lorentz in-
variance, LLI), and that, (ii) the outcome of any local nongravitational experiment
is independent of where and when in the universe it is performed (local position in-
variance, LPT). The question, though, is whether or not we precisely know where and
when in the Universe the experiment actually was performed, given the Heisenberg
uncertainty principle. In particular, the nonvanishing positional uncertainty of the
electron wave packet in an atom leads to an uncertainty in the exact position where,
say, a spectroscopically measured quantum jump took place.

Roughly speaking, one can say that the validity of LPI is limited by the fact that,
due to quantum mechanics, at some level of accuracy, one cannot separate a non-
gravitational experiment from a gravitational one. Let us illustrate this statement
by way of example, following Ref. 24. Relativistic geodesy** is based on the compari-
son of the proper times dm; and d7 of two atomic clocks located at gravitational
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potentials ®; and ®o,

@ V1429
dr, V1420,

If the proper times measured by the atomic clocks follow the above relation, then
full compatibility with the EEP, notably, LPI, is achieved.
According to Ref. 24, the deviations can be expressed as follows:

A VI+280 4+ [ Cu(M)
dre 1428, + |%§|”CH(M)'

Here, n refers to the power of the gravitational potential at which the respective
correction term enters (no summation over n!). In typical cases, one has either n = 2
or n = 3. The coefficients C,, (M) depend on the mass of the gravitational center,
and on the effect under study (power law coefficient n). The reference potential
g is defined in Eq. (B.3). Some of the correction terms of the functional form
|®1/Po|"C\ (M) are due to the fact that the quantum mechanical wave function
involved in the measurement of the proper time intervals d7; and dmy “wiggles,” so
that it is no longer possible to pinpoint the exact location in the gravitational field
where the measurement of the proper time interval took place. Put differently, the
Heisenberg uncertainty principle implies that at some point, one cannot separate
a gravitational from an electromagnetic experiment. This leads to deviations from
the “perfect” scaling implied by Eq. (B.1).

We note that in Eqgs. (74), (76) and (77) of Ref. 24, one should understand the
factor |®|™ as |®/Pg|"; the reference potential @ used in Eq. (B.2) is

M,
(PO:G @7
Re

(B.1)

(B.2)

(B.3)

which is equal to the modulus of the gravitational potential on the Earth’s surface.
The corrections which lead to a deviation from the scaling (B.1), according to
Eq. (B.2), have been analyzed in detail as §E®(¥) in Ref. 24. A brief synopsis
can be given as follows:

e JEW is the quadrupole term, evaluated for an excited atomic state (it leads to
an effect which scales as |®|"=3).

e JE is a second-order effect due to the variation of the gravitational potential
on distance scales commensurate with the size of the atom (it leads to an effect
with n = 2).

e §E(1) ig the so-called Fokker—Planck correction, which is caused by the coupling
of the electron spin to the gravitational field (the power-law dependence has
n = 3).

e Finally, E() is a first-order correction, due to the variation of the gravitational
potential on a distance scale commensurate with the molecular wave function; it
is nonvanishing only for oriented, diatomic molecules (the effect has n = 2).
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We note that the corrections § E(W and §E(Y) depend on the quantum-mechanical
positional uncertainty in the system and would thus vanish were it not for Heisen-
berg’s uncertainty principle. Of these, as shown in Table 1 of Ref. 24, §E(Y) leads
to coefficients in the range

C’éiv)(M@) ~1072°...107"® (oriented molecules) (B.4)

for §E) (for the Earth’s gravitational field). This effect could thus be measurable
in the foreseeable future, as spectroscopic techniques approach the 107 precision
level. 45

Corrections 6 EW | § B and §E(Y) | vanish in the hypothetical limit of a vanish-
ing Bohr radius of the atom. One might ask if full compatibility with the EEP could
be restored if we could hypothetically “switch off the Heisenberg principle.” How-
i) comes into play, as a manifestation of the Fokker pre-
cession (FP) Hamiltonian, which, for an electron interacting with the gravitational

field of the Earth, reads as

ever, the correction §E(

Hpp = Sl (B.5)

This Hamiltonian describes the coupling of the electron spin to the gravitational
field of the Earth. It is interesting to note that it is proportional to the inverse of
the mass of the electron. Let us suppose that we drive the 2P; 5 — 2P3/5 spin-flip
transition in atomic hydrogen with a laser, an experiment which, a priori, would be
understood as a fundamentally nongravitational experiment. The Fokker precession
Hamiltonian, which is the gravitational analogue of the Russell-Saunders spin-orbit
coupling, constitutes a gravitational coupling term which cannot be “switched off”
in nature, not even in the limit of a vanishing Bohr radius. Its presence illustrates
the statement made above, which implies that at some level of precision, it might
be in principle impossible to perform purely nongravitational experiments, because
all particles involved in the experiments will also be subjected to other fundamental
forces. Numerical estimates lead to the result that

8 (Mg) ~10™*  (atoms and molecules) . (B.6)

As such, the effect, while of utmost theoretical interest, will probably elude detection
on atomic systems in the foreseeable future. The theoretical interest is enhanced
by the fact that the Fokker-precession term is generated by noncommutativity of
momentum operators and the gravitational potential, as a close inspection of its
derivation?® shows; i.e. it is a true quantum effect beyond the scaling of the proper
time of the atomic clocks with /1 + 2®, which can be obtained if we ignore the
quantum commutators.?*

A further remark is in order. Here, as well as in Ref. 24, we have concentrated
on effects which persist even at zero temperature. The first indication of a possible
violation of the equivalence principle due to quantum effects was in fact mentioned
in a series of papers?64® (see also Ref. 49), where the authors analyzed a possible
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violation of the Einstein equivalence principle at finite temperature, for an electron
in contact with a heat bath of photons. The calculations reported in Refs. 4649
are manifestly based on finite-temperature field theory; all effects considered in
Refs. 4649 vanish in the zero-temperature limit considered in this work.

Specifically, in Refs. 46-49, the gravitational mass of the particle at finite tem-
perature is derived based on the p = v = 0 component of the energy—momentum
tensor 7Y and the coupling to the gravitational field is described as in Eq. (16)
of Ref. 49, being proportional to a term of the form h,,7"" in an equation of the
form (in our notation),

. 1
(17“8# — m[)w =3 hu ™ (B.7)

where we assume vanishing temperature (hence, the vector I, in the notation of
Ref. 49 vanishes), and h,, is taken as h,, = 2®diag(1,1,1,1) according to the
text following Eq. (16) of Ref. 49, where ® is the gravitational potential. It would
be interesting to analyze if this formalism is equivalent to the covariant coupling
discussed here in Sec. 2. Moreover, it would also be interesting to verify if the
effects described in Refs. 4649 can be rederived, e.g. for a central gravitational
field, based on the approach described in Subsec. 3.1. Note that the leading gravi-
tational coupling term written in Subsec. 3.1 is due to a simple mechanism which
avoids the covariant derivative. Namely, it comes from the 4° which is proportional
to 1/v/14+2% =~ 1/(1 + @) [see Eq. (25)]. The factor 1 + ® then meanders into
the numerator of the right-hand side of the Dirac equation, after solving for the
time derivative operator, and multiplies the (entire) mass term, thus establishing
the gravitational coupling in the central field [see Eq. (26) and pertinent remarks
following the mentioned equation]. It would be extremely interesting to analyze, in
detail, the relation of the conjectured temperature-dependent violation of the Ein-
stein equivalence principle (see Refs. 46-49) to the formalism of the gravitationally
coupled Dirac equation, laid out in this work. While further steps in this direction
are beyond the scope of the current investigation, we contend ourselves with the
notion that violations of the Einstein equivalence principle due to quantum effects
(at finite temperature) have been discussed in the literature before.

Appendix C. Relation of our Considerations to the
Penrose Conjecture

Another potential limitation to the applicability of EEP comes from the Penrose
conjecture.’? 2 Roughly speaking, this conjecture deals with the following problem.
Due to the Heisenberg principle, the precise location of a particle described by a
quantum mechanical wave function is in principle endowed with uncertainty. That
means that we have a physical situation where the exact shape of a mass distribution
that needs to enter the Einstein equations is unknown (due to quantum uncertainty)
unless the wave function has collapsed. Yet, at some point, we need to know where
the particle is, or else we could not determine the space—time curvature (metric)
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around the objects. In order to ensure that the uncertainty in determining the
metric remains does not grow without bound, one postulates that the wave function
must collapse at some point, in a nonconstant gravitational field. This observation
is the origin of the Penrose conjecture.?0 2

The conjecture then implies that collapse of the wave function should occur on

a time scale

h
~— 1
to~ 3 (1)

where Eg is a measure of the gravitational energy contained in the un-collapsed

wave function. Various forms of E¢ have been discussed in the literature.?4:50-54
An (unnumbered) equation on p. 595 of Ref. 50 puts
N aim N g
Fo = 7G/d3x/d3y [p(7) p(lfﬁ)}[pfiu) p(y)]7 (C.2)
r—=yY

where p(7) and p/(7) are the two mass distributions, which represent possible out-
comes of measurements of the position of the particle, after the wave function
collapses. Equation (C.2) describes the gravitational self-energy of the difference
between the two mass distributions.

Let us perform some order-of-magnitude estimates, writing

Eg=—-Es—Es+ Ep, (C.3a)
Eg = G/d%/d?*y’m, (C.3b)
Es = G/d3x/d3yw, (C.3¢)
E; = 2G/d3x/d3yp|(?_pl(£). (C.3d)

Here, E; has the interpretation of a gravitational interaction energy between the
two mass distributions, while Eg and E% are the gravitational self-energies.

Order-of-magnitude estimates for typical quantum objects can be given as
follows:

e The mass [ d3zp(Z) ~ m is of the order of the mass of an atomic nucleus, or,
the proton mass of ~ 10727 kg.

e The typical distance |Z — §| in the self-energy integrals cannot be smaller than
a de Broglie wavelength of the wave packet, or, the size of an atom, which is the
Bohr radius ~ (107! .- 10710) m.

e The typical distance |Z — ¥| in the interaction integrals cannot be smaller than
the dimensions of technical device with which the atoms are being controlled,
i.e. not smaller than a few nanometers, which is commensurate with today’s
microprocessor manufacturing standards, ~ 10~ m.
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Hence, for typical quantum systems, all three entries in Eq. (C.3a) are of the
order of, or smaller, than

10711 X (10727)2
~ 10-11
For more detailed calculation based on the parameters of the Colella-Overhauser—

t,°958 see Ref. 24. In the experiments®® 58

Eg

=10 7. (C.4)

Werner experimen a quantum wave
packet is split in an interferometer on macroscopic distance scales in a gravitational
field (for recently enhanced versions, which rely on atomic rather than neutron
interferometry, see Refs. 59 and 60). The mass distributions p and p’ correspond to
the two arms of the interferometer. An important observation, compatible with the
considerations above, is that the distance scale |Z — 7|, which enters the self-energy
integrals Eg and Fg, is typically smaller than those which enter the interaction
integrals. Hence, the expression for Fg given in Eq. (C.3a) comes out as negative
for typical configurations; one might have to eliminate the minus sign in Eq. (C.2)
or consider the modulus of the given quantity instead, in order to obtain a positive
value for the collapse time %¢.

On account of the smallness of the reduced Planck constant, i ~ 10734 Js, we
have for typical quantum systems, in view of Eq. (C.4),

te ~ 10?9 s, (C.5)

which is longer than the age of the Universe.

These estimates also imply that gravitationally induced wave collapse, according
to the Penrose conjecture, does not lead to limitations for the functionality of
quantum computers: Even if we control on the order of n = 10'? atoms coherently
on microscopic dimension, the estimate given in Eq. (C.5) would be reduced by a
factor 1/n? ~ 10729, and still could not “collapse” the wave function on a time
scale less than a second.
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