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For a long time, the predictive limits of perturbative quantum field theory have been limited by our
inability to carry out loop calculations to an arbitrarily high order, which become increasingly complex as
the order of perturbation theory is increased. This problem is exacerbated by the fact that perturbation series
derived from loop diagram (Feynman diagram) calculations represent asymptotic (divergent) series which
limits the predictive power of perturbative quantum field theory. Here, we discuss an ansatz that could
overcome these limits, based on the observations that (i) for many phenomenologically relevant field
theories, one can derive dispersion relations which relate the large-order growth (the asymptotic limit of
“infinite loop order”) with the imaginary part of arbitrary correlation functions, for negative coupling
(“unstable vacuum”), and (ii) one can analyze the imaginary part for negative coupling in terms of classical
field configurations (instantons). Unfortunately, the perturbation theory around instantons, which could
lead to much more accurate predictions for the large-order behavior of Feynman diagrams, poses a number
of technical as well as computational difficulties. Here, we study, to further the above-mentioned ansatz,
correlation functions in a one-dimensional (1D) field theory with a quartic self-interaction and an O(N)
internal symmetry group, otherwise known as the 1D N-vector model. Our focus is on corrections to the
large-order growth of perturbative coefficients, i.e., the limit of a large number of loops in the Feynman
diagram expansion. We evaluate, in momentum space, the two-loop corrections for the two-point
correlation function, and its derivative with respect to the momentum, as well as the two-point correlation
function with a wigglet insertion. Also, we study the four-point function. These quantities, computed at
zero momentum transfer, enter the renormalization-group functions (Callan-Symanzik equation) of the
model. Our calculations pave the way for further development of related methods in field theory and for a
better understanding of field-theoretical expansions at large order.
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I. INTRODUCTION

A. Orientation

We here lay the groundwork for the detailed analysis of
the large-order behavior of perturbation theory for corre-
lation functions in field-theoretical models, pertaining to
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phase transitions. Over the past decades, several steps have
been made in the analysis of larger orders of perturbation
theory, for both quantum mechanical problems as well as
field theory. Indeed, it was Dyson who argued that, because
of vacuum instabilities induced for a fictitiously negative
value of the fine-structure constant, the quantum electro-
dynamic (QED) perturbation series could at best constitute
an asymptotic series [1]. Later, this conjecture was sub-
stantiated, and the (factorial) divergence of perturbation
theory, for both quantum mechanical oscillators [2-4] as
well as field theory [5-8], was quantified both in terms of
the power-law coefficients as well as in terms of the
additive constants in the factorial growth of perturbation
theory at large orders. Information regarding the leading
terms in the perturbative expansion of perturbation theory

Published by the American Physical Society



L. T. GIORGINI et al.

PHYS. REV. D 101, 125001 (2020)

has been instrumental in the determination of critical
exponents for the N-vector model, which is a ¢* theory
with an internal O(N) symmetry group [9-12].

For anharmonic oscillators, one has been able to write
down generalized Bohr-Sommerfeld quantization condi-
tions that characterize the eigenvalues, including instanton
contributions, to all orders [13—18]. From these conditions,
one was able to infer the leading factorial divergence of
perturbation theory, as well as subleading corrections, for
large perturbation theory order. Calculations were, how-
ever, restricted to the partition function (i.e., to the ground-
state energy of the quantum system).

However, a decisive step that has not been fully clarified
in the literature so far is the extension of the large-order
analysis beyond leading order to quantities of interest other
than the partition function. Correlation functions are of
interest in the calculation of critical exponents. First steps
in this direction have been taken recently [19], with an
emphasis on a scalar ¢* theory in two and three dimen-
sions. Here, we report on essential progress in the latter
endeavor, for a theory with an internal symmetry group
O(N), in one dimension. First, we use a formulation
of the functional determinant [18], which allows us to
separate the path integral around the nontrivial (instanton)
saddle point into integrals over the collective coordinates
(the start point of the instanton and the variables character-
izing the internal space of the theory), as well as integrals
over the transverse fluctuations around the nontrivial
saddle point, in the internal symmetry group. The func-
tional determinant does not factorize into longitudinal
and transverse fluctuations (the latter being relevant to
the internal space). Second, the application of the Wick
theorem allows us to express the two-loop corrections
around the classical extremum of the action, in terms
of the longitudinal, and transverse, propagators of the
(perpendicular) fluctuations, where “perpendicular” here
refers to the exclusion of the zero mode, which is an
eigenstate of the fluctuation operator with zero eigenvalue,
corresponding to an invariance under a collective coor-
dinate. Third, the final integrations are carried out and lead
to expressions involving Riemann zeta functions of even
and odd integer arguments. Eventually, we are able to carry
out all integrations analytically. In the course of the
calculations, we find the psLQ algorithm useful in the
very final analytic steps [20-23].

Here, we restrict the discussion to the one-dimensional
case. We put special emphasis on the partition function, on
the two-point correlation function, on its derivative with
respect to the momentum, on the two-point correlation
function with a wigglet insertion, and on the four-point
correlation function. All the correlation functions are
computed at zero momentum transfer, as is required for
an input into the Callan-Symanzik equation. While, in one
dimension, the field fluctuations are not strong enough to
induce a phase transition, we clarify the connection of our

calculations to the quantities entering the renormalization-
group (RG) equations in Appendix A.

This paper is organized as follows. We derive the func-
tional determinant for the transformation into collective
coordinates and field fluctuations, for the quartic O(N)
theory, in Sec. II. The formalism is applied to the calculation
of the imaginary part of the ground-state resonance energy
(i.e., to the partition function in the large-# limit). We use a
normalization that makes the field equation for the instanton
(classical) field configuration assume a particularly simple
form [see Eq. (2.1) below]. The path integral Jacobian is
derived with a particular emphasis on the nonfactorization of
the longitudinal and transverse fluctuations. In Sec. III, we
continue with the calculation of the two-point and four-point
functions as well as the derivative of the two-point function
at zero momentum transfer and the wigglet insertion. All of
these functions enter the Callan-Symanzik [24,25] RG
equations. Three appendixes complement our investiga-
tions. In Appendix A, we supply an integral table that is
useful for the calculation of the propagator integrals.
Appendix B is devoted to the connection of the correlation
functions at zero momentum, investigated here, and the
Callan-Symanzik equation.

B. Large-order behavior and analyticity

A central point of our investigations is the connection
between the low-order behavior of the imaginary part of a
n-point correlation function G(g) and the large-order
behavior of its real part. Let us consider a generic Green
function G(g) that is analytic in all the complex plane
except on the negative real axis. We can apply the Cauchy
theorem as follows:

G(g) —iﬁdz%,

= 1.1
271 z—g (L)
where D is the path in the complex plane encircling the
branch cut on the negative real axis and g is the reference
argument where the function G(g) is to be evaluated. The
path D can be decomposed into four contributions (see
Fig. 1),
D=Dx+D.,+D,+D_. (1.2)
The contributions over the paths Dy and D, vanish
identically, and the only remaining contributions come
from the paths D, and D_. We can then write

1 /0 d discG(z)

Glo) =55 | =" (1.3)
discG(z) = li_r)r&[G(z +ie) =Gz —ie)]  (1.4)
= —2iImG(z - ie), (1.5)

125001-2



TWO-LOOP CORRECTIONS TO THE LARGE-ORDER BEHAVIOR ...

PHYS. REV. D 101, 125001 (2020)

Im(z) 4

Dr

> Re(z)

(N

FIG. 1. The complex integration path D encircling the branch
cut of the Green function.

where the discontinuity of G(z) on the cut is given by
discG(z). In the following, we will understand G(z) for
z < 0 (on the cut) as the value of G(z) obtained when z
acquires an infinitesimal negative imaginary part.
Expanding the relation (1.3) in z, we obtain

- 1 /o ImG(z-—i
Glo) =Y Gro == [z (& ~ie)

) i—yg

1 0 ImG(z —ie)
LISy [ i)

[Se]

(1.6)

So, we find an integral representation for the perturbative
coefficient of order K, of the n-point correlation function.
The minus sign is consistent with Eq. (10) of Ref. [16] and
with Eq. (2.31b) of Ref. [17]; note that, however, the
resonance energy in the cited publications was identified
with an infinitesimal positive imaginary part of the coupling.

We refer to the perturbative coefficient of order K as Gy
and write

6= -1 [ agmClg=i0

7)o s
(-1)¥ /00 ImG(—g — ie)
= d . 1.7
/o 9 s (L.7)

From this equation, we can understand the importance of
knowing the value of the imaginary part of the correlation
function for small and negative values of the coupling
parameter g. In fact, the large order behavior of the series,
i.e., G for K large, is dominated by the values of ImG(g)
at small and negative values of g.

In the following, we will find that the imaginary part
of a generic n-point function G(g) involves, in leading
order, a factor (—g)"N-'*P)/2 from the leading-order
Jacobian, given in Eq. (2.20). We anticipate that a factor
(=g)=N=-1/2 will be obtained from the N — 1 collective
coordinates inside the O(N) symmetry group, which
give rise to the (N — 1)th power of the classical field
configuration in the Jacobian. In D dimensions, one has D
additional collective coordinates describing translation
invariance of the instanton in the D spatial directions
[8]. (For the current investigation, one has D = 1.)

A further factor (—g)™/? stems from the n classical field
configurations in the n-point function. However, additional
classical field configurations can be introduced into the
leading-order expressions by mass derivatives, as is evident
from the discussion of the wigglet insertion into the two-
point function (see Sec. IIII). In general, our expressions
for the imaginary part of a generic correlation function
ImG(g) have the following structure:

ImG(g) = c(N. D) (=g)-¥+D-1/2 exp (3)

x [l +d(N,D)g+ O(4)], g<0, (1.8)
where ¢(N, D) and d(N,D) are constants and n is the
number of coordinates entering the Green function. We
here concentrate on the Fourier transform. In one dimen-
sion, we find that A =4/3 in our conventions of the
Euclidean action (2.1). Inserting Eq. (1.8) in Eq. (1.7),
we get

(_I)K 00 e_A/g
p A 9 oLl 94N D))

(n+N+D-1)/2 K
:MF(K+19) <l> <_l>
T A

A
Ad(N.D D-1

WJp AdND) ) ndNAD-T
K+b-1

2

GK:C<N,D)

(1.9)

For large K, we can replace K—1+b — K in the
denominator of the second term and identify the 1/K
correction. We also note the asymptotic expansion

P10y,

(K + b) -1)
2K

KT (1.10)

= K"! {1 +

which can be used in order to bring the leading term in the
expression (1.9) into the familiar form CK*~!'BKT (K + 1),
with suitable coefficients C and B.

For our calculations as reported below, it is absolutely
decisive to observe the connection of the perturbative
correction about the instanton of relative order g, given
by Eq. (1.8), and the subleading 1/K correction to the
leading factorial growth of the perturbative coefficients,
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given in Eq. (1.9). We shall evaluate the coefficients
d(N, D) by two-loop perturbation theory about the instan-
ton configurations.

II. QUARTIC THEORY WITH O(N) SYMMETRY

A. Euclidean action

We here follow Ref. [18] in the derivation of the O(N)
functional determinant, using a field normalization that
allows us to express the field equations in a particularly
simple analytic form. For the O(N) one-dimensional field
theory, we use the action in the form

sl = a3 (52) +320+¢'0)

q() ={q1 (1), ... an(1)} = qa(t)eq, (2.1)

where an N vector in the internal space is denoted by
underlining and, for completeness, we remark that g*(7) is a

shorthand notation for [¢*()]. By group symmetry, for the

classical field configuration, we can pick a specific direc-
tion u in the internal space, for the reference instanton
configuration (note, however, that an averaging over the
possible orientations of u is necessary at the end of the
calculation, as discussed in the following). The classical
field configuration is found as

gcl(t) =u \/jégcl(t)’ gcl([) = F\{?&l‘) s

which implies the existence of N collective coordinates,
namely, one time translation parametrized by f;, and N — 1
rotations in the internal space, leading to displacements
orthogonal to the reference vector w.

(2.2)

B. Fluctuation operator

By definition, the first functional derivative of the action
with respect to g4(1),

oS

541/}@

’

=4

s = <—§ﬁ+ 1 +gqy(t)q},([)>qﬂ([)
(2.3)

vanishes at the classical path. This resulting equation is
solved by Eq. (2.2), in view of the identity

2
(-5t 1-aP)am =0 @4

The second functional derivative at the classical path
gives the fluctuation operator, for which we give a number
of useful equivalent representations,

oS
AN
Moy (1.1) = 5 6au?)

=4,
2

=68(t=1) |:uauﬂ (— % +1- 3531(t)>

+(ST,(Jtﬂ <_% +1- czzl(t)):|
(1= 1) [uqusMy (1) + 51 oM (1)]

o
= 6(t — ') Myp(2). (2.5)

Here, the transverse 0 function is given as

6T,(1ﬁ - 6(43 - uauﬂ’ (26)

and we have defined the longitudinal (L) and transverse (T)
fluctuation operators as

0? 6

ML(Z) = —@+ 1 —m, (273)
0? 2

MT(I) = _W+ 1 —m. (27b)

The fluctuation operator Mj = M parametrizes the
longitudinal fluctuations (in the initially chosen direction
u of the instanton), whereas M describes the transverse
fluctuations (transverse to the initially chosen direction of
the instanton). An illustrative remark is in order. We define
the domain of the operators My, and My so that respective
zero modes are excluded. Thus, in our notation, the
operators M; and My are invertible. To denote the
exclusion of the zero mode, the symbols Mi and My
have been used in Ref. [18]. Because the longitudinal
fluctuation operator fulfills M; = M, where M is the
fluctuation operator for the scalar theory, we have
A = A. The inverse of Mz is A4, with
The longitudinal and the transverse propagators A; and Ay
can be calculated analytically [18],

sinh ¢ sinh £,

1
AL(t), 1) =~ 0O(t; — 1) f(t, 1)

4 cosh?#,cosh’t,
+ (t; < 1), (2.9)
3sinht, —2cosht,
ti 1) =3t — 3t — 1 +e”
f(t, 1) 2 1 +e tanh 1,
+e_tl3sinhtl+2coshtl’ (2.10)
tanh 1,
1
Ar(t), 1) = Z®(f1 —h)g(ti, ) + (11 < 1), (2.11)
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f2 - tl -1 e_" e’l

g(t, 1) = < ) (2.12)

cosht; cosht, cosht, cosht
A remark is in order. Namely, a comparison of Egs. (2.3) to
(2.7) reveals that the scalar instanton configuration & (7)
constitutes a zero mode of the transverse part of the
fluctuation operator. The instanton path &, () has no zero.
Therefore, when interpreted as a quantum mechanical wave
function (eigenfunction of the fluctuation operator), it is
clear that the instanton path represents the ground state of
the transverse fluctuation operator. Thus, the ground state
of the transverse fluctuation operator has zero eigenvalue,
which implies that all other eigenvalues are manifestly
greater than zero. The spectral determinant of the transverse
fluctuation operator therefore is positive.

C. Path integral Jacobian

Even though the problem of the calculation of the
functional determinant has been outlined in Ref. [18],
we here revisit the derivation, with an emphasis on those
aspects of the path integral Jacobian that are important for
the calculation of correlation functions. The appropriate
decomposition of the path reads as follows:

q(1) = ulga(t = 10) + .t = 19)] + g7 (1 = 1), (2.13)
where u is a time-independent unit vector, u> = 1, chosen
to point into a specific direction of the (N — 1)-dimensional
unit sphere Sy_; embedded in N-dimensional space.
Furthermore, the longitudinal and transverse variations
(1) and yr(f) are assumed to be orthogonal to their
respective zero modes, i.e., u - y(t = tg) = 0. The variable
t, takes the role of a collective coordinate. Throughout this
paper, we denote vectors in the internal symmetry space by
underlining.

To carry out the calculation (see Sec. 5 of Ref. [18]), one
has to observe that the path decomposition (2.13), under the
shift + - t — ¢, breaks both time translation and O(N)
invariance, by singling out a specific direction u in the
internal space as well as a start time 7, for the instanton. The
collective coordinates are the N — 1 coordinates z; which
parametrize the sphere Sy_;, as well as the time parameter
ty- One finds

/ (dg(1)]Fla ()]

() ol [

X Flulga(t=10) +xL(t=t0)| +x (1 =10)],  (2.14)

where the Jacobian J(g) = Jq(t)] has the representation

79 =2

- \/‘](gcl)’

J(q) = det /dz@-% ¢ = (tg,7;).  (2.15)
2= dc, Bc, ) G T Vo) &

i J

The collective coordinates for time translations #; and the
collective coordinates for rotations that parametrize Sy_;,
which are denoted as 7; (i = 1, ..., N — 1), are summarized
in the vector c¢;. It is crucial to carefully analyze the
dependence on the collective coordinate 7, for the path
as well as the Jacobian, in the calculation of correlation
functions. Furthermore, the identification of the path in
terms of the argument ¢ — 7, (rather than ¢ + #,, as in Sec. 5
of Ref. [18]) serves to illustrate the role of 7, as the
“reference start point” of the classical path.

The rationale behind the transformation (2.14) is as
follows. We start from the path integral over closed paths
$[dg(1)]. There are N — 1 collective coordinates in the
internal space of the O(N) theory, and one collective
coordinate describing the time translation of the longi-
tudinal instanton. This means that there are N collective
coordinates in total; the exclusion of these from the
remaining path integral leads to a factor (2z)~V/2. In
the remaining integral over the fluctuations §[dyy(7)],
the longitudinal zero mode corresponding to the instanton
path is excluded, leading to convergent expressions for the
Gaussian path integral expectation values. The same
applies to the integration over the transverse fluctuations
$ldy,(2)], where we exclude the transverse zero mode, to
be discussed below, in all directions perpendicular to the
fixed vector u in the internal space.

The path ¢(¢) is the sum of the classical path ug. (¢ — t,)
and two sums over longitudinal fluctuations (L), and
transverse fluctuations (T). The transverse fluctuations
may point in any of the N — 1 available directions. The
N — 1 vectors e, ..., ¢y parametrize the transverse fluctu-
ations, orthogonal to u (where u can point into any
direction in the internal space). We also set

() =a (t—1) taglt—1).  (216)
with self-explanatory definitions for the longitudinal com-
ponent g, (t —t,) = uqy (t — ty) and the transverse com-
ponent g_(t — ty). The function g(¢) is the zero mode of
the longitudinal fluctuation operator, whereas ¢ (?) is the
zero mode of the transverse fluctuation operator. The
conditions that the zero modes should be omitted therefore
read

/ dtd (1) (0 (1) — ga(1)) = 0. / 41 g (1)g. (1) = 0.

(2.17)
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where the first condition comes from translations and the
second from O(N) rotations. The next step is to calculate
the matrix elements relevant for the expression (2.15),

=ae( A )

= (A= B™D!C) det(D), (2.18a)
dq(t—1ty) Oq  (t—t
A:/dt g( 0). ch( 0)
ato 81‘0
- [ @i, (2.18b)
dq(t—ty) Oq_ (t—t,
BT:/d[ g( 0)‘ ﬂcl( 0)
/ 810 87:]
— _%./dt' (t)qa (1) (2.18¢)
- 8‘[']- q4r\1)qcall), .
0q,(t—1ty) Oq(t—to)
Ci= /dt or . o5
., 0q.(1)
- [ dida(o) o (2.184)
Oq(t —ty) Oq (t— 1)
D;; = / dr o7 . oz,
= 9ij / drgy(1)ga(?). (2.18e)

Here, BT is a row vector, C is a column vector, A is a
number, while D is an (N — 1) x (N — 1) matrix. We have
introduced the metric

_ Ou Ou
gu a 8‘:,- 6‘[]

(2.19)

on the sphere Sy_;. We can write in the leading order,

Tla(0)] ~ \JI1a, (1)) = y/det(gi;)lla V114,
— Jaet(gy) (- 3;) e (- ;‘) Y 200)

where ||f]| is the norm [®_drf(z). A very useful repre-
sentation is obtained upon division by the square root of the
determinant of the metric in the internal space, which in
view of Eq. (2.18a) is contained in the term det(D). One
finds

Jla()] (J[gcl(t)]> 12 J]g(1)]

(detg;)'/2 \ detg;; Jlg,(1)]
_ [ 3A\W=D2 AN Jlq(1)] i
-(-5)" () a0 22
Jlg(1)] :(fdfz(f)'gd(f))lv'z K
Tg,(1)] ga(OIFN2 lga(OIPNlga®IP

K= / drdr'[q(1) - 4, (D)q(t) -

_élcl(t)élcl(t/)g'r(t) : QT(II)]'

44(7)
(2.21b)

With the help of Eq. (2.14), we are now in the position to
write the following identity:

Jeaorrtao= () o [an [iga0)
[ >}<((5()’/> (Q())>S |

N-1

(2.22a)
O(t) = ulqu(t—to) + Lt —19)) +x(t —15), (2.22b)
N-1 27N/2
oy = H / dr,(det g;;)'/? = TN (2.22¢)
1 N-1
s, =11 [anteug) 2rw. (@220
i=1

Here, oy is the surface of Sy_;, and the expression
(f(u))s, , indicates the averaging of the test function
f(u) over the Sy_; sphere. As an example for the averaging
process, we indicate the formula (u,up)s = 843/N. One
important observation is that the path [J[g(7)] in the
Jacobian can be taken with a start time 7, = 0 of the path.
This is because all integrals contributing to the Jacobian are
independent of #,. However, the decomposition (2.13) is
still valid; the path ¢(7) depends on the start time f,, and
this dependence has to be figured into the integrand.

D. O(N) quartic oscillator

Let us briefly review the calculation of the perturbative
expansion of the ground-state energy for the O(N) case,
from the path integral representation. We write the
Euclidean action as

p/2 B2
dr, dtrq(t)Mo(t1.12)g(12)

—p/2 —p/2

+4g/_ﬁ dtq(t) (2.23)
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where the free fluctuation operator M, and its inverse A,
are given by

82

My(11. 1) = (1) — 12)My(12), My (1) = “op T 1,

(2.24a)
1
AO-MOZH, Ao(tl,lz) :ECXP(—“] —l'2|) (224b)
One writes
L[ Z(p) )) N

Ey(g) = lim | —ZIn =, 225
0w ﬂm( (Zo(ﬂ)|o o 2

where Z(f3) is the saddle-point expansion of the partition
function Z(f3), redefined for the O(N) oscillator, about the
Gaussian saddle point, and Z,(f)|, is obtained from Z, (/)
by setting g = 0. The partition function can be written as
follows:

2= Plaalesp |- [ ot [ atgomu(erra)|,

(2.26)

where

(2.27)

a(p/2)=
% [dg(1)] = / dq /
(=p/2)=
is a path integral over all periodic paths. We define a
normalization factor

N = / [dg(1)]exp [—% / dr / a ()M t’)g(t’)]
1

= QoM (2.28)

A perturbative expansion up to the order ¢> leads to the
result

20(9) _ _ 9 )
=13 md’ / [d(1)][q(1)]*€lg (1)
7 ﬂ/2
32N /2 / /2
></[dq(f)]g(t)4g(t’)45[g(t)], (2.29)
where

elato] = exp (=5 [ an [ agtu)Myln () )
(2.30)

We define the path integral expectation value (Y), as

(Y)o = (detMo)N/z/[dg(t)]Yg[g(t)]- (2.31)

Application of the Wick theorem leads to

N(N +2)[80(0)F = ;NN +2).

(g*(1)y = (2.32)

while the generalization to (g*(t)q(7)*), is straightfor-
ward. Finally, one obtains

Zo(ﬂ) _ Py ﬂgz
ln<Zo(ﬂ)|0> = 1NN +2) + e N(N +2)(2N +3),

(2.33)

Eo(g)=—+1—g6N(N+2)—%N(N+2)(2N+5), (2.34)

2

where we ignore terms of order g* and higher and confirm
the cancellation of f in the expression for Ey(g).

E. Decay width and instanton

We are now in the position to present the analogous
derivation of the leading-order result for the imaginary part
of the ground-state resonance. The action (2.1), expressed
in terms of the classical action plus fluctuations about the
instanton configuration, becomes

Sh(

t)]:_i+l/d[1/dtﬂ(a(tl)Maﬂ(tlvIZ)Xﬂ(IZ)
-7 [, 02020+ [an @), @39

For the calculation of the leading-order term in the decay
width, we need the second term on the right-hand side,
which is the term involving the fluctuation operator. We use
Egs. (2.14), as well as Egs. (2.22a), (2.22c), and (2.22d).
Observe that, for the partition function, we can simply
integrate out the collective coordinate [dfy = f. The
leading contribution to the imaginary part ImE,(g) for
the ground-state energy of the O(N) quartic oscillator is
obtained as

wairpe ()

1 1 4\N/2 | 4
T T(N/2)2V? <_§) ﬁe"p<3_g)
1 -1/2 1 —4(N-1)
X[‘d“(mML)] P“(m“)]

() () (2:36)
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We resolve the ambiguity in taking the square root so that
the imaginary part of the energy comes out as negative. The
derivation in Eq. (2.36) implicitly supposes that g is
negative. As we saw in Sec. I B, the particular sign of
the imaginary part chosen in Eq. (2.36) corresponds to
values of g with an infinitesimal negative imaginary part. In
the derivation, we have used the results [18]

1 1 1 1
det [— M, ) =——.,  det|—M;) =-.
¢ (Mo L> 2 ¢ (MO T> 4

F. Corrected O(N) decay width

The key to the calculation of the corrections to the
partition function, and (later on) to the corrections to the
correlation functions, lies in the inclusion of corrections
from three sources: (i) perturbative corrections from the
expansion of the action (2.35), which enters the exponential
exp(=S[y(1)]), (i) perturbative corrections from the
expansion of the Jacobian J(q(1)]/J[q ,(¢)], and (iii) per-
turbative corrections from the denominator Zy(/3), in the
expression (—1/8)Im[Z,()/ Zy(p)], in the limit of large /3.
An expansion of the exponential exp (=S| x(7)]), according
to Eq. (2.35), leads to the correction factor F,

o= Sl(0)] .
sm|_1+\/_/d’§ (1) - x () (1)

-4 [auro -9 ( [, 0-2020))
«([aresnr o).

where S[x(1)]y= [dt, [dtoxa(ti)Ms(t1,12)24(t2), Which
has to be inserted inside the path integral. The second factor
F, is from the O(N) Jacobian,

F, =

(2.38)

Jq(1)] .3 . p
Fa= = v [ 040

+ =12 [a(o)-,00
~ 5 =g [ar [ ati0)-&,(00)-8,(0)
—3—92(N—1)(N—2)/dt/dl’;£(t)-éd(t)l(t’)-§Cl(t’)

g9 [ [ Atha0n(0) 1))

Furthermore, there is a factor from the perturbative expan-
sion of the denominator, which originates from the
Gaussian saddle point (see Sec. 11 D),

(2.39)

Zo(A)lo
Zy(B)

=1+§/d[[3+2(N_1)+(N2—1)][A0(t,t)]2_ (2.40)

F3:

:1+%/drN(N+2)[Ao(0)]2

The latter form is very handy when it comes to subtracting
infinities. The final result can be written as

o (43) ()

x(1+A+B+C),

ImEy(g) ~

(2.41)

where the terms A, 3, and C are of order g, given by

(2.42)

3 2 3
=Y A, B=> B, C=>C,
i=1 k=1

j=1

as defined in the following. (These are, of course, different
from the submatrices A, B, and C used in Sec. IIC; we
redefine the symbols A, B, and C accordingly.) We
distinguish the terms into A, B, and C as follows. The
A originate from the effective action, i.e., from F,, while
infinities are removed by F3. They correspond to the first
three diagrams in Fig. 2. The B terms contain the mixed
contributions from the product F; x F,, expanded to order
(y/=9)* = —g (see the fourth and fifth diagrams in Fig. 2).
Terms of order g in F, give rise to C (Jacobian terms; see
the sixth, seventh, and eighth diagrams in Fig. 2).

We start with the A term,
-= / dr / dr’

(f)z(f X

A= / de(((1)) -
< (£,(1) - LA WE,

We define (-) for the O(N) theory as

(2.43)

() = (det M) (0t M) g ()] § dzy ()X
X exp <—%/ dr / iy (1) Myp(ty, 12))(/3(1‘2))-

(2.44)
The term A, is easy,
Ay = =4 [ bt o)+ 262 O40) + o)
+§ / dr{z* (1)), (2.45)

Applying the Wick theorem, we obtain the result
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(a) 8 WV + N+ 0

1 11 13
(b) sV —aN—%
13 223
©) _EN+ 1680
5 7
(d) N+ 55
(e) =N? — N + &
3 3
(f) —— o N — &
N -1 i N -1
(2) *~--u-- L ———— Tt ° SN2 —ZN + &
N-1 T/N-1 N-1
3 3
(h) *--ce-- ——-- ° IN-L

FIG. 2. Diagrammatic representation of several terms in a ¢* theory with an O(N) internal symmetry, contributing to the partition
function in the infinite-£ limit and thus, to the ground-state energy. The contribution of the diagrams is written beside each contribution.
The total result of order g is of the form given in Eq. (2.55).

A= —% / dt(3[A2 (1, 1) — A2(1,1)] (Ea(0) 2P (&) (P (E) =T1 + To. (247
£2(N = D[Ac(r DAL(1.1) - A3(2.1) here
+ (N* = 1)[A2(1, 1) — A%(1,1)]) Ty =Ea()BAL(2. 1) + (N = 1)Ar(1, )] A (2. 7)
_ g< % N4 % N+ % > (2.46) X BAL(Z, 1) + (N = DAL(£, ))éa(r),  (2.48a)

Ty = 28q(D)AL(r. /) (3AL(1.1)

For the second term in Eq. (2.43), one has + (N = DAL(t.1)&a(r). (2.48b)
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The expression T generates the term A, [see the diagram
in Fig. 2(b)], while the expression T, generates the term A3
[see the diagram in Fig. 2(c)],

1o, 11 13
=g(-=N-—N-= 2.4
A g<48N 60" 7o>’ (2.49)
13 223

We now turn our attention to the B terms, which are
generated by mixed contributions from F; and F,. In fact,
there are two terms in F, proportional to /=g, one of them
being proportional to (N — 1). When multiplied by the term
of order ,/—g from F, these generate two mixed Feynman
diagrams. The corresponding expression for the diagram in
Fig. 2(d) reads

B, = Zg/df/dﬂ@(f) 'écl(t)écl(ﬂ) 2O (1)
7

5

Furthermore, we have the expression for the diagram in
Fig. 2(e),

(2.51)

B = (- 1)§ [[ar [0tz £,06,(0) 20 0)
1 7 1

There are three more terms generated by the terms of
order g in the O(N') Jacobian. The first of these is given in
Fig. 2(f) and reads

(2.52)

= O [ fartz-foxte)- 2,0

_J3N3
~9N\16" "16)

The diagram given in Fig. 2(g) gives rise to

(2.53)

== =10V=2) [ 1 [ a1 ()£, 04,0

IR
“9\n" TR 16/

To complete the list, we analyze the diagram in Fig. 2(h),

(2.54)

¢ =2 [ at [ 4t (i) 2o

_J3N3
“9\16" "16)

The result for the imaginary part of the O(N) ground state
resonance finally is obtained as

mEo(o) =75 (o) e0(3,)

3 2 3
x <1 +Y A+ B+ ch>
i—1 =1 k=1

) ()
=1 —-- exp| —
L(N/2)\ g P3¢
7., .9 5
x[1+g<3—2N +1_6N+ﬁ>:|

This result is relevant for g < 0.

(2.55)

I11. CORRELATION FUNCTIONS

A. Leading-order contribution

We turn to the evaluation of higher-order corrections to
the imaginary part of correlation functions for negative g
and, thus, to the calculation of subleading corrections to the
factorial growth of perturbative coefficients. The perturba-
tive contribution exists for positive and negative coupling g;
the cut across the negative ¢ axis is dominated by the
instanton solution. The generating functional Z(J) of the
correlation functions is given by

20 =7 [ Watolexp |-sig(0] + [ auso)-q00].
(3.1)

where both J(7) as well as ¢(7) are N vectors. Note that
Z(J) is not to be confused with the partition function Z(f3).
It is normalized so that, in leading order in g, and expanded
about the Gaussian saddle point, one has Z(0) — 1, i.e.,

(3.2a)

N = / (dg(r)] exp [Solg(1)]]

Sola(1)] = / dr B (8%_(;))2 + %gz(t)]. (3.2b)

At leading order in the instanton contribution, the
generating functional Z(J) is the sum of a perturbative
expansion Z; (about the Gaussian saddle point) and an
imaginary, exponentially small contribution Z; for g — 0,
which consists of the instanton contribution proportional to
e/, for g — 07,

2(J) = 20(J) + 21(J), (3.3a)
W) =In2(0) = Zo(0) + 2
=Wo(J) + Wi(J). (3.3b)
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where we note that Z,(J) is exponentially suppressed for
g — 07. We note the implicit definitions Wy(J) = In Z(J)
and W, (J) = Z,(J)/2y(J). The perturbative expansion
defines Z,(J) and holds irrespective of the sign of
the coupling g. By contrast, the instanton contribution
Z,(J) is present only for negative g, and this is the
implicit assumption on which all considerations reported
in the current section are based. We investigate the

connected n-point correlation functions w and

A {a }”
the complete n-point correlation functions Zi (o} for
Aigi=y

A = 0 (perturbative contributions) and A = 1 (nonpertur-
bative terms),

n 6
W{g’){al_}?:l(l‘l, ...,f,,) = (HW) WA(l) 0, (348.)
i= a;\"1 J=0
(n) T 9
2y (e ty) = <H5J (r.)>ZA(l) 0 (3.4b)
i= ai\"t J=

To simplify the explicit expressions, we now assume
that S(¢) = S(—¢) and, thus, that correlation functions

with n odd vanish, which is certainly the case for our g“

model. Then, one finds, for example, for the zero-point
function,

Z,00)
Z(0)°

ImZ,(0)

WiZ=0)= Z,0)

ImW, (J=0) = (3.5)

For the two-point function, one finds

22 (1)

Zina, (11, 5)IMEZD) | (1215)

2
2 _ 4
) =————— J
Wl‘dl(ll( ! 2) 5.]0,1(1‘1)5./0,2(12) Wl(_) J=0
2(2) Z() Z(0
_ 1.a|az(t1’t2)_ 0y, (115 12) 21(0)
Z(0) Z5(0) '

(3.6)

and the imaginary part of the two-point function is obtained
as follows:

Ingiinaz (f] s fz)
Zo(O)
(11, 12)ImZ, (0)

0(11{12
— . 3.7
50 57

ImWEilaz (l] N [2) =

Furthermore, we can express the imaginary part of the four-
point function as a sum of four terms K; (i =1, ...,4),

4
Imwgi)tlaza3a4(tl I, 13, l4) = (38)

i=1

The first term involves the imaginary part of the four-point
(4)

instanton contribution Ile o asas®

ImZ§4) (tl fz f3 1'4)
_ LA 030y R ) 3
. Z0) 39

The second term is a mixed term, involving two-point
perturbative and two-point instanton correlation functions,

Oa a (tl ’ t4)ImZ(1 gmx (t2’ t3)

Ky=—-
’ Z3(0) Z3(0) Z3(0)
Oa (135 t4)ImZ§c)ta (t1,12) B Z(()ilza (ta, f4)lm550):a (t1.t4) B Z(()o)l (12, fs)ImZm MURA) (3.10)
Z3(0) Z3(0) Z3(0) '
I
The third term combines the four-point perturbative corre- o) Zéz) (t1.12)Z (()2) (ts. 1)
lation function with the imaginary part of the zero-point Ky = ke L%~ ImZ,(0)
function, ( )
2Z ty, Z @ (1t
+ 0(11(1’;( 1333)( ) 7114( 2 4) Ile (Q)
0
K Zéfilazam(h b, 13, 14)ImZ, (0) (3.11) 2® ( )Z ) (tn.1)
3= — . . 1 ,
Z5(0) 4 20w W00 0 2 ) (312)
Z;3(0)

Note that ImZ;(0) is equal to the imaginary part
of the partition function, up to a factor f. Finally,
the fourth term involves two perturbative two-point
functions,

At leading order, ImZE") is proportional to (g.)". The
classical path ¢ is of order 1/,/=g. So, the imaginary part

ImZ\") of the n-point function is of order (—g)~"/2ImZ, (0).
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This implies the inequality ImZ(14) > IrnZ&z) > ImZ,, and
thus, at leading order, the disconnected parts are suppressed.
Finally, a generic expression for the connected n-point Green
function is given by

G (1) = (HMU))W(J)

(3.13)

where W is the sum of W, and W,. The definition
encompasses both the real and the imaginary parts of the
n-point correlation function [see Eq. (3.3a)]. For the imagi-
nary part, we define

Glonye,(f1eeesty) = WG (11, oity)

= ImW1,,'{a;}'-' ](11, cnty).  (3.14)

B. Two-point correlation function

We investigate the (imaginary part of the) two-point
Green function G,4(t;.1,), according to Eq. (3.14), as
follows:

Imzfo)tﬂ(tl’ lz)
Z4(0)

= [Gyp(t1. 12)]; +

R [Gop(t1, )] -

B Z(()?lp(fh 1,)ImZ,(0)
Z5(0)
[Gop(t1, 12)]2

gaﬂ(tlv t2) =

(3.15)

Note that in the last step of the previous expression, we
have reported only the leading term in ¢; however,
[Gop(t1.12)], will be important when we will consider
the first subleading order.

It is useful to remark that all Z quantities are now
understood in the sense of Eq. (3.1), i.e., without f dqo.
We need to evaluate an integral of the form §[dg()]F[q(t)]
with the help of Eq. (2.22), where in leading order in g, one has

Flg(t)] = qua(ti)qap(t2)

1
_Euauﬂfd(rl —10)éu(ty — 1p), (3.16)
1
<F[Q(1)]>5N71 R ~ (ugug)g Ealty —t9)Eulta — to)
16{1
=7y Nﬁ Sa(ty = tg)&a(ty — to). (3.17)

We recall that, according to the remarks surrounding
Eq. (2.22¢), we need to supplement the collective coordinate
to in the actual path. Hence, we can approximate, in lead-
ing order,

N 2gN/2 4\ (N-1)/2 4\ 1/2 4 1 -1/2 1 -N/2
Gute~ (75 )ruv/z B () el [ pon) | o (o)

(1 dtoa(ts — 1o = to)a(—t, ))

1 5aﬂ 8\ N/2 4 4(1’1 — I
F(N/Z) N Ty P\3¢) sinh(r, -

This imaginary part G,(t;,1,) is positive for negative g,
in contrast to the negative imaginary part of the ground-
state resonance energy. [We recall that, according to
Eq. (3.15), the imaginary part of the Green function
itself, not the entire Green function, is denoted as

Gup(t1.12).]

C. Some observations

Before we go in medias res, four observations should
be made.

(i) We are interested in the corrections to the result

(3.18) of relative order g. One of these corrections

can be obtained almost automatically, by observing

(3.18)

that the derivation of the leading term given in
Eq. (3.18) does not entail path integrals except in
leading order; the product of the two classical field
configurations [ dfo&.(t; — 12 — 19)Ex(—1) simply
drops out as a prefactor of the integral. Hence, the
two-point correlation function receives the same
relative correction as the partition function itself;
i.e., it has to be multiplied by [see Eq. (2.55)]

- GEDIGEA

7 5, 9 5
=1l+yg 32N +]6N+—

(3.19)
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(ii)

(iif)

where, with the subscript zero, we denote the leading
contribution to the imaginary part of the ground-
state energy. We note that in the two-point correla-
tion function, the integration over the collective
coordinate [ dr, is carried out over the arguments
of the classical field configuration; in the derivation
of the partition function, by contrast, it leads to a
factor [dr = f, which is later divided out in calcu-
lating the energy. We note that the leading term in
the two-point correlation function can be written as
follows,

Gap(t1,12) = (lM)

B 208 /o
X <_$%/dt0§cl(tl_t2_t0)§cl(_t0))'
(3.20)

Replacing the prefactor according to

(1 ImZ(p ))
B Z0(B)

takes care of the correction, and that replacement
exactly amounts to the multiplication of the leading-

order result by the correction factor F z.
The angular symmetry of the problem implies that

_, HmZ(p)
o B 20(p)

(3.21)

S,
Wﬂgw(zl ). (3.22)

Gup(ti o) =

Hence, we can restrict the discussion, in the follow-
ing, to the function

G(t1. 1) = G, (11, 12) = SpGap(t1, 1), (3.23)
an operation that also eliminates the necessity to do
angular averaging.
We recall the action factor F; from Eq. (2.38), the
Jacobian factor F, from Eq. (2.39), and the pertur-
bative factor F'5 from Eq. (2.40). The correction due
to the factor F3, in relative order g, is already taken
into account in the denominator of the perturbative
partition function Z(f) in the replacement in
Eq. (3.21). If we are thinking about the calculation
of perturbative corrections about the instanton sad-
dle point of the two-point correlation function,
then we must consider that the leading term is
proportional to

(Gaa(ti = 10)gap(ta —10))g _»  (3.24)

@iv)

125001-13

according to Eq. (3.18). Corrections of relative order
g are obtained in two ways, first, by replacing, in
Eq. (3.24), both classical paths by fluctuations,
which results in a term of relative order g, because
the fluctuations are of order ¢°, while the classical
field configurations are of order 1/,/=g. In this case,
the calculation proceeds simply by evaluating the
path integral, without any further perturbative cor-
rections from either F; or F,, and is already of the
required relative order g.

The second way to obtain a correction of relative
order g is to replace only one of the classical field
configurations in Eq. (3.24) by a fluctuation, and to
contract the remaining term with the term F 7 which
contains the terms up to relative order ,/—g from the
product FF, and reads as follows:

Fy=FF) =1+ Fg[ [ a0 -2020

N [t -g 0],
(3.25)

+%/ dey(t)- &, (1) +

Finally, the third way to obtain a correction to the
two-point function is via the perturbative subtraction
term [the second term in Eq. (3.7)], which involves
the perturbative (Gaussian) correlation function
Z((filaz (1, 1,). It is somewhat analogous to the factor
F for the partition function.

As it will turn out, one can actually show that the
two-point Green function G(#,1,) is a function of
the time difference #; — t,. This has consequences
for the evaluation of the two-point correlator at zero
momentum transfer, as follows. Namely, a priori,
one would formulate the Fourier transform of the
two-point correlator as follows:

G(p1.p2) = / dr, / diye™ =il Ge 1), (3.26)
Using the property
g(t1, ) = G(t) — 1), (3.27)

one finds

G(p1. p2) = 275(p1 + P2)G(p1).- (3.28)
We will be interested here in the two-point corre-
lation function at zero momentum transfer, which, in
view of the above considerations, is just the Fourier
transform of G(z) at zero momentum, i.e.,
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G(p = (3.29)

0) = / deG(2).

5r20lp=0) = [ar-o@. (30

where the latter expression enters the Callan-
Symanzik equation.

D. First correction term

Let us summarize the formulas mentioned above. We
have, for the first term in Eq. (3.15),

ot ) = 2216, 10 )], = 22000 1)), (33D

For later reference, it is customary to define a recurrent
prefactor as

Qg) = F(]\]I/Z) (— 2) " exp <;;> . (3.32)

[G(t.1)]4

Corrections to the two-point function can be derived
based on Egs. (3.19) and (3.25), and lead to the
formula

[9(&5)]1 - /dt°<]:~7qy(“ —10)q,( — 1)) F z

z/dfo<61c1,y(f1 —10)qa,(ta = 10)) F z

+ /dl()((f'-j - I)Qy(tl - tO)‘]y(t2 - t0)>’

(3.33)

which is valid up to relative order ¢g. Here, the path
integral expectation value () has been defined in
Eq. (2.44). The first term has the classical field configu-
ration ¢, (f; — ) and the correction factor F z, while the
second has the correction factor F ;. We can thus write the
two-point correlation function, up to relative order g, as
follows:

Gl [, (—é) Galti = 0)6a(ts =) P+ [ Qo= 10 (12— 10) 2 (11 =0) (12 10)

+/dfo<\/—>é)(L(f1—fo)fcl(fz—fo)(jrj—1)>+/dfo<\/—>§)(L(f2—f0)§cl(fl—fo)(fj_1)>s (3.34)

where the first and the second terms have already been treated. The Wick theorem immediately leads to

Q(g)

(= to)yi(ta = to) + (8 = 10) -y (12 = 10)) = AL(ty — g, 1 = tg) + (N = 1)Ax(t; — 1y, 1, — o).

(3.35)

For the third and the fourth terms in Eq. (3.34), one consults the definition of F ; and applies the Wick theorem in order, to

obtain

G(t1. 1))
9(9)

1
= /dtO{_géjcl(tl —10)6a(ta = 10) F z + [AL(t; — to. ta —tg) + (N — 1)Ar(t; — 1o, 1, — ’0)]}

+ {/dfo/dffcl(fl — 10)Ea()[BAL(f2 — 1o, )AL(1, 1) + (N = 1) AL (1, — 1o, 1) A (. 1)]

3 . N -1
—Z/dfo/dffcl(fl —10)Sa(t)AL(t2 — 19, 1) +T/dt0/dt‘§cl(tl —to)fcl(f)AL(fz—l‘o’f)}

+{n < n}

where {t; <> 1,} denotes the terms listed in the previous
curly brackets, with the time variables #; and ¢, inter-
changed. The first two terms do not involve an additional
integration over ¢, because they do not incur corrections
from the factor F ;. In the result, we have the integration
over ¢, from the product F'| F,, the integration over ¢, from
the collective coordinate, and the integration over ¢, from
the evaluation of the correlation function at zero momen-
tum transfer.

(3.36)

If we shift, in Eq. (3.36), the integration variable,
uniformly, according to

lo g f() + fz, (337)

then we can show the time translation invariance identity
[see Eq. (3.27)]

G(t1,2)]; =[G(11 —1,0)]; =[G(1)];, ' =t1—-1,. (3.38)
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However, in the last term in Eq. (3.36) [the one characterized by the replacement (7, <> ,)], it is actually advantageous to
shift the integration variable according to ¢ty — f, + t;, at variance with Eq. (3.37).
Eventually, we will need to calculate the integral [see Eq. (3.29)]

[ g, =19(p = o). (3.39)
We find
% = /dl//dto{_éfcl(ﬂ —10)Ea(=t0)F z + [AL(Y = 19, —1p) + (N = 1) Aq(t' — 1o, —fo)}}
+2/dt//dt0/dt{§cl(t/_to)fcl(I)BAL(_tO’t)AL(t’ 1)+ (N = 1AL(=to. 1)Ar(1,1)]
-l = A (101 4l = D800 (3.40)

This integral is divergent for large f, but the infinities are
removed upon consideration of the perturbative term
[G(p = 0)],, to be considered in the following.

In the last term in Eq. (3.40), we have the integration
over t, which is the integration variable in the perturbative
factor F 7, the integration over the collective coordinate £,
and the integration over the time translation variable ¢ =
t; — t, of the Green function. The presence of the instanton,
which vanishes exponentially for a large argument, guar-
antees the convergence of the integral.

E. Second correction term
We now concentrate on the second term in Eq. (3.15),

B Z(@/s(ﬁ . 1)ImZ,(0)
Z3(0) ’

[Gap(t1,12)], = (3.41)

and we can remember that, according to our previous
considerations, the discussion can be restricted to the
expression

[G(t1, )], = [G,, (11, 2)],

25 (1) ImZ,(0)
=N () RN (R

In comparison to [G(#1, 1,)];, the expression [G(t;, 1,)], is of
relative order g, because it lacks the presence of the
classical paths, which are, themselves, of order \/—1/g.
So, we evaluate the expression (3.41) to leading order only.

We have already anticipated the cancellation mechanism
for the  parameter; indeed, there is no dependence on £ in
Z((fgﬂ(t] ,1;). However, there is a multiplicative factor § in
ImZ;, due to the integral over the collective coordinate #,.

This factor § should cancel against other divergences in /3,
to be found in the integrals over the propagators in

Z(fiﬁ(tl,tz). In fact, we show in the following, that the

term [G(#,,1,)], exactly furnishes the terms necessary for
the removal of the infinities in Eq. (3.40).
First, we have, upon perturbative expansion,

25 (11.1)
Z0(0)

= <qy(f1)4y(l2)>o = NA((t,1,), (3.43)

where the integration measure (-), has been defined in
Eq. (2.31). Compared to the instanton partition function
Z,(B), the generating function Z,(J) lacks the integration
over the end point g,, while the same is true for the
perturbative contributions Z,(f3) versus Z,(J). However,
the lacking integration cancels in the ratio, and we can
write, with Eq. (2.36),

mz,(0) ImZ,() _ p <8>N/2exp(4)

20 28 TWN/2)\ g 39
X [1+g<37—2N2+126N+%>]. (3.44)
So, we finally get
1 8\ N/2 4
ot =~ (5) - o(5;)
x [NPA(t,15)]. (3.45)

Here, according to Eq. (2.24b), the free propagator
Ay (ty, 1) has the translation invariance property

Ag(11,12) = Bg(t1 = 1) = Ag(t1 — 1, 0). (3.46)
For the purposes of the removal of the infinities discussed

in Sec. III E, we can reformulate the Fourier transform of
this expression at zero momentum as follows:
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1 N / 2 4 F. Evaluation of the corrections
/2)

g p— 0 p—
Gt k= T (N 39 We add the expressions from Egs. (3.40) and (3.47) and
consider the sum of [G(p = 0)]; and [G(p = 0)],. The
X / drg | dr'[Ag(0,7) + (N = 1)A(0,7)], substitutions ' — ¢’ + f, and subsequently #, — —1, serve
347 to simplify the expressions (the Jacobian in each case is
(3.47) unity). One can finally write G(p = 0) as

g(p 0 =Y "R, (3.48)

where ' = t; — t,. We have replaced § — f dzy. We recall :
i=

that the integration limits in all given integrals cover the range

—o0 < 7 < oo for all Euclidean time parameters z, unless where the R; terms (i =1,...,7) are defined in the
indicated otherwise; however, these limits are incurred in ~ following (see also Fig. 3). For the evaluation of the
terms of the limiting process —f/2 < 7 < /2, where we  expression of R;, we refer to integral H; listed in

let f — oo. Appendix A, and write
( ) v 7t0 2 2(7 N2 9 N 5
a X X —27 <3—2 + 6Vt ﬁ)
t/ il —t
(b) — —4
t N -1 —t 2
©) —_— (N=1)(1-= —1¢(3)
) —o
t —tg 1
X = e————eeaq X
© —(N —1)
' —to 1 N -1
X = e———feeaq X
' —t €
O x e———geex ¥
t —to s
(g) X — e X 0

FIG. 3. Diagrammatic representation of the seven two-loop corrections to the two-point function at zero momentum, for a one-
dimensional ¢* theory with an O(N) internal symmetry. The contribution of the diagrams is written beside each contribution. The total
result of order g is of the form given in Eq. (3.53). One of the classical field configurations, associated with the time variable 7’ (or ¢ — ¢,
before a suitable change of variable), is somehow “detached” from the rest of the diagram. Recall that the transverse character of the
propagator (excluding the instanton configurations) is denoted by the symbol L, and that the variable ¢ = #; — t, enters in view of the
time translation invariance of the Green function. Incidentally, the diagrams for the second derivative of the two-point function (Sec. III
G) and for the four-point function (Sec. Il H) are the same as those depicted here, with (in the case of the four-point function) two more
detached instantons.
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(3.49)

where we use Eq. (3.19). For the term R,, one has

Rz:/.dﬂ/dto[AL(ﬂJo)—Ao(f"fo)] =I,=-4. (3.50)

For the integral /;, we again refer to Appendix A. The
integral R5 involves the transverse propagator,

Ry=(N—1) / ar / diolAr(?. 10) = Ag( 1)

—(N=1DL=(N-1) {1-%-%4(3)} (3.51)

(see also Appendix A). The rest of the terms are

Ri=6 / arEy(?) / i ()AL (1.1) / dioAy (1. 1o)

P (3.52a)

Rs=2(N-1) / ) / i (1)Ax (11 / dioAy (1.1o)

2

—2(N- 1)H1J4:%(N— 1), (3.52b)
Ro =3 [ atea(r) [ arkato) [ drodu(o.n)

_ _%Hljz - _37”2, (3.52¢)
Ry =t [areat) [ aato) [ an(en)

_ %H,J, —o. (3.524)

The integrals J; (i = 1, ..., 4) are listed in Appendix A. The
end result is

9p=0) _ 22 (7 57
S = (5= )
[1—9%—%43)%—71161\72 (3.53)

It is interesting to note that, in the limit N — oo, the leading
contribution to the coefficient of relative order g comes
from the partition function correction F z. Furthermore, in
the limit of small g, the imaginary part of the Green
function described by G(p = 0) is positive.

G. Second derivative of the correlator

To evaluate the second derivative of the two-point
correlation function, we recall Eq. (3.40), subtract the
perturbative term with subscript “2,” and insert a factor
(=f?) in the ¢ integration,

Y

i=1

(3.54)

After appropriate substitutions in the integration variables,
we obtain the following expression, the following integrals
are generated, after obvious symmetry considerations,

2 2
S] :;/dl‘/ﬂzfcl(t/)/dlogcl(IO)FZ :§H3H1fz

nt , 9 5
—?‘Fﬂ <32N +16N+24)

The subtracted propagators, with the momentum derivative
insertion, give rise to the following expressions:

(3.55)

5= / ar / dio[=( = 10)2][AL (7' 10) — Ag(7' 1)

71.2

= —K) = 2= -215(3),

Si=(=1) [t [ anl=(¢ =)
x [Ar(?, 1) — Ao (7', 19)]

—(N—1)1‘<2:(N—1)< 6+”4+93§( )). (3.57)

(3.56)

The K integrals are listed in Appendix A. The rest of
the terms involve instanton configurations. The first of
these is

Se=6 [ at [[a [ atl=(¢ = lea®)éan

X A (10, )AL (1.1)
7t 9zt

= —-6H:J, —6HL, = +———. 3.58
3/3 1L3 +2 ) ( )

The term with combined transverse and longitudinal
propagators is

ss=20v-1) [ ar [[ay [arl=(¢ - tPlealr)eul)

x Ap (19, 1) A1 (1,1)

_ S v,

= —2 —
(v 2

1)(H3J4+H Ly)
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The term with the second derivative of the instanton is

So=3 [ ot [ dto [ e = P a(¥)EuAL 100

4

3
:E(H312+H1L2) = (3.60)

The last term generated by the Jacobian factor F 7 is

/ ar / diy / di(1 = 102 (1) Ea (1) A (10. 1

:—T(H;Jl—l—H L) = _Z(N_l) (3.61)
The overall result is
4 4
3p- =0) 74 5z 93
——=—+—+4-21£(3 ——Q’ 5
RY2 93 )
+N(—F—6+ s )>+32N (3.62)

Again, it is somewhat surprising that the leading term for
large N comes from the correction factor F z.
|

H. Four-point correlation function

We are interested here in understanding the imaginary
part of the four-point correlation function to relative order g.
To this end, it is first of all necessary to remember that we
only need to consider the first three terms K, ;5 on the
right-hand side of Eq. (3.8), because the remaining terms
are of relative order ¢°. The dominant term, for small g, is
given by KC;. We write, in analogy to Eq. (3.15), G,4,s as the
sum of two terms, the first of which is dominating,

4
= ImW(l,(lﬂy(S(tl b, 13, 1)
= [Gupys(t1. 12, 1. 14)]

+ [Gapys(tr. 12, 13, 14) ],

R (Gaprs(tr 1o, 13, 1)

ga/iy&(tl , I, I3, l4)

(3.63)

The leading term is

Imziﬁiﬂy&(’lv .13, 1y)
24(0)

(Gaprs(t1: 1, 13, 1) ] = (3.64)

The additional perturbative term, which cancels a few
divergences, is

2 2 2 2 2 2
Zoop(t )20 (15, 1) 20 (0,13 ImZ (10, 10) - 20511, 1) ImE L) (12, 13)

[Gapys(tis o, 13, 14) ], = =

Z3(0) Z3(0) Z3(0)
_ Z(()?(S(t?)’ l‘;;)ImZEZiﬂ(l‘] R tz) B Z(() 1)35(12, l‘4)ImZg gy(t] s [4) B Z(()‘;}/(lé, t3)Im21 a&(tl s t3) (3 65)
23(0) Z3(0) 23(0) '
[
Just as with the two-point function, the additional com-
pensating perturbative terms cancel certain divergences ~ Ar(f' —1fo,%0) = Ar(t' —to,10) — Ao(f' — 19, %9).  (3.67)

from diagrams that originate from the leading term, in
the sense of the replacement

A - (3.66

~~—

to tg) = AL(' = 19, tg) — Ao(? — 1y, 1),

1
Gaprs(tis o, 13, 14) R ? (uqugu,us)s /dfo«fcl(ll —10)Sai(tz = t9)&a(t3
Oapy6 + OuyOps + Oasdyp 1

The leading expression for the four-point function is easily
derived, based on the same reasoning as was used in
Eq. (3.15),

10)Sa(ts — to)

where J(t,, 1, 13, t4) reads as

= Q(g) N(N+2) ?J(Il’t%t3vt4)v (368)
J(t1 1y, 13,14) = /dfofcl(fl = t0)Sa(ta — 10)&a(t3 — 10)&ui(ts — 1o)
S(tl - t4) _ 8(t2 - t4)
Sil’lh([l — lz) sinh(t1 — l3) sinh(t1 — l4) sinh(t?_ — tl) sinh(t?_ — 13) sinh(t?_ — t4)
8(t3 - t4) (369)

B sinh(t3 — l’]) sinh(t3 — lz) Sinh(t3 — l4) )
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This formula might seem ‘“asymmetric”’ as the time
coordinate 7, has been singled out. However, a closer
inspection shows that the formula actually is symmetric
with respect to a cyclic permutation of the time coordinates
t; (withi =1, 2, 3, 4).

According to Egs. (3.22) and (3.23), we can define, for
the two-point function, a “scalar” (with respect to the
internal symmetry group) quantity G, which is obtained
from G, via division by the factor 6,3/N. The same is true
for the four-point function, where we first note that G5
can be written as

50:,55;/5 + 5ay5ﬂ5 + 5a55yﬂ
Gaprs(ti 1. 13, 14) = NN +2)
XG(tl,lz,[3,t4). (370)
In leading order, one has
1
G(t1, 1y, 13, 14) ® Q(Q)?J(fl’fz,%’ht)- (3.71)

In turn, G(t,%,13,1,) can be extracted from

Guprs(tia, 13, 14) as

5aﬁ5y§gaﬂy5(t1 N fz, l'3, t4) == G(l’] , t2, l3, l4). (372)

Now, one can show that G(7,, 15, 13, 1;) can be written as a
function of the differences of the time coordinates only,

G(tl,tz,t3,t4) :G(tl —t4,t2—t4,t3 —t4). (373)

For the leading term, given in Eq. (3.69), this relationship
can be checked by inspection. Let us investigate the Fourier
transform

G(p1. 2. 3. P4) /dﬁ/dtz/drg/du

—i(piti+patat+pstz+pats)

X G(fl - f4, f2 - t4, f3 - l4). (374)

By a suitable change of variable, one can show that

=278(p1+ p2+p3+ps)G(p1.p2.P3)
=276(py+ P2+ p3+pa)

/dtl/dtl//dtlll

(pr ' +pat”"+p3t") G(t l‘” l‘”’)

G(p1.p2.P3.P4)

(3.75)

Our task will be focused on

G(P1=0 P> =0, P3:0)
—G(Pz 123—0

/ dr / dr’ / dr"G(¢,¢",¢").  (3.76)

Note that the integral J defined in Eq. (3.69) can be
written as

J(tl, tz, t3, f4) = J(f] — t4, f2 — t4, f3 — t4), (3773)
87
J( ") =—— - -
( ) sinh(¢# —¢")sinh(¢#' — ") sinh(¢")
8tﬂ
~ sinh(#/— /) sinh(¢' = ") sinh(¢")
8ll/l
(3.77b)

~sinh(¢” —¢')sinh(¢#” = /") sinh(#"')’

so that, in leading order,

G(pi=1,2.3 :0) zi/dt’/dt”/dt”’J(t’,t”,t’”)
Q(9) 7
H{ 4x

— A=

It is clear that we have the same structure of corrections as
for the two-point function. One can conveniently express
the correction as the sum of seven terms, which contribute
up to relative order g,

(3.78)

G(pizi3=0) _ 27:7,., (3.79)

Q(9) —

where the 7; will be defined in the following. We have
the first correction 7 “for free,” because it is just the
multiplicative correction F,, multiplying the leading-order
instanton result,

4n* 4n* 59 7

T, =—F ~+-N+-N? 3.80
TR (6 TR > (50
For the Green function in coordinate space, the replace-
ment of two classical fields in the leading term

Ingﬂﬂy(s(tl,tz,t\g,té;) by two fluctuations leads to two

terms [7,]; and [7;],, where the subscript [---]; is
motivated by Eq. (3.64). After suitable variables change,
their contribution to the four-point function at zero momen-
tum can be written as

[T5], :——/dto/dt’/ t”/ dr”

x Ealto)a(t")AL(E, 1"), (3.81)
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7= 200 Ly o o [

X gcl(Z‘O)gcl(ﬂ”) t t” (382)

To evaluate the compensating perturbative terms [7,], and
[T3], from Eq. (3.65), one replaces [see Eq. (3.43)]

Z(()?i/}(tls t)

Z,(0) (3.83)

0
af

- NAy(t;,1,)].
N[ o(ti,12)]

(There is no integration over a collective coordinate here, as
we are analyzing the perturbative propagator.) For the term
involving the instanton saddle point, we have

(2)
ImZy (13, 14) N < 1) %Q(g)

Z,(0) g/ N

x / diola(ts = 10)Ealts = 1o).  (3.84)

After suitable variable changes, one arrives at the following
“counterterm” from the expression in Eq. (3.65),

/ dr, / dr / dr’ / dr”

x Ea(to)a (") Ag(7. 1"), (3.85)
(T3], 2(N / dt, / dr / dr” / dr"”
x fcl(to)fcl(f’” Do(,1"). (3.86)
Hence, 7, and 73 can be expressed as
6 48x?
T, =[To], + T2, = _EH% =—, (3.87)
N-T , 2 2

Note that 7, and 7 5 are analogous to the terms G, and Gj3,
incurred for the two-point function. The integrals H, I,
and /, can be found in Appendix A.

Now we must treat the analogues of the terms Gy 567,
generated by the Jacobian factor F 7, originally derived for
the two-point function. These terms are generated by the
replacement of one classical field configuration by a
fluctuation combined, via the Wick theorem, with a
contraction with a second fluctuation in the action +
Jacobian factor F ;. For the two-point function, we have
two possibilities to choose one field out of two for the cases
where only one field is replaced by a fluctuation. For the
four-point function, we have four such possibilities, and so
we could tentatively conjecture that the corrections 7 4, 7 s,

T, and 7 receive a relative factor of 2, as compared to the

two-point Green function. This will turn out to be a good

guess, but it needs to be verified by an explicit calculation.
We now consider the term

N / dig, (1) - £ (021 (3.89)

from Eq. (3.25). One obtains two corrections 74 and 7 5 to
G(pi—123 =0)/9Q(g), according to Eq. (3.79),

/ dry / dr / dr” / dr” / deé, (tg)Ea(?”)

x Eq(t)a(t)Ar(t, )AL (2, 1)

(3.90)

Ts5= /dto/dt’/dz”/dt’”/dt

X gcl(IO)gcl(ﬂ”)gcl gcl(t)AT(t t AL t t”

4N -1)

__ W= sy __r N-1). 3.91
p 14 g( ) (3.91)

From the term

\/?g{—% / diy(1) -gcl(t)] (3.92)

in Eq. (3.25), one has the correction

/ dry / dr / dr’ / dr” / dr

x Eq(to)Eaq (") Ea(1)Eq (1) AL (2, 1")

3 67r

—2H3J, = (3.93)
g

The last correction is from the term

Sy . ! / dig (1) - &, (1) (3.94)

in Eq. (3.25) and reads as

-1
7, ——N—/dto/dt’/dt”/dt’”
g

X/dtgcl(to)gcl(t/”)é:cl(tl)écl(t)AL(tv ")

N -1

The end result is given as follows:

125001-20



TWO-LOOP CORRECTIONS TO THE LARGE-ORDER BEHAVIOR ...

PHYS. REV. D 101, 125001 (2020)

G(Pi:lzs = 0) !
Pr=TY — Tl
Q(9) ;
Azt 72 { 5x?
==+ |52+
g 9 6

O 77> )
+N<T—4+14C(3)> ?N]

- 14£(3)

and involves, again, a couple of Riemann zeta functions.
Finally, we recall the Fourier transform of Eq. (3.70) in the
form

gaﬁy&(pizlﬁﬁ = 0) _ 6aﬁ5;/5 + 5(1y6ﬂ6 + 6{155}/ﬁ

Q(9) N(N +2)
G(Pi:1.2,3 = 0)
W’ (3.96)

exhibiting the angular structure within the internal
O(N) group.

I. Two-point wigglet insertion

In this section we will derive the large-order behavior of
the two-point correlation function with a wigglet insertion
computed at zero momentum. Using the previous results
relative to the two- and four-point functions, its derivation
will be straightforward. We define the (imaginary part of
the) wigglet insertion into the two-point Green function
Gus(t1, 1), according to Eq. (3.7), as follows:

2
(12) _ 0
gaﬂ (ti 1) = Wgaﬂ(m’ 1, 1) o
o0? 2
= Wlmwgiﬂ(m, t] ) tz) m2:1
/dsImWaﬁW(s 8§, 11, 1)

1

= —E/dsgaﬂ}/y(sv S, tl’tZ)' (397)

Here, G,5(m. 11, 1) is the analogue of G4(t,, 1, ), defined in
Eq. (3.15), but with respect to an action with a variable
mass term,

Simati] = [ (3 +2 0+ o). (399

In view of the result (3.68) for the leading contribution
to the four-point function, we have the relation [see
Eq. (3.68)]

1
g(aﬁ )(tlvt2) 2/dsgaﬂy}/(svs’tl’t2)

B Q(g) o 1 16(1; —15)
2 N/}gzsmh(tl —1)’ (3.99)

where we have used Eq. (3.32). One can show that

gfw )(tl t,) can be written in terms of the time coordinate
differences only,

G (11.1) = G (1, — ). (3.100)
In leading order, we anticipate the result
Q(9) 8op HiH,
d(t; = )61 2 (1, — 1)~ — 2 T 1
/ (1 z)g(,ﬁ (1 2) 2N 92
Q(g) 84p 87*
_TWﬂF’ (3.101)

where we have used, again, integrals from Appendix A. To
analyze the two-loop corrections, we first need to remem-
ber the angular structure. First, it is easy to see that, from
Eq. (3.70), we have

S,
Gapr(11:12.15.1) =7 G111 3.10). (3.102)
So,
G (1.1 =35 [ dsGs.5.t1=12)
3, 5,
=" 215 (h,fz):—iéH(tl—tz), (3.103)

where we appeal to Eq. (3.73) and implicitly define the
function H(t,1,) = H(#; — ;). Let us investigate the
Fourier transform

H(pl,pz) = /d[l/dtze—i(P1f1+P2fz)/dSH(tl’tz)
= 278(py + p2)H(p1), (3.104)
where
H(p) = /dl‘//dt'/e_ipt”G(t',t',t”), (3.105)
so that

H(p = 0) :/ds/d(t1 C)G(s,s,11,5), (3.106)

where we again use Eq. (3.73). In leading order, in view of
Egs. (3.71) and (3.77b), one has
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H(p =0) /dt’/dz” J(2, 1,1
“olg 7
H?H, 8
ST :iz, (3.107)
g g

confirming the leading-order result given in Eq. (3.101).
One can conveniently express the correction as the sum of
seven terms, which contribute up to relative order g,

H(p 0

->ou.

(3.108)

We have the first correction “for free,” because it is just the
multiplicative correction F,, multiplying the leading-order
instanton result,

8’ 872

2 5 9 7
fZ:7+ﬂ<

2
c T NN > (3.109)

Just as we did in our analysis of the four-point function, we
now replace, in the Green function in coordinate space, two
classical fields by fluctuations and obtain two terms,

1
[U2]1 = _g‘/ dr / dl‘”AL(l/, t//) / dl’”[fcl(t'")]z

_g/dtlécl(tl)/dtllAL(t,, tl/)/dtlllécl(t///)
—é / arAL(F. 1) / ar'ea (") / d" gy (1),

(3.110)

dr

dt/IAT(t t/l /dtlll[fc(lll)}
N—
———— [ drA(r. Y
; / A (7, 7)

X / dtllgcl(tll) / dt/llgcl(tl/l) .

From the perturbative compensating term in Eq. (3.65),
we have

el =+ [ar [arag(e.e) [armigaenr
+2 [atuo) [araote.r [ o)
_é/dt/Ao(t/’t/)/dtllgd(t//)/dt/llgd(t///)’

(3.112)

(3.111)

(U], / dr / dt"Ay(7, 1) / de”'[E4(f"))?
+T/th (7,7)

X/dt”gcl(t”)/d[”lgcl(t/”).

With the help of the integrals listed in Appendix A, we can
express U, and U3 as follows:

(3.113)

1 4 1
Uy = ——Hyl, == H,(J, - J\") -~ H}N,
g g g
48 + 3172
_ ol (3.114)
39
1 N-1
Uy = ——H212 ——H2N2
g g
2(N -1
AN L)), (3.115)
‘We now consider the term
N&Y [/ deg (1) - ()2 (1) (3.116)

in the Jacobian Eq. (3.25). After the application of the Wick
theorem and suitable variable changes, one arrives at a
contribution to H(p = 0)/Q(g), consisting of the sum of
two terms, U, and Us,

u4=—g / de (1) A (1.1)
« / ar AL (1.1) / 4 Ea(1") / A (e (P2

—g / dica(1)A (1.1) / dr'Ea(V) AL (1.1) [ / dr"fcmt”)r

6 6 , 1972
:—*H H2J3—*H M3:—7,
g g

3.117
= (3.117)

_#/dﬂfcl(l‘)AT(I,I)/df/AL(t’t/)

X/ de"[Eq (1")] / d" [ (e")]?
_2(N-1)

/ diéa (1) Ar(1.1) / dVEy(1)AL(L0)

X [/dz”écl(t”)]z

2(N-1)

2(N=1
S H1H2J4—( )

H?M,=0. (3.118)

From the term
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V=9 [—% / diy (1) -é:'d(t)] (3.119)

in the Jacobian given in Eq. (3.25), one has

3
Uo=5 / dic (1) / A/ A (1.1) / 4 (1) / de" (e ()2

+23g/dt§cl(t)/dtlécl(t/)AL([’t/) {/dﬂ/écl(zﬂ)]z
3

3 97?2
The last correction is from the term
N -1
,/—gT dt;ﬁ(t) '§c1(t) (3.121)

in Eq. (3.25) and leads to the correction

N-1
U7Z—z—g/df«fcl(’)/d’jAL(”’/)

X/dt”tfcl(t”)/dt’”[écl(t”’)]z

—Nz—_gl/dfécl(f)/dflécl(f')AL(mj) [/dt”fcl(t”)r

N-1 N-1 2(N-1
Ny g, N gy, N
29 29 g

(3.122)
The final result [see Eq. (3.79)] for order-g corrections to

the imaginary part of the wigglet insertion into the two-
point function reads as follows:

H(p=0) 872 1[ 3572
—— =) Ui=—5+-|20+——-14(3

2 2
+N<IST”—4+ 145(3)) +7%N2} . (3.123)

It has the same structure as the result for the four-point
function, given in Eq. (3.96).

IV. CONCLUSIONS

A. Large-order hehavior: A summary

In this article, we have concentrated on the one-
dimensional field theory, with an internal O(N) symmetry
group, in the normalization [see Eq. (2.1)]

Slg(t)] = / dtB <a€8(tt)>2_|_;g2(t) +%€4(I) ,

where  q(1) = {q, (1), ....qn(1)} = >3-, qa(t)es.  The
start time #, of the instanton and the coordinate z; with

(4.1)

i=1,..., N —1 are the collective coordinates of the
problem. Furthermore, we have analyzed the functional
determinant of the transformation of the path integral, into
integrals over the collective coordinates and path integrals
over paths orthogonal to the zero modes, in Sec. I C, with
the result for the Jacobian given in Eq. (2.21).

Based on the results given in Sec. III and the dispersion
relations studied in Sec. I B, we are now in the position to
write down the large-order behavior of various perturbative
expansions, of the partition function and various correlation
functions [in the sense of Egs. (1.8) and (1.9)]. We have
from Eq. (2.55), for the imaginary part of the ground-state
energy of the O(N) oscillator,

ImEy(g) — lim (_ 1 Ile(ﬂ))
QAlg)  rw\ Q9B Zo(p)

7 9 5
_ 2
= [1+g(—32N +16N+24>]. (4.2)

Here, according to Eq. (3.32), one has

= (43) (i)

Based on the formalism outlined in Sec. I B, this can be
converted to the asymptotics of the perturbative coefficients
of the ground-state energy in large orders [see Eq. (2.55)].
One can identify Ey(g) = G(¥)(g) with the ground-state
energy and study the perturbative expansion G (g) =
>k GE?) g%. Within the conventions outlined in Eq. (1.9),
one has n =0, D =1 and

(4.3)

8N/2
“T(N/2)

cO(N, 1) = (4.4a)

7 9 5
dO(N,1) =—_-N>+—N+ .

32 16 24 (4.40)

The two-point function has the angular structure [see
Eqgs. (3.22) and (3.27)]

J,,
ImG((:t?(tl — 1) = Gup(t1, 1) = Wﬂg(ﬁ —1). (4.5)

We recall that Qa/,(tl, 1), as defined in Eq. (3.15), is the
imaginary part of the two-point function G4(f; — ), in
the sense in Sec. I B. The result for G(p = 0) = [dr'G(¢')

of the “scalar” two-point function at p =0 has been
recorded in Eq. (3.53),
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Gp=0) _
9A(9)

272 5 5 703
-2 h o
g [ + {24+2ﬂ 4r?
9 ¢ (3)
+<E 272 4n?
For the imaginary part G(p = 0), this translates into the

following coefficients in the large-order asymptotics,
according to Eq. (1.9):

N+ 32N2H. (4.6)

N/2
@(N,1) =227 rN/a) (4.7a)
5 5 7¢03)
B v we e
9 7¢(3) 7
+ <E_ﬁ+ = >N+32N2 (4.7b)

Of course, we have n = 2 in the sense of Eq. (1.9) for the
two-point function at zero momentum transfer as well as for
its derivative, which gives rise to the following imaginary
part, according to Eq. (3.62),

2. g| 4
et ol 520
93¢(5) 36 93¢(5) TN?
~ o +<‘ﬁ‘—+ %A>N+§5H-
(4.8)

The leading and subleading large-order asymptotics for the
perturbative coefficients of 0‘9—;29 |p

[see Eq. (1.9)]:

_, are given as follows

8N/2
T(N/2)°

cOP)(N, 1) = —z* (4.92)

24 7t a* 27t
36 935 7
+<——+9 dl )>N+ N2,

o (.= 4 4 _2B)_930)

16 27t 32 (4.96)

For the imaginary part of the four-point function, according
to Eq. (3.70), we have

BapBys + BayOps + 60y
N(N +2)

1=ty ly =ty 13— 1y).

gaﬁyﬁ(tl s Iy, 13, t4) =
x G(t (4.10)

One defines according to Eq. (3.76),

G(p1=0,py =0,p3 =0) =G(p;_1,3 =0)

:/d[//dtl//dt”lG(t/,t”,t/”).

(4.11)

The result, to relative order g, is given by [according to
Eq. (3.90)],

13 74)

G(P1123—0 14{ {
-2

Q9
Gt )

(4.12)

The perturbative expansion of the imaginary part
G(pi=123 =0) of the four-point function therefore has
the following asymptotics of the perturbative coefficients
[see Eq. (1.9) with n =4]:

8N/2
(N, 1) = 4z* F) (4.13a)
5 13 703
WW”Z%*?‘i)
9 7¢(3) >
+<16 53 >N+32N (4.13b)

Finally, for the imaginary part of the two-point function
with a wigglet insertion, computed at zero momentum, we
have the following expression, according to Eq. (3.103),

g,(zif)(tl ) = —Llf,H(fl — ). (4.14)
The quantity of interest is [see Eq. (3.106)]
H(p=0) = /dt’H(t’), (4.15)
for which we obtain the result [see Eq. (3.123)]
H(p=0) 8> 35 5 73
(p=0)_ 8 g3 C(z)
Q(9) i 24 27 Ax
15 1 74(3) )
— 4.16
+(16 2n2+ 4n? >N+32N ( )

The large-order asymptotics of the perturbative coefficients
for H(#; — t,) are as follows:

(1.2) 2 g/
(N, 1) =8 , 4.17
"IN, 1) RN (4.17a)
35 5 7Z(3)
(1.2) T, = e\
AN =352 " 4
15 1 7¢03) X
. N+—N2.  (4.17b
+<16 272 an > +32 (4.170)
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We note that the large-order asymptotics have the param-
eter n =4 in the conventions delineated in Eq. (1.9)
because of the additional two fields that have to be inserted
in view of the mass derivative.

B. Interpretation of the results

In this article, we have laid the groundwork for the
accurate systematic analysis of the large-order behavior of
perturbation theory for the correlation functions in the
N-vector model. Our paradigm is that once the number of
loops in a Feynman diagram becomes very large, the large-
order behavior of the N-vector model is determined by
classical field configurations (instantons), which determine
the cut of the correlation functions for negative coupling.
They act as a second saddle point of the Euclidean action.
The (longitudinal) fluctuation operator around the saddle
point has one negative eigenvalue, commensurate with the
imaginary square root of the determinant of this operator.

Through the evaluation of corrections to the classical
configurations, we are able to evaluate corrections of
relative order ¢ to the correlation functions, which, via
dispersion relations, immediately lead to the corrections of
relative order 1/K to the perturbative coefficients. The
connection is elucidated in great detail in Sec. I B.

In all cases, the leading term of the order-g correction, in
the large-N limit, is given by the multiplicative correction
to the partition function term, i.e., due to the factor F z
given in Eq. (3.19). One might wonder why the term of
order N2 in the correction to the partition function con-
stitutes the universal leading correction in the large-N limit.
To understand this phenomenon, let us consider the
computational origin of the corrections. The leading term
in a correlation function (for the imaginary part) is given by
a term in which one replaces all field configurations by
instantons. Then, a set of universal corrections is obtained
when one keeps the instanton field configurations inside
the main integrand but considers the corrections due to the
field Jacobian, and due to the effective action around the
instanton, which, together, give rise to the universal
correction factor Fz given in Eq. (3.19).

Let us now consider the additional corrections obtained
when one replaces, instead, one of the instanton field
configurations by a fluctuation. Then, for the order-g
corrections to the imaginary part of the partition function,
one has to combine the fluctuation with the factor 7 ; from
Eq. (3.25). This combination leads, at most, with regard to
N, to the product of a longitudinal fluctuation factor, which
carries no N, and one additional factor N due to the
transverse fluctuations encoded in )12 =1+ )ﬁ. Finally,
replacing two instanton configurations by fluctuations, one
obtains at most a single factor of N, generated by a term
proportional to . The universality of the large-N limit of
the correction terms can be justified based on the decou-
pling of expectation values of fields at different spacetime

points in the limit of large N, as explained in the text
following Eq. (2.2) of Ref. [26] and Chap. 14 of Ref. [27].
In fact, according to formulas given in Chap. 14 of
Ref. [27], critical exponents reach universal values in the
large-N limit and depend only on the spatial dimension of
the system.

Our expressions for the two-point correlation function,
for its second derivative, for the four-point correlation
function and for the two-point correlation function with a
wigglet insertion, computed at zero momentum, were
obtained by integrating the corresponding correlation
function in coordinate space over the difference of all its
coordinate with respect to one of them. Incidentally, it is
interesting to note that this procedure is completely
equivalent to an alternative procedure where one fixes
one of the time coordinates in a correlation function
to zero, and integrates over all the others. This equivalence
holds due to the time translation invariance of the corre-
lation functions. One of the most important additional
conclusions of the current article is that, for the correlation
functions, the two-loop corrections to the imaginary part,
of relative order g, have a much more complex analytic
structure as compared to those of the ground-state
energy.

A remark on our notation is in order. We apologize to the
reader for the many G’s in our paper. Generic n-point Green
functions are denoted by the sans-serif G, according to
Eq. (3.13). We also recall that G, according to Eq. (3.15),
is the imaginary part of the two-point function, while G,,4,5,
according to Eq. (3.63), is the imaginary part of the four-
point function. Incidentally, we also have the terms R;
(i =1,...,7) for the contributions to the two-point function
at zero momentum transfer, according to Eq. (3.48). Seven
corrections are also incurred for the contributions to the
derivative of the two-point function, summarized in the
terms S; [see Eq. (3.54)]. For the four-point function one
defines the scalar Green function G according to Eq. (3.76).
Finally, we have the seven terms 7; (i = 1,...,7) for the
four-point function at zero momentum transfer, according
to Eq. (3.79), and the seven terms U; (i = 1, ...,7) for the
two-point function with a wigglet insertion, according to
Eq. (3.123).

A remark on the character of the factorial divergence
of the perturbation series is in order. According to
Eq. (1.9), all factorially divergent series calculated in this
work are alternating in large order, in view of the factor
(=1/A)X in Eq. (1.9), where A = 4/3. Indeed, it is known
that perturbation series in ¢* theories are factorially
divergent, Borel summable series [6—8,28—-30]. In a more
general context, such series constitute the conceptually
simplest manifestation of so-called resurgent expansions
(transseries), which have recently been shown to lead to
adequate representations of physical quantities of interest in
a number of mathematical investigations and in field
theories [13-15,31-35].
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In principle, based on the results presented in the current
paper, one could go further and calculate the large-order
behavior of the renormalization constants of the one-
dimensional O(N) field theory (see Sec. B). We recall
that the renormalization constants Z;, (wave function), Z
(wigglet insertion), Z, (coupling constant), and Sdm? (mass
counterterm) are determined by the renormalization con-
ditions imposed on the vertex functions, which can be
obtained from the correlation functions (calculated here)
via a Legendre transformation. The renormalization con-
stants, in turn, determine the large-order behavior of the
beta function $(g), the anomalous dimension function 7(g),
and the correlation length function #,(g), which enter the
Callan-Symanzik equation. The Callan-Symanzik equation
is a RG equation fulfilled by the vertex functions of
the theory (a minireview on this aspect is given in
Appendix B). However, in one dimension, we refrain from
engaging in this endeavor because of the absence of a
second-order phase transition due to the low dimensionality
of the system under study, which prevents the system from
undergoing a phase transition to the low-temperature phase.
In higher dimensions, the critical exponents can be studied
on the basis of the Callan-Symanzik equation [9-12].

One of the main conclusions of the current paper is that
the calculation of corrections to the large-order growth of
perturbation theory for correlation functions, beyond the
plain calculation of the partition function, is possible for
field theories with a nontrivial internal structure [here, the
O(N) symmetry group]. The results presented here are a
first step toward the evaluation of subleading corrections to
the factorial asymptotics of perturbative coefficients in
perturbative field theory, for physical quantities of interest
beyond the partition function. The evaluation of subleading
corrections to the large-order asymptotics of Feynman
diagram coefficients in large loop-order provides us with
an alternative method to enhance our understanding of the
predictive limits of field theory. The ultimate goal of the
endeavor is to “interpolate” between (necessarily finite-
order) perturbative Feynman diagram calculations and the
large-order asymptotics (about “infinite loop” order), the
latter being enhanced by the evaluation of the subleading
corrections about the instantons. The latter, in turn, lead to
corrections of relative order 1/K (two-loop order discussed
here) to the large-order behavior of perturbation theory. The
generalization to relative order 1/K? (four-loop order about
the instanton) and the consideration of field theories in
higher dimensions are the natural next steps in this program
and are currently under investigation.
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APPENDIX A: INTEGRAL TABLE

We first list integrals that involve only the instanton,

Hi = [ dttale) = Vo (A1)
Hy = [ area(o) =4 (A2)
H; = /d”zé’cl(f) = % (A3)

Integrals involving the subtracted longitudinal and trans-
verse propagators read as follows:

I = / d, / dfAL(11.13) = Ag(t1. 1)) = —4,  (A4)

12Z/dll/dlz[AT(ﬁJz)—Ao(’hfz)]
7 7
=1-2 1. (AS)

In addition, we have integrals involving longitudinal and
transverse propagators and instantons,

Ji :/dflé’cl(fl)/dszL(flJz) =0, (A6)
Jz:/dflécl(ll)/dszL(ﬁJz) :%v (A7)
J3:/dtlgcl(tl)AL(thtl)/dt2AL(t1st2):ﬁz’ (A8)
J4:/dtlfcl(tl)AT(tlvtl)/dt?.AL(tlvt?.):ﬁi' (A9)

Integrals involving the subtracted longitudinal and trans-
verse propagators, and powers of the Euclidean time
variable, are needed for the second derivative of the
two-point function,

K, _/dtl/dtﬂ%[AL(tlth)_AO(tleZ)]

7[2

--Z (A10)
K, _/dtl/dtﬂ%[AT(tlth)_AO(II»IZ)]

_ 7t Tt 7 5 31

_2+ﬁ_ﬁ_ﬂ” 5(3)—75(5)- (A11)

Furthermore, we have the following integrals with mixed
contributions:
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K, = /dt1 /dtztltz[AL(tl,tz) = Ag(t1, )]

77> 21
= -5 - 1-50). (A12)
K, Z/dfl/dfzflfz[AT(fhfz)—Ao(ﬁsfz)]
B 1, 31
*—lJrﬁ—ﬂ” §(3)+ZC(5)- (A13)

Among all integrals considered, the integrals K, and K,
are by far the most difficult to evaluate.

One may derive a relatively compact representation for
K, via the substitutions 7, = 2 In(v), followed by the 7,
integral, then followed by #; = 2 In(u), and u = /x, so
one would effectively substitute 7; = In(x). This results in

[ IP(x)  In’(x)(x* = 1)arctan(x)
k2= [) dx{ x(x? +1) X (x2+1)

_iln*(x)

1 4 x?

[Liy(—ix) — Liy (ix)] } (Al14)

This representation is seen to involve Legendre’s y,
function [36,37],

() =3 (L) ~Li(-2).  (A19)

Formula (A11) was found by the PSLQ algorithm [20-23].
One can form the combinations

K, = /dfl/dfz(ﬁ — ) AL(1. 1) — Ag(t1. 1))

=2(K,—K;)=2+ ’;2 +21£(3), (A16)
K, = /dfl /dfz(h — 1) [Ar(11, 12) — Ag(11. 12))]
- = 93
2Ky = Ke) = 6= 245, (A17)

We have additional reference integrals with a second
derivative insertion, which are important for the calculation
of the derivative 9>G/dp?, at p = 0,

3

L, = dr all dt tzA 1,1) =——, AlS

1 / 151(1)/ 242 L(l 2) 2\/5 ( )

L2 /dtlé l(tl)/dtthAL(tl t2) — ) 3 (A19)
¢ 2 ' 4\/5’

L; :/dtlgcl(tl)AL(thtl)/dt2t%AL(t1’t2)

573 T
_ _ , A20
16vV2 122 (A20)
Ly =/dﬁfcl(ll)AT(ll,ll)/dtzl‘%AL(fhh)
973
=—. A21
32v/2 (a21)

For the wigglet insertion, i.e., the Green function G('?) at
zero momentum, we also need the integrals

M, :/dflffcl(h)/dfzéfcl(fz)AL(flJz) =-1, (A22)

M= [andatn) [dngaatne) =1 (a23)
M3 :/dhfcl(fl)AL(fhfl)/dfzfcl(fz)AL(lulz)
1
=2 (A24)
M4:/dllfcl(fl)AT(fufl)/dfzécl(fz)AL(h,fz)
_ —}L. (A25)

In view of the confluence of arguments of the propagators
in the wigglet insertion, additional integrals are required,

M= [ aniann) - Aol = =g, (A26)
M. = [ anlaenn) - ot = =3, (A20)

Finally, we also need the integral

i = /dtlfcl(ﬁ) /dton(fl’IZ) =2z, (A28)

which is obtained from (A6) by the replacement of the
longitudinal propagator with its free counterpart.

APPENDIX B: CALLAN-SYMANZIK EQUATION

In principle, the application of the Callan-Symanzik
equation [24,25] to the calculation of critical exponents has
been described in a number of monographs [27,30,38,39].
However, to put the calculations reported here into per-
spective, we should include a few remarks regarding
the relation of the quantities calculated here to the
RG functions that enter the Callan-Symanzik equation.
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The Callan-Symanzik equation is a RG equation fulfilled
by one-particle irreducible vertex functions I'“"), derived
via Legendre transformation from the connected correlation
functions (see Chap. 7 of Ref. [30]).

The Callan-Symanzik equation is obtained by differ-
entiating the vertex functions with respect to the renor-
malized mass parameter while holding the bare parameters
constant and reads as follows:

o Bla) = () =an(a) )|

a" ({ }z 1,{]71}, lva’gR)

=[2- U(QR)]F PR ({ql i= 1’0 {Pz}z 13Mgs9gr). (BI1)

Here, F(“'") is the n-point vertex function with a wigglet

insertions. In the term with I, we have to set the

momentum argument corresponding to the wigglet inser-
tion number a + 1 (the one created by the action of the

operator 9/dm% on F ™) to zero. As already mentioned,
the vertex functions are obtained from the connected
correlation functions via a Legendre transformation. For
example, the vertex function T'?) = F( ) is the inverse of
the two-point correlation function W) [see the discussion
following Eq. (7.80) of Ref. [30] |. The four-point function
' =14 is obtained from W via “amputation” of the
external legs and sign inversion [see the discussion follow-
ing Eq. (7.80) of Ref. [30], or Eq. (4.24) of Ref. [39]].

Bare (index zero) and renormalized vertex functions are
related by [see Eq. (10.20) of Ref. [30] ]

T ({5 {Bi Y1 mos 90)

:Z;nﬁ(ZZ_Zz) i ({giyis{pitiismr, gr)- (B2)

Here, Z,, is the wave function renormalization, Zy is the
renormalization of the wigglet insertion, and the bare and
renormalized mass parameters are related by

m} = (m% + 6m2)/Z¢, (B3)
where dm? is the mass counterterm.

The wave function renormalization constant Z o 1s fixed
by the condition

0

2)s o
T (Br. Bas m gg) = 1. (B4)
p) -
pl p:i=0
The renormalization condition
F(z) = S ) o — 2 B5
R (pl’pZ’mR’gR”ﬁi:o = Mg (B5)

fixes the mass counterterm Sm?. The coupling constant
renormalization constant Z,, is fixed by the condition

4) /5 - - - _
Fge)(]’l,m;l?ml% m%eng)L;i:() = mj‘e Pgr. (B6)
where gy is the dimensionless, renormalized coupling, and
D is the spatial dimension. Finally, the wigglet insertion

renormalization constant Z . is determined by

)

% (s P1s D2y 9R) |5, 50 = 1. (B7)

The renormalization-group functions are obtained as

follows:
Z00 )" @

ploe) ==4=D) |50 1n (3

Ogr Z(/;(QR)
n(g) = Algr) 5~ ln(Z¢) (B9)
(o) = Plon) 5. (B10)

From these relations, one calculates the critical value g¢*
determined by the condition (¢*) = 0 which determines
the infrared non-Gaussian fixed point of the RG flow,
which is approached by the system because of the relevance
of the ¢* interaction in dimensions lower than four. Critical
exponents are determined by the values of the RG functions
at the critical point, n = 5(g*) and 1, = ,(g*), via well-
known hyperscaling relations. For example, the critical
exponent v of the correlation length is determined as
v=1/(2+n,), while the critical exponent & of the heat
capacity is @ = 2 — Dy, and the critical exponent y of the
magnetic susceptibility is y = v(2 — 7).
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