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Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials
science by providing tools to support and guide experimental efforts and for the prediction of atomistic and
electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-
driven methodologies to model complex chemical and materials processes. Over the last few decades, the rapid
development of computing technologies and the tremendous increase in computational power have offered a
unique chance to study complex transformations using sophisticated and predictive many-body techniques that
describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In
enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources
to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem
computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach

and outlook.
I. INTRODUCTION

The NorthWest Chemistry (NWChem) modeling soft-
ware is a popular computational chemistry package that has
been designed and developed to work efficiently on mas-
sively parallel processing supercomputers™3. It contains
an umbrella of modules that can be used to tackle most
electronic structure theory calculations being carried out
today. Since 2010, the code is distributed as open-source
under the terms of the Educational Community License
version 2.0 (ECL 2.0).

Electronic structure theory provides a foundation for our
understanding of chemical transformations and processes in
complex chemical environments. For this reason, accurate
electronic structure formulations have already permeated
several key areas of chemistry, biology, biochemistry, and
materials sciences, where they have become indispensable
elements for building synergies between theoretical and
experimental efforts and for predictions. Over the last few
decades, intense theoretical developments have resulted
in a broad array of electronic structure methods and their
implementations, designed to describe structures, interac-
tions, chemical reactivity, dynamics, thermodynamics, and
spectral properties of molecular and material systems. The
success of these computational tools hinges upon several
requirements regarding the accuracy of many-body mod-
els, reliable algorithms for dealing with processes at var-
ious spatial and temporal scales, and effective utilization
of ever-growing computational resources. For instance,
the predictive power of computational chemistry requires
sophisticated quantum mechanical approaches that system-
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atically account for electronic correlation effects. Therefore,
the design of versatile electronic structure codes is a major
undertaking that requires close collaboration between ex-
perts in theoretical and computational chemistry, applied
mathematics, and computer science.

NWChem ¢, like other widely used electronic structure
programs, was developed to fully realize the potential of
computational modeling to answer key scientific questions.
It provides a wide range of capabilities that can be deployed
on supercomputing platforms to solve two fundamental
equations of quantum mechanics®'1' - time-independent
and time-dependent Schrodinger equations:

HW) = E|¥) ()
L OY)

and a fundamental equation of Newtonian mechanics
m;a; = Fi s (3)

where forces F; include information about quantum effects.

Given the breadth of electronic structure theory, it does
not come as a surprise that equations (I)-(2) can be solved
using various representations of quantum mechanics em-
ploying wavefunctions (|¥}), electron densities (p (7)), or
self-energies (X(®)), which comprise the wide spectrum of
NWChem'’s functionalities to compute the electronic wave-
functions, densities, and associated properties of molec-
ular and periodic systems. These functionalities include
Hartree-Fock!21% self-consistent field (SCF) and post-SCF
correlated many-body approaches that build on the SCF
wavefunction to tackle static and dynamic correlation ef-
fects. Among correlated approaches, NWChem offers
second-order Mgller-Plesset perturbation theory; single-
and multi-reference, ground- and excited-state, and linear-
response coupled-cluster (CC) theories; multi-configuration
self-consistent field (MCSCF); and selected and full config-
uration interaction (CI) codes. NWChem provides exten-
sive density functional theory'®1¥ (DFT) capabilities with
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Gaussian and plane-wave basis set implementations. Within
the Gaussian basis set framework, a broad range of DFT
response properties, ground and excited-state molecular
dynamics, linear-response (LR) and real-time (RT) time-
dependent density functional theory (TDDFT) are available.
The plane-wave DFT implementations offer the capability
to run scalable ab initio and Car-Parrinello molecular dy-
namics'?, and band-structure simulations. The plane-wave
code supports both norm-conserving?)*22'and projector aug-
mented wave (PAW > pseudopotentials.

For all DFT methods outlined above, both analytical
or numerical gradients and Hessians are available for ge-
ometry optimization and vibrational analysis. Addition-
ally, NWChem is capable of performing classical molec-
ular dynamics (MD) simulations using either AMBER or
CHARMM force fields. Through its modular design, the ab
initio methods can be coupled with the classical MD to per-
form mixed quantum mechanics and molecular mechanics
simulations (QM/MM). Various solvent models and rela-
tivistic approaches are also available, with the spin-orbit
contribution being only supported at the Hartree-Fock (HF)
and DFT levels of theory and associated response proper-
ties. The NWChem functionality described is only a subset
of its full capabilities. We refer the reader to the NWChem
website® to learn about the full suite of functionalities avail-
able to the user community.

Currently, NWChem is developed and maintained pri-
marily by researchers at the Department of Energy (DOE)
Pacific Northwest National Laboratory (PNNL), with help
from researchers at other research institutions. It has a
broad user base, and it is being used across the national
laboratory system and throughout academia and industry
around the world. In this paper, we provide a high-level
overview of NWChem’s core capabilities, recent devel-
opments in electronic methods, and a short discussion of
ongoing and future efforts. We also illustrate the strengths
of NWChem stemming from the possibility of seamless
integration of methodologies at various scales and review
scientific results that would not otherwise be obtainable
without using its highly-scalable implementations of elec-
tronic structure methods.

Il. BRIEF HISTORY

The NWChem project! 72423 started in 1992. It was
originally designed and implemented as part of the con-
struction project associated with the EMSL user facility
at PNNL. Therefore, the software project started around
four years before the EMSL computing center was up and
running. This raised challenges for the software develop-
ers working on the project, such as predicting the features
of future hardware architectures and how to deliver high
performing software, while maintaining programmer pro-
ductivity. Overcoming these challenges led to a design
effort that strove for flexibility and extensibility, as well as
high-level interfaces to functionality that hid some of the
hardware issues from the chemistry software application
developer. Over the years, this design and implementation
have successfully advanced multiple science agendas, and
NWChem’s extensive code base of more than 2 million

lines provides high-performance, scalable software code
with advanced scientific capabilities that are used through-
out the molecular sciences community.

NWChem is an example of a co-design effort harnessing
the expertise of researchers from multiple scientific disci-
plines to provide users with computational chemistry tools
that are scalable both in their ability to treat large scientific
computational chemistry problems efficiently and in their
use of computing resources from high-performance parallel
supercomputers to conventional workstation clusters. In
particular, NWChem has been designed to handle

e biomolecules, nanostructures, interfaces, and solid-
state,

e chemical processes in complex environments,

e hybrid quantum/classical simulations,

e ground and excited-states and non-linear optical prop-
erties,

e simulations of UV-Vis, photo-electron, X-ray spec-
troscopies,

e Gaussian basis functions or plane-waves,

e ab-initio molecular dynamics on the ground and ex-
cited states,

o relativistic effects.

The scalability of NWChem has provided a computa-
tional platform to deliver new scientific results that would
be unobtainable if parallel computational platforms were
not used. For example, NWChem’s implementation of a
non-orthogonally spin adapted CCSD(T) method has been
demonstrated to scale to 210,000 processors available at the
Oak Ridge National Laboratory’s (ORNL) Leadership Com-
puting Facilities,2%"2% whereas the plane-wave DFT code
has been able to utilize close to 100,000 processor cores
on NERSC’s Cray-XE6 supercomputer”? Although imple-
mented only for the perturbative part of coupled-cluster
with singles and doubles (CCSD)* and triples correction
(CCSD(T)),2' NWChem was one of the first computational
chemistry codes to have been ported to utilize graphics pro-
cessing units (GPUs)32 Several parts of the code have also
been rewritten to take advantage of the Intel Xeon Phi fam-
ily of processors - good scalability and performance have
been demonstrated for the ab initio molecular dynamics
plane-wave DFT code on the most recent Knights Landing
version of the processor.*34 The non-iterative triples part
of the CCSD(T) method has been demonstrated to scale to
55,200 Intel Phi threads and 62,560 cores through concur-
rent utilization of CPU and Intel Xeon Phi Knights Corner
accelerators >

I1l. DESIGN PRINCIPLES

NWChem has a five-tiered modular architecture. The
first tier is the Generic Task Interface. This interface (an
abstract programming interface, not a user interface) serves
as the mechanism that transfers control to the different
modules in the second tier, which consists of the Molecular
Calculation Modules. The molecular calculation modules
are the high-level programming modules that accomplish
computational tasks, performing particular operations using
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the specified theories defined by the user in the input file.
These independent modules of NWChem share data only
through a disk-resident database, which allows modules
to share data or to share access to files containing data.
The third tier consists of the Molecular Modeling Tools.
These routines provide basic chemical functionality such
as symmetry, basis sets, grids, geometry, and integrals. The
fourth tier is the Software Development Toolkit, which is
the basic foundation of the code. The fifth tier provides
the Utility Functions needed by nearly all modules in the
code. These include such functionality as input processing,
output processing, and timing. The Generic Task Interface
controls the execution of NWChem. The flow of control
proceeds in the following steps:

1. Identify and open the input file.

2. Complete the initialization of the parallel environ-
ment.

3. Process start-up directives.

4. Summarize start-up information and write it to the
output file.

5. Open the run-time database.

6. Process the input sequentially (ignoring start-up di-
rectives), including the first task directive.

7. Execute the task.

8. Repeat steps 6 and 7 until reaching the end of the
input file or encountering a fatal error condition.

The input parser processes the user’s input file and trans-
lates the information into a form meaningful to the main
program and the driver routines for specific tasks.

As mentioned in step 5 of the task flow control,
NWChem makes use of a run-time database to store the
main computational parameters. This is in the same spirit
of check-pointing features available in other quantum chem-
istry codes. The information stored in the run-time database
can be used at a later time in order to restart a calcula-
tion. Restart capabilities are available for most modules.
For example, SCF generated files (run-time database and
molecular orbitals) can be used either to continue a geome-
try optimization or to compute molecular properties. The
important second and fourth tiers are discussed as part of
the subsequent sections.

IV. PARALLEL TOOLS

The design and early development of Global Arrays=¢-3°

(GA) toolkit occurred in the same period when the
NWChem project started. The GA toolkit, which is the
central component of the Software Development Toolkit,
was adopted by the NWChem developers as the main ap-
proach for the parallelization of the dense matrices present
in quantum chemistry methods that make use of local basis
functions. In current computer science parlance, Global Ar-
rays can be viewed as a Partitioned Global Address Space
(PGAS) model that provides a high level of abstraction for
the programmer to the dense distributed arrays. In contrast
to message passing constructs such as MPI, where the de-
veloper has to worry about coordinating send and receive
operations, the use of Global Arrays in NWChem requires

so-called single-sided functions (e.g. put, get, accumulate)
to manipulate data structures in a single operation. The
choice of distribution model for sharing a given global ar-
ray among the memory available to the processes in use
plays a crucial role in efficient parallelization at large scale.

The GA toolkit has been ported to a variety of parallel
computer architectures. The porting process has focused in
the past in optimizing the ARMCI library. The Aggregate
Remote Memory Copy (ARMCI) library optimizes perfor-
mance by fully exploiting network characteristics such as
latency, bandwidth, and packet injection rate through the
use of low-level network protocols (e.g. Infiniband Verbs).
More recent porting options make use either of ComEx*!
or of the ARMCI-MPI*? communication runtimes. Both
ComEx and ARMCI-MPI make use of MPI libraries, in-
stead of low-level network protocols, albeit with different
approaches.

V. MAIN METHODOLOGIES

In this section, we describe the key methods that
comprise the Molecular Calculation Modules. We first
describe the Gaussian basis HF and DFT implementa-
tions for molecular systems. This is followed by the
post-SCF wavefunction-based perturbative (MP2), multi-
configuration SCF, and high-accuracy (coupled-cluster the-
ory) approaches for molecules, including the tensor con-
traction engine (TCE). Molecular response properties and
relativistic approaches are then described. The plane-wave
based DFT implementation for Car-Parrinello molecular dy-
namics and periodic condensed phase systems is described
next, followed by classical molecular dynamics and hybrid
methods.

A. Hartree-Fock

The NWChem SCF module computes closed-shell re-
stricted Hartree-Fock (RHF) wavefunctions, restricted high-
spin open-shell Hartree-Fock (ROHF) wavefunctions, and
spin-unrestricted Hartree-Fock (UHF) wavefunctions. The
Hartree-Fock equations are solved using a conjugate gradi-
ent method with an orbital Hessian based preconditioner®3.

The most expensive part to compute in the SCF code
is the two-electron contribution to the matrix element of
the Fock operator (resulting from the sum of Coulomb and
Exchange operators). To compute these matrix elements,
NWChem developers have implemented parallel algorithms
using either a distributed data approach** (where the Fock
matrix is distributed among the aggregate memory of the
processes involved in the calculation) or a replicated data
approach (where an entire copy of the Fock matrix is stored
in memory of each process).

Several options are available for the initial guess of the
SCF calculations. The default choice uses the eigenvectors
of a Fock-like matrix formed from a superposition of the
atomic densities. Other options include the use of eigen-
vectors of the bare-nucleus Hamiltonian or the one-electron
Hamiltonian, the projections of molecular orbital from a
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smaller basis to a larger one, or molecular orbitals formed
by superimposing the orbitals of fragments of the molecule
being studied. Symmetry can be used to speed up the Fock
matrix construction via the petite-list algorithm. Molec-
ular orbitals are symmetry adapted as well in NWChem.
The resolution of the identity (RI) four-center, two-electron
integral approximation has also been implemented >

In order to avoid full matrix diagonalization, the SCF
program uses a preconditioned conjugate gradient (PCG)
method that is unconditionally convergent. Basically, a
search direction is generated by multiplying the orbital
gradient (the derivative of the energy with respect to the
orbital rotations) by an approximation to the inverse of
the level-shifted orbital Hessian. In the initial iterations,
an inexpensive one-electron approximation to the inverse
orbital Hessian is used. Closer to convergence, the full
orbital Hessian is used, which should provide quadratic
convergence. For both the full or one-electron orbital Hes-
sians, the inverse-Hessian matrix-vector product is formed
iteratively. Subsequently, an approximate line search is
performed along the new search direction.

Both all-electron basis sets and effective core potentials
(ECPs) can be used. Effective core potentials are a use-
ful means of replacing the core electrons in a calculation
with an effective potential, thereby eliminating the need
for the core basis functions, which usually require a large
set of Gaussians to describe them. In addition to replacing
the core, they may be used to represent relativistic effects,
which will be discussed later.

B. Density Functional Theory

The NWChem DFT module for molecular systems uses
a Gaussian basis set to compute closed- and open-shell den-
sities and Kohn-Sham orbitals in the local density approxi-
mation (LDA), generalized gradient approximation (GGA),
7-dependent and Laplacian-dependent meta-generalized
gradient approximation (metaGGA), any combination of
local and non-local approximations (including exact ex-
change and range-separated exchange), and asymptotically
corrected exchange-correlation potentials. NWChem con-
tains energy-gradient implementations of most exchange-
correlation functionals available in the literature, includ-
ing a flexible framework to combine different functionals.
However, second derivatives are not supported for meta-
functionals and third derivatives are supported only for a
selected set of functionals. For a detailed description, we
refer the reader to the online documentation.

The DFT module reuses elements of the Gaussian ba-
sis SCF module for the evaluation of the Hartree-Fock
exchange and of the Coulomb matrices by using 4-index
2-electron electron repulsion integrals; the formal scaling
of the DFT computation can be reduced by choosing to use
auxiliary Gaussian basis sets to fit the charge density*” and
use 3-index 2-electron integrals, instead.

The DFT module supports both a distributed data ap-
proach and a mirrored arrays*® approach for the evaluation
of the exchange-correlation potential and energy. The mir-
rored arrays option, used by default, allows the calculation
to hide network communication overhead by replicating

the data between processes belonging to the same network
node.

In analogy with what is available in the SCF module,
the DFT module can perform restricted closed-shell, unre-
stricted open-shell, and restricted open-shell calculations.
However, in contrast to the SCF module that uses PCG to
solve the SCF equation, the DFT module implements di-
agonalization with parallel eigensolvers 4% DIIS (direct
inversion in the iterative subspace or direct inversion of the
iterative subspace)”, level-shifting>®>7 and density matrix
damping can be used to accelerate the convergence of the
iterative SCF process. Another technique that can be used
to help SCF convergence makes use of electronic smearing
of the molecular orbital occupations, by using a gaussian
broadening function following the prescription of Warren
and Dunlap®®. Additionally, calculations with fractional
numbers of electrons can be performed to analyze the be-
havior of exchange-correlation functionals and their impact
on molecular excited states and response properties 2200

The Perdew and Zunger®” method to remove the self-
interaction contained in many exchange-correlation func-
tionals has been implemented® within the Optimized Ef-
fective Potential (OEP) method® 7Y and within the Krieger-
Li-Tafrate (KLI) approximation 172

The asymptotic region of the exchange-correlation po-
tential can be modified by the van-Leeuwen-Baerends
exchange-correlation potential that has the correct —}
asymptotic behavior. The total energy is then computed
using the definition of the exchange-correlation functional.
This scheme is known to tend to over-correct the deficiency
of most uncorrected exchange-correlation potentials’*/
and can improve TDDFT-based excitation calculations,
but it is not variational. A variationally consistent ap-
proach to address this issue is via range-separated exchange-
correlation functionals and the recently developed nearly
correct asymptotic potential or NCAPZ which are imple-
mented in NWChem.

To describe dispersion interactions, both the exchange-
hole dipole moment dispersion model (XDM)?® and
Grimme’s DFT-D3 dispersion correction (both zero-
damped and BJ-damped variants) for DFT functionals’Z/®
are available. In many cases, one can obtain reasonably
accurate non-covalent interaction energies at van der Waals
distances with meta-functionals in NWChem even without
adding extra dispersion terms.”

Numerical integration is necessary for the evaluation of
the exchange-correlation contribution to the density func-
tional when Gaussian basis functions are used. The three-
dimensional molecular integration problem is reduced to a
sum of atomic integrations by using the approach first pro-
posed by Becke®?. NWChem implements a modification of
the Stratmann algorithm®!, where the polynomial partition
function wa (r) is replaced by a modified error function erfn
(where n can be 1 or 2).
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The default quadrature used for the atomic centered nu-
merical integration is an Euler-MacLaurin scheme for the
radial components (with a modified Mura-Knowles®? trans-
formation) and a Lebedev®® scheme for the angular compo-
nents.

On top of the petite-list symmetry algorithm used in the
same fashion as in the SCF module, the evaluation of the
exchange-correlation kernel incurs additional time savings
when the molecular symmetry is a subset of the Oy, point
group, exploiting the octahedral symmetry of the Lebedev
angular grid.

NWChem also has an implementation of a variational
treatment of the one-electron spin-orbit operator within the
DFT framework. Calculations can be performed either with
an all-electron relativistic approach (for example, ZORA)
or with an ECP and a matching spin-orbit (SO) potential.

Other capabilities built on the DFT module include the
electron transfer (ET)**82 constrained DFT (CDFT)8¢88
and frozen density embedding (FDE)**"®!' modules, respec-
tively.

1. Time-Dependent Density Functional Theory

a. Linear-Response Time-Dependent Density Func-
tional Theory: NWChem supports a spectrum of single
excitation theories for vertical excitation energy calcula-
tions, namely, configuration interaction singles (CIS)92,
time-dependent Hartree-Fock (TDHF or also known as
random-phase approximation RPA), time-dependent den-
sity functional theory (TDDFT)***®2 and Tamm-Dancoff
approximation”® to TDDFT. These methods are imple-
mented in a single framework that invokes Davidson’s trial
vector algorithm (or its modification for a non-Hermitian
eigenvalue problem). An efficient special symmetric Lanc-
zos algorithm and kernel polynomial method has also been
implemented

In addition to valence vertical excitation energies, core-
level excitations®® and emission spectra®*1% can also be
computed. Analytical first derivatives of vertical excitation
energies with a selected set of exchange-correlation func-
tionals can also be computed,101 which allows excited-state
optimizations and dynamics. Origin-independent optical
rotation and rotatory strength tensors can also be calculated
with the LR-TDDFT module within the gauge including
atomic orbital (GIAO) basis formulation 02102104 Exten-
sions to compute excited-state couplings are currently
underway and will be available in a future release.

b. Real-Time Time-Dependent Density Functional The-
ory: Real-time time-dependent density functional theory

(RT-TDDFT) is a DFT-based approach to electronic ex-
cited states based on integrating the time-dependent Kohn-
Sham (TDKS) equations in time. The theoretical underpin-
nings, strengths, and limitations are similar to traditional
linear-response (LR) TDDFT methods, but instead of a
frequency domain solution to the TDKS equations, RT-
TDDFT yields a full time-resolved, potentially non-linear
solution. Real-time simulations can be used to compute
not only spectroscopic properties (e.g., ground and excited-
state absorption spectra, polarizabilities, etc_)98‘105-108’ but
also the time and space-resolved electronic response to arbi-
trary external stimuli (e.g., electron charge dynamics after
laser excitationy!?>1% and non-linear spectroscopies H1U1H
RT-TDDFT has the potential to be efficient for computing
spectra in systems with a high density of statesH? as, in
principle, an entire absorption spectrum can be computed
from only one dynamics simulation.

This functionality is developed on the Gaussian basis
set DFT module for both restricted and unrestricted cal-
culations and can be run with essentially any combina-
tion of basis set and exchange-correlation functional in
NWChem. A number of time propagation algorithms have
been implemented1 L3 within this module, with the default
being the Magnus propagator.14 Unlike LR-TDDFT, which
requires second derivatives, RT-TDDFT can be used with
all the functionals since only first derivatives are needed for
the propagation. The current RT-TDDFT implementation
assumes frozen nuclei and no dissipation.

2. Ab Initio Molecular Dynamics

This module leverages the Gaussian basis set methods
to allow for seamless molecular dynamics of molecular
systems. The nuclei are treated as classical point parti-
cles and their motion is integrated via the velocity Verlet
algorithm 11>"19 Tn addition to being able to perform sim-
ulations in the microcanonical ensemble, we have imple-
mented several thermostats to control the kinetic energy of
the nuclei. These include the stochastic velocity rescaling
approach of Bussi, Donadio, and ParrinelloH”, Langevin
dynamics according to the implementation of Bussi and
ParrinelloX®, the Berendsen thermostatl?, and simple ve-
locity rescaling.

The potential energy surface upon which the nuclei move
can be provided by any level of theory implemented within
NWChem, including DFT, TDDFT, MP2, and the corre-
lated wavefunction methods in the TCE module. If analyt-
ical gradients are implemented for the specified method,
these are automatically used. Numerical gradients will be
used in the event that analytical gradients are not available
at the requested level of theory. This module has been used
to demonstrate how the molecular dynamics based deter-
mination of vibrational properties can complement those
determined through normal mode analysis, therefore allow-
ing to achieve a deeper understanding of complex dynamics
and to help interpret complex experimental signatures 12
Extensions to include non-adiabatic dynamics have been
implemented in a development version and will be available
in a future release.
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C. Wavefunction Formulations

The wavefunction-based methods play a special role in
all electronic structure packages. Their strengths origi-
nate in the possibility of introducing, using either various
orders of perturbation theory or equivalently through the
linked cluster theorem (for example, see Refs. [121/and[122)
various ranks of excitations, a systematic hierarchy of elec-
tron correlation effects. NWChem offers implementations
of several correlated wavefunction approaches including
many-body perturbation theory approaches and coupled-
cluster methods.

1. Perturbative Formulations

a. MP2: Three algorithms are available in NWChem
to compute the Mgller-Plesset (or many-body) perturbation
theory second-order correction'?® to the Hartree-Fock en-
ergy (MP2). They vary in capability, the size of the system
that can be treated and use of other approximations

e Semi-direct MP2 is recommended for most large ap-
plications on parallel computers with significant disk
I/O capability. Partially transformed integrals are
stored on disk, multi-passing as necessary. RHF and
UHF references may be treated including computa-
tion of analytic derivatives. The initial semi-direct
code was later modified to use aggregate memory
instead of disk to store intermediate, therefore not
requiring any 1/O operation.

e Fully-direct!?¥ MP2. This is of utility if only lim-
ited I/O resources are available (up to about 2800
functions). Only RHF references and energies are
available.

e The resolution of the identity (RI) approximation
MP2 (RI-MP2)!% uses the RI approximation and is,
therefore, only exact in the limit of a complete fitting
basis. However, with some care, high accuracy may
be obtained with relatively modest fitting basis sets.
An RI-MP2 calculation can cost over 40 times less
than the corresponding exact MP2 calculation. RHF
and UHF references with only energies are available.

2. Multi-configurational Self-Consistent Field
(MCSCF)

A large-scale parallel multi-configurational self-
consistent field (MCSCF) method has been developed in
NWChem by integration of the serial LUCIA program of
Olsen!?%!127, The generalized active space approach is used
to partition large configuration interaction (CI) vectors
and generate a sufficient number of nearly equal batches
for parallel distribution. This implementation allows the
execution of complete active space self-consistent field
(CASSCF) calculations with non-conventional active
spaces. An unprecedented CI step for an expansion
composed of almost one trillion Slater determinants has
been reported!%Z.

3. Coupled-Cluster Theory

The coupled-cluster module of NWChem contains two
classes of implementations (a) parallel implementation of
the CCSD(T) formalism?!' for closed-shell systems, and
(b) a wide array of CC formalisms for arbitrary reference
functions. The latter class of implementations automati-
cally generated by Tensor Contraction Engine!2812% is an
example of a successful co-design effort.

a. Closed-Shell CCSD(T): The coupled-cluster
method was introduced to chemistry by Cizek!3? (see also
Ref. [131)), and is a post-Hartree-Fock electron correlation
method. Development of the canonical coupled-cluster
code in NWChem commenced in 1995 under a collab-
oration with Cray Inc to develop a massively parallel
coupled-cluster program designed to run on a Cray T3E.
Full details of the implementation are given in Kobayashi
and Rendell3Z,

The coupled-cluster wavefunction is written as an expo-
nential of excitation operators acting on the Hartree-Fock
reference:

|Wec) = el | @) 4)

where T'=T1 + 1> + ... is a cluster operator represented as a
sum of its many-body components, i.e., singles 77, doubles
T», etc. and |P) is the so-called reference function (usually
chosen as a reference determinant). In practical applications
the above sum is truncated at some excitation rank. For ex-
ample, the CCSD methodV is defined by including singles
and doubles, i.e., T ~ T; + T». Introducing the exponential
ansatz (@) into the Schrodinger equation, premultiplying
both sides by e~ 7, using the Hausdorff formula, and pro-
jecting onto the subspace of excitation functions, gives a set
of coupled non-linear equations that are solved iteratively
to yield the coupled-cluster energy and amplitudes. For
example, for the CCSD formulation one obtains

(®|(Hye"'72)c|®) = AEcesp (5)
(®F|(Hye" ™) c|®) =0, (6)
(@ |(Hye ) c|®) =0, (7

where Hy is the electronic Hamiltonian in normal product
form (Hy = H — (®|H|®)), subscript C represents a con-
nected part of a given operator expression, and AEccsp is
CCSD correlation energy. The closed-shell CCSD imple-
mentation employs the optimized form of the CC equations
discussed by Scuseria e al133 as was programmed in the
TITAN program!*#, The nature of the Cray T3E hardware
required significant rewriting of earlier coupled-cluster al-
gorithms to take into account the limited memory available
per core (§ MW) and the prohibitive penalty of I/O oper-
ations. Of the various four indexed quantities, those with
four occupied indices were replicated in local memory (i.e.
the memory associated with a single core), and those with
one or two virtual indices were distributed across the global
memory of the machine (i.e. the sum of the memory of
all the processors), and accessed in computational batches.
The terms involving integrals with three and four virtual or-
bital indices still proved too costly for the available memory
and to circumvent this problem, these terms were evaluated
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in a "direct” fashion. This structure distinguishes NWChem
from most other coupled-cluster programs. Thus, to make
effective use of the available memory, as much as possible
should be allocated, by using global arrays, with the bare
minimum for the arrays replicated in local memory.

The canonical CCSD implementation in NWChem also
contains the perturbative triples correction, denoted (T),
of Raghavachari et al®!. This correction is an estimate
from Mgller-Plesset perturbation theory!3 and evaluates
the triples contribution to MP4 using the optimized cluster
amplitudes at the end of a CCSD calculation. The CCSD(T)
method is commonly referred to as the gold standard for
ab initio electronic structure theory calculations. Its com-
putational cost scales as n’, making it considerably more
expensive than a CCSD calculation. However, the triples
are non-iterative and only require two-electron integrals
with at most three virtual orbital indices, hence avoiding
the previous memory and I/O issues and so the correction
was easily adapted from the "aijkbc algorithm” of an earlier
work by Rendell et a3,

In recent years, a great deal of effort was invested to
enhance the performance of the iterative and non-iterative
parts of the CCSD(T) workflow. Performance tuning of
the iterative part resulted in scaling the code up to 223,200
processors of the ORNL Jaguar computer %13 Significant
speedups for the CCSD iterative part were achieved by
introducing efficient optimization techniques to alleviate
the communication bottlenecks caused by a copious amount
of communication requests introduced by a large class of
low-dimensionality tensor contractions. This optimization
provided a significant 2- to 5-fold performance increase in
the CCSD iteration time depending on the problem size
and available memory, and improved the CCSD scaling to
20,000 nodes of the NCSA Blue Waters supercomputer=’.

b. Tensor Contraction Engine and High-Accuracy For-
mulations: NWChem implements a large number of high-
rank electron-correlation methods for the ground, excited,
and electron-detached/attached states as well as for molec-
ular properties. The underlying ansatzes span configuration
interaction (CI), coupled-cluster (CC), many-body pertur-
bation theories (MBPT), and various combinations thereof.
A distinguishing feature of these implementations is their
uniquely forward-looking development strategy. These
parallel-executable codes, as well as their formulations and
algorithms, were computer-generated by the symbolic alge-
bra program=® called Tensor Contraction Engine (TCE). 125
TCE was one of the first attempts to provide a scalable
tensor library for parallel implementations of many-body
methods, which extends the ideas of automatic CC code
generation introduced by Janssen and Schaefer!%” Li and
Paldus, ™4 and Nooijen and co-workers 1411142

The merits of such a symbolic system are many: (1)
It expedites otherwise time-consuming and error-prone
derivation and programming processes; (2) It facilitates
parallelization and other laborious optimizations of the syn-
thesized programs; (3) It enhances the portability, main-
tainability, extensibility, and thus the lifespan of the whole
program module; (4) It enables new or higher-ranked meth-
ods to be implemented and tested rapidly which are practi-
cally impossible to write manually. TCE is, therefore, one

of the earliest examples!®? of an expert system that lifts

the burden of derivation/programming labor so that com-
putational chemists can focus on imagining new ansatz—a
development paradigm embraced quickly by other chem-
istry software developers 143142

The working equations of an ab initio electron-
correlation method are written with sums-of-products of
matrices, whose elements are integrals of operators in the
Slater determinants. For many methods, the matrices have
the general form:14

(@i|LT A exp(Ti) Ri| ), ®)

where ®; is the whole set of the i-electron excited (or
electron-detached/attached) Slater determinants, H is the
Hamiltonian operator, Ti is a k-electron excitation oper-
ator, R, is an l-electron excitation (or electron detach-
ment/attachment) operator, and ﬁ; is a j-electron de-
excitation (or electron detachment/attachment) operator.
Subscript ‘C/L’ means that the operators can be required
to be connected and/or linked diagrammatically. For exam-
ple, the so-called T>-amplitude equation of coupled-cluster
singles and doubles (CCSD) is written as

0= (@ |H exp(Ty + 1) |Po)c. )

With the ansatz of a method given in terms of Eq. (g),
TCE first (1) evaluates these operator-determinant expres-
sions into sums-of-products of matrices (molecular inte-
grals and excitation amplitudes) using normal-ordered sec-
ond quantization and Wick’s theorem, second (2) trans-
forms the latter into a computational sequence (algorithm),
which consists in an ordered series of binary matrix mul-
tiplications and additions, and third (3) generates parallel-
execution programs implementing these matrix multipli-
cations and additions, which can be directly copied into
appropriate directories of the NWChem source code and
which are called by a short, high-level driver subroutine
humanly written (see Fig. [I).

In step (2), TCE finds the (near-)minimum cost path
of evaluating sums-of-products of matrices by solving the
matrix-chain problem (defining the so-called “intermedi-
ates”) and by performing common subexpression elimi-
nation and intermediate reuse. In step (3), the computer-
generated codes perform dynamically-load-balanced paral-
lel matrix multiplications and additions, taking advantage
of spin, spatial, and index-permutation symmetries. The
parallelism, symmetry usage, and memory/disk space man-
agement are all achieved by virtue of TCE’s data structure:
every matrix (molecular integrals, excitation amplitudes,
intermediates, etc.) is split into spin- and spatial-symmetry-
adapted tiles, whose sizes are determined at runtime so
that the several largest tiles can fit in core memory. Only
symmetrically-unique, non-zero tiles are stored gapless
(with their storage addresses recorded in hash tables which
are also auto-generated by TCE) and used in parallel tile-
wise multiplications and additions, which are dynamically
distributed to idle processors on a first-come, first-served
basis. NWChem’s parallel middleware, especially Global
Arrays, was essential for making the computer-generated
parallel codes viable.

TCE is a part of the NWChem source-code distribution,
and a user is encouraged to implement their own ansatzes
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next = NXTASK(nprocs, 1)
DO p3b = noab+1,noab+nvab
DO p4b = noab+1,noab+nvab
DO h1b =1,noab
DO h2b = 1,noab
IF (next.eq.count) THEN
DO p5b = noab+1,noab+nvab
DO h6b = 1,noab
CALL GET_HASH_BLOCK(d_a,dbl_mb(k_a),
dima,int_mb(k_a_offset),(h1b_1
-1+noab * (h6b_1-1+noab * (p3b_1 - noab
-1+nvab * (p5b_1 - noab - 1)))))

Figure 1. A schematic representation of TCE workflow (see text
for details).

into high-quality parallel codes. Therefore TCE has paved
the way for quick development of various implementations
of coupled-cluster methods that would take disproportion-
ately longer time if hand-coded. Additionally, TCE pro-
vided a new testing ground for several novel parallel al-
gorithms for accurate many-body methods and has been
used to generate a number of canonical implementations of
single reference CC methods for ground- and excited-state
calculations for arbitrary reference function including: RHF,
ROHEF, UHF, and multi-reference cases. Below we listed
basic components of the TCE infrastructure in NWChem:

e various perturbative methods ranging from second
(MBPT(2)/MP2) to fourth-order (MBPT(4)/MP4) of
Mgller-Plesset perturbation theory,

e single reference iterative (CCD, CCSD,
CCSDT4HI49 CCSDTdEm) and non-iterative
(ccsD(M)2! cr-cCSD(T) 132 LR-CCSD(T) 153
CCSD(2)13#1156 cCcSD(2)r 156 CCSDT(2))15¢ CC
approximations for ground-state calculations,

e single reference iterative ( EOMCCSD,
EOMCCSDT/%160 poMCcCcSDTQMOI6L ) and
non-iterative (CR-EOMCCSD(T Equation-of-
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motion CC (EOMCC) approximationm for excited-
state calculations,

e Jonization potential and electron affinity EOMCC
(IP/EA-EOMCC) methods 164170

e linear-response CC (LR-CC) methods for calculating
static and frequency-dependent polarizabilities and
static hyperpolarizabilities at the CCSD and CCSDT
levels of approximation,

o state-specific multi-reference CC (MR-CC) methods
for quasi-degenerate systems 172178

The TCE infrastructure has also been used in exploring new
parallel algorithms and algorithms for emerging computer
architectures. The most important examples include:

e parallel algorithms for excited-state CR-
EOMCCSD(T) calculations with demonstrated
scalability across 210,000 cores of Jaguar Cray XT5
system at the Oak Ridge Leadership Computing
Facility (OLCF)28,

e new CC algorithms for GPU and Intel MIC
architectures (single-reference CC and MR-CC
theories),

e new algorithms for multi-reference CC methods uti-
lizing processor groups and multiple levels of paral-
lelism (the so-called reference-level of parallelism
of Refs! with demonstrated scalability across
80,000 cores of Jaguar Cray XTS5 system,

e new execution models for the iterative CCSD and
EOMCCSD models 28

With TCE, one can perform CC calculations for closed-
and open-shell systems characterized by 1,000-1,300 or-
bitals. Some of the most illustrative examples of TCE
calculations are (1) static and frequency-dependent polariz-
abilities for the Cg molecule/83 excited state simulations
for m-conjugated chromophores,m and IP-EOMCCSD cal-
culations for ferrocene with explicit inclusion of solvent
molecules. One cutting edge application of TCE CC was
the early application of EOMCC methodologies in excited-
state studies of functionalized forms of porphyrinlm. Ad-
ditionally, TCE has also served as a development plat-
form for early implementations of the coupled-cluster
Green’s function formalism 83188 The TCE development
has since been followed by several other efforts towards
enabling scalable tensor libraries. This includes Super In-
struction Assembly Luage SIAL 1441189 Cyclop Ten-
sor Framework (CTF), TiledArray framework 121! and
Libtensor ™2 which have been used to develop scalable
implementations of CC methods.

D. Relativistic Methods

Methods which include treatment of relativistic effects
are based on the Dirac equationm, which has a four-
component wavefunction. The solutions to the Dirac equa-
tion describe both positrons (the “negative energy” states)
and electrons (the “positive energy” states), as well as
both spin orientations, hence the four components. The
wavefunction may be broken down into two-component
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functions traditionally known as the large and small com-
ponents; these may further be broken down into the spin
components. Lo4HI9/

The implementation of approximate all-electron rela-
tivistic methods in quantum chemical codes requires the
removal of the negative energy states and the factoring out
of the spin-free terms. Both of these may be achieved us-
ing a transformation of the Dirac Hamiltonian known in
general as a Foldy-Wouthuysen (FW) transformation. Un-
fortunately, this transformation cannot be represented in
closed form for a general potential, and must be approxi-
mated. One popular approach is the Douglas and Kroll*8
method developed by Hess' 2200, This approach decou-
ples the positive and negative energy parts to second-order
in the external potential (and also fourth-order in the fine
structure constant, ¢¢). Other approaches include the zeroth
order regular approximation (ZORA Y1724 modification
of the Dirac equation by Dyall?’>, which involves an ex-
act FW transformation on the atomic basis set level200/207
and the exact 2-component (X2C) formulation, which is
a catch-all for a variety of methods that arrive at an ex-
actly decoupled two-component Hamiltonian using matrix
algebra 1272052l N\'WChem contains released implementa-
tions of the DKH, ZORA, and Dyall approaches, while the
X2C method is available in a development version 22211

Since these approximations only modify the integrals,
they can, in principle, be used at all levels of theory. At
present, the Douglas-Kroll, ZORA and X2C implementa-
tions can be used at all levels of theory, whereas Dyall’s
approach is currently available at the Hartree-Fock level.

a. Douglas-Kroll Approximation: NWChem contains
three second-order Douglas-Kroll approximations termed
as FPP, DKH, and DKHFULL. The FPP is the approxima-
tion based on free-particle projection operators>?, whereas
the DKH and DKFULL approximations are based on
external-field projection operators?!. The latter two are
considerably better approximations than the former. DKH
is the Douglas-Kroll-Hess approach and is the approach
that is generally implemented in quantum chemistry codes.
DKFULL includes certain cross-product integral terms ig-
nored in the DKH approach (see for example, Hiberlen
and Rosch?!%). The third-order Douglas-Kroll approxi-
mation (DK3) implements the method by Nakajima and
Hirao2B3214

b. Zeroth Order Regular Approximation (ZORA):
The spin-free and spin-orbit versions of the one-electron ze-
roth order regular approximation (ZORA) have been imple-
mented. Since the ZORA correction depends on the poten-
tial, it is not gauge invariant. This is addressed by using the
atomic approximation of van Lenthe and coworkers 215210
Within this approximation, the ZORA corrections are cal-
culated using the superposition of densities of the atoms in
the system. As a result, only intra-atomic contributions are
involved, and no gradient or second derivatives of these cor-
rections need to be calculated. In addition, the corrections
need only to be calculated once at the start of the calculation
and stored. The ZORA approach is implemented in two
ways in NWChem, one where the ZORA potential compo-
nents are directly computed on an all-electron grid*** and a
second approach, where the ZORA potential is computed
using the model potential approach due to van Wiillen and
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co-workers 217218

c.  Dyall’s Modified Dirac Hamiltonian Approximation:
The approximate methods described in this section are all
based on Dyall’s modified Dirac Hamiltonian. This Hamil-
tonian is entirely equivalent to the original Dirac Hamil-
tonian, and its solutions have the same properties. The
modification is achieved by a transformation on the small
component. This gives the modified small component the
same symmetry as the large component. The advantage of
the modification is that the operators now resemble those of
the Breit-Pauli Hamiltonian, and can be classified in a sim-
ilar fashion into spin-free, spin-orbit, and spin-spin terms.
It is the spin-free terms which have been implemented in
NWChem, with a number of further approximations. Nega-
tive energy states are removed by a normalized elimination
of the small component (NESC), which is equivalent to
an exact Foldy-Wouthuysen (EFW) transformation. Both
one-electron and two-electron versions of NESC (NESCI1E
and NESC2E, respectively) are available, and both have
analytic gradients 202207

E. Molecular Properties

A broad array of simple and response-based molecular
properties can be calculated using the HF and DFT wave-
functions in NWChem. These include: natural bond analy-
sis, dipole, quadrupole, octupole moments, Mulliken pop-
ulation analysis and bond order analysis, Lowdin popula-
tion analysis, electronic couplings for electron transfer 8483
Raman spectroscopy,2/?%?), electrostatic potential (dia-
magnetic shielding) at nuclei, electric field and field gra-
dient at nuclei, electric field gradients with relativistic
effects?2L, electron and spin density at nuclei, GIAO-based
NMR properties like shielding, hyperfine coupling (Fermi-
Contact and Spin-Dipole expectation values), indirect spin-
spin coupling,>2%"22% G-shift,>*> EPR, paramagnetic NMR
parameters,22922Z and optical activity. 1021032281229 Note
that only linear-response is supported and for single fre-
quency, electric field, and mixed electric-magnetic field per-
turbations. Ground state and dynamic dipole polarizabilities
for molecules can be calculated at the CCSD, CCSDT, and
CCSDTQ levels using the linear-response formalism 23"
For additional information, we refer the reader to the online
manual ®

F. Periodic Plane-Wave Density Functional Theory

The NWChem plane-wave density functional theory
(NWPW) module contains two programs:

e PSPW - A pseudopotential and projector augmented
(PAW) plane-wave I'-point code for calculating
molecules, liquids, crystals, and surfaces,

e BAND - A pseudopotential plane-wave band struc-
ture code for calculating crystals and surfaces with
small band gaps (e.g. semi-conductors and metals),

These programs use a common infrastructure for carrying
out operations related to plane-wave basis sets that is paral-
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lelized with the MPI and OpenMP libraries2?=313412315235
The NWPW module can be used to carry out many
different kinds of simulations. In addition to the standard
simulations implemented in other modules, e.g. energy,
optimize, and freq, there are additional capabilities
specific to PSPW and BAND that can be used to carry
out NVE and NVT2* Car—Parrinello’ and Born-
Oppenheimer molecular dynamics simulations, hybrid
ab initio molecular dynamics and molecular mechanics
(AIMD-MM) simulations®#23%, Gaussian/Fermi/Marzari-
Vanderbilt smearing, Potential-of-Mean-Force
(PMF)*8/Metadynamics>224% Temperature- Accelerated-
Molecular-Dynamics (TAMD)?*#242/Weighted-Histogram-
Analysis-Method (WHAM)?*' free energy simulations,
AIMD-EXAFS simulations using open-source versions
of the FEFF software2#*240 that have been parallelized,
electron transfer calculations®*Z, unit cell optimization, op-
timizations with space group symmetry, Monte-Carlo NVT
and NPT simulations, phonon calculations, simulations
with spin-orbit corrections, Wannier?#® and rank reducing
density matrix?4 localization calculations, Mulliken" and
Blochl>! charge analysis, Gaussian cube file generation,
periodic dipole and infrared (AIMD-IR) simulations,
band structure plots, density of states. Calculations can
also be run using a newly developed i-PI>*? interface,
and more direct interfaces to ASEZ? nanoHUBZ*, and
EMSL Arrows®> simulation tools are currently being
implemented.

A variety of exchange-correlation functionals have been
implemented in both codes, including the local den-
sity approximation (LDA) functionals, generalized gradi-
ent approximation (GGA) functionals, full Hartree-Fock
and screened exchange, hybrid DFT functionals, self-
interaction correction (SIC) functionals?2?, localized ex-
change method, DFT+U method, and Grimme dispersion
corrections’ 278, as well as recently implemented vdW dis-
persion functionals®>”, and meta-generalized gradient ap-
proximation (metaGGA) functionals. The program contains
several codes for generating pseudopotentials, including
Hamann?’ and Troulier-Martin®!, and PAW?23 potentials.
These codes have the option for generating potentials with
multiple projectors and semi-core corrections. It also con-
tains codes for reading in HGH*® GTH>, and norm-
conserving pseudopotentials in the CPI and TETER formats.
Codes for reading Optimized Norm-Conserving Vanderbilt
(ONCV) pseudopotentials=®?26!' and USPP PAW potentials
will become available in future releases of NWChem.

The pseudopotential plane-wave DFT methods im-
plemented in NWChem are a fast and efficient way
to calculate molecular and solid-state properties using
DFTHOUZIRR9I23512625270 1n these approaches, the fast vary-
ing parts of the valence wavefunctions inside the atomic
core regions and the atomic core wavefunctions are re-
moved and replaced by pseudopotentials2? 222715274 pgey-
dopotentials are chosen such that the resulting pseudoatoms
have the same scattering properties as the original atoms.
The rationale for this approach is that the changes in the
electronic structure associated with making and breaking
bonds only occur in the interstitial region outside the atomic
core regions (see Fig.[2). Therefore, removing the core re-
gions should not affect the bonding of the system. For this
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approach to be useful, it is necessary for the pseudopoten-
tials to be smooth in order for plane-wave basis sets to be
used. As the atomic potential becomes stronger the core re-
gion becomes smaller and the pseudopotential grows steep.
As a result, the pseudopotential can become very stiff, re-
quiring large plane-wave basis sets (aka cutoff energies),
for the first-row transition metals atoms, the lanthanide
atoms, and towards the right-hand side of the periodic table
(fluorine).

Atomic Core Region

- =~

Interstitial Region

Interstitial Region

Figure 2. Illustration of the atomic core and interstitial regions in
a valence wavefunction. Bonding takes place in the interstitial re-
gion and the atomic core regions change very little from molecule
to molecule. Figure from Bylaska er al23%,

The projected augmented plane-wave method
(PAW)23232215271 j5  another related approach that
removes many of the problems of the somewhat ad hoc
nature of the pseudopotentials approach. However, in the
PAW approach, instead of discarding the rapidly varying
parts of the electronic functions, these are projected onto a
local basis set (e.g., a basis of atomic functions), and no
part of the electron density is removed from the problem.
Another key feature of PAW is that by maintaining a
local description of the system, the norm-conservation
condition (needed for proper scattering from the core) can
be relaxed, which facilitates the use of smaller plane-wave
basis sets (aka cutoff energies) then for many standard
pseudopotentials. Historically, the PAW method was
implemented as a separate program in the NWPW module,
rather than being fully integrated into the PSPW and
BAND codes. This separation significantly hindered
its development and use. As of NWChem version 6.8
(released in 2017), the PAW approach has been integrated
into the PSPW code, and it is currently being integrated
into the BAND code. It will become available in future
releases of NWChem.

In recent years, with advances in High-Performance
Computing (HPC) algorithms and computers, it is now
possible to run AIMD simulations up to ~1 ns for non-
trivial system sizes. As a result, it is now possible to effec-
tively use free-energy methods with AIMD and AIMD/MM
approaches. Free energy approaches are useful for simu-
lating reactions where traditional quantum chemistry ap-
proaches can be difficult to use and often require the exper-
tise of a very experienced quantum chemist, e.g. reactions
that are complex with concerted or multi-step components
and/or interact strongly with the solvent. Recent examples
include solvent coordination and hydrolysis of actinides
metals 27278281 (see Fig. [3), hydrolysis of explosives??,
and ion association in AIC13%*Z. To help users learn how
to use these new techniques, we developed a tutorial on
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Figure 3. Snapshots from a metadynamics simulation of the
hydrolysis of the U*t aqua ion2’8, During the simulation a proton
jumps from a first shell water molecule to a second shell water
molecule and then subsequently to other water molecules via a
Grotthuss mechanism.

carrying out finite temperature free energy calculations in
NWChem=#2,

The NWPW module continues to be actively developed.
There are on-going developments for RPA and GW-RPA
methods, an electron transfer MCSCF method, Raman and
Maossbauer spectroscopy, and a hybrid method that inte-
grates classical DFT83 into ab initio molecular dynamics
(AIMD-CDFT). In addition to these developments, we are
actively developing the next generation of plane-wave codes
as part of the NWChemEXx project. These new codes, which
are being completely written from scratch, will contain all
the features currently existing in the NWPW module. Be-
sides implementing fast algorithms to use an even larger
number of cores and new algorithms to run efficiently on
GPUs, it includes a more robust infrastructure to facilitate
the implementation of an O(N) DFT code based on the
work of Fattebert et al 5%

G. Optimization, Transition State, and Rate theory
Approaches

A variety of drivers and interfaces are available in
NWChem to perform geometry minimization and transition
state optimizations. The default algorithms in NWChem
for performing these optimizations are quasi-Newton meth-
ods with line searches. These methods are fairly robust,
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and they can be used to optimize molecules, clusters, and
periodic unit cells and surfaces. They can also be used in
conjunction with both point group and space group sym-
metries, excited state TDDFT surfaces, as well as with a
variety of external fields, such as external point charges,
COSMO4*> or SMD?% Model. The default methods also
work seamlessly with electronic structure methods that do
not have nuclear gradients implemented by automatically
using finite difference gradients. NWChem also contains
default methods for calculating harmonic vibrational fre-
quencies and phonon spectra for periodic systems. These
methods are able to make use of analytic Hessians if they
are available, otherwise a finite difference approach is used.
A vibrational self-consistent field?®” (VSCF) method is
also available in NWChem and it can be used to calculate
anharmonic contributions to specified vibrational modes.
There is also an interface called DIRDY VTST=8 that uses
NWChem to compute energies, gradients, and Hessians for
direct dynamics calculations with POLYRATE?*.

A variety of external packages, such as ASE>32%0 and
Sella?12%2 can also be used for finding energy minima,
saddle points on energy surfaces, and frequencies using
either python scripting or a newly developed i-PI*Z in-
terface. Python programs may be directly embedded into
the NWChem input and used to control the execution of
NWChem. The python scripting language provides useful
features, such as variables, conditional branches, and loops,
and is also readily extended. Other example applications
for which it could be used include scanning potential en-
ergy surfaces, computing properties in a variety of basis
sets, optimizing the energy with respect to parameters in
the basis set, computing polarizabilities with a finite field,
simple molecular dynamics, and parallel in time molecular
dynamics?®3.

NWChem also contains an implementation of the
nudged elastic band (NEB) method of Jénsson and co-
workers®?#227 and the zero-temperature string method of
vanden Eijden et al.®*® Both these methods can be used to
find minimum energy paths. Currently, a quasi-Newton
algorithm is used for the NEB optimization. A better
approach for this kind of optimization is to use a non-
linear multi-grid algorithm, such as the Full Approximation
Scheme (FAS)*??. A new implementation of NEB based on
FAS is available on Bitbucket*™, and an integrated version
will soon be available in NWChem.

H. Classical Molecular Dynamics

The integration of a molecular dynamics (MD) module
in NWChem enables the generation of time evolution
trajectories based on Newton’s equation of motion of
molecular systems in which the required forces can origi-
nate from a classical force field, any implemented quantum
mechanical method for which spatial derivatives have been
implemented, or hybrid quantum mechanical/molecular
mechanical (QM/MM) approaches. The method is based
on the ARGOS molecular dynamics software, originally
designed for vector processors,>L but later redesigned for
massively parallel architectures 22302304
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a. System Preparation: The preparation of a molecu-
lar system is done by a separate prepare module that reads
the molecular structure and assembles a topology from
the databases with parameters for the selected force field.
The topology file contains all static information for the
system. In addition, this module generates a so-called
restart file with all dynamic information. The prepare
module has a wide range of capabilities that include the
usual functions of placing counter-ions and solvation
with any solvent defined in the database. The prepare
module is also used to define Hamiltonian changes for
free energy difference calculations, and the definition of
those parts of the molecular systems that will be treated
quantum mechanically in QM/MM simulations. Some
of the more unique features include setting up a system
for proton hopping (QHOP) simulations,*?>*%% and the
setup of biological membranes from a single lipid-like
molecule. This last capability has been successfully
used for the first extensive simulation studies of complex
asymmetric lipopolysaccharide membranes of Gram-
negative microbes 2 and their role in the capture of
recalcitrant environmental heavy metal ions. 212 microbial
adhesion to geochemical surfaces, 213319 and the structure
and dynamics of trans-membrane proteins including ion
transporters=.=1%(Fig. .

b. Force Fields: The force field implemented in
NWChem consists of harmonic terms for bonded, angle
and out of plane bending interactions, and trigonometric
terms for torsions. Non-bonded van der Waals and elec-
trostatic interactions are represented by Lennard-Jones and
Coulombic terms, respectively. Non-bonded terms are eval-
uated using charge groups and subject to a user-specified
cutoff radius. Electrostatic interaction corrections beyond
the cutoff radius are estimated using the smooth particle
mesh Ewald method *2Y Parameter databases are provided
for the AMBER®2!' and CHARMM?®** force fields.

Even for purely classical MD simulations, the integration
with the electronic structure methods provides a convenient
way of determining electrostatic parameters for missing
fragments in standard force field databases, through the use
of restrained electrostatic potential fitting>>3=2* to which
a variety of additional constraints and restraints can be
applied.

c. Simulation Capabilities: Ensemble types available
in NWChem are NVE, NVT, and NPT, using the Berendsen
thermostat and barostat 112 Newton’s equations of motion
are integrated using the standard leap-frog Verlet or velocity
Verlet algorithms. A variety of fundamental properties
are evaluated by default during any molecular dynamics
simulation. Parallel execution time analysis is available to
determine the parallel efficiency.

The MD module has extensive free energy simulation
capabilities,?*>"330 which are implemented in a so-called
multi-configuration approach. For each incremental change
of the Hamiltonian to move from the initial to the final
state, sometimes referred to as a window, a full molecular
simulation is carried out. This allows for a straightforward
evaluation of statistical and systematic errors where needed,
including a correlation analysis**!' Based on the ARGOS
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code®! it has some unique features, such as the separation-

shifted scaling technique to allow atoms to appear from or
disappear to dummy atoms 32 One of the advantages of
the integration of MD into the electronic structure methods
framework in NWChem is the ability to carry out hybrid
QM/MM simulations (discussed in the next section). The
preparation of molecular systems for the MD module allows
for flexibly specifying parts of the molecular system to
be treated by any of the implemented electronic structure
methods capable of evaluating positional gradients.

A unique feature in the NWChem MD module is
the optional specification of protonatable sites on both
solute and solvent molecules. Pairs of such sites can
dynamically change between protonated or unprotonated
state, effectively exchanging a proton. Transitions are
governed by a Monte Carlo type stochastic method to
determine when transitions occur. This so-called QHOP
approach was developed by the research group of Helms 21

d. Analysis Capabilities: The NWChem MD
capability includes two analysis modules. The original
analysis module, analyze, analyzes trajectories in a way
that reads individual structures one time step at a time and
distributes the data in a domain decomposition fashion as
in the molecular simulation that generated the data. The
second data-intensive analysis module, diana, reads entire
trajectories and distributes the data in the time domain. This
is especially effective for analyses that require multiple
passes through a trajectory, but requires the availability of
potentially large amounts of memory.233334 An example
of such analyses is the Essential Dynamics Analysis, a
principal component analysis (PCA) based calculation to
determine the dominant motions in molecular trajectories.

e. Parallel Implementation Strategy: The most effec-
tive way of distributing a system with large numbers of
particles is through the use of domain decomposition of
the physical space. The implementation in NWChem, fa-
cilitated through the use of the Global Arrays (GA) toolkit,
partitions the simulation space into rectangular cells that
are assigned to different processes ranks or threads. Each of
these ranks carries out the calculation of intra-cell atomic
energies and forces of the cells assigned. Inter-cell ener-
gies and forces are evaluated by one of the ranks that was
assigned one or the other of the cell pairs.

Two load balancing methods have been implemented
in NWChem, both based on measured computation time.
In the first one, the assignment of inter-node cell pair cal-
culations is redefined such that assignments move from
the busiest node to the less busy node. This scheme re-
quires minimal additional communication, and since only
two nodes are involved in the redistribution of work, the
communication is local, i.e. node to node. In the second
scheme, the physical size of the most time-consuming cell
is reduced, while all other cells are made slightly larger.
This scheme requires communication and redistribution of
atoms on all nodes. In practice, the first scheme is used until
performance no longer improves, after which the second
scheme is used once followed by returning to use the first
scheme. This approach has been found to improve load bal-
ancing even in systems with a very asymmetric distribution
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Figure 4. The NWChem MD Prepare utility facilitates the setup of trans-membrane proteins in complex asymmetric membrane
environments in a semi-automated procedure. Shown here are the top views of step 1 in which membrane lipopolysaccharide molecules
with the necessary counter ions are placed on a rectangular grid around a trans-membrane protein, in which each membrane lipid
molecule is randomly rotated around the principal molecular axis (left panel), step 2 in which each cluster of a lipid molecule is translated
towards the center of the transmembrane protein such that no steric clashed occur (center panel), and step 3 in which the system is
equilibrated using strict restraint potentials to keep the lipid molecules aligned along the normal of the membrane and the lipid head
groups in the plane of the membrane (right panel). After this procedure, the system would be solvated and equilibrated while slowly

removing the positional restraint potentials.

of computational intensity.

VI. HYBRID METHODS

We define hybrid methods as those coupling different
levels of description to provide an efficient calculation of a
chemical system, which otherwise may be outside the scope
of conventional single-theory approaches. The physical mo-
tivation for such methods rests on the observation that, in
the majority of complex chemical systems, the chemical
transformation occurs in localized regions surrounded by an
environment, which can be considered chemically inert to
a reasonable approximation. Since hybrid methods require
the combination of multiple theoretical methods in a single
simulation, the diversity of simulation methodologies avail-
able in NWChem makes it a platform particularly apt for
this purpose.

One common example involves chemical transformations
in a bulk solution environment, forming the foundations of
wide variety of spectroscopic measurements (UV-vis, NMR,
EPR, etc.). The reactive region, referred to as the “solute”,
involves electronic structure degrees of freedom and thus
requires the quantum mechanical (QM) based description,
such as DFT or more complex wavefunction methods. In
the conventional approach, such QM description would be
necessarily extended to the entire system making the prob-
lem a heroic computational task. In a hybrid approach, the
treatment of a surrounding environment (”’solvent”) would
be delegated to a much simpler description, such as the con-
tinuum model (CM), for example. The latter is supported
in NWChem via two models - COSMQ283 (COnductor-like

Screening MOdel) and SMD286 (Solvation Model based on
Density) Model. The resulting QM/CM approaches are par-
ticularly well suited for accurate and efficient calculation
of solvation free energies, geometries in solution, and spec-
troscopy in solution. The SMD model employs the Poisson
equation with non-homogeneous dielectric constant for bulk
electrostatic effects, and solvent-accessible-surface tensions
for cavitation, dispersion, and solvent-structure effects, in-
cluding hydrogen bonding. For spectroscopy in solution,
the Vertical Excitation (or Emission) Model (VEM) has
also been implemented for calculating the vertical excita-
tion (absorption) or vertical emission (fluorescence) energy
in solution according to a two-time-scale model of solvent
polarizationm

For systems where an explicit solvation environment
treatment is needed (for example, heterogeneous systems
like a protein matrix), NWChem provides a solution in
terms of combined quantum mechanics/molecular mechan-
ics (QM/MM) approach. Here, the environment is
described at the classical molecular mechanics level. This
offers more fidelity compared with a continuum solvent de-
scription, while still keeping the computational costs down.
The total energy of the system in QM/MM approach can be
represented as a sum of the energies corresponding to QM
and MM regions:

E(r,R;¥) = Eyu(r,R; ¥) + Ejp (1, R) (10)

where Y denotes electronic degrees of freedom, and r,R
refer to nuclear coordinates of QM and MM regions cor-
respondingly. The QM energy term can be further decom-
posed into internal and external parts

Egn[r,Riy] =En[y] +Egnle,Rip] (1)
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where p is the electron density.

As a generic module, the QM/MM implementation can
utilize any of the Gaussian basis set based QM modules
available in NWChem and supports nearly all the task func-
tionalities. The calculation of QM energy remains the main
computational expense in the QM/MM approach. This
issue is more pronounced compared with the continuum
coupling case, because of the additional atomistic degrees
of freedom associated with MM description. The latter
comes into play because any change in the MM degrees
of freedom will, in general, trigger the recalculation of the
QM energy (Egn(r, R; y)). To alleviate these issues during
the optimization, the QM/MM module offers the option of
alternating relaxation of QM and MM regions. During the
latter phase, the user may utilize an approximation where
the QM degrees of freedom are kept frozen until the next
cycle of QM region relaxation, offering significant com-
putational savings. A similar technique can be utilized in
the dynamical equilibration of the MM region and calcula-
tions of reaction pathways and free energies. In addition
to the native MD module, the NWChem QM/MM mod-
ule can also utilize the external AMBER MD code*? for
running the classical part of the calculations. In this case,
QM/MM simulations involve two separate NWChem and
AMBER calculations with data exchange mediated through
files written to disk.

Additionally, the QM/MM capability in NWChem has
resulted in the development and refinement of force-field
parameters, that can, in turn, be used in classical molecular
dynamics simulations. Over the last two decades, classi-
cal parameters obtained using NWChem have been em-
ployed to address the underlying mechanisms of a variety
of novel complex biological systems and their interactions
(e.g., lipopolysaccharide membranes, carbohydrate moi-
eties, mineral surfaces, radionuclides, organophosphorous
compounds)PU/B08IBLIEIIIE0534% which has led to a signifi-
cant expansion of the database of AMBER- and Glycam-
compatible force fields and the GROMOS force field for
lipids, carbohydrates and nucleic acids #4221

For cases where a classical description of the environ-
ment is deemed insufficient, NWChem offers an option to
perform an ONIOM type calculation*>% The latter differs
from QM/MM in that the lower level of theory is not re-
stricted to its region but also encompasses regions from all
the higher levels of description. For example, in the case of
the two-level description, the energy is written as

E(R)=E"(R)+ (E"(R")—E*(R"))  (12)

where subscripts H, L refer to high and low levels of theory
correspondingly. The high-level treatment is restricted to
a smaller portion of the system (R), while the low level
of theory goes over the entire space (R). The second term
in the above equation takes care of overcounting. The
NWChem ONIOM module implements two- and three-
layer ONIOM models for use in energy, gradient, geometry
optimization, and vibrational frequency calculations with
any of the pure QM methods within NWChem.

A new development in hybrid method capabilities of
NWChem involves classical density functional theory
(cDFT) 2237333 The latter represents a classical variant of
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electronic structure DFT, where the main variable is the
classical density of the atoms 329337 Conceptually, this type
of description lies between continuum and classical force
field models, providing orders of magnitude improvements
over classical MD simulations. The approach is based on in-
corporating important structural features of the environment
in the form of classical correlation functions. This allows
for efficient and reliable calculations of thermodynamical
quantities, providing an essential link between electronic
structure description at the atomistic level and phenomena
observed at the macroscopic scale.

VIl. PARALLEL PERFORMANCE

The design and development of NWChem from the out-
set was driven by parallel scalability and performance to
enable large scale calculations and achieve fast time-to-
solution by using many CPUs where possible. The parallel
tools outlined in section provided the programming
framework for this.

The advent of new architectures such as the GPU=%
platforms have required the parallel coding strategy within
NWChem to be revisited. At present, the coupled-cluster
code within TCE can utilize both the CPU and GPU hard-
ware at a massive scale’22>%, The emergence of many-core
processors in the last ten years provided the opportunity for
starting a collaborative effort with Intel corporation to opti-
mize NWChem on this new class of computer architecture.
As part of this collaboration, the TCE implementation of
the CCSD(T) code was ported to the Intel Xeon Phi line
of many-core processors™ using a parallelization strategy
based on a hybrid GA-OpenMP approach. The ab initio
plane-wave molecular dynamics code (section has
also been optimized to take full advantage of these Intel
many-core processors=>231,

In the rest of this section, we will discuss the paral-

lel scalability and performance of the main capabilities
in NWChem.

1 1 1 |
32 64 128 256 512 1024 2048
number of cores

Figure 5. Cy49 DFT benchmark.



Wall time (seconds)

NWChem: Past, Present, and Future

a. Gaussian Basis Density Functional Theory: 1In
Fig. 5] we report the parallel performance of the Gaussian
basis set DFT module in NWChem. This calculation
involved performing a PBEO energy calculation (four
SCF iterations in direct mode) on the Cy49 molecule
with the 6-31G* basis set (3600 basis functions) without
symmetry. These calculations were performed on the
Cascade supercomputer located at PNNL.
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Figure 6. LR-TDDFT benchmark for the Auyg molecule in a neon
matrix.

b. Time-Dependent Density Functional Theory: In
Fig.[f] we report the parallel performance of the Gaussian
basis set LR-TDDFT module in NWChem. This calculation
involved computing 100 excitation energies, requiring 11
Davidson iterations, for the Auyg molecule surrounded by
a matrix of 80 Ne atoms=2 (1840 basis functions) with D,
symmetry, using the B3LYP functional. These calculations
were performed on the Cascade supercomputer located at
PNNL.

c. Closed-shell CCSD(T): The parallel implemen-
tation of the CCSD(T) approach by Kobayashi and
Rendell'#2, employing the spin adaptation scheme based
on the unitary group approach (UGA)!? within NWChem,
was one of the first scalable implementations of the CC
formalism capable of taking advantage of several hundred
processors. This implementation was used in simulations
involving tera- and peta-scale architectures where chemical
accuracy is required to describe ground-state potential
energy surfaces. One of the best illustrations of the
performance of the CCSD(T) implementation is provided
by calculations for water clusters®®. In the largest calcula-
tion, (HyO)»4, sustained performance of 1.39 PetaFLOP/s
(double precision) on 223,200 processors of ORNL’s Jaguar
system was documented. This impressive performance
was mostly attributed to the (T)-part characterized by nf,nf{
numerical overhead (where n, and n, refer to the total
numbers of correlated occupied and virtual orbitals) and its
relatively low communication footprint.
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Figure 7. Benchmark EOMCC scalability tests for : (a) beta-
carotene and (b) free-base porphyrin (FBP) fused coronene. Tim-
ings for CR-EOMCCSD(T) approach for the coronene fused free-
base porphyrin in the AVTZ basis set were determined from cal-
culations on the ORNL’s Jaguar Cray XTS5 computer system.

d. Tensor Contraction Engine: The TCE has enabled
parallel CC/EOMCC/LR-CC calculations for closed- and
open-shell systems characterized by 1,000-1,300 orbitals.
Some of the most illustrative examples include calcu-
lations for static and frequency-dependent polarizabili-
ties for polyacenes and Cgo molecule, 831301 excited state
simulations for 7-conjugated chromophores*# and IP-
EOMCCSD calculations for carbon nanotubes*®% A good
illustration of the scalability of the TCE module is provided
by the application of GA-based TCE implementations of
the iterative (CCSD/EOMCCSD) and non-iterative (CR-
EOMCCSD(T)) methods in studies of excited states of
B-carotene>® and functionalized forms of porphyrin®® (see
FigEKa) and (b), respectively). While non-iterative meth-
ods are much easier to scale across a large number of cores
(Fig[7) (b)), scalability of the iterative CC methods is less
easy to achieve. However, using early task-flow algorithms
for TCE CCSD/EOMCCSD methods®® it was possible to
achieve satisfactory scalability in the range of 1,000-8,000
cores.

e. Recent Implementation of Plane-Wave DFT AIMD
for Many-Core Architectures: The very high degree of
parallelism available on machines with many-core pro-
cessors is forcing developers to carefully revisit the im-
plementation of their programs in order to make use of
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this hardware efficiently. In this section, after a brief
overview of the computational costs and parallel strate-
gies for AIMD, we present our recent work>> on adding
thread-level parallelism to the AIMD method implemented
in NWChem?'21364,

1
—EVZLP + Vot WV + VW + V. W + Vx,exactlp =E¥
(P|¥) =4,
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Figure 8. Operation count of Hy; in a plane-wave DFT simulation.
Figure from Ref. 231

The main computational costs of an energy minimization
or AIMD simulation are the evaluation of the electronic
gradient 0E, 4 /S = Hy; and algorithms used to main-
tain orthogonality. These costs are illustrated in Figure [§
Due to their computational complexity, the electron gra-
dient Hy; and orthogonalization need to be calculated as
efficiently as possible. The main parameters that determine
the cost of a calculation are N,, N, N, and Ny, ;, where
Ny is the size of the three-dimensional FFT grid, N, is the
number of occupied orbitals, N, is the number of atoms,
Nproj is the number of projectors per atom, and N is the
size of the reciprocal space.

The evaluation of the electron gradient (and orthogonal-
ity) contains three major computational pieces that need to
be efficiently parallelized:

e applying Vy and V,., involving the calculation of 2N,
3D FFTs;

e calculating the non-local pseudopotential, Vy, dom-
inated by the cost of the matrix multiplications W =
PTY,and Y, = PW, where P is an Npuck X (Npyoj - Na)
matrix, ¥ and Y, are Ny X N, matrices, and W is
an (NproiNa) X N, matrix;

e enforcing orthogonality, where the most expensive
matrix multiplications are S = YTy and Y, =YS§,
where Y and Y, are Ny X N, matrices, and § is
an N, X N, matrix. In this work, Lagrange multi-
plier kernels are used for maintaining orthogonality
of Kohn-Sham orbitalg22/362H308,

In Fig. 0 the timing results for a full AIMD simulation
of 256 water molecules on 16, 32, 64, 128, 256, and 1024
KNL nodes are shown. The “Cori” system at NERSC was
used to run this benchmark. This benchmark was taken
from Car Parrinello simulations of 256 H,O with an FFT
grid of Ny = 180° (N,=2056) using the plane-wave DFT
module (PSPW) in NWChem. In these timings, the number
of threads per node was 66. The size of this benchmark sim-
ulation is about 4 times larger than many mid-size AIMD
simulations carried out in recent years, e.g. in recent work
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Figure 9. Scalability of major components of an AIMD step on
the Xeon Phi partition for a simulation of 256 H,O molecules.
Figure from Bylaska et al33,

by Bylaska and co-workers 2722803694372 The overall tim-
ings show strong scaling up to 1024 KNL nodes (69632
cores) and the timings of the major kernels, the pipelined
3D FFTs, non-local pseudopotential, and Lagrange multi-
plier kernels all displayed significant speedups.

| Classical Molecular Dynamics: The molecular dy-
namics module in the current NWChem release is based
on the distribution of cells over available ranks in the cal-
culation. Simulations exhibit good scalability when cells
only require communication with immediately neighboring
cells. When the combination of cell size and cutoff radius is
such that interactions with atoms in cells beyond the imme-
diate neighbors are required, performance is significantly
affected. This limits the number of ranks that can effectively
be used. For example, a system with 500,000 atoms will
only scale well up to 1000 ranks. In future implementations,
the cell-cell pair-list will be distributed over the available
ranks. While this leads to additional communication for
ranks that do not “own” a cell, the implementation of a new
communication scheme that avoids global communication
has been demonstrated to improve scalability by at least an
order of magnitude 204

Vill. OUTREACH

Given the various electronic structure methods available
in NWChem, it does not come as a surprise that many of
these functionalities have been integral to various projects
focused on extensions of quantum chemical capabilities to
exa-scale architectures and emerging quantum computing
(see Fig. [I0] for a pictorial representation of recent
developments). Below we describe several examples of
such a synergy.

a. Interfacing with Other Software: Over the years,
many open-source and commercial developers have
been using NWChem as a resource for their capability
development, and building add-on tools to increase the
code’s usability. Various open-source and commercial
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platforms provide user interface capabilities to set up and
analyze the results of calculations that can be performed
with NWChem 223123213735380 N'W Chem initially developed
its own graphical user interface called the Extensible
Computational Chemistry Environment*!, which is cur-
rently supported by a group of open-source developers. In
addition, multiple codes use quantities from the NWChem
simulation, such as wavefunctions as input for the
calculation of additional properties not directly available in
the code3823°l NWChem is able to export electrostatic
potential and charge densities with the Gaussian cube
format*?? and can use the Molden format**? to write or
read molecular orbitals. This allows codes*?4=%% to utilize
NWChem’s data to, for example, display charge densities
and electrostatic potentials. NWChem can also generate
AIM wavefunction files that have been used by a variety
of codes to calculate various properties 039240l Recently,
NWChem has also been interfaced with the SEMIEMP
code* which can be used to perform real-time electronic
dynamics using the INDO/S Hamiltonian #3104

b. Common Component Architecture: It is an attrac-
tive idea to encapsulate complex scientific applications as
components with standardized interfaces. The components
interact only through these well-defined interfaces and can
be combined into full applications. The main motivation
is to be able to reuse and swap components as needed and
seamlessly create complex applications. There have been
a few attempts to introduce this approach to the scientific
software development community. The most notable DOE-
led effort was the Common Component Architecture (CCA)
Forum*® which was launched in 1998 as a scientific com-
munity effort to create components designed specifically
for the needs of high-performance scientific computing. A
more recent development is the rise of Simulation Develop-
ment Environment (SDE) framework*%, which has features
that are related to the components of CCA.

NWChem developers have participated in CCA and SDE
effort resulting in the creation of the NWChem component.
As an example, the NWChem CCA component was used
in the building applications for molecular geometry opti-
mization from multiple quantum chemistry and numerical
optimization packages*’”, combination of multiple theoret-
ical methods to improve multi-level parallelism‘ms, demon-
stration of multi-level parallelism*"”, and standardization
of integral interfaces in quantum chemistry*!Y. In the end,
the CCA framework was too cumbersome to use for de-
velopers, requiring significant efforts to develop interfaces
and making components to work together. It resulted in
the retirement of CCA Forum in 2010, but the work done
on standardization of interfaces is continuing to benefit the
quantum chemistry community to this day.

c. NWChemEx: The NWChemEx project is a
natural extension of NWChem to overcome the scalability
challenges associates with migrating the current code base
to exa-scale platforms. NWChemEXx is being developed
to address two outstanding problems in advanced biofuels
research: (i ) development of a molecular understanding of
proton controlled membrane transport processes and (ii)
development of catalysts for the efficient conversion of
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Figure 10. A “connected diagram” describing ongoing efforts to
extend computational chemistry models to exa-scale and quantum
computing. In each case, NWChem provides a testing and devel-
opment platform. A significant role in these projects is played by
Tensor Algebra for Many-body Methods (TAMM) library. The
ECC acronym stands for the Exa-scale Catalytic Chemistry project
supported by BES !/ The QDK-NWChem interface with the lib-
DUCC library is used for downfolding electronic Hamiltonians 412

biomass-derived intermediates into biofuels, hydrogen, and
other bioproducts; therefore the main focus is on enabling
scalable implementations of the ground-state canonical
CC formalisms utilizing Cholesky decomposed form of
the two-electron integrals*1*#18 a5 well as linear scaling
CC formulations based on the domain-based local pair
natural orbital CC formulations (DLPNO-CC) #1242l g
embedding methods.

d. Scalable Predictive methods for Excitations and
Correlated phenomena (SPEC): The main focus of the
SPEC software project is to provide the users with a new
generation of methodologies to simulate excited states and
excited-state processes using existing peta- and emerging
exa-scale architectures. These new capabilities will play
an important role in supporting the experimental efforts at
light source facilities, which require accurate and reliable
modeling tools. The existing NWChem capabilities are
being used to verify and validate SPEC implementations
including excitation energy, ionization potential, and
electron affinity variants of the EOMCC theory as well
as hierarchical Green’s function formulations ranging
from the lower order GW-Bethe-Salpeter equation
(GW+BSE)*?2 to hierarchical coupled-cluster Green’s
function (GFCC) methods!8188423 and multi-reference
CC methods.

e. Quantum Information Sciences: Quantum comput-
ing not only offers the promise of overcoming exponential
computational barriers of conventional computing but also
in achieving the ultimate level of accuracy in studies of chal-
lenging processes involving multi-configurational states in
catalysis, biochemistry, photochemistry, and materials sci-
ence to name only a few areas where quantum information
technologies can lead to the transformative changes in the
way how quantum simulations are performed. NWChem,
with its computational infrastructure to characterize second-
quantized forms of electronic Hamiltonians in various basis
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sets (Gaussian and plane-waves) and with wavefunction
methodologies to provide an initial characterization of the
ground- and excited-state wavefunctions, can be used as
a support platform for various types of quantum simula-
tors. The recently developed QDK-NWChem interface**
(QDK designates Quantum Development Kit developed
by Microsoft Research team) for quantum simulations and
libraries for CC downfolded electronic Hamiltonians for
quantum computing*'? are good illustrations of the utiliza-
tion of NWChem in supporting the quantum computing
effort.

IX. DATA AVAILABILITY STATEMENT

The data that support the findings of this study are avail-
able from the corresponding author upon reasonable re-
quest.

X. CONCLUSIONS

The NWChem project is an example of a successful co-
design effort that harnesses the expertise and experience of
researchers in several complementary areas, including quan-
tum chemistry, applied mathematics, and high-performance
computing. Over the last three decades, NWChem has
evolved into a code that offers a unique combination of
computational tools to tackle complex chemical processes
at various spatial and time scales.

In addition to the development of new methodologies,
NWChem is being continuously upgraded, with new algo-
rithms, to take advantage of emerging computer architec-
tures and quantum information technologies. We believe
the community model of NWChem will continue to spur
exciting new developments well into the future.

SUPPLEMENTARY MATERIAL

See supplementary material for tutorial slides showing
examples of NWChem input files.
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