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U. D. Jentschura

1. Introduction

A significant motivation for antimatter tests of gravity is that the equivalence prin-

ciple has never been tested for antiparticles. We aim to give an account of the

implications of the gravitationally coupled Dirac equation for antiparticles, moti-

vated by a couple of ongoing experiments at CERN.1–8 Here, we investigate, in

detail, the relation of the inertial mass of spin-1/2 particles and antiparticles, based

on the Dirac equation which, as is well known to atomic theorists9 but perhaps less

well known in the general relativity community, describes both particles as well as

the corresponding antiparticles simultaneously. We observe that, a priori , it is the

inertial, not the gravitational, mass which enters the Dirac equation. However, we

will attempt to show that, by coupling the Dirac equation to curved space–time,

it is possible to identify the relation of the inertial mass to the gravitational mass,

for both particles and antiparticles. A number of consequences of our results are

discussed.

Dirac is sometimes quoted as saying that the equation named after him10,11 is

“more intelligent than its inventor.” Indeed, the Dirac equation solved a number of

problems simultaneously: (i) It provided the necessary linearization of the Klein–

Gordon equation, thus solving problems connected with the negative probabilities

otherwise encountered in the context of the Klein–Gordon equation. The linear-

ization also enabled physicists to formulate a Hamiltonian operator for spin-1/2

particles.12 (ii) The Dirac equation immediately led to a consistent description of

an intrinsic degree of freedom of an elementary particle, namely, the spin of the

electron (and also, of the spin of the positron). (iii) The Dirac equation predicted

the existence of particles of the same (inertial!) mass, but opposite charge, namely,

the existence of spin-1/2 antiparticles. Indeed, the existence of the positron was con-

firmed after the Dirac equation was invented.13 For an illustrative and interpretive

discussion of some interesting properties of the Dirac equation, see Ref. 14.

One might ask: If the Dirac equation makes a definite prediction about the

charge of the antiparticles, then why could the Dirac equation not be used in order

to make a definitive prediction about the gravitational mass of the antiparticles?

One should remember that conceivable gravitational matter–antimatter repulsion

has been investigated in a number of theoretical papers (see, e.g. Ref. 15).

The answer is as follows: (i) First, one has to realize that the mass which

enters the free Dirac equation (no coupling to either electromagnetic or gravita-

tional fields), constitutes the inertial (not the gravitational) mass of the particle.

After a transformation which disentangles the particle from the antiparticle, known

as the Foldy–Wouthuysen transformation,16 one can derive the energy–momentum

relation for both particles as well as antiparticles. One then immediately realizes

that the Dirac equation predicts the same inertial mass for both kinds of particles.

(ii) The second step is to couple the Dirac particle to an external electromag-

netic field, and carry out the Foldy–Wouthuysen transformation, which in this case

becomes a little more involved. After disentangling the particle from the antiparticle
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Equivalence principle for antiparticles and its limitations

Hamiltonian, one realizes that the electric charge of the Dirac antiparticle has to be

equal in magnitude, but opposite in sign, to that of the particle. In order to address

a possible misunderstanding right from the start, let us also remember that, in

order to derive antiparticle properties from the Dirac equation, it is not necessary

to quantize the Dirac field: Namely, the negative-energy solutions of the Dirac

equation are interpreted as antiparticle solutions, in view of the reinterpretation

principle.12,17 In that sense, there is no such thing as a “single-particle Dirac the-

ory”: Rather, the solutions of the equation itself describe particles (positive energy)

as well as antiparticles (negative energy). Recall that, historically, the prediction of

the existence of the positron (with all of its electromagnetic as well as inertial prop-

erties) on the basis of the Dirac equation10,11 was followed by the discovery of the

positron,13 long before the concept field-quantization was introduced in theoretical

physics.18

(iii) The third step then is to couple the Dirac equation to a gravitational field.

Here, too, a possible misunderstanding needs to be addressed right from the start:

One might think that it is necessary to quantize gravity. However, that is not the

case. General relativity is a classical theory which promotes space–time to a curved

structure; events are described by space–time coordinates. In consequence, the wave

function of a particle (in general relativity) becomes a function of the space–time

coordinates.19–24 One then has to couple the Dirac particle to the curved space–

time. The foundations of that endeavor have been laid by Tetrode,25 Fock and

Ivanenko,26–28 Weyl,29 and Brill and Wheeler30 (for an excellent historic account

of the early developments, see Ref. 31). One needs to introduce a covariant cou-

pling of the Dirac particles, with respect to changes in local Lorentz frames.27,32

These changes in local Lorentz frames (space–time is locally flat) assume the role

of a (local) SO(1, 3) gauge transformation, which can be formulated for spin-1/2

particles.27,30,32–34 This is analogous to the electromagnetic case, where the gauge

transformation is that of the underlying U(1) gauge theory. Expressed differently,

the gravitational field, in this case, assumes the same role as a classical, external,

electromagnetic field entering the Dirac equation (e.g. an external Coulomb field),

and does not need to be quantized.

After applying the Foldy–Wouthuysen transformation to the gravitationally

coupled Dirac equation, one obtains the effective particle and antiparticle Hamil-

tonians. Expressed differently, one starts with a theory in which the mass parameter

assumes the role of the inertial mass, for both particles as well as antiparticles, and

hopes to end up with two Hamiltonians: the first of these is applicable to the

particle, while the second Hamiltonian describes the gravitational coupling of the

antiparticle. It is then of interest to analyze in which manner the (inertial) mass

of the particle (and antiparticle) enter the final, gravitationally coupled effective

particle and antiparticle Hamiltonians, i.e. to investigate the relationship of the

gravitational and inertial masses. Under favorable circumstances, one should be

able to determine the functional relationship of the inertial mass and the gravita-

tional mass, for both the particle and the antiparticle.
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U. D. Jentschura

Again, in order to avoid further possible misunderstandings, we should remem-

ber that, quite recently, in very remarkable experiments, the equality of the charge-

to-inertial -mass ratio of protons and antiprotons has been experimentally verified

to unprecedented precision.35,36 These results, however, do not have any connection

to the gravitational mass of the antiparticles, which is the subject of the current

investigation.

As a last possible interjection, one might point out that many particles used in

fundamental physics experiments on the properties of antimatter, actually consti-

tute composite particles. For example, the mass of antiprotons mostly is the mass

equivalent of the extra energy of the quarks and gluons in a region within the

antiproton, as compared to the rest energy of the quarks alone in the quantum

chromodynamic vacuum, accounts for about 99% of the mass of the proton. As

the free quarks contribute little to the hadron masses, the identical inertial masses

of protons and antiprotons are thus due mostly to the color (and electroweak)

interactions which have the same strengths between charges as between anticharges

(proton versus antiproton). In the context of the current investigation, what matters

is that, for purposes of the description of quantum electrodynamic bound states,

protons (and antiprotons) can be described to excellent accuracy by an effective

Dirac equation which includes form factors (see, e.g. Ref. 37). On the level of the

effective Dirac equation, protons and antiprotons are thus amenable to an analysis

based on the same formalism as originally devised for point-like spin-1/2 particles

(electrons and positrons).

We organize the paper as follows. In Sec. 2, we discuss the derivation of the

gravitationally coupled Dirac equation in great detail. The equivalence principle for

antimatter is explored in Sec. 3. Conclusions are reserved for Sec. 4. Three appen-

dices round off the paper. Appendix A is devoted to a discussion of the differences

between the gravitational and electrostatic central-field problems. Limitations of

Einstein’s Equivalence Principle (EEP) due to quantum effects are discussed in

App. B. The relationship of our investigations to the Penrose conjecture is treated

in App. C. Units with ~ = ǫ0 = c = 1 are used throughout the paper unless

otherwise stated.

2. Formalism for Gravitational Coupling

2.1. Free Dirac equation

First of all, we should recall the free Dirac equation,10–12 which in covariant form

reads as

(iγµ∂µ −mI)ψ = 0 . (1)

The mass parameter in the free Dirac equation is the inertial mass mI (further

remarks on this point are given in the following). Throughout this article, we use

the Dirac matrices γµ in the Dirac representation,

γ0 =

(

✶2×2 0

0 −✶2×2

)

, ~γ =

(

0 ~σ

−~σ 0

)

, (2)
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Equivalence principle for antiparticles and its limitations

where the ~σ are the Pauli matrices. We can convert this equation into a noncovariant

form, and write the free Dirac Hamiltonian HFD as

HFD = ~α · ~p + βmI , β = γ0 , ~α = β~γ . (3)

Let us calculate the square of the noncovariant form of the free Dirac equation

i∂tψ = HFDψ. Using the fact that {~α, β} = 0, one obtains

−∂2t ψ =
[

(~α · ~p + βmI)
2
]

ψ =
(

~p2 +m2
I

)

ψ . (4)

For stationary states, one can replace i∂t → E, and thus −∂2t → E2. The dispersion

relation

E = ±
√

~p2 +m2
I = ±

(

mI +
~p2

2mI
− ~p4

8m3
I

+ · · ·
)

(5)

dictates that mI should be interpreted as the inertial mass, not the gravitational

mass. Restoring SI units temporarily, we see that the first term mI is just the rest-

mass energy mI c
2, while the second term describes the Schrödinger energy, and

the third gives the relativistic correction.

In fact, the (unitary) Foldy–Wouthuysen (FW) transformation16 brings the free

Dirac (FD) equation into diagonal form,

HFW
FD = UHFDU

−1 =

(

√

~p2 +m2
I ✶2×2 0

0 −
√

~p2 +m2
I ✶2×2

)

=

(

H+
FD 0

0 −H−

FD

)

, (6)

where ✶2×2 is the two-dimensional unit matrix. Here, H+
FD is the (2 × 2) particle

Hamiltonian, while H−

FD is the (2 × 2) antiparticle Hamiltonian. The minus sign

is due to the reinterpretation principle38,39 for antiparticles, which implies that an

antiparticle with eigenvalue −E of the time derivative operator i∂t is interpreted

as an antiparticle state with physical energy E.

The transformation U is constructed, in the general case, as

U = e iS , S = −iβ
O

2mI
, (7)

where O is the “odd” part [in (2× 2) bispinor space] of the Dirac Hamiltonian. In

general, the elimination of the odd operators is based on the identity

[β, βO] = O , (8)

which holds for a general odd matrix O. For the free Dirac Hamiltonian (3), one sets

O = ~α · ~p , (9)
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U. D. Jentschura

which eliminates the term of first order in the momenta in Eq. (3). The relativistic

correction terms are obtained if one uses instead

O = ~α · ~pθ(|~p|) ≈ ~α · ~p − (~α · ~p)3
6m2

I

,

θ(|~p|) = 1

2|~p| arctan
( |~p|
mI

)

.

(10)

In summary, one obtains the equivalent free Dirac Hamiltonians H+
FD and H−

FD for

particles and antiparticles,

H+
FD = H−

FD =
√

~p2 +m2
I ✶2×2 . (11)

The same inertial mass mI enters both H+
FD and H−

FD.

2.2. Covariant gravitational coupling

The theoretical formulation of the gravitational coupling of Dirac particles was

developed when scientists were trying to understand the connection of Einstein’s

general theory of relativity to quantum mechanics25–30 (see also Ref. 31); a particu-

larly pointed formulation is the “geometrization” of “Dirac’s theory of the electron”

as the title of Ref. 27 suggests. The positron was not mentioned in the title of the

publication,27 for obvious reasons: it had not even been discovered yet.13

Now, let us try to present a derivation of the gravitational coupling terms for

antiparticles; we will concentrate on the leading terms, namely, those relevant to

the nonrelativistic limit. The gravitational coupling of the Dirac equation entails

two replacements as compared to Eq. (1),

γµ → γ̄µ , ∂µ → ∇µ = ∂µ − Γµ , (12)

where the curved-space Dirac matrices γ̄µ fulfill “local” commutation relations given

in Eq. (15). These depend on the space–time coordinates. The spin-connection

matrix Γµ describes the space–time curvature. The Dirac equation assumes the

form

(iγ̄µ∇µ −mI)ψ = 0 (13)

under gravitational coupling. We recall that the free-space Dirac matrices fulfill

{γµ, γν} = 2gµν = 2 diag(1,−1,−1,−1) . (14)

By contrast, the curved-space Dirac matrices fulfill

{γ̄µ, γ̄ν} = 2ḡµν(x) , (15)

where ḡµν(x) is the metric of curved space–time. One sets27,30,33,34

γ̄µ = eµAγ
A , (16)

where the eµA are the coefficients of the vierbein or “tetrad,”33,34 and coefficients in

the anholonomic basis are denoted by capital Latin letters A,B, . . . = 0, 1, 2, 3.
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Equivalence principle for antiparticles and its limitations

Roughly speaking, the derivation of the gravitational coupling proceeds as fol-

lows. As space–time is locally flat, one should be able to change the local Lorentz

frames, and therefore, the vierbein coefficients, without changing the physics. By

comparison, for quantum electrodynamics,12 one is able to change the local phase

of the wave function independently at any point in space–time, provided one also

performs a concomitant gauge transformation of the electromagnetic four-vector

potentials.

On the basis of these considerations, one can derive a spinor representation of

the local Lorentz group. One then formulates a covariant derivative with respect to

the group SO(1, 3) of local Lorentz transformation, in accordance with the gauge

principle. The paradigm is that the covariant derivative of the spinor-Lorentz trans-

formation of the Dirac bispinor, formulated in the transformed coordinates, is equal

to the spinor-local-Lorentz-transformation of the covariant derivative of the same

Dirac bispinor. This can be formulated as follows:

∇′
µψ

′ = (∇µψ)
′ , ψ′ = S(Λ)ψ , (∇µψ)

′ = S(Λ)∇µψ . (17)

A closer inspection32,40 of the problem reveals that this condition is fulfilled if one

sets

Γµ =
i

4
ωAB
µ σAB , ωAB

µ = eAµ∇µe
νB , (18)

where the Ricci rotation coefficients are denoted as ωAB
µ , and the spin matrices are

σAB = i
2 [γA, γB ]. The covariant derivative acts as follows:

∇µe
νB = ∂µe

νB + Γν
µρe

ρB . (19)

Here, the Γν
µρ are the Christoffel symbols.

A change in the vierbein eµA → e′
µ
A amounts to a local Lorentz transformation,

and the ∇′
µ in Eq. (17) is understood as ∇′

µ = ∂µ −Γ′
µ (which entails no change in

∂µ, but a change in the Ricci rotation coefficients),

Γ′
µ =

i

4
ω′AB

µ σAB , ω′AB
µ = e′

A
µ∇µe

′νB . (20)

3. Equivalence Principle for Antiparticles

3.1. Central-field problem

The general formalism outlined in Sec. 2.2 has to be applied in practice. In a “weak”

gravitational field described by a potential Φ, one has the metric,24,41

ds2 = gµν dx
µ dxν = (1 + 2Φ)dt2 − (1− 2Φ)d~r2

=

(

1− 2GM

r

)

dt2 −
(

1 +
2GM

r

)

d~r2 , (21)
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U. D. Jentschura

where in the case of a central gravitational potential, one has Φ = −GM/r. An

evaluation of the Christoffel symbols, and of the spin connection matrices, leads to

the following result,20,24,41 which holds to first order in the gravitational coupling

constant:

HG =
1

2
{1 + 2Φ, ~α · ~p}+ βmI(1 + Φ)

=
1

2

{

1− 2GmM

r
, ~α · ~p

}

+ βmI

(

1− GM

r

)

. (22)

At the risk of oversimplification, we can say that the anticommutator term

involving ~α · ~p comes from the gravitational covariant derivative, while the term

βm(1−GmM/r) is due to the replacement of the flat-space Dirac matrices by their

curved-space equivalents.

The functional form of the second term in Eq. (22) can be derived very easily by

considering the Dirac equation for particles at rest, where there is no momentum

operator at all. One applies the replacement (12) to the Dirac matrices, in the form

γ0 → γ̄0. The free Dirac equation for particles and antiparticles at rest is simply

iγ0∂tψ = mIψ . (23)

In curved space (central-field problem), one replaces

iγ0∂tψ = mIψ → iγ̄0∂tψ = mIψ , (24)

where in view of Eq. (21),

γ̄0 =
√

ḡ00γ0 =

√

1

1 + 2Φ
γ0 ≈ (1− Φ)γ0 . (25)

In the latter term, we have expanded the square root to first order in Φ. One notes

that ḡ00 is a coefficient of the inverse metric ḡµν , where ḡµν ḡνρ = δµρ. Hence, with

γ̄0γ̄
0 = 1, keeping track of upper and lower indices carefully, we have

i∂tψ = mI γ̄0ψ = γ0mI(1 + Φ)ψ = βmI

(

1− GM

r

)

ψ . (26)

This simple consideration, at the risk of some over-simplification, rederives the

second term on the right-hand side of Eq. (22). It means that the leading gravita-

tional interaction term in a central field follows from the metric-induced modifica-

tion of the Dirac γ0 matrix alone, without any recourse to Christoffel symbols or

gravitational connection matrices.

In order to derive the equivalence principle in leading order, it is sufficient to

approximate Eq. (22) by

HG = ~α · ~p + βmI(1 + Φ) = ~α · ~p + βmI

(

1− GM

r

)

, (27)

because the kinetic term already contains a momentum and is of higher order.
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Equivalence principle for antiparticles and its limitations

If we add a nontrivial potential to the free Dirac Hamiltonian, as in Eq. (27),

then it is not possible any more to diagonalize the Dirac Hamiltonian in bispinor

space exactly. Rather, one employs a perturbative approach, with a Foldy–

Wouthuysen transformation that eliminates the odd contributions, order-by-order

in the momenta.12,38 A single step of the FW transformation, using [see Eq. (7)]

U = exp(iS) , S = −iβ
~α · ~p
2mI

, (28)

then is sufficient to obtain the Foldy–Wouthuysen transformed, gravitationally cou-

pled Hamiltonian

HFW
G = UHGU

−1 = HG + i
[

S,HG

]

+
i2

2!
[S, [S,HG]] + · · · , (29)

which reads as follows:

HFW
G = β

[

~p2

2mI
+mIΦ

]

=













(

~p2

2mI
−G

mIM

r

)

✶2×2 0

0 −
(

~p2

2mI
−G

mIM

r

)

✶2×2













=

(

H+
G 0

0 −H−

G

)

. (30)

So, the particle and antiparticle Hamiltonians are equal,

H+
G = H−

G =

(

~p2

2mI
−G

mIM

r

)

✶2×2 . (31)

Note that the Newtonian central-field term (−GmIM/r) is obtained naturally in

this Hamiltonian, for both particles as well as antiparticles. The emergence of the

matrix ✶2×2 implies that the energy is independent of the spin of the particle.

Let us remember that Newton stated that the property of a body called “mass”

(“inertial mass”) has to be proportional to the “weight” (which enters the gravita-

tional force law), a principle otherwise known as the “weak equivalence principle”

(WEP). Upon choosing the physical value of the gravitational constant G appropri-

ately, one finds the exact equivalence mG = mI of the gravitational mass mG and

the inertial mass mI of a particle. The EEP states that (i) WEP is valid, (ii) the

outcome of any local nongravitational experiment is independent of the velocity of

the freely-falling reference frame in which it is performed (local Lorentz invariance,

LLI), and (iii) the outcome of any local nongravitational experiment is independent

of where and when in the universe it is performed (local position invariance, LPI).
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U. D. Jentschura

We know that the classical Hamiltonian for a particle subject to a central gravi-

tational potential is42

HG,cl =

(

~p2

2mI
−G

mGM

r

)

, (32)

where we neglect the spin (which does not exist in a classical theory), and denote the

gravitational mass by mG. By the correspondence principle, the quantum analogue

is obtained from Eq. (32) by interpreting the momentum ~p in Eq. (32) as the

momentum operator ~p = −i ~∇.

A comparison of Eqs. (31) and (32) reveals that

mG = mI (particles) , (33a)

mG = mI (antiparticles) , (33b)

thus establishing the equivalence principle in the Newtonian form, for antiparticles,

at least within a leading-order calculation.

3.2. Coupling to a general background

We now investigate the general case, where the Dirac particle is not necessarily cou-

pled to a static central field, but is coupled to a general (dynamic) background, with

a (possibly time-dependent) space–time metric, which gives rise to time-dependent

connection matrices Γµ [see Eq. (18)].

From nonrelativistic quantum mechanics, we know that the electromagnetic

coupling can be described by the covariant coupling ~p → ~p − e~A , where ~A is the

vector potential of the electromagnetic field. The general electromagnetically and

gravitationally coupled Dirac equation, for arbitrary electromagnetic four-vector

potentials Aµ, and arbitrary connection matrices Γµ, reads as
[

γ̄µ{i(∂µ − Γµ)− eAµ} −mI ]ψ = 0 , (34)

where the four-vector potential has components Aµ = (Φ, ~A ), and e denotes the

electron charge. We note the scalar potential Φ and the vector potential ~A (see

Chap. 8 of Ref. 43). Recall the Γµ matrices from Eq. (18):

Γµ =
i

4
ωAB
µ σAB , ωAB

µ = eAµ∇µe
νB , σAB =

i

2
[γA, γB ] . (35)

Now, let us carry out the charge conjugation, which is tantamount to the

particle → antiparticle transformation. Under transposition and complex conju-

gation, one obtains

ψ+
(

(

γ̄µ
)+(−i

←

∂µ − eAµ

)

+ iΓ+
µ

(

γ̄µ
)+ −mI

)

= 0 , (36)

where the differential operator acts on the ψ to the left. We remember that Γµ is

matrix-valued. The Hermitian adjoint Γ+
µ of Γµ is calculated as follows:

Γ+
µ = − i

4
ωAB
µ σ+

AB = − i

4
ωAB
µ γ0σABγ

0 = −γ0Γµγ
0 , (37)
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Equivalence principle for antiparticles and its limitations

where one has used the result

σ+

AB = − i

2

[

γ+B , γ
+

A

]

= − i

2
γ0
[

γ0γ+B γ
0, γ0γ+A γ

0
]

γ0

= − i

2
γ0[γB , γA]γ

0 = −γ0σBAγ
0 = γ0σABγ

0 . (38)

Here, we recall that we use the Dirac representation, given in Eq. (2), where one has

the relationship γ0(γA)+γ0 = γA. One can immediately infer that γ0(γ̄µ)+γ0 = γ̄µ

(for the curved-space matrices, which are related to the flat-space γµ by the vierbein

coeffcients eµA). An insertion of γ0 matrices, using the identity (γ0)2 = 1, leads to

(

ψ+γ0
)

γ0
[

(γ̄µ)+
(

−i
←

∂µ − eAµ

)

− iγ0Γµγ
0(γ̄µ)+ −mI

]

γ0 = 0 . (39)

For absolute clarity, observe that the sign change in the prefactor multiplying the

Γµ matrix, as compared to Eq. (36), is due to Eq. (37). This leads to the equation

ψ̄
[

γ̄µ
(

−i
←

∂µ − eAµ

)

− iΓµγ̄
µ −mI

]

= 0 . (40)

Under an additional transposition, one obtains
[

(

γ̄µ
)T

(−i∂µ − eAµ)− i(γ̄µ)TΓT
µ −mI

]

ψ̄T = 0 . (41)

One introduces the charge conjugation matrix C = iγ2γ0 (in the Dirac representa-

tion) with the defining property

C(γA)TC−1 = −γA , C(γ̄µ)TC−1 = −γ̄µ , (42)

so that the charge conjugated spinor is ψC (x) = Cψ̄T(x). In the Dirac representa-

tion, a possible choice is C = iγ2γ0. Insertion of the identity matrix in the form

✶ = C−1C in Eq. (41) leads to
[

C(γ̄µ)TC−1(−i∂µ − eAµ)− iC(γ̄µ)TC−1CΓT
µC

−1 −mI

]

Cψ̄T = 0 . (43)

One calculates the identity

CΓT
µC

−1 =
i

4

{

i

2
ωAB
µ C

[

γT
B , γ

T
A

]

C−1

}

=
i

4

{

i

2
ωAB
µ

[

−γB ,−γA
]

}

= −Γµ . (44)

The charge conjugated (particle → antiparticle transformed) Dirac equation ful-

filled by ψC (x) thus reads as

[

(−γ̄µ)(−i∂µ − eAµ)− iγ̄µΓµ −mI

]

ψC (x) = 0 , (45)

or alternatively as

[

γ̄µ{i(∂µ − Γµ) + eAµ} −mI

]

ψC (x) = 0 . (46)
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U. D. Jentschura

The only difference between the original Dirac equation (34) and Eq. (46) is the

sign of the physical charge e of the particle. The sign and the functional form of

the gravitational coupling term remains the same.

Note that ψC (x) = Cψ̄T(x) = C(ψ+γ0)T(x) = Cγ0ψ∗(x) involves a com-

plex conjugation. By way of example, let us assume that ψ(x) is proportional to

exp(−iEt + i~k · ~r), with a positive energy eigenvalue E > 0. In this case, ψ∗(x)

and, thus, ψC (x) will be proportional to exp(iEt − i~k · ~r), with a negative eigen-

value of the time derivative operator i∂t. The latter form is the characteristic de-

pendence for an antiparticle wave function. Let us note that the comparison of

Eqs. (34) and (46) reveals that the gravitational coupling term is invariant under

the particle → antiparticle transformation in a general dynamic space–time back-

ground whose metric gives rise to Ricci rotation coefficients ωAB
µ and connection

matrices Γµ.

Furthermore, we note that both Eqs. (34) and (46) contain the inertial mass

term mI . In principle, neither of these equations say anything about the identifi-

cation of the inertial with the gravitational mass. However, their comparison and

the retention of the sign as well as the entire functional form of the gravitational

coupling term in unchanged form under the particle → antiparticle transforma-

tion, shows that if the equivalence mI = mG for antiparticles holds in one special

example case (e.g. the central-field problem, see Sec. 2.2), then it must hold for any

general space–time geometry (including all relativistic correction terms). Additional

considerations regarding the relativistic terms, for the special case of a central-field

problem, can be found in Ref. 19.

4. Conclusions

Let us briefly review the most important results of the current investigation. In

Sec. 2, we present the formalism of gravitational coupling for spin-1/2 particles on

which this paper is based. First, recall that the Dirac Hamiltonian describes par-

ticles and antiparticles simultaneously (Subsec. 2.1) and recover a few details on

the free Dirac equation. The covariant coupling to curved space–time (gravitational

coupling) is discussed in Subsec. 2.2. We then derive the equivalence principle for

antiparticles in an illustrative way (in Sec. 3), based on the Foldy–Wouthuysen

transformed Dirac Hamiltonian. In Subsec. 3.1, the central-field problem is investi-

gated, and the derivation culminates in Eq. (31), where the particle and antiparticle

Hamiltonians in a gravitational field are given. Illustrative remarks on the dif-

ferences between the electrostatic and gravitational central-field problems are given

in App. A. The derivation is generalized to arbitrary curved space–time backgrounds

in Subsec. 3.2, for a general Dirac particle, coupled to both electromagnetic as well

as gravitational fields. The electromagnetic coupling term reverses sign under the

particle → antiparticle transformation, as it should, while the gravitational term

retains its sign and its full functional form. The conclusions of Subsec. 2.2 imply

that mI = mG for the central-field problem (“matching”), and the considerations
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Equivalence principle for antiparticles and its limitations

of Subsec. 3.2 generalize this finding to arbitrary (possibly dynamic) curved space

times.

In summary, Sec. 3 is devoted to a derivation of the (weak) equivalence prin-

ciple for antiparticles, showing the equivalence of the inertial and gravitational

mass mI = mG for antiparticles. Within the Dirac formalism, any deviation of the

gravitational mass of antiparticles as compared to the gravitational mass of particles

is thus constrained by the very precise available comparisons of the corresponding

inertial masses, which are available for some elementary particles.35,36 Conversely,

if a deviation of the gravitational mass of an antiparticle from that of a particle

should be found in an upcoming experiment, then we would have a clear motivation

for fundamentally changing our physical picture of the gravitational interaction in

general — not only for antiparticles, but conceivably, also for particles.

This paper is rounded off by two more appendices. The first of these, App. B,

is devoted to an illustration of the limitations of the Einstein equivalence princi-

ple, for both particles as well as antiparticles. As already mentioned, the Einstein

equivalence principle states, among other postulates, that the outcome of any local

nongravitational experiment is independent of where and when in the universe it

is performed (local position invariance, LPI). One of the “compatibility issues” of

this postulate, with respect to the uncertainty principle, is that, at some level of

precision, one cannot tell any more with absolute certainty where precisely the

experiment was performed, because of the nonvanishing positional uncertainty of

the wave function. Another “incompatibility” of the separation of nongravitational

and gravitational experiments is found when we consider that at some level of accu-

racy, one cannot separate a nongravitational from a gravitational experiment any

more. Even the electron spin, which would flip in a transition from, say, an nP1/2

to an nP3/2 level in hydrogen, couples to gravity (here, n is the principal quantum

number). These observations lead to tiny deviation of atomic clock comparisons

at different places in a gravitational potential, from the formula (B.1) that would

otherwise be implied if the equivalence principle had no incompatibilities with quan-

tum mechanics. Reassuringly, we can say that deviations from Eq. (B.1), given in

Eq. (B.2), are numerically small.24

Finally, we also look at the Penrose conjecture in App. C, which is motivated by

the observation that an “uncertain” quantum distribution of mass, as implied by the

Heisenberg uncertainty relation, implies an uncertainty in the solution of the Ein-

stein equations due to the quantum effects. The latter leads to an “uncertainty” in

the determination of space–time curvature in the vicinity of the quantum mechan-

ical wave function. This uncertainty can only be resolved once the wave function

collapses. Our analysis, presented in App. C, allows us to interpret the Penrose

conjecture as the “principle of reasonable determinability of the space–time metric,

in view of the uncertainty of the mass distribution associated with any quantum

mechanical wave packet.” We find that the collapse times implied by the Pen-

rose conjecture [see Eqs. (C.1) and (C.2)], for typical quantum systems, are longer

than the age of the Universe. The good news derived from this observation is that,
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U. D. Jentschura

apparently, in practical applications, the collapse of the wave function, due to other

physical phenomena, happens on such short time scales that the concomitant un-

certainty in the determination of the space–time curvature around the massive,

quantum mechanical objects, is negligible. If collapse always happens on time scales

shorter than would be postulated in the framework of the Penrose conjecture, then

the “principle of reasonable determinability of the space–time metric” is always

fulfilled in practice — because of reasons that have nothing to do with gravity

but with our apparent inability to produce coherent superpositions of macroscopic

quantum objects.
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Appendix A. (Näıve) Insertion of a Gravitational Potential

Let us briefly review why it is not consistent to simply insert the gravitational

potential into the Dirac Hamiltonian. This procedure would otherwise conceivably

lead to a Hamiltonian of the functional form

~α · ~p + βmI −G
mGM

r
, (A.1)

which differs from Eq. (27). One might be tempted to consider the Hamil-

tonian (A.1) because of its analogy to the Dirac–Coulomb Hamiltonian, which

forms the basis for the description of the relativistic hydrogen atom. The latter

Hamiltonian reads as

HDC = ~α · ~p + βmI −
Zα

r
, (A.2)

where Z is the nuclear charge, and α is the fine-structure constant.12 One imme-

diate question which comes to mind is why one cannot simply insert the static

gravitational potential into the Dirac Hamiltonian, in analogy to Eq. (A.1), as one

would do for the Coulomb potential in Eq. (A.2). The answer is, in short, that the

Coulomb potential insertion can be traced to the U(1) covariant derivative, in the

sense of the replacement i∂µ → i∂µ − eAµ [see Eqs. (A.3) and (A.4)], where Aµ

is the external four-vector potential, but gravity is not a U(1) gauge theory like

quantum electrodynamics (QED).

In order to put things into perspective, we note that the Coulomb potential

makes its way into the Dirac Hamiltonian by way of the covariant derivative, which

amounts to a replacement of the partial derivative by the U(1) covariant derivative

i∂µ → iDµ = i∂µ − eA . (A.3)
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Equivalence principle for antiparticles and its limitations

For µ = 0 (timelike component), this implies that

i∂t → i∂t − e

(

(−Ze)
4πr

)

, (A.4)

where Z is the nuclear charge number, and e is the electron charge (e2 = 4πα in

natural units).

By contrast, note that the gravitational interaction is not based on a U(1) gauge

theory. A gauge transformation under gravitational coupling of a Dirac particle en-

sures the covariance with respect to local Lorentz transformations [gauge group

SO(1, 3)], not U(1) gauge transformations.25–30 For absolute clarity, we should

remark that a Foldy–Wouthuysen transformation of the electrostatically coupled

Hamiltonian (A.2) leads to two Hamiltonians, one for the particle, the other, for

the antiparticle. These describe the behavior of the electron and positron, respec-

tively, in a central binding Coulomb field. They constitute special cases of the more

general Eq. (5) of Ref. 24. For the central-field gravitational problem, the start-

ing point of the corresponding investigation has to be the Hamiltonian given in

Eq. (22).

Appendix B. Limitations of Einstein’s Equivalence Principle

After our intensive investigations of the relation of the equivalence principle to

particle → antiparticle transformations, one might ask about further possible

limitations to the general validity of Einstein’s Equivalence Principle. In view of

the relations derived in Subsec. 3.2 (particle–antiparticle symmetry), conceivable

limitations would equally affect both particles and antiparticles. Roughly speaking,

one might ask if a fully deterministic theory, like general relativity, could be fully

compatible with a nondeterministic theory, like quantum mechanics, given that the

latter has to accommodate Heisenberg’s uncertainty principle.

As already mentioned, but recalled for convenience, the EEP states that (i) the

outcome of any local nongravitational experiment is independent of the velocity

of the freely-falling reference frame in which it is performed (local Lorentz in-

variance, LLI), and that, (ii) the outcome of any local nongravitational experiment

is independent of where and when in the universe it is performed (local position in-

variance, LPI). The question, though, is whether or not we precisely know where and

when in the Universe the experiment actually was performed, given the Heisenberg

uncertainty principle. In particular, the nonvanishing positional uncertainty of the

electron wave packet in an atom leads to an uncertainty in the exact position where,

say, a spectroscopically measured quantum jump took place.

Roughly speaking, one can say that the validity of LPI is limited by the fact that,

due to quantum mechanics, at some level of accuracy, one cannot separate a non-

gravitational experiment from a gravitational one. Let us illustrate this statement

by way of example, following Ref. 24. Relativistic geodesy44 is based on the compari-

son of the proper times dτ1 and dτ2 of two atomic clocks located at gravitational
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U. D. Jentschura

potentials Φ1 and Φ2,

dτ1
dτ2

=

√
1 + 2Φ1√
1 + 2Φ2

. (B.1)

If the proper times measured by the atomic clocks follow the above relation, then

full compatibility with the EEP, notably, LPI, is achieved.

According to Ref. 24, the deviations can be expressed as follows:

dτ1
dτ2

=

√
1 + 2Φ1 +

∣

∣

Φ1

Φ0

∣

∣

n
Cn(M)

√
1 + 2Φ2 +

∣

∣

Φ2

Φ0

∣

∣

n
Cn(M)

. (B.2)

Here, n refers to the power of the gravitational potential at which the respective

correction term enters (no summation over n!). In typical cases, one has either n = 2

or n = 3. The coefficients Cn(M) depend on the mass of the gravitational center,

and on the effect under study (power law coefficient n). The reference potential

Φ0 is defined in Eq. (B.3). Some of the correction terms of the functional form

|Φ1/Φ0|nCn(M) are due to the fact that the quantum mechanical wave function

involved in the measurement of the proper time intervals dτ1 and dτ2 “wiggles,” so

that it is no longer possible to pinpoint the exact location in the gravitational field

where the measurement of the proper time interval took place. Put differently, the

Heisenberg uncertainty principle implies that at some point, one cannot separate

a gravitational from an electromagnetic experiment. This leads to deviations from

the “perfect” scaling implied by Eq. (B.1).

We note that in Eqs. (74), (76) and (77) of Ref. 24, one should understand the

factor |Φ|n as |Φ/Φ0|n; the reference potential Φ0 used in Eq. (B.2) is

Φ0 =
GM⊕

R⊕

, (B.3)

which is equal to the modulus of the gravitational potential on the Earth’s surface.

The corrections which lead to a deviation from the scaling (B.1), according to

Eq. (B.2), have been analyzed in detail as δE(i)···(iv) in Ref. 24. A brief synopsis

can be given as follows:

• δE(i) is the quadrupole term, evaluated for an excited atomic state (it leads to

an effect which scales as |Φ|n=3).

• δE(ii) is a second-order effect due to the variation of the gravitational potential

on distance scales commensurate with the size of the atom (it leads to an effect

with n = 2).

• δE(iii) is the so-called Fokker–Planck correction, which is caused by the coupling

of the electron spin to the gravitational field (the power-law dependence has

n = 3).

• Finally, δE(iv) is a first-order correction, due to the variation of the gravitational

potential on a distance scale commensurate with the molecular wave function; it

is nonvanishing only for oriented, diatomic molecules (the effect has n = 2).
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Equivalence principle for antiparticles and its limitations

We note that the corrections δE(ii) and δE(iv) depend on the quantum-mechanical

positional uncertainty in the system and would thus vanish were it not for Heisen-

berg’s uncertainty principle. Of these, as shown in Table 1 of Ref. 24, δE(iv) leads

to coefficients in the range

C
(iv)
2 (M⊕) ∼ 10−20 · · · 10−18 (oriented molecules) (B.4)

for δE(iv) (for the Earth’s gravitational field). This effect could thus be measurable

in the foreseeable future, as spectroscopic techniques approach the 10−19 precision

level.45

Corrections δE(i), δE(ii) and δE(iv), vanish in the hypothetical limit of a vanish-

ing Bohr radius of the atom. One might ask if full compatibility with the EEP could

be restored if we could hypothetically “switch off the Heisenberg principle.” How-

ever, the correction δE(iii) comes into play, as a manifestation of the Fokker pre-

cession (FP) Hamiltonian, which, for an electron interacting with the gravitational

field of the Earth, reads as

HFP =
3GM⊕

4me

~σ · ~L
R3

. (B.5)

This Hamiltonian describes the coupling of the electron spin to the gravitational

field of the Earth. It is interesting to note that it is proportional to the inverse of

the mass of the electron. Let us suppose that we drive the 2P1/2 → 2P3/2 spin-flip

transition in atomic hydrogen with a laser, an experiment which, a priori , would be

understood as a fundamentally nongravitational experiment. The Fokker precession

Hamiltonian, which is the gravitational analogue of the Russell–Saunders spin-orbit

coupling, constitutes a gravitational coupling term which cannot be “switched off”

in nature, not even in the limit of a vanishing Bohr radius. Its presence illustrates

the statement made above, which implies that at some level of precision, it might

be in principle impossible to perform purely nongravitational experiments, because

all particles involved in the experiments will also be subjected to other fundamental

forces. Numerical estimates lead to the result that

C
(iii)
3 (M⊕) ∼ 10−44 (atoms and molecules) . (B.6)

As such, the effect, while of utmost theoretical interest, will probably elude detection

on atomic systems in the foreseeable future. The theoretical interest is enhanced

by the fact that the Fokker-precession term is generated by noncommutativity of

momentum operators and the gravitational potential, as a close inspection of its

derivation20 shows; i.e. it is a true quantum effect beyond the scaling of the proper

time of the atomic clocks with
√
1 + 2Φ, which can be obtained if we ignore the

quantum commutators.24

A further remark is in order. Here, as well as in Ref. 24, we have concentrated

on effects which persist even at zero temperature. The first indication of a possible

violation of the equivalence principle due to quantum effects was in fact mentioned

in a series of papers46–48 (see also Ref. 49), where the authors analyzed a possible
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U. D. Jentschura

violation of the Einstein equivalence principle at finite temperature, for an electron

in contact with a heat bath of photons. The calculations reported in Refs. 46–49

are manifestly based on finite-temperature field theory; all effects considered in

Refs. 46–49 vanish in the zero-temperature limit considered in this work.

Specifically, in Refs. 46–49, the gravitational mass of the particle at finite tem-

perature is derived based on the µ = ν = 0 component of the energy–momentum

tensor τµν , and the coupling to the gravitational field is described as in Eq. (16)

of Ref. 49, being proportional to a term of the form hµντ
µν in an equation of the

form (in our notation),

(

iγµ∂µ −mI

)

ψ =
1

2
hµντ

µνψ , (B.7)

where we assume vanishing temperature (hence, the vector Iµ in the notation of

Ref. 49 vanishes), and hµν is taken as hµν = 2Φdiag(1, 1, 1, 1) according to the

text following Eq. (16) of Ref. 49, where Φ is the gravitational potential. It would

be interesting to analyze if this formalism is equivalent to the covariant coupling

discussed here in Sec. 2. Moreover, it would also be interesting to verify if the

effects described in Refs. 46–49 can be rederived, e.g. for a central gravitational

field, based on the approach described in Subsec. 3.1. Note that the leading gravi-

tational coupling term written in Subsec. 3.1 is due to a simple mechanism which

avoids the covariant derivative. Namely, it comes from the γ̄0 which is proportional

to 1/
√
1 + 2Φ ≈ 1/(1 + Φ) [see Eq. (25)]. The factor 1 + Φ then meanders into

the numerator of the right-hand side of the Dirac equation, after solving for the

time derivative operator, and multiplies the (entire) mass term, thus establishing

the gravitational coupling in the central field [see Eq. (26) and pertinent remarks

following the mentioned equation]. It would be extremely interesting to analyze, in

detail, the relation of the conjectured temperature-dependent violation of the Ein-

stein equivalence principle (see Refs. 46–49) to the formalism of the gravitationally

coupled Dirac equation, laid out in this work. While further steps in this direction

are beyond the scope of the current investigation, we contend ourselves with the

notion that violations of the Einstein equivalence principle due to quantum effects

(at finite temperature) have been discussed in the literature before.

Appendix C. Relation of our Considerations to the

Penrose Conjecture

Another potential limitation to the applicability of EEP comes from the Penrose

conjecture.50–52 Roughly speaking, this conjecture deals with the following problem.

Due to the Heisenberg principle, the precise location of a particle described by a

quantum mechanical wave function is in principle endowed with uncertainty. That

means that we have a physical situation where the exact shape of a mass distribution

that needs to enter the Einstein equations is unknown (due to quantum uncertainty)

unless the wave function has collapsed. Yet, at some point, we need to know where

the particle is, or else we could not determine the space–time curvature (metric)
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Equivalence principle for antiparticles and its limitations

around the objects. In order to ensure that the uncertainty in determining the

metric remains does not grow without bound, one postulates that the wave function

must collapse at some point, in a nonconstant gravitational field. This observation

is the origin of the Penrose conjecture.50–52

The conjecture then implies that collapse of the wave function should occur on

a time scale

tC ∼ ~

EG
, (C.1)

where EG is a measure of the gravitational energy contained in the un-collapsed

wave function. Various forms of EG have been discussed in the literature.24,50–54

An (unnumbered) equation on p. 595 of Ref. 50 puts

EG = −G
∫

d3x

∫

d3y
[ρ(~x)− ρ′(~x)][ρ(~y)− ρ′(~y)]

|~x − ~y | , (C.2)

where ρ(~r) and ρ′(~r) are the two mass distributions, which represent possible out-

comes of measurements of the position of the particle, after the wave function

collapses. Equation (C.2) describes the gravitational self-energy of the difference

between the two mass distributions.

Let us perform some order-of-magnitude estimates, writing

EG = −ES − E′
S + EI , (C.3a)

ES = G

∫

d3x

∫

d3y
ρ(~x)ρ(~y)

|~x − ~y | , (C.3b)

E′
S = G

∫

d3x

∫

d3y
ρ′(~x)ρ′(~y)

|~x − ~y | , (C.3c)

EI = 2G

∫

d3x

∫

d3y
ρ(~x)ρ′(~y)

|~x − ~y | . (C.3d)

Here, EI has the interpretation of a gravitational interaction energy between the

two mass distributions, while ES and E′
S are the gravitational self-energies.

Order-of-magnitude estimates for typical quantum objects can be given as

follows:

• The mass
∫

d3xρ(~x) ∼ m is of the order of the mass of an atomic nucleus, or,

the proton mass of ∼ 10−27 kg.

• The typical distance |~x − ~y | in the self-energy integrals cannot be smaller than

a de Broglie wavelength of the wave packet, or, the size of an atom, which is the

Bohr radius ∼ (10−11 · · · 10−10) m.

• The typical distance |~x − ~y | in the interaction integrals cannot be smaller than

the dimensions of technical device with which the atoms are being controlled,

i.e. not smaller than a few nanometers, which is commensurate with today’s

microprocessor manufacturing standards, ∼ 10−9 m.
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U. D. Jentschura

Hence, for typical quantum systems, all three entries in Eq. (C.3a) are of the

order of, or smaller, than

EG ∼ 10−11 × (10−27)2

10−11
= 1054 J . (C.4)

For more detailed calculation based on the parameters of the Colella–Overhauser–

Werner experiment,55–58 see Ref. 24. In the experiments55–58 a quantum wave

packet is split in an interferometer on macroscopic distance scales in a gravitational

field (for recently enhanced versions, which rely on atomic rather than neutron

interferometry, see Refs. 59 and 60). The mass distributions ρ and ρ′ correspond to

the two arms of the interferometer. An important observation, compatible with the

considerations above, is that the distance scale |~x−~y |, which enters the self-energy

integrals ES and ES′ , is typically smaller than those which enter the interaction

integrals. Hence, the expression for EG given in Eq. (C.3a) comes out as negative

for typical configurations; one might have to eliminate the minus sign in Eq. (C.2)

or consider the modulus of the given quantity instead, in order to obtain a positive

value for the collapse time tC .

On account of the smallness of the reduced Planck constant, ~ ∼ 10−34 Js, we

have for typical quantum systems, in view of Eq. (C.4),

tC ∼ 1020 s , (C.5)

which is longer than the age of the Universe.

These estimates also imply that gravitationally induced wave collapse, according

to the Penrose conjecture, does not lead to limitations for the functionality of

quantum computers: Even if we control on the order of n = 1010 atoms coherently

on microscopic dimension, the estimate given in Eq. (C.5) would be reduced by a

factor 1/n2 ∼ 10−20, and still could not “collapse” the wave function on a time

scale less than a second.
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