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Conceivable Lorentz-violating effects in the neutrino sector remain a research area of
great general interest, as they touch upon the very foundations on which the Standard
Model and our general understanding of fundamental interactions are laid. Here, we
investigate the relation of Lorentz violation in the neutrino sector in light of the fact
that neutrinos and the corresponding left-handed charged leptons form SU(2)r, doublets
under the electroweak gauge group. Lorentz-violating effects thus cannot be fully sepa-
rated from questions related to gauge invariance. The model dependence of the effective
interaction Lagrangians used in various recent investigations is explored with a special
emphasis on neutrino splitting, otherwise known as the neutrino-pair Cerenkov radia-
tion and vacuum-pair emission (electron—positron-pair Cerenkov radiation). We highlight
two scenarios in which Lorentz-violating effects do not necessarily also break electroweak
gauge invariance. The first of these involves a restricted set of gauge transformations, a
subgroup of SU(2)r, x U(1)y, while in the second where differential Lorentz violation
is exclusively introduced by the mixing of the neutrino flavor and mass eigenstates. Our
study culminates in a model which fully preserves SU(2);, x U(1l)y gauge invariance,
involves flavor-dependent Lorentz-breaking parameters, and still allows for Cerenkov-
type decays to proceed.

Keywords: Neutrinos; Lorentz-violation; gauge invariance; spontaneous Lorentz-
symmetry breaking; relation of Lorentz-symmetry breaking and gauge invariance; fun-
damental symmetries.

PACS number(s): 95.85.Ry, 11.10.—z, 03.70.+k.

9Corresponding author.

1950072-1



Int. J. Mod. Phys. E Downloaded from www.worldscientific.com

by EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) on 11/13/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

U. D. Jentschura, I. Nandori €& G. Somogyi

1. Introduction

Recently, tight bounds on Lorentz-violating parameters for neutrinos have been
derived from astrophysical observations,'™ based on the notion that neutrino that
decays into electron—positron pairs (called “lepton-pair Cerenkov radiation” , LPCR,
or “vacuum-pair emission”) becomes kinematically allowed under a Lorentz nonin-
variance of the neutrino dispersion relation. One observes that even a slight violation
of Lorentz invariance at high energy would lead to a large deviation of the disper-
sion relation from the light cone (“virtuality”) E? — p? = p?(v? — 1), where v > 1
is the velocity parameter, because of the multiplicative prefactor p? ~ E? (in front
of v? — 1) which grows without bound at high energy. For high energy, the quantity
¢*> = E? — p? exceeds the electron—positron-pair production threshold.

Very recently, these calculations have been supplemented by an analysis of the
neutrino splitting process® (v — viv, neutrino-pair Cerenkov radiation, NPCR),

45 (v — vee™) has neg-

which in contrast to charged-lepton-pair Cerenkov radiation
ligible threshold and can serve to set even tighter bounds on the Lorentz-violating
parameters.

On the theoretical side, corresponding calculations are mainly based on the
notion that Lorentz noninvariance is restricted to the neutrino sector, while the
Lorentz-violating parameter . = v? — 1 is set equal to zero for electrons and
positrons. That is one assumes that the maximum attainable velocity for electrons
is exactly equal to v. = ¢, where c is the speed of light.1'>%% One might argue,
though, that electrons and neutrinos enter an SU(2),, doublet, so that in addition
to Lorentz violation, also the gauge symmetry is violated if one assumes a different
propagation velocity for charged leptons and neutrinos in the high-energy limit.

We should point out that Lorentz violation for charged particles can often
be studied more easily using other kinds of processes (involving electrons,
positrons, and photons, for example). The fact that the Lorentz-violation coef-
ficients for charged leptons and neutrinos are not independent, due to the exis-
tence of SU(2)r, x U(!1)y gauge symmetry, has already been used in the litera-
ture.”® However, for a number of reasons, it has been of prime interest to infer
bounds for Lorentz-violating parameters in the neutrino sector, even if the mod-
els involved might be considered as “kinematics-only” approaches and lead to a
slight, perturbative breaking of gauge invariance, to the extent to be discussed
below.

Two models have been investigated in this context by Bezrukov and Lee® in
order to analyze the decay of superluminal neutrinos by electron—positron-pair
emission; one (“model I”) in which the normal Lorentz metric enters the interac-
tion Lagrangian, and another one (“model II”) in which the same Lorentz-violating
“metric”

@wj(v) = gp«u(v) = dlag(17 —-v, v, —’U), v > ]-7 (1)
enters as in the dispersion relation of the decaying neutrino. (The “metric” is nonco-

variant, hence there is no distinction between upper and lower indices.) Potentially,
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this “metric” (or “pseudo-metric”) also enters the effective interaction Lagrangian
describing the decay process, where v > 1 is a Lorentz-violating parameter, which
can be different for the maximum velocities of the initial (v = v;) and final (v = vy)
particles in the decay process. (In this paper, we have h = c=¢y = 1.)

In Ref. 3, an even more general approach is taken, and the metric entering the
interaction Lagrangian is taken in the form

gﬂy (vint) = dlag(l, —Vint; —Vint, _Uint)a (2)

where viy, is not necessarily equal to v; or vy.

Here, we show in detail how the parameters of the models used by Cohen and
Glashow,* by Bezrukov and Lee® and by us in Ref. 3 are related to the gauge
invariance under the SU(2)r, group, and how the formulation of the gauge sector
relates to the individual Lorentz-violating parameters of the neutrino flavor and
mass eigenstates, and those of the charged leptons.

In particular, we can anticipate that the model used by Bezrukov and Lee® for
vacuum-pair emission turns out to be gauge-invariant (GI) only with respect to a
restricted subgroup of the set of SU(2)r gauge transformations; we will investigate
the respective subgroup.

This is important for a general understanding of the relation of potential Lorentz
symmetry breaking in the neutrino sector, to fundamental symmetries and to other
conceivable nonstandard interactions.” (Note that corresponding questions do not
occur in Lorentz-symmetry conserving models.!?) The underlying question is the
following: Is the existence of the LPCR process compatible with electroweak gauge
invariance, or do the tight bounds derived in Refs. 1-3 (and the theoretical cal-
culations reported in Refs. 3-5) additionally depend on the possibly problematic
assumption of a breaking of SU(2); symmetry, in addition to Lorentz symme-
try? These considerations are quite crucial for the clarification of the status of the
derived astrophysical bounds on the Lorentz-violating parameters.!

We can likewise anticipate that our discussion will lead to a fully SU(2), x
U(1)y gauge-invariant model, with differential Lorentz-symmetry breaking across
generations, that can still accommodate for the possibility of neutrino decay, via
both NPCR and LPCR processes, in the high-energy limit (see Sec. 3.3).

This paper is organized as follows. In Sec. 2, we introduce a modified Dirac
algebra, adapted to the description of Lorentz-symmetry breaking spin-1/2 par-
ticles. Our investigations continue in Sec. 3.1 with the discussion of a manifestly
Lorentz- and gauge-symmetry breaking model for the interaction of (conceivable)
superluminal neutrinos with electroweak gauge bosons; this model has recently been
used in Refs. 4 and 5. In Sec. 3.2, we continue with the investigation of a model
which breaks Lorentz symmetry and (partially) restores electroweak gauge symme-
try, within a restricted electroweak-symmetry group. We continue in Sec. 3.3 with
the discussion of a Lorentz-breaking model which fully restores the electroweak-
symmetry group. Neutrino decay in a fully gauge-invariant model is discussed in
Sec. 4. Conclusions are reserved for Sec. 5, and some additional general remarks on
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the relation of (spontaneous) Lorentz-symmetry breaking and gauge invariance are
relegated to Appendix A.

2. Relation to Modified Dirac Algebra

We would like to briefly discuss a connection of the common Lagrangian used in
the description of superluminal, Lorentz-violating neutrinos to a generalized Dirac
algebra. According to Eq. (16) of Ref. 3, one may use the following Lagrangian, for
a Lorentz-violating, massless, left-handed Dirac particle:

L= i"zf}/ufgﬂu(v)au"/}u (3)

where we assume that ¢ = I/ém) is a left-handed neutrino mass eigenstate, i.e.,

[(1 —~%)/2]Yr = 1. (In the course of the current investigations, we attempt to
keep the notation as concise as possible and avoid any superfluous superscripts, or
subscripts.) We can write the Lagrangian for the massless case as

L = iy" o, (4)
where ¥ are given as
P =1, F=vr )
These fulfill the anti-commutator relation
W“ﬁ”} = 2@“”('02) = 2diag(1, —’1)2, _'UQ’ —’1)2), (6)

where we note the square of the velocity. Note that the given pseudo-metric implies
a spatially isotropic breaking of Lorentz invariance. For bounds on coefficients with
directional dependence, we refer to the data compilation presented in Ref. 11.

One can in fact relate this formalism to the so-called wierbein coefficients
(cf. Refs. 12-17). Namely, in a more general context, one can define the generalized
Dirac matrices

T = ey, (7)

where the Einstein summation convention is used, and v* with A = 0,1,2,3 are
the ordinary Dirac v matrices, while e’} take the role of the so-called “vierbein” in
general relativity, with the property

g (v?) = eﬁgABef = eﬁel,A. (8)

This implies that the “vierbein” takes the role of the square root of the metric.!?
Capital Latin indices can be raised with the flat-space metric g4Z. One can then
easily show that

(3,77} = ehaep {77} = eliep(29%7) = 25" (v%). 9)
The analogy to the formalism of general relativity implies that g (v?) takes

the role of a modified Lorentz “metric”, but without curvature (because we assume
that the coefficients are constant). The word “metric” should be understood with
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a grain of salt (hence the apostrophes), because it does not constitute a space-time
metric in the sense of general relativity, that is used to measure space-time intervals,
but rather, a mathematical object used to parameterize the dispersion relation of
a Lorentz-violating particle. One might thus call it a “pseudo-metric”. Because of
the lack of curvature, the pseudo-metric gm,(UQ) is still characterizing a flat “space-
time”. For a truly curved space, the notation g, has been proposed in Refs. 12-17
in order to distinguish the curved-space quantities from the flat-space ones. [As
a remark, we here note that the superluminal, Lorentz-violating neutrino model
is different from Lorentz-conserving, v°-Hermitian (“pseudo-Hermitian”) models
discussed in the literature.!®]

For a modified “metric” of the form (6), one can choose the vierbein coeffi-
cients as

682 1, €

i i si
i=e =0, e;=uv

g 7 Za]: 172a3' (10)

The modified Dirac equation describing the Lorentz violation, now with a mass
term, can be written as

(758, — m) ¥ = 0. (11)

We now assume that ¢ stands for a Majorana neutrino field. One can multiply from
the left by the operator (i3”9, + m), and use the operator identity

(17”9, +m) (iF"0, — m) = —g" (v*)0,0, — m>. (12)
For the metric (6), one can use the identity
— " (v%)0,0, — m? = E? — v?p* — m?, (13)

where F is the energy and p is the momentum operator. This leads to the dispersion
relation

E = £+/p%v? + m?2. (14)

The Lagrangian (11) is then seen to describe a Lorentz-violating particle with the
dispersion relation (14).

In order to draw a connection to the basis of the fermions of the Standard
Model Extension (SME), we refer to the classification of operators given in Eq. (9)
of Ref. 19. Our isotropic Lorentz-violating model corresponds, in the notation of
Eq. (9) of Ref. 19, to the case

S = o™, Y = (v = 1)(g" — ), (15)

where the diagonality in the fermion flavor indices F’ and F” simply means that
our Lorentz-violating model does not involve additional flavor mixing. The time-like
unit vector t* = (1,0,0,0) is used throughout this paper. Note, incidentally, that
the I'y ; matrices defined in Eq. (9) of Ref. 19 correspond to our 5 matrices, in the
sense that

Do pn = TH6pipn, TH =y, =F*. (16)
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Note also that, as pointed out in the text following Eq. (9) of Ref. 19, the Lorentz
breaking implied by the parameters ¢*” is CPT even and thus leaves the CPT
symmetry intact. (It is still interesting to discuss possible connections of Lorentz-
symmetry breaking and CPT violation; a few remarks on this point will be given in
the following.) Also, Sec. II of Ref. 19 addresses the problem of defining Majorana
fermions in a Lorentz-violating extension of the Standard Model. Further consider-
ations on this point can be found in Ref. 20.

3. Lorentz Violation and Gauge Coupling
3.1. Lorentz violation and gauge (Non)invariance

In this subsection, we discuss how the coupling to the electroweak gauge sector
has to be modified in order to obtain the effective interaction Lagrangian used by
Cohen and Glashow,* which is equivalent to “model I” used by Bezrukov and Lee.?

Let us keep the notation as simple as possible, and start from the standard
generalized Dirac Lagrangian (11), which we recall for convenience,

£ = §(5F0, — m), (17)

and assume that ¢ stands for a (Majorana) neutrino field. [Questions related to the
SU(2)r, doublet will be answered below.] We can write this Lagrangian as

L= 7;[1'7/”8# —m+ i(A'YJM - 7“)8u]¢a (18)
=0Q

where @ is the Lorentz-violating perturbation and constitutes a special case of
Egs. (3), (8), and (9) of Ref. 19.

In Refs. 21 and 22, the Q-term is advocated to be the sub-Planck limit of a
nonlocal theory with spontaneous Lorentz and CPT violations,?!
eral terms, as the low-energy limit of new physics originating from the Planck
scale. Indeed, as we investigate possible violations of Lorentz invariance, we explore
the limits of validity of our current understanding of fundamental quantum field
theory. For example, it is well known that Lorentz invariance is one of the assump-
tions underlying the proof of the CPT theorem.?? A violation of Lorentz invariance
therefore allows for violations of CPT, and indeed, some of the operators in the
full ansatz for Q, as discussed in Ref. 19, are CPT odd. For a long time, one has
held the belief that CPT violation automatically implies a violation of Lorentz
invariance,?* while conversely, broken Lorentz invariance allows for, but does not
require, broken CPT invariance.?? Recently,?>2% invoking additional concepts like

or in more gen-

nonlocal interactions, the conclusions of Ref. 24 have been questioned, and it has
been claimed that scenarios exist where CPT invariance is broken, but Lorentz
invariance still holds. In general, the questions regarding the ultimate limits of the
validity of our current understanding of fundamental physical laws must include
bounds on Lorentz-violating terms, and terms that allow for other broken funda-
mental symmetries, like the CPT.
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Furthermore, the Lorentz-violating operators are assumed to be the sub-Planck
limit of new physics originating at the Planck scale, where the fundamental inter-
actions will be completely different from “low” energy physics [where “low” energy
could even extend to the PeV scale, which is still 12 orders of magnitude below
the (reduced) Planck scale of \/1/(87G) = 2.4 x 10'® GeV]. At “low” energy, the
coupling to the electroweak gauge bosons proceeds by the substitution

Op — Dy, (19)

where the operator D,, constitutes the SU(2)r-covariant derivative, applied to an
SU(2)1, doublet, as discussed below. It is therefore permissible, or suggested, to
experiment with the idea that the substitution (19) applies only to the unperturbed
Lagrangian in Eq. (18), but leaves the perturbative Q-term unchanged. In this case,
the perturbative term does not participate in the electroweak interaction [SU(2)r-
doublet], while modifying the free propagation of the neutrino [once the Q-operator
is written so that it applies only to the upper component of the SU(2);, doublet,
i.e., only to the neutrino].
To be specific, let us start from the doublet

Lo — () (20)
er

[see Eq. (12.227) of Ref. 27], where v, is the electron neutrino field and ey, is the
left-handed electron—positron field, and consider the coupling to the electroweak
sector, as in Eq. (12.232) of Ref. 27, concentrating on the terms that couple to the
electroweak gauge fields (in the Lorentz-covariant theory)

La= Le(i'y“DM)Le
_ ' i
=L, {w" ((9“ — %Bu — QEALN)} L., (21)

where the B and the A; (i = 1,2, 3) fields transform into the photon, Zy, and W=
gauge bosons under electroweak unification (for details, see the discussion below).
The Pauli matrices are 7;, and they act within the SU(2), doublet. The charge e
and the electroweak couplings including the Weinberg angle are related to g and ¢’
[see Eq. (33) below]. If we add to L the mass term

Ly =-Le-M-L,

O 6

then the metric to be used for the effective interaction (Fermi interaction) at the

electroweak vertex remains the unperturbed Lorentz metric g,,,, while the propaga-
tion of free neutrinos acquires a Lorentz-breaking term Q, as specified in Eq. (18).
In writing Eq. (22), we use an oscillation-free neutrino model, and assume, further-

(©)

more, that the neutrino mass term is of the Majorana type, i.e., v = ve ’ where
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C denotes the charge conjugate. We also supplement the right-handed component
of the electron field, 1. = ey, + eg, for the Dirac mass term of the electron. An
inspection shows that the Lagrangian

L="Le+Ly (23)

directly leads to the interaction Lagrangian used by Cohen and Glashow? and
in “model I” of Bezrukov and Lee.® Strictly speaking, the Lagrangian Lo + L
breaks electroweak gauge invariance due to the presence of partial (not covariant)
derivative operators in Q, but the gauge and Lorentz-breaking terms enter at the
same perturbative level, namely, at first order in Q (see also Appendix A).

3.2. Lorentz-violation and gauge coupling: One-flavor model

In this subsection, we investigate which Lagrangian should be used in the calculation
of vacuum-pair emission and neutrino splitting if we intend to preserve electroweak
gauge invariance to the extent possible. We intend to show that it is possible to
preserve SU(2);, gauge invariance under a restricted set of gauge transformations
in the electroweak sector, specifically, the sector related to the Zy exchange, and
still break Lorentz invariance differentially, i.e., with different values for the Lorentz-
breaking parameters, for neutrinos compared to charged fermions. We first calculate
this in an “oscillation-free” environment (using only one-particle generation), where
we neglect the mixing of neutrino mass eigenstates and weak interaction eigenstates,
due to the off-diagonal entries of the Pontecorvo—Maki-Nakagawa—Sakata (PMNS)
matrix.

We again emphasize that 7; matrices in Eq. (21) act in the SU(2) 1 doublet, while
the 7* matrices act on the electrons and neutrinos separately. The first observation
is that one can choose the free Lagrangian as follows (we ignore the mass terms
which are irrelevant for the considerations that follow):

ve \ [i7E 0, 0 Ve
Lp~ e (24)
ér, 0 79, ) \er

for the SU(2)r doublet. In this case, it is immediately clear that free neutri-
nos and free electrons obtain different maximal velocities, according to the anti-
commutation relations

{:Y/IAILE’ ;\)75&} = 2.6“”(1)3&) =2 dla‘g(lv _,UI%E1 _vgga _/Uge ) (253‘)
(34,32} = 29" (v2) = 2 diag(1, —vZ, —vZ, —vZ}. (25b)
As discussed in Sec. 2, these lead to dispersion relations F. = |pe|ve and E,, =

|pu. vy, for the electron and electron neutrino, respectively.

The second observation is that one can replace the partial derivatives in Eq. (24)
by covariant derivatives, according to Eq. (21). The covariant derivation, under the
SU(2)r, gauge group, is matrix-valued and the substitution 9, — D, will lead to
off-diagonal entries in Eq. (24), coupling the electron to the neutrino by what is
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later identified as the W boson. Furthermore, the diagonal matrix [diagonal with
regard to the SU(2)y, doublet] with entries

. 0
( 0 %) (26)

does not necessarily commute with the W interaction Lagrangian, which is propor-
tional to the terms involving the 71 and 75 matrices in Eq. (21). However, one can
formulate a restricted set of gauge transformations, which pertain only to the

1 0
T3 = (0 _1> (27)

matrix in Eq. (21), and restrict the covariant derivative to

iaﬂ — iD# = i@,t B B + 2T3A3’H (28)
The gauge coupling Lagrangian Lz 4 which is to be added to Lp under the

restricted set of gauge transformations, reads as follows:

Lza=Le- G- Le, (29a)
/
—vye 9As. — 9'By) 0
! S (29hb)
_E’Yg(gA&u +9'By)
Defining, as in Eq. (12.238) of Ref. 27, the Zy and Ajs fields as
1
Z, = W(_QAS’H +4'B,), (30)

AS,;L - (gBu + g/A3,u)a (31)

1
/g2 + 912
one obtains the following couplings:

e _ o
Lza= 3 [tanOW(De%’jeve +eryter)

— cot ew(éLﬁgeL - ﬂeal‘felje)] Z,_L

— e%‘éLAHeL, (32)
where
/ /
e = L, tan Oy = g—,
/92 +g/2 q
e = ¢  cosOw = gsin by, (33)

and Oy is the Weinberg angle and e is the electron charge. (Adding the right-handed
component of the charged fermion field restores the full QED Lagrangian for the
coupling of the electron—positron field.) The result (32) is exactly equivalent to the

1950072-9
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corresponding terms in Eq. (12.240) of Ref. 27, with the replacement v* — 7% for
the neutrino couplings to the Zy boson, and v* — % for the electron couplings
to the Zy boson. The resulting modified effective Fermi Lagrangian describing the
coupling of electrons and neutrino is thus exactly the one of “model 117 used by
Bezrukov and Lee, and by us in Ref. 3. (We recall that the dominant contribu-
tions to both neutrino- as well as lepton-pair Cerenkov radiations proceed by Zj
exchange.)

For the calculation of neutrino splitting,® it means that, for example, if N{ju for
muon neutrinos are different from those of electrons neutrinos, 7/ , because of a
different maximum velocity for the two species, then the neutrino splitting process
becomes kinematically allowed (for v,, = vy > v,, = v;). Furthermore, the effective
interaction Lagrangian describing the four-fermion vertex receives a correction from
the two Zy vertices, leading to the appropriate replacement

Vint = ViUf (34)
for the pseudo-metric to be used in the effective Lagrangian in Eq. (18) of Ref. 3,
within a gauge-invariant formulation. The same is done in “model II” of Ref. 5. Here,
v; is the Lorentz-violating velocity parameter for the initial (oncoming) particle,
while vy is that of the emitted (final) particle.

In the context of Lorentz breaking, one often finds that symmetry groups are
broken down to smaller subgroups (see also the discussion in Appendix A). Here,

we observe that the Lorentz-breaking terms change the gauge group from SU(2), X
U(l)y to U(l)L X U(l)y.

3.3. Lorentz violation and gauge coupling: Three-flavor model

In the above considerations, we have shown that it is possible to formulate differ-
ential Lorentz violation in the same SU(2), doublet, to obtain different Lorentz-
breaking parameters for electron neutrinos as compared to (left-handed) electrons,
while preserving gauge invariance with respect to a restricted subset of SU(2)y
gauge transformations. This consideration required the use of different ¥* matri-
ces for the upper and lower components of the same SU(2);, doublet. One might
ask the question if different Lorentz-breaking parameters could be obtained for dif-
ferent neutrino species, as compared to electrons, and among the neutrino mass
eigenstates, even if one uses the same 5* matrices for the upper and lower com-
ponents of the same SU(2); doublet, and only assumes a dependence of the 7
matrices on the fermion generations. In contrast to the model discussed in Sec. 2,
we here preserve full SU(2);, gauge invariance.
We thus start from the Lagrangian (ignoring the free mass terms)

cio= (") DN ) reom e @)
= ¢ + (e & u)+ (e & 1),
e, 0 #eD,)\es a

where “3G” refers to the three generations, and we assume a uniform Lorentz
violation within the first generation, and uniform within the second generation,
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but with different overall parameters,
Vo. =VEF 0, = F V. =5 (36)

(Note that, in the sense of Sec. 3.2, we now have 7/ = 7/".) As the matrix

w0
(v ) (37)

is proportional to the unit matrix [from within the SU(2)r doublet], full gauge
invariance is preserved.
Invoking neutrino oscillations, we can write the mass term as

M = Ijlgm)mkl/lgm), (38)
(m)

where v are the neutrino mass eigenstates (k = 1,2, 3 is summed over). In the
free theory, we end up with a Lagrangian

Lp= ip,im)a,?;)’“auu;m) - D,im)mkV,gm), (39)

where repeated indices are summed over the generations (k,j = 1,2,3), and the
mass eigenstates V,gm) and the flavor eigenstates I/J(-f) are related by the PMNS
matrix with entries Uy;,

l/lgm) = Ukjl/;f). (40)

The emergence of the PMNS matrix for both Dirac as well as Majorana neutrinos
is discussed in detail in Ref. 28. Again, neutrino mass (m) and flavor (f) eigenstates
are distinguished based on their superscripts. Of course, the mass-basis matrices

FH = U U5 (41)

are effective, Lorentz-violating, modified Dirac matrices describing the (possibly
off-diagonal, k # j) Lorentz violation in the neutrino mass eigenstate basis (the
subscript ¢ is being summed over in the above equation). [For absolute clarity,
we should reemphasize that the 7 matrices used up to this point in our analysis,
such as in Eq. (35), constitute flavor-basis matrices which would otherwise carry a
superscript (f) once we distinguish between the mass and the flavor bases.]

Two limiting cases are of interest: (i) In the low-energy limit, the Lorentz-
violating parameters play a subordinate role as compared to the mass terms, and
the energy splitting for equal momenta, among the neutrinos, is given in the mass
eigenstate basis. In that limit, an inspection shows that the dominant terms in the
free Lagrangian (39) are just the diagonal ones in the mass basis,

Lp~ iﬁ,im)ﬁ,gm)’ﬂauu,im) - D,(Cm)mkV;(Cm), (42)

where, of course, the subscript k is being summed over & = 1,2,3. However, the

matrices %m)’“ are being defined as in %m)’” = %zn)’” , without a summation
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over £. Under these assumptions, the maximal attainable velocities v,(cm) of the
mass eigenstates are thus related of the flavor eigenstates, by the relation

3
Z ngvéf)U[kl = v,gm) (no summation over k). (43)
r=1
For the Lorentz-breaking but gauge-invariant formulation of the neutrino splitting
process, the appropriate choice [for the low-energy region, as measured by Eq. (52)]
for the Lorentz-violating parameter in the effective interaction Lagrangian is [see

Eq. (18) of Ref. 3]
R (44)
(m)

where the velocities of the initial and final mass eigenstates are denoted as v;
(m), respectively. Furthermore, it is clear that the effective velocities v,gm) for

the neutrino mass eigenstates, under the given assumptions, will be different from

and v

those of the electrons, which are given (due to the absence of mass mixing among
the charged leptons) by v](-f), thus kinematically allowing the vacuum-pair emission
process [again, for the low-energy region, as measured by Eq. (52)].

(ii) In the high-energy limit, one can neglect the mass term in Eq. (39), and
observe that in this limit, the flavor eigenstates approximate the mass eigenstates.

Furthermore, the PMNS matrix approaches the unit matrix,
Uke — e (high-energy limit with ve # v, # vy). (45)

Here, we refer to Eq. (36) for the definition of the corresponding 7 matrices, with

(32,790} = (32732} = 2977 (v2), (46)
(30,90, = (30,30} = 29 (v}2), (47)
(32,90} = (2.7} = 2077 (v3), (48)

where the subscripts e, p1, and 7 refer to the different fermion flavors (generations).
For absolute clarity, we reiterate that, according to the discussion above, the veloc-
ities ve, vy, and v, are defined, first and foremost, in the flavor eigenstate basis,
with the charged fermions and neutrinos within the same generation attaining the
same velocity.

The Lagrangian, in the high-energy limit, can be written as

o = 5 0f0 = 50"

yl(cm)’“ — ’y,(cf)’”, l/]gm) — I/,S:f), (high-energy limit with v, # v, # v,),

)

(49)

where we remember that we started from the ﬁ,(cf)’“ matrices which were diagonal in

the flavor basis [see Eq. (35), with k& = e, u7]. Under this assumption, both vacuum-
pair emission (Refs. 4 and 5) as well as neutrino splitting are kinematically allowed
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across (but not within!) generations (flavors), provided we have

vy < (fai:ea,uaT)' (50)

That is to say, the “faster generation” decays into the “slower generation”. We recall
once more that, within the gauge-invariant model, the charged fermions offer the
same Lorentz-violating parameters as the corresponding neutrino flavors, and hence,
vp = v,(cf). Neutrino splitting as well as vacuum-pair emission are both kinemati-
cally allowed, because of the differences among the Lorentz-violating parameters
for the different neutrino flavors, which happen to approximate the mass (energy)
eigenstates under the given assumptions.

The coincidence of the mass and flavor eigenstates in the high-energy limit
makes the theoretical analysis easier; the appropriate choice for the parameter vy
(see Ref. 3) entering the interaction Lagrangian (see also Sec. 4 below) is

Ving = V;Uf = vl(f)vj(cf) (high-energy limit with v, # v, # v,), (51)

and it fully preserves preserves gauge invariance.
The transition among the two regimes characterized by the Lagrangians (49)
and (42) occurs at a momentum scale of the order of

Ip| = \/dm?/0p, s, (52)

where dm? is a typical neutrino mass square difference, and of course, &y, f, is
a typical delta-parameter difference among the Lorentz-violating parameters for
the different neutrino flavors. (We set v2 = 1 + §, in accordance with Refs. 3-5.)
For the parameter estimates of two different neutrino flavors of dy, s, ~ 10729
and dm? ~ 1073eV?, the transition should occur at momenta on the order of
108---10%eV. (we here refer to bounds on Lorentz-violating parameters from

29:30 which are less strict than those derived from

laboratory-based experiments,
astrophysical observations?!32; the latter, though, are under less stringent external

control.)

4. Gauge Invariance and Neutrino Decay

The observations made above, especially those reported in Sec. 3.3 for the high-
energy limit of differential Lorentz violation across generations (flavors), but with
the same Lorentz-violating parameters ascribed to charged and neutral fermions,
allow us to discuss a fully gauge-symmetry conserving model, which still allows
for NPCR and LPCR decays to proceed. Compared with other models studied
in the literature (see Refs. 3-5), the model discussed here is most restricted in
parameter space (it requires flavor-dependent Lorentz-breaking parameters), but
perhaps, most stringent in its theoretical formulation, in the sense that it can be
fully embedded into the Lorentz-violating SME. Because of full gauge invariance, we
are also able to address, in passing, the gauge dependence not within the SU(2), x
U(1)y gauge group, but within additional terms induced by the R¢ gauge for the Z°
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boson propagator, mapped onto the effective Fermi interaction. Another question to
address is whether the SU(2);, gauge symmetry protects potentially superluminal
neutrinos from the NPCR and LPCR decay processes discussed in Refs. 3-5. Or
one might ask if, conversely, bounds on Lorentz-violating parameters for charged
fermions could universally be applied to neutrinos, if we postulate the full retention
of SU(2)r x U(1)y gauge invariance.

Under the assumption of flavor-dependent Lorentz breaking, if, say, electrons
and electron neutrinos propagate faster than muons and muon neutrinos, the decay
processes v, — Veuly, and ve — vep ' will be kinematically allowed [see
Eq. (50)]. Let us give a brief account of the calculations. We define the pseudo-
metric corresponding to the velocity v; > 1, in full accordance with Eq. (6), as
follows:

" (vj) = vig"" + (1 — v;)t't” = diag(1, —vj, —vj, —v;). (53)

The massive Feynman propagator for the gauge vector boson in R¢ gauge is given
as follows:

g + (& — Dk!E" /(k* — €M)
- k2 — M2 + i ’

where € > 0 denotes the infinitesimal imaginary part, and Mz is the Z; boson

Dy = (54)

mass. The modified Dirac matrices 5]” , which are alternatively denoted as 1"3-‘ [see
Eq. (16)], read as follows:

Ty =35 = [v;g" + (1 —vj)t"t"] = " (vj)n, (55)
where we note that there is no distinction any more between the flavor and the

mass eigenstate bases. The effective Lagrangian for the decay v — vWU is given as
follows:

Gr _ - —
2020 — ~ v
int = 2\/5[’/1'7]' (1- 75)”j]9uu[\1/k7j (cy —cavs) V]

Grp . ~ —
= ﬁ[’fﬂf(l — 75)V5] G (Vi) [V (v — cavs) V5] (56)
For NPCR, we have
\I/kZVk:>CV:CA:1, (57)

whereas if ¢;; is a charged lepton (electron—positron pair), then

U=V, =>cy =0, ca=-1/2 (58)
approximately. The invariant matrix element in the full gauge theory is
2 .
g — ~u 5 1
= ———|U; (1 — i -
M 16COS2 HW [U (p3)’Y’L ( ’y )U (pl)] (p2 +p4)2 _ M% _|_ ie

2202 4l 3 e — e

X | guw +(§—1)
(59)
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D3 b2 D4

(m)
!

(a) (b)

Fig. 1. Feynman diagrams for the LPCR [Panel (a)] and NPCR [Panel (b)] processes; these
proceed via exchange of a virtual Zp boson. The diagrams are especially relevant in the high-
energy region of our gauge-invariant, but Lorentz-breaking model, where the threshold conditions
for LPCR are met. The “faster” generation of particles, of which we assume that v; is a member,
decays into charged fermions [Panel (a)] or neutral fermions [Panel (b)] of a “slower” flavor (see
the text of Sec. 4 for further explanations).

where, just like in Ref. 3, p; is the four-momentum of the oncoming particle, ps3
is the neutrino momentum after the decay, and ps; and p, are the four-momenta
of the created fermion—anti-fermion pair (see Fig. 1). The squared matrix element
computed in this way is gauge-invariant (with respect to the electroweak gauge
group), and an explicit calculation shows that terms involving the gauge parameter
¢ of the R¢ gauge do not appear in the final result. In order to arrive at this
result, it is crucial though that (i) the Zy boson—fermion—anti-fermion vertices are
proportional to %" , (i) the correct prescription for the spin sums [see Eq. (32) of
Ref. 3] is used,

S Vi @ T = G (070" = vip+ (1= v)(p - D), (60)

and (iii) the dispersion relation in Eq. (22) is taken into account for external super-
luminal particles, most conveniently in the form v;p* + (1 — v;)%(t - p)? = 0.

We note that in a spontaneously broken gauge theory, the gauge invariance of
the squared matrix element computed in R¢ gauge is usually only recovered once
diagrams involving both vector and scalar boson exchanges are summed up. (This
may involve exchanges of gauge bosons of the weak interaction as well as Higgs
particle exchanges.) Indeed, in the Standard Model, the left-handed lepton current
E'yu (ev —cay®)1 is not conserved, with the non-conservation being proportional to
the fermion mass. (Note that this non-conservation already occurs at tree level and
can be derived on the basis of the axial component of the current.) However, the
mass itself is proportional to the Yukawa coupling of the fermion (to the Higgs par-
ticle). Since we are working in the massless approximation for leptons, the Yukawa
couplings in our model are set to zero, and the single diagram with only Zy boson
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exchange is gauge-invariant by itself. In particular, we have explicitly checked that
terms coming from contractions involving the part of the Zy boson propagator pro-
portional to (£ — 1) sum to zero upon using the superluminal dispersion relation.

For a general decay process in our gauge-invariant model, we obtain the following
formula for the decay rate:

. o g’ PR G+
vimvivis  \ 16M2 cos? fy ) 24w 420m,
X (8; — 87) [17(8; — 65)% +7(0: +65)?] . (61)

Here, ns counts the allowed spin states of the neutrino (ns = 2 in Ref. 4 but n, = 1
in Ref. 5). Note that the factor f. used in the notation of Ref. 3 is absorbed in
the prefactor ¢ + c2. The energy loss rate is obtained, in the fully gauge-invariant
model, as

dEl/i—)l/iwaf _ 92 2 E? C%/ +C2A
dz 16MZ cos? Oy ) 24m3 672n,
x (8; — 0y) [22(8; — 65)% +8(3; +65)%] . (62)
For LPCR decay, in our gauge-invariant model, we find
Gh 15
FVi—>V7;€_e+ = ag1 19271'3 kl, (63&)
dE,, .y e—e+ , GZ
— = —ag——=k 63b
dz 1GI 1903 1" (63b)
with the following results:
17(c + %) 5 7 )
= ——5(0; =6 6 — 90 — (6 +9 , 64
aat 120, ( | 1)+ 170+ p) (64a)
11(c% + %) 4
/ VT C 2 2
= —Q0or— (0i — i —(0i . 4
ot = g (8 = 8) | (01— 8)° + 176+ 6) (64b)
For NPCR decay, in our gauge-invariant model, we find
G s
Fl/i—)l/il/fﬁf = bGImkla (653)
dE,. v.0.w G2
Vi —ViV§Ty ’ F 6
—— L = by ——=k 65b

where the coefficients bg and by can be obtained from Eq. (61) by setting ¢y =
ca=1,

_ AT e sve o 2
r = —11 (0; = d5) [(6; =0 )2+—4 (0;+ 90 )2 (66D)
GL™ 168n, ¢+ |\ o g\ e
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The change in the prefactors as compared to the kinematics-only approach pursued
in Refs. 3-5 does not significantly change the conclusions drawn in Ref. 3 on astro-
physically derived bounds for the Lorentz-violating parameters. We can establish
that SU(2)L x U(1)y gauge invariance does not protect superluminal neutrinos
from decay and energy loss processes (NPCR and LPCR).

5. Conclusions

In this paper, we have investigated the assumptions underlying the model-
dependent interaction Lagrangians used in Refs. 3-5 for the formulation of the
LPCR and NPCR, (see Sec. 4) processes, which have led to very tight bounds on
the Lorentz-violating parameters in the neutrino sector.!™ The main results can
be summarized as follows.

Conclusion (i). The model used by Cohen and Glashow* and “model I” of
Bezrukov and Lee® can be traced to an interaction Lagrangian which breaks elec-
troweak gauge invariance, in addition to Lorentz invariance (see Sec. 3.1). However,
this breaking proceeds on the same perturbative level on which the Lorentz-breaking
terms themselves are formulated [see Eq. (22)]. A discussion on the implications
with respect to fundamental symmetries is given in Sec. 3.1 of this paper.

Conclusion (ii). “Model II” of Bezrukov and Lee, used in the formulation of
the LPCR process in Ref. 5, and also used by us in Ref. 3, is gauge-invariant under a
restricted set of gauge transformations, within the SU(2)1 gauge group. The use of
nonuniform modified Dirac matrices, within the same SU(2)r doublet, is crucial to
this observation [see Eq. (24)]. The derivation goes through even in an “oscillation-
free” environment where one neglects the off-diagonal entries of the PMNS matrix,
in the neutrino sector. The result given in Eq. (34) clarifies the “gauge-invariant”
Lagrangian used in “model IT” [see Eq. (4) of Ref. 5].

Conclusion (iii). If one invokes neutrino oscillations, then the situation is even
more favorable for the gauge-invariant models (see Sec. 3.3). One can use uniform
modified Dirac matrices within the same SU(2);, doublet, but assumes different
Lorentz-violating parameter between generations [see Eq. (35)]. By assuming only
a generation dependence, one obtains differential Lorentz violation among the neu-
trino mass eigenstates, and between neutrinos and charged leptons, without break-
ing SU(2), x U(1)y gauge-invariance. Under these assumptions [see Eq. (44)], it
is useful to keep the Lorentz-violating parameter v, that enters the interaction
Lagrangian, separate from the ones of the initial and final states, as is done in
Ref. 3. Inspired by the considerations reported in Sec. 3.3, one may devise a fully
SU(2)LxU(1)y gauge-symmetry conserving model, which still allows for the NPCR
and LPCR decays to proceed (see Sec. 4). In the course of the calculations reported
in Sec. 4, we also address the question regarding the dependence of the results on
the gauge used for the massive vector boson propagator (Re gauge).

We have thus clarified the cryptic remark of the “gauge invariance” of “model
II” of Bezrukov and Lee [see Eq. (4) of Ref. 5], and provided additional motivation
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for the functional form of the various model-dependent interaction Lagrangians
used in Refs. 3-5.

The very stringent bounds on the Lorentz-violating parameters in the neutrino
sector, based on astrophysical observations,' thus do not require models in which
electroweak gauge invariance is broken. This observation is quite crucial because it
implies that one cannot “argue away” the tight bounds derived in Refs. 1-3 for the
Lorentz-breaking parameters in the neutrino sector, based on the notion that the
preservation of electroweak gauge invariance would otherwise preclude the existence
of the decay processes on which the bounds are based.
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Appendix A. Spontaneous Lorentz-Symmetry Breaking: Models
and Implications

Although the ansatz of the current paper is completely phenomenological, and we do
not discuss the possible mechanism behind Lorentz violation in any greater detail,
it is still instructive to mention a specific model of spontaneous Lorentz invariance
violation, which has been discussed in rather great detail in the literature.

Namely, according to Refs. 33-35, the photon could potentially be formulated
as the Nambu—Goldstone boson linked to spontaneous Lorentz invariance violation.
(This ansatz was originally formulated before electroweak unification.) Interest in
this approach has recently been revived, and the theory has been worked out in
greater detail.>34* Both Abelian as well as a nonAbelian gauge theories have been
discussed.3” In the case of an Abelian gauge theory, one assumes that the gauge
field A, obtains a nonvanishing vacuum expectation value according to [see text
after Eq. (1) of Ref. 43]

(Ap) =nuM, (A.1)
where M is a (possibly large) energy scale at which the breaking of Lorentz sym-
metry occurs. The Lorentz group restricts itself to SO(1,2) if n, is space-like
(nunt = —1), and into SO(3) if n,, is time-like (n,n" = 1).

The dynamical constraint [see Eq. (1) of Ref. 43]
A A" = n?M? (A.2)

is imposed on the A, field. One then parameterizes the A, field as [see Eq. (3) of
Ref. 43]
n
Ay =a,+ n_g(” - A), (A.3)
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where a,, takes the role of the photon field. The following Lagrangian is eventually
obtained after an expansion in leading order in 1/M [see Eq. (3) of Ref. 43]:

1 1
L(a,9) = —Zf,wf”" — 55(71 . a)2
+ &(17“8,‘ —m) — ea,nﬂ'y“w

2 P 2 P
n-ap,a enapat -

S L Gy (A.4)

Here, a,, takes the role of the (quantized) electromagnetic field, while f,, = 0,a, —

1 v
- Z.f,uuh'u

0yay, is the field strength tensor. Also, h*” = n*9"” — n”0" is an oriented Lorentz-
violating tensor. The orthogonality condition n - a = 0 is explicitly introduced
in the Lagrangian through a gauge-fixing term with parameter §. Note that the
Lagrangian (A.4) is obtained after a suitable redefinition of the fermion field, as
given explicitly in Eq. (6) of Ref. 43.

We note that the sum of the terms

Y ("0 — m)Y — ea Py (A.5)

in Eq. (A.4) adds up to the gauge-invariant quantum electrodynamic interaction (e
is the electron charge).

In the limit M — oo, the entire Lagrangian (A.4) approximates the ordinary
QED Lagrangian. However, for finite M, the fifth and sixth terms on the right-hand
side of Eq. (A.4), which are initially generated by spontaneous Lorentz breaking
in the electromagnetic sector, explicitly break electromagnetic gauge invariance, in
addition to breaking Lorentz invariance. The fifth term generates a three-photon
vertex, while the sixth term generates a two-fermion, two-photon interaction (see,
for example Ref. 40).

In Eq. (22) of Ref. 40, it is shown that the contributions of both of the Lorentz-
breaking terms to the electron—photon scattering amplitude vanish (due to mutual
cancellations) if we take the matrix element between on-shell spinors. Around Eq.
(32) of Ref. 40, it is argued that the same cancellation occurs for the one-loop ampli-
tude, if the specific photon propagator integral given in Eq. (32) of Ref. 40 is eval-
uated in dimensional regularization. These considerations show that the Lorentz-
violating terms in Eq. (A.4) do not necessarily lead to observable effects at low
energy.

The generalization to spontaneous Lorentz-symmetry breaking in non-Abelian
gauge fields involves the assumption [see Eq. (9) of Ref. 37]

(Al) =ni M, (A.6)

where the upper index i describes the component within the non-Abelian gauge
group, for example, SU(N), in which case ¢ = 1,..., N. For the Lorentz-breaking
terms to vanish in the low-energy limit, one then has to make additional assump-
tions regarding the masses of the particles in a given SU(N) multiplet; for example,
according to Eq. (19) of Ref. 37, one needs to assume these masses to be equal.
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For the context of the current paper, two observations are relevant:

(i) The approach taken in Refs. 37-44 starts from a spontaneous Lorentz-
symmetry breaking at some high-energy scale M, involving a gauge boson field.
This assumption is quite natural, because symmetry breaking for a vector field
automatically singles out a specific direction in space-time (it would not necessarily
do so for a spinor). However, as a comparison to Eq. (A.4) shows, for the case of
spontaneous symmetry breaking in the gauge boson sector, the fermion sector is
largely unaffected by the Lorentz-symmetry breaking, which initially occurs only in
the gauge boson sector. [We observe that the third and fourth terms in Eq. (A.4)
add up to the fully Lorentz-covariant Lagrangian for the electromagnetically cou-
pled electron.] Hence, the ansatz discussed in Refs. 33—44 is not directly applicable
to the models constrained by our calculations, which pertain to Lorentz violation
in the fermion (neutrino) sector.

(ii) A very important observation can be made. Namely, Lorentz violation and
gauge invariance violation are intimately intertwined. The term

2 P

Sy ) (A7)
in Eq. (A.4) manifestly breaks the electromagnetic U(1)gy gauge symmetry. We
remember that a gauge transformation in quantum electrodynamics works as
ay, — a, — O, A and ¢ — exp(ieA), where A = A(x) is the gauge function
and e is the electron charge. Under this gauge transformation, the term (A.7) is
manifestly noninvariant. Lorentz violation has thus created a term that violates
gauge invariance, on the perturbative level (in first order in the 1/M expansion).
Analogously, the model used by Cohen and Glashow in Ref. 4 assumes a breaking
of gauge invariance on the perturbative level, in the latter case, of the electroweak
gauge symmetry. Based on our comparison with the approach taken in Refs. 33-44,
this is a perfectly permissible assumption.
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