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point of view. To use human language, robots must map words to aspects

of the physical world, mediated by the robot’s sensors and actuators. This
problem differs from other natural language processing domains due to the
need to ground the language to noisy percepts and physical actions. Here, we
describe central aspects of language use by robots, including understanding
natural language requests, using language to drive learning about the physi-
cal world, and engaging in collaborative dialogue with a human partner. We
describe common approaches, roughly divided into learning methods, logic-
based methods, and methods that focus on questions of human-robot inter-
action. Finally, we describe several application domains for language-using
robots.
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1. INTRODUCTION

As robots become more capable, they are moving into environments where they are surrounded
by people who are not robotics experts. Such robots are appearing in the home, in nondedicated
manufacturing spaces, and in the logistics industry (1, 2), among other places. Since most users
will not be experts, it is becoming essential to provide natural, simple ways for people to interact
with and control robots. However, traditional keyboard-and-mouse and touch-screen interfaces
require training and must be complex in order to enable a person to command complex robotic
behavior (3). Higher-level abstractions, such as automata (4), programming abstractions (5), and
structured language (6), offer a great degree of power and flexibility but also require a great deal
of training to use.

By contrast, people use language every day to direct behavior, ask and answer questions, provic
information, and ask for help. Language-based interfaces require minimal user training and allow
the expression of a variety of complex tasks. This article reviews the current state of the art in
natural language communication with robots, compares different approaches, and discusses the
challenges of creating robust language-based human-robot interaction (HRI). The fundamental
question for grounded language understanding is, How can words and language structures be
grounded in the noisy, perceptual world in which a robot operates (7)?

We distinguish between two dual problanggiage understanding, where the robot must
interpret and ground the language, usually producing a behavior in response, and language gener-
ation, in which the robot produces communicative language, for example, to ask for explanations
or answer questiomns.the latter problenthe robot may need to reason about information-
gathering actions (such as when to ask clarification questions) or incorporate other communica-
tion modalities (such as gestures). Systems that address both problems enable robots to engage in
collaborative dialogue.

There is a long history of systems that try to understand natural language in physical domains,
beginning with Reference 8. Generally, language is most effective as an interface when users are
untrained, are under high cognitive load, and have their hands and eyes busy with other tasks. For
example, in search-and-rescue tasks, robots might interact with human victims who are untrained
and under great stress (9). The context in which language is situated can take many forms; exam-
ples include sportscasts of simulated soccer games (10), linguistic descriptions of spatial elements
in video clips (11), GUI interactions (12), descriptions of objects in the world (13), spatial rela-
tionships (14), and the meaning of instructions (15). Language has also been used with a diverse
group of robot platforms, ranging from manipulators to mobile robots to aerial robots. Figure 1
shows some examples.

Language for robotics is currently an area of significant research interest, as evidenced by the
papers covered in this article and the many recent workshops on this subject (e.g., the Ground-
ing Language for Physical Systems workshop at the 2012 Conference on Artificial Intelligence,
the Model Learning for Human-Robot Interaction workshop at the 2016 Robotics: Science and
Systems conference, the Language Grounding for Robotics workshop at the 2017 Annual Meet-
ing of the Association for Computational Linguistics, the Models and Representations for Natural
Human-Robot Communication workshop at the 2018 Robotics: Science and Systems conference,
and the Combined Workshop on Spatial Language Understanding and Grounded Communica-
tion for Robotics at the 2019 Annual Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies). Other survey papers have
reviewed related topifts; exampld,ong et al(16) surveyed socially interactive rauats,

Goodrich & Schultz (17) and Thomaz et al. (18) provided broad surveys of HRI, although neither
focused on language specifically. This survey is intended for robotics researchers who wish to un-
derstand the current state of the art in natural language processing (NLP) as it pertains to robotics.

Tellex et al.
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Hand me the
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Figure 1

Robots used for language-based interactions. (a) Using language to ask for help with a shared task. Panel adapted from Reference ¢
(b) A Baxter robot learning via dialogue, demonstrations, and performing actions in the world. Panel adapted from Reference 187 wi
permission from |JCAI (https://ijcai.org). (c) A Jaco arm identifying objects from attributes (here “silver, round, and empty”). Panel
adapted from Reference 174 with permission from [JCAI (https://ijcai.org). (d) A Gambit manipulator following multimodal
pick-and-place instructions (32). (e) A Pioneer AT robot achieving goals specified as “go to the break room and report the location of
the blue box.” © 2009 IEEE. Reprinted, with permission, from Reference 31. ( f) A CoBot learning to follow commands such as “take
me to the meeting room.” © 2013 IEEE. Reprinted, with permission, from Reference 188. (g) TUM-Rosie making pancakes by
downloading recipes from wikiHow. © 2012 IEEE. Reprinted, with permission, from Reference 63. (h) A socially assistive robot
helping elderly users in performing physical exercises. © 2012 IEEE. Reprinted, with permission, from Reference 146. (i) A Baxter
robot performing a sorting task synthesized from natural language (73).

Figure 2 shows a system flow diagram for a language-using robot. First, natural language in-
put is collected via a microphone or text. Words are converted to a semantic representation via
language processing; possible representations range from a finite set of actions to an expression in
a formal representation language, such as predicate calculus. For example, the words “red block”
might be converted to a formal expression such as Ax : block(x) A red(x). Next, symbols in the
semantic representation are connected or grounded to aspects of the physical world. For example,
the system might use inference to search for objects in its world model that satisfy the predicates
block and red. The results inform decision-making; the robot might perform a physical action
(such as retrieval) or a communicative action (such as asking, “This red block?”). Many approaches
to language for robotics fit into this framework; they vary in the behaviors they include, the prob-
lems they solve, and the underlying mathematics of the modules.

This article is organized as follovgection 2 gives preliminary matec@hmon to all
methods. Section 3 covers technical approaches, organized around the method used to achieve
language-using robots. Section 4 provides an orthogonal view that organizes the state of the art
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Figure 2

System diagram showing language input and output integrated into a robotic system. Many approaches
include only a subset of the modules. Grayed-out modules are relevant to language interpretation but are not
reviewed in this article.

around the problem being addressed: human-to-robot communication, robot-to-human commu-
nication, and two-way communication. Section 5 concludes with a summary and a discussion of
current open questions.

2. PRELIMINARIES

In this section, we define common terminology used in this field and provide technical background
needed to understand many of the approaches described in subsequent sections. We review the
concept of grounded language, the syntactic and semantic structure of language, and statistical
language processing.

2.1. Grounded Language

Grounded language (also called situated language or physically situated language) has meaning in
the context of the physical world—for example, by describing the environment, physical actions, or

language that refers td'€/ationships between things (7, 19). Possible groundings range from low-level motor commands

or is interpreted in
reference to the
physical world

to perceptual inputs to complex sequences of actions. Grounded language acquisition is the proces
of learning these connections between percepts and actions. For example, if a person instructs a
robot to pick up a cup, the robot must map the word “cup” to a particular set of percepts in its
high-dimensional sensor space—for example, by recognizing that a particular pattern in its camera
sensor corresponds to this word. Then, to follow the command, it must produce a plan or policy

ellex et al.
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Table 1 Examples of natural language and possible groundings

Natural langudge Possible sensor/act®ator Category Grounding/interpretation

“Turn left” Wheels, legs Command understanding| Contra-rotate the steering
actuators

“Red” Camera World sensing Output label red from color
classifier

“This is a laptop” Camera, RGB-D sensor Object recognition Output label laptop from
multiclass classifier

“Above you” Range sensor Understanding spatial Location in positive z-space with

relationships respect to the robot
“Hand me the orange muljg Manipulator plus all sensgrsombined All of the above
on the left” above

Abbreviation: RGB-D, red, green, and blue plus depth.

aNatural language that might occur when instructing or informing a robot.
bPossible sensors or actuators providing the physical context.

“The underlying task or reasoning problem implicitly encoded in the language.
9The physically situated, or grounded, meaning of the language.

that causes its end effector to create a stable grasp of the cup and lift it. Many aspects of this

plan are implied by the language but not explicitlyfetaeample, if the cup has water in

it, the robot should lift it in a way that does not cause the water to spill. This mapping between
language and objects, places, paths, and events or action sequences in the world is a key challenge
for language and robotics and represents the grounding problem. For robots, language is used
primarily as a mechanism for describing objects or desired actions in the physical world; much of
the work described in this survey is in the domain of grounded language. A key research question is
how to represent this mapping between words and symbols and high-dimensional data streaming
in from sensors and high-dimensional outputs that are available from actuators. Table 1 shows
examples of language and possible groundings. Note that in some cases, the grounding is a discrete
output from a classifier, while in other cases it is a high-dimensional controller command, such as
“contra-rotate the steering actuators.” These are examples of possible groundings that have been
used in the literature; two key research questions are what the grounding process should look like
and how this mapping should be carried out.

2.2. Syntactic Representations and Analysis

Natural language has a hierarchical, compositional syntax (20) that is studied in linguistics and
cognitive semantics. This structure enables people to understand novel sentences by combining
individual words in new ways (21). This syntactic structure can be used to help extract semantic
representations of the words’ meaning. A variety of formalisms have been created to express this
structure, of which the best known is context-free grammars (CFGs), developed in the 1950s by

Noam Chomsky (22). CFGs and their many variants are used to describe the syntactic structure of
natural language. Sipser (23) provided a formal definition of CFGs, and Figure 3 givessariexampteucture
CFG for a small subset of English along with an associated parse tree. Many variantdaf CpGs@xXisthe
Pretrained parsers are a common tool, many of them (24, 25) trained using the Perﬁ¥"ltﬁ’é8'5ank (26),

a corpus of text manually annotated with parse trees. Other parsers are trained on g@%%?n&é’:éﬂ%gﬁ,:?m
such as newspaper articles. These data are often not a good fit for robotics tasks, whigh ypically
contain imperative commands and spatial language, leading to reduced performance on robotics
tasks by off-the-shelf tools.

www.annualreviews:dkgbots That Use Languag@.5
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Figure 3

Grammar and parse tree for the English sentence “Grab an apple.” (a) Context-free grammar for a small
subset of English. (b) The structure defining compositional relations among word meanings. Abbreviations:
DT, determiner; NN, noun; NP, noun phrase; VB, verb; VP, verb phrase.

Many robotics applications use combinatory categorial grammars (CCGs) (27). CCGs are a
grammar formalism created to handle linguistic constructions such as coordination (e.g., “John
and Mary like apples and oranges”) that cannot be expressed by CFGs. CCGs are useful because
they model both the syntax and the semantics of language—an approach that is useful for real-
world language learning. These learned elements take the form of lexical entries, which combine
natural language, syntax, and semantics. Extensive work has been done on automatically creating
parsers (28-30), typically learning from pairs of natural language sentences and sentence meaning
CCGs have been applied to robotic language understanding in many contexts (29, 31-33), which
are reviewed in the following sections.

2.3. Formal Semantic Representations of Language

Semantic representations, which capture the meanings of words and sentences in a formalism that
can be operated on by computers, can be extracted with (or from) syntactic structures, such as the
example in Figure 3. A possible semantic interpretation can be captured by the first-order logic
formula Ix(apple(x) A grab(x)), which states, “There exists an x that is an apple and that is being
grabbed.” Given a consistent formal meaning for, e.g., grab(), this expression can be interpreted
and used for understanding actions in the world. Extensive work has been done on symbolic rep-
resentations of semantics (e.g., 20, 34-36). CFG productions can be combined using A-calculus
rules to automatically construct semantic representation from a syntax tree. In this section, we
briefly mention the main semantic building blocks that are used by many approaches.

First-order predicate logic extends proposiBowdéan) logic with predicates, functions,
and quantification. Semantic meaning can be extracted using compositional operators associated
with each branch of the syntactic tree. To perform language grounding in the context of robotics,
these operators must be grounded in the physical world, i.e., through sensors and actuators; for

Temporal logic: logicexample, grab() could be grounded to a manipulation action. Additional information regarding
that includes temporalthe formal syntax and semantics of first-order predicate logic can be found in logic texts, such as

operators; roughly
speaking, the truth
value of a formula is
evaluated over
sequences of states
labeled with the truth
values of the
propositions

+/.0

the textbook by Huth & Ryan (37).

Temporalogicsare modalogicsthatcontain temporaperator$38),allowing for the
representation of time-dependent truths. (For example, the phrase “grab an apple” implies that
the apple should be grabbed at some future point in time, an operation referred to as “eventually,”
written ®GrabAppl e, where GrabApple is a Boolean proposition that becomes True when the apple
is grabbed.) There are different temporal logics that vary in several important dimensions, in-
cluding whether time is considered to be discrete or continuous, whether time is linear (formulas
are defined over single executions) or branching (formulas are defined over trees of executions),
and whether the logics are deterministic or include probabilistic operators and reasoning. In a

Tellex et al.
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recent review, Kress-Gazit et al. (39) described the use of several temporal logics in the context
of robot control.

2.4. Statistical Natural Language Processing and Deep Learning

Substantigrogress in NLP has been made by eschewing the explicit modeling of linguistics
structures. For example, n-gram models that focus on counting words (40) robustly capture as-
pects of language use without requiring a full understanding of syntax or meaning, by leveraging
the statistics of word co-occurrefballow parsing or chunking is usefudapture aspects

of syntax and semantics without performing a complete analysis of the sentence (41). Many ap-
proaches rely on less linguistically plausible but more robust structures to achieve learnability
and tractability. Modern approaches use word vectors to capture or learn structure, such as long
short-term memory units (LSTMs) (42) combined with Word2Vec (43) or Paragraph Vector (44).
These approaches learn a vector representation associated with either words or longer documents
and then compute over an entire sentence to perform tasks such as language modeling, parsing,
or machine translation. Many robotics applications leverage these techniques to learn a statisti-
cal or deep model that maps between a human language and one of the formal representations
mentioned above.

3. CLASSIFICATIONS BY TECHNICAL APPROACH

In this section, we cluster approaches based on three broad categories: lexically grounded methods
(Section 3.1), learning methods (Section 3.2), and HRI-centered approaches (Section 3.3). The

first category, lexically grounded methods, focuses on defining word meanings in a symbol system,
typically through a manual or knowledge base grounding process, and using logics, grammars,
and other linguistic structures to understand and generate sEméesemmd category of

approaches covers learning word and utterance meanings from large data sets, with inspirations
drawn from machine learning and computational linguistics. Finally, HRI-centered approaches
focus on the language experience for people interacting with robots. While we use these broad
categories to discuss approaches, in practice much of the work in this field belongs to more than
one category. The categories are not intended to be mutually eedtiesjtbey provide a

possible framework for considering the overall research space.

3.1. Lexically Grounded Methods

This section describes work that uses a priori grounded tokens such as objects and actions, with
formal symbolic representations for the underlying semantics. Many of these approaches are based
on formal logickéemporal logics are frequently used, as there are algorithms to transform the
resulting formulas into behaviors that provide guarantees on performance and correctness (39).
These approaches are often less robust to unexpected inputs produced by untrained users and can
be difficult to implement at scale due to the manually groundetidesdeen, they enable

grounding rich linguistic phenomena such as anaphora (for example, the “it” in “grab the apple, |
want to eat it”) and reasoning about incomplete information.

3.1.1.Grounding token6ommon to the formal approaches described in this section is the
grounding of linguistic tokesisch as nouns and vertasperceptuahformation and robot

actions. For example, the token “cup” can be grounded to the output of an object detector, or
the action “open door” can be grounded to a motion planner that controls a manipulator. These
groundings can be either learned or manually prescribed, but in contrast to learning approaches
(Section 3.2hBnalysis ofitterances and groundings is performed using syntactic and formal

www.annualreviews:dkgbots That Use Languag@é.7
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semantic structures. Because manually grounding words in a lexicon is a time-consuming pro-
cess, existing knowledge bases and cognitive architectures are often used to automatically enrich
the lexicon using a base set of manual groundings.

3.1.1.1Knowledge bases and ontdlagiesxisting knowledge bases provide real-world,
common-sense knowledge that can be used to create language-using robots. WordNet (45) pro-
vides a lexicon of word meanings in English along with relations to other words in a hierarchy.
These relations map symbols to other symbols and can be used to initialize or enrich groundings,
especially nouns. VerbNet (46) is a large lexicon of verbs, including frames, argument structures,
and parameterized actions. Given a grounding of an action, many verbs can be used in associated
natural language utterances (47). Similarly, FrameNet (48) created a data set of verb meanings
with parameterized actions. ImageNet (49) is an image database organized using nouns in the
WordNet hierarchy. This data set has been used extensively in computer vision and provides in-
formation that could enable a robot to detect objects and ground noun phrases. Data sets that
are specific to a particular type of grounding task also exist, such as RefCOCO (50) for referring
expressions (41).

3.1.1.2Cognitive architectuSimsilar to knowledge bases, cognitive architectures encode
relationships between symbols; however, these architectures typically encode complex relations
between concepts in cognitive models designed to support reasoning mechanisms that enable
completion of inferential tasks. In the context of language and robotics, work has been done with
Soar (51; https://soar.eecs.umich.edu), ACT-R (Adaptive Character of Thought-Rational) (52),
and DIARC (Distributed Integrated Affect, Reflection, and Cognition) (53, 54), among others.

Soar (51; https://soar.eecs.umich.edu) is a theoretical framework and software tool designed
to model human cognition. It includes knowledge, hierarchical reasoning, planning, execution,
and learning, with the intent of creating general-purpose intelligent agents able to accomplish
many different tasks. Researchers have proposed NL-Soar (55), a system that enables language
understanding and generation that is interleaved with task execution. From the language side, tree
based syntactic models, semantic models, and discourse models are constructed that enable the
system to create a dialogue with a person. Building on this work, Huffman & Laird (56) introduced
Instructo-Soar, enabling new instructions to be grounded to procedures in Soar. Instructo-Soar
assumes simple imperative sentences that are straightforward to parse and instantiate as a new
operator templatieanguage groundings can also be learned from mixed-initiative HRIs that
include language, gestures, and perceptual information (57). The language to be grounded is first
syntactically parsed based on a given grammar and diatidrtagn the noun phrases are
mapped to objects in the perceptual field, the verbs to actions in the Soar database, and spatial
relations to a set of known primitives.

ACT-R and ACT-R/E (Adaptive Character of Thought-Rational/Embodied), introduced by
Trafton et al. (52), are frameworks in which cognition is implemented in an embodied agent that
must move in space. ACT-R/E has as a goal the ability to model and understand human cognition
in order to reproduce and imitate human cognitive capabilities. It has some language capabilities
in order to accept commands such as “go hide” to play hide-and-seek.

The DIARC architecture (53, 54), which has been under development for more than 15 years,
adopts a distributed architecture that does not attempt to model human cognition. Instead, differ-
ent instantiations that correspond to different cognitive abilities with varying levels of complexity
can be createdetermined by the intended Wiséhe DIARC architecture (54,8-60)re-
searchers created a system that incrementally processes natural language utterances, creates goal

Tellex et al.
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for a plannerand executes the instructiasshown in Figure 1le (3I.that work,the

lexicon is labeled with both syntactic annotations from a CCG (27, 29) and semantic annotations

in the form of A-expressions related to the tengpaCTL* (38) and first-order dynamic

logic. When an utterance is provided, it is incrementally parsed—i.e., a parse is available after
every token, the parse is updated as new tokens are received, and the semantics are incrementally
produced. Later work employed pragmatic inference to enable more complex language interac-
tion where the meaning of the utterances may be implicit and where context and semantics are
combined (61, 62).

PRAC (Probabilistic Action Cores) (63), while not a cognitive architecture per se, generalizes
the notion of a knowledge base by creating a system that enables inferring over, disambiguating,
and completing vague or underspecified natural language instructions by using information from
existing lexical databases and drawing on background knowledge from WordNet and FrameNet,
among other sources. From this information, the robot can infer a motor action that causes a
source object to end up in a goal location. Figure 1g shows an image from this work.

All of these architectures rely on hand-coded atomic knowledge that a human designer imparts
to the robot, plus composition operators that enable the creation of more complex knowledge.
These frameworks are carefully designed based on theories of cognition, leading to rich, evocative
demonstrations. However, it is difficult for these systems to scale to large data sets of language
or situations produced by untrained UBeisssort of scaling and robustness is a key future
challenge.

3.1.2 Formal reasonirng.addition to grounding tokens such as objects and places into detec-
tors, approaches that utilize formal reasoning typically attach semantic structures to lexical items,
such as verbs, and to the production rules of the grammar. These semantic structures are used to
understand the semantics of utterances and define new lexical items, such as objects and actions.
The semantics are typically fed into either a dialogue manager or a planner that executes situated
robot actions. Broadly speaking, the following approaches to language interactions follow a similar
pipeline: Natural language utterances in the form of text are syntactically parsed and then seman-
tically resolved (and, in some work, pragmatically analyzed) to produce formal representations of
the language’s meaning.

Early examples of end-to-end systems that useriepreaéntations for natlaauage
interactions were GRACE (&duate Robot Attending Conference) and GEORGE (Graduate
Robot Attending Conference), robots that competed in the Association for the Advancement of
Artificial Intelﬁgence (AAAI) robot challenges. At the 2004 AAAI National Conference on Arti-
ficial Intelligence, GRACE acted as an information kiosk, providing information about the con-
ference and giving directions, while GEORGE physically escorted people to their destinations
(64). Both robots utilized the Nautilus parser (65), which uses a CFG to produce an intermediate
syntactic representation that can be pattern matched to a semantic structure available to the in-
terpreter. Building on the Nautilus parser and the GRACE system, the MARCO agent (66) was
created to interpret route instructions given in natural language, combining syntactic and semantic
structures with information from the perception system regarding the environment.

The process of grounding and executing natural language instructions from websites such as
wikiHow was explored by Tenorth et al. (67). The system uses the Stanford parser (68), which
uses a probabilistic CFG to syntactically parse instructions. These instructions are grounded us-
ing WordNet (45) and CYC (69) and are captured as a set of instructions in a knowledge base. Later
work (70) discussed controlled natural language as a way to repair missing information through
explicit clarification. Nyga et al. (71) used a similar probabilistic model to utilize relational knowl-
edge to fill in gaps for aspects of the language missing from the workspace.

www.annualreviews:dkgbots That Use Languagé.9
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Raman et al. (72) and Lignos et al. (47) grounded high-level natural language tasks to linear
temporalogic (LTL) (38) formulas by using part-of-speech tagging and parsing to create the
syntactic structure. VerbNet (46) is then used to find the sense of the verb and assign a set of LTL
formulas as the semantics. In that work, the mapping of verb senses to LTL is done manually; in
other work (73, 74), semantic mappings are learned using the distributed correspondence graph
framework (75); Figure 1i shows an image from this work.

Siskind (76) presented another framework for formally reasoning about time and state changes
with manually defined verb meanings. The approach allowed a robot to identify objects and gen-
erate actions by defining a formal framework for objects and contact. The work was based on force
dynamics and event logic, a set of logical operators about time.

3.2. Learning Methods

This section covers work on learning models of language meanings from large data sets. The

task is to learn a mapping between natural language and symbols in a formal language. In some
approaches, the symbols are given. In others, symbols are created as these groundings are learnec
these methods are robust to a wide variety of language produced by untrained users but offer few
guarantees on performance and correctness.

3.2.1.Data and domains for learning metlkeadsng-based approaches use a wide va-

riety of data sets, tasks, and formats for training. Data sets typically consist of natural language
paired with some form of sensor-based context information about the physical environment. An
annotated symbolic representation is often also provided. The form of sensor data varies; raw per-
ceptual input, such as joint angles, is often too low level, but higher-level representations depend
on the specific approach. Table 2 lists some of the common data sets currently used in language
grounding and robotics along with the type of sensor, language, and annotation data.

We accompany Table 2 with a brief example of applying a data set for a robotic task. The
MARCO data set (66) of navigation instructions is the most widely used of the existing data sets
(14, 29, 66, 77, 78). Beyond being one of the earliest available data sets in this space, its wide upte
is partly because it contains not only route directions but a complete simulation environment in
which to navigate. Thus, potential users of the data set do not need to provide their own robot
or handle potentially different sensing or actuation capabilities. Instead, language-learning ap-
proaches can be directly compared with previous approaches to the same problem by using the
natural language instructions in MARCO, then testing in the same simulated environment.

For example, 10 years after the original work used a handcrafted grammar to explicitly model
language (66), Mei et al. (79) used a long short-term memory recurrent neural network (LSTM-
RNN) to learn to follow directions. This work estimated action sequences from natural language
directions, performing end-to-end learning directly from raw data consisting of tuples of natural
language instructions, perceived world state, and actions. The LSTM-RNN encodes the naviga-
tional instruction sequence and decodes to action sequences, incorporating the observed context
(world state) as an extra connection in the decoder step.

The challenge in using any of these data sets is the mismatch between the data provided and th
actual data that will be encountered in a real robotic task. The robot in a task may have different
sensors, actuators, and representations than the one used in the task. For example, the MARCO
data set uses butterflies as a landmark object; most real environments do not have these butterflie
but do have other landmarks that may not appear in MARCO. Learning more general concepts
such as “landmarks” is an important open question for future work.

A key question for data-based methods is determining a space of possible meanings for words:
Into what domain might language be grounded? Domains may consist of specific objects or areas ir
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in language grounding and robotics

Data set Type of data URL
MARCO (66) Navigation instructions given to a robot {fohttp://www.cs.utexas.edu/users/ml/clamp/
navigate a map, and the route followed navigation
Scene (33) Images and descriptions of objects in the http://rtw.ml.cmu.edu/tacl2013 Isp

image

Cornell NLVR (189)

Pairs of images and logical statements a
them that are true or false

bdtitp://lic.nlp.cornell.edu/nlvr

CLEVR (190)

Images and pairs of questions and answ

erhttp://cs.stanford.edu/people/jcjohns/clevr

EQA (104) Pairs of questions and answers in simulatelttp://embodiedqa.org
3-D environments (the agent needs to
search the environment to find the answer)
IQA (191) Pairs of questions and answers in differenthttp://github.com/danielgordon10/thor-iqa-

simulated 3-D environments cvpr-2018
Panoramic views in real buildings paired|wiittp://bringmeaspoon.org
instructions to be followed
H2R Laboratory languagel Predicate-based subgoal conditions pairedhttp://github.com/h2r/language_datasets
grounding (91, 102) with natural language instructions
CIFF (106, 193) Data for three separate navigation domgiristitp://github.com/clic-lab/ciff
3-D environments, containing instructipns
paired with trajectories
Pairs of language command and trajectoridgtp://people.csail.mit.edu/stefiel0/slu
for navigation and mobile manipulatiorp

R2R navigation (192)

SLU (14, 83)

Abbreviations: CIFF, Cornell Instruction Following Framework; CLEVR, Compositional Language and Elementary Visual Reasoning; EQA, Embodied
Question Answering; H2R, Humans to Robots; IQA, Interactive Question Answering; NLVR, Natural Language for Visual Reasoning; R2R, Room-to-
Room; SLU, Spatial Language Understanding.

the environment, perceptual characteristics, robot actions, or combinations thereof. The meaning
of language is often grounded into predefined formalisms, which maps well to existing work in
formal semantics (20). However, in work more oriented toward more machine learning, there is
a trend toward systems that learn the representation space itself from data, leading to systems
that do not need a designer to prespecify a fully populated set of symbols and allowing robots to
adapt to unexpected input. For example, Matuszek et al. (13) and Pillai & Matuszek (80) showed
that symbols for shape, color, and object type can be learned from perceptual data, enabling the
robot to create new symbols based on its perceptual experience, while Richards & Matuszek (81)
extended that work to creating symbols that are not category limited.

We divide the following approachie¢o those thatuse primarily predefined languages
(Section 3.2.2), those that are more concerned with discovering the domain (Section 3.2.3), and
recent work on using deep neural networks for language understanding (Section 3.2.4). In prac-
tice, work in this area falls along a spectrum, ranging from formal-methods approaches that use
completely manually defined word meaning® (&a)ning mappings between words and a
prespecified formal language (10, 73, 82), to learning new symbols from data while specifying per-
ceptually motivated features (83), to learning new features from data as well as a mapping between
word meanings and those features (13).

3.2.2.Learning to map to predefined symbolic dfpameiag to predefined symbolic
structures has a natural analog in machine translation research. In machine translation, the goal is
to translate a sentence from one language to another language (for example, “pick up the block” in
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English to “podusieblok” in Polish). Many approaches take as input a parallel corpus of sentences
in the two naturddnguages and then learn a mapping between the languages. When applied

to robotics, the input language is a natural language, and the output is a formal representation
language that the robot can act on. The challenge is then to specify an appropriate formal robotic
language and acquire a data set or parallel corpus with which to train the model.

This approach has been applied to a variety of dosnaimss enabling a robot to learn
to interpret natural language directions from pairs of directions and programs that follow those
directions (10, 66, 77). The same approach can be used for the inverse problem of generating nat-
ural language descriptions of formally represented events, such as RoboCup soccer games (84).
MacGlashan et al. (85) showed that a robot can learn to map to a predefined space of symbolic re-
ward functions using the classic IBM Model 2 machine translation approach (86); once the reward
function has been inferred, the robot finds a plan that maximizes the reward, even in environments
with unexpected obstacles. Misra et al. (87) learned to map between words and a predefined sym-
bolic planning space using a graphical modeling approach, interpreting commands such as “turn
off the stove.”

Other approaches use semantic parsing to automatically extract a formal representation of word
meanings in some formal robot language. These systems vary in terms of the formal language usec
For example, Matuszek et al. (82) created a system that learns to parse natural language directions
into Robot Control Language (RCL), a control language for movement. This work could learn
programmatic structures in language such as loops (e.g., “drive until you reach the end of the
hallway”). Alternatively, Artzi & Zettlemoyer (29) created a system for learning semantic parses
for mapping instructions to actions in order to follow natural language route instructions, while
Thomason et al. (88) used an approach that learned semantic parse information and grounded
word meanings from dialogue interactions with users. Fasola (8Matsed a probabilistic
approach to learn mappings between commands and a space of actions of service robots, including
models for spatial prepositions. Boteanu et al. (73, 74), Brooks et al. (90), and Arumugam et al. (91
grounded language to objects and specifications expressed in LTL. A key difference in all of these
approaches is the formal language chosen to represent the meaning of the human language; in
many cases, the formal language can represent only a subset of the meanings possible in natural
language.

3.2.3.Learning to map to undefined sWeceaw a distinction between learning to map
between predefined symbol spaces and approaches that extend the space of symbols that natural
language may be grounded into. We emphasize that this is a spectrum; all learning approaches rely
to a greater or lesser extent on some predefined structure. Less prespecification means the system
is more general and can be extended to unexpected tasks and environments but also increases the
difficulty of the learning problem. Substantial current effort is focused on learning from very little
prespecified data.

The Generalized Grounding GrapB) (Bamework (83) was introduced to interpret natural
language commands given to a robotic faklifiellas to interpret route instructions for a
wheelchair (14) and a micro air vehicle (92). It uses a graphical model framework to represent the
compositional structure of language, so that the framework can map between words in language
and specific groundings (objects, places, paths, and events) in the physical world. It learns feature
weights in a prespecified feature space to approximate a function for mapping between words in
language and aspects of the world. This work has been extended to enable robots to ask natural
language questions that clarify ambiguous comma®glsdii8,to enable robots to ask for
help (94)It has also been extended to create an efficient interface for interpreting grounded
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language by mapping to planning formalicfh3,an approach thatramatically increases

the speed with which wordsn be interpreted by the rob@uilding on thisframework,

Paul et al. (95) created a system that learns to interpret subsets of objects, such as “the middle
block in the row of five blocks.”

Other approaches do not require features to be prespecified but do encode a space of possible
features as well as data sources from which features are derived. Roy & Pentland (96) created a sys-
tem for learning nouns and adjectives from video of objects paired with infant-directed speech. It
learned to segment audio and map phonemes to perceptual features without a predefined symbol
system. Matuszek et al. (13) created a system for learning word meanings for words by automat-
ically creating new features for visual object attributes, while Pillai & Matuszek (80) learned to
select negative examples for grounded language learning. Guadarrama et al. (97) created a system
for interpreting open-vocabulary object descriptions and mapping them to bounding boxes in im-
ages, leveraging large online data sets combined with a model to learn how to use information
from each data set. Blukis et al. (98) developed a method that learns to create a semantic map of
the environment by projecting between the camera frame and a global reference frame. These
approaches represent emerging steps toward an end-to-end learning framework from language to
low-level robot control.

3.2.4Grounding language using deep leNdieny.deep learning-based approaches of
convolutional neural networks, recurrent neural networks, and deep Q-networks led to successes
in computer vision, machine translation, and reinforcement learning. Using neural networks or

a connectionist architecture is not novel. Older neural network-based approaches (e.g., 99, 100)
learned robot behavior from demonstrations and mapped language to these behaviors. Roy &
Pentland (96) used recurrent neural networks to learn word boundaries by phoneme detection
directly from speech signals. However, the amount of data being used and represented in modern
deep learning methods is much larger in scale and allows for end-to-end learning. These novel
deep approaches were applied to solve problems of language grounding (e.g., 79, 101). In this
article, we do not survey these methods in great detail, but we do provide a short introduction to
the types of problems that have been tackled with deep learning-based approaches. We split this
discussion based on the problems addressed by these methods.

3.2.4.1.Instruction following with sequence-to-sequenceSapprofibhesarliest
progress was made in the area of instruction followi@d)(7Bis is a supervised problem
where an agent performs a sequence of actions in response to a natural language command. In
this problem setup, a common theme is to treat a language command and a sequence of actions
performed by the agent as a machine translation problem using recurrent neural network-based
sequence-to-sequence approaches (79). Others have abstracted the problem to learn the ground-
ing from natural language to subgoals or goals (102, 103). These methods have been implemented
in robots only when the abstract fixed grounding symbols have been provided (91).

Some approaches try to reduce the amowniparvision by converting this instruction-
following problem into a reinforcement learning problem. This was first done with classical policy
gradient methods by Branavan et al. (12); more recently, it has been applied to richer environments
with visual inputs (104-106). A common strategy is to model the agent and its environment as a
Markov decision process and encode the instruction given to the agent as the state of the environ-
ment. Such agents have been able to answer questions about the properties of objects or navigate
to objects in simulation. This approach is difficult to implement in anolpsigaven the
number of episodes required to learn behaviors.
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3.2.4.2Grounding objects in im@gamding or captioning objects within images to their

names is an active area of research within deep learning. Initially, this work used classifiers to
recognize an object class within an image (107). It then progressed to captioning images densely,
that is, recognizing abbjects within an image (108, 109). A gempgadach, first described

in Karpathy & Fei-Fei (109), is to align vectorized object representations within the image with

the vectorized representations of sentences used to describe the objects in the image. These ap-
proaches are capable of labeling activities being performed by the objects of interest and also allow
retrieval of images described by natural language (108). They have been implemented in physical
robots in an object retrieval setting by training the robot on simulated images (110, 111).

3.2.4.3Grounding control from robot per&yliimet al. (98) developed a system that
learned to map between navigation instructions and low-level control actions, mediated by the
robot’s sensor input and control actions. This work aimed to perform end-to-end learning from
language to control actions and has since been demonstrated in physical robots.

3.3. Approaches Centered on Human-Robot Interaction

The final broad category of work we consider is that which lies primarily in the area of HRI. While
work in the previous sections is grouped by learning and representation models, here we describe
how NLP research supports and is supported by robots that interact directly with people. It is
often these approaches that create the most robust behaviors and end-to-end systems, drawing on
insights from learning and logic-based methods.

We discuss language-based HRI efforts divided broadly by tasks, considered on a spectrum
(see Figure 4). On one end, language provides a natural supporting mechanism for robot learn-
ing (Section 3.3.1). In this area, language is used as a tool to help robots learn other tasks. On the
other end, robots provide an ideal testbed for learning to understand physically situated language;
here, the robot is a platform for learning grounded language. This subtopic is substantial and has
been covered in Section 3.2. Tied to both areas are efforts whose primary goal is the development
of systems that use language in order to support robust HRI (Section 3.3.2).

3.3.1.Language-based interactions to improvéesvhatg Robots thatearn have
the potential to automatically adapt to their environment and achieve more robust behavior. In
this section, we describe how language technology can enable more efficient and effective robot

Language-based robot learning HRI using language Robot-supported language learning

.
| &\!-llll-ou.llﬂw.l“l('\!)“||||||||||(|°|Q,Q =
®° @ @ L@ & L

Figure 4

A categorization of work using language for human-robot interaction (HRI). This visualization spans efforts that use language to
support efficient robot learning, efforts to use language in order to maximize the effectiveness of HRIs, and the use of robots as
physically situated agents to support language learning.
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learning, especially from human teachers. Natural language provides a rich, accessible mechanism
for teaching robots while still being grounded in the physical world. The vast body of literature on
human learning provides questions about learning modalities, information presentation, reward
functions, and interaction-based learning. We describe current work on developing robot systems
thatlearn abouthe world from naturdanguage inputisicluding efforts on learning from
demonstration (LfD), learning reward functions from language, active learning, and learning how
to elicit instructional language.

When learning physical concepts like object characteristics or actions, the physical referent
must be linked to linguistic structures. This is seen both explicitly, as in referring expressions (e.g.,
“this is a yellow block”), and implicitly, as when connections are learned from the coexistence of
words and percepts during training. Exploring this connection between linguistic references and
their grounded referents is the basis of substantial work on LfD, in which demonstrations connect
the learning concepts and the language used.

In LfD, language is used as a learning signal to improve robot learning and capabilities. Steels
& Kaplan (112) used language and camera percepts to leanstaoel-based objects and
their associations with words. Billard et al. (99) used LfD to ground language with a constrained
vocabulary to sequences of actions demonstrated by the teacher. Chao et al. (113) used LfD to
ground concepts for goal learning, where the concepts are discrete, grounded percepts based in
shared sensory elements with human explanations. Concepts are denoted in words to human par-
ticipants, but language is not part of the learning problem; word meanings are provided to the
system by the designer. Krening et al. (114) used object-focused advice provided by people to im-
prove the learning speed of an agent. Language can also be used to describe actions rather than
perceived objects, as in programming by demonstration, in which demonstrations of actions are
paired with natural language commands (115). Programming by demonstration can also rely on
more complex semantic parsing, as in the approach developed by Artzi et al. (116), in which lan-
guage is interpreted in the context provided by robot state. In all of these papers, humans use
language to provide information, advice, or warnings to the robot to improve task performance.

Language can be used to provide explicit feedback to a learning system. The mechanism for
learning from that feedback can be treated as a learning problem itself. In this framework, language
is learned jointly with policies rather than jointly with direct observations, allowing learning that is
less situation specific (85). This approach can allow a nonspecialist to give an agent explicit reward
signals (117) or can model implicit feedback strategies inherent in human teaching (118, 119).

Robots asking questions about their environment is a form of active learning in which the
learning agent partially or fully selects data points to label. Asking questions that correspond to
a person’s natural teaching behavior (120) is balanced with selecting data that optimize learning,
as queries to a user are a sharply limited resource (121). In general, incorporating active learning
makes learning more efficient and makes it possible to learn from fewer data points (122, 123). This
form of learning can be implemented in a domain-independent way, as done by Knox et al. (124),
and can improve efficiency on learning tasks, including both explicit language grounding (125) and
more general robotics problems, such as learning conceptual symbols (126), spatial concepts (127),
or task constraints (128).

Another topic in learning from language provided by nonspecialists is how to correctly elicit in-
formation and demonstrations from people. Chao & Thomaz (129) explored conducting dialogue
correctly, with appropriate multimodal timing, turn-taking, and responsiveness behavior (130).
Learning from nonspecialists also means figuring out what questions to ask; Cakmak & Thomaz
(131) studied how humans ask questions and designed an approach to asking appropriately tar-
geted questions for LfD, while Pillai & Matuszek (80) demonstrated a method for automatically
selecting negative examples in order to train classifiers for positively labeled grounded terms.
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3.3.2.Human-robot interaction using langiRige.one of the most active areas for

grounded language research. Language provides a natural mechanism for interacting with physical
agents in order to direct their actions, learn about the environment, and improve interactions. At
the same time, interacting with people provides a rich source of information and training data

that robots can learn from in order to improve their capabilities. Language-based HRI is a broad,
active field of study. In this section, we provide an overview of some of the categories of current
research on HRI and language.

Childhood education is a significant area of research for HRI studies (132), both because there
is a chronic shortage of personnel in education and child care and because increasing the role
of technology in childhood education is a criacbbf attracting a larger and more diverse
population into STEM fields. Research in this area focuses largely on the role of interactive play
in child development. This play can take the form of acting out stories between children and
robots (133), assisting with language development (134-137), or serving as intelligent tutoring
systems (138, 139).

Language in HRI is often paired with other interaction modalities. Modalities such as gesture
and gaze direction affect everything from deictic (referential or attention-drawing) interactions to
what role a robot may play in a setting (140). There is a growing body of work in which language is
incorporated into multimodal HRIs (141). Matuszek et al. (32) used a combination of language and
unconstrained, natural human gestures to drive deictic interactions when using language to teach «
robot about objects, while Huang et al. (92) used modeling to evaluate robots’ use of gesture. In th
inverse direction, Pejsa et al. (142) used people’s speech, gaze, and gestures to learn a multimodal
interaction model, which was then used to generate natural behaviors for a narrating robot.

Another key area of HRI research is work on assistive robotics, in which robots perform tasks
designed to support persons with physical or cognitive disabilities. This support can take many
forms; with respect to language, social and cognitive support is most common. Socially assistive
robot systems have been used to engage elderly users in physical exercise (143, 144), incorporatin
language pragmatics and anaphor resolution (145, 146) as well as verbal feedback. Verbal robots
have also been explored in the context of autism support (147) and tutoring for deaf infants (148).

4. CLASSIFICATIONS BY PROBLEM ADDRESSED

Most of the above approaches can be applied to more than one communication task. Here we
review those tasks, divided into three sections: understanding communications from a human to
a robot (the largest body of work), generating linguistic communication from a robot to a human,
and two-way systems that endeavor to both understand and generate language.

4.1. Human-to-Robot Communication

Human-to-robot communication is the problem of enabling robots to interpret natural language
directives given by people. Understanding a person’s language requires mapping between words
and actions or referents in the physical world. Two specific subproblems include understanding
commands and information given to the robot by a person.

4.1.1.Giving robots comman@smmand understanding is the problem of mapping be-

tween language and physical actions on the part of the robot. One early and widely considered
domain is route direction following, where a mobile robot must interpret instructions on how

to move through an environment. MacMahon (66) created a large data set of route directions in
simulation, which has been used in a number of papers (10, 29). Kollar et al. (14) used a statis-
tical approach to interpret instructions for a robotic wheelchair. Shimizu & Haas (149) used a
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conditional random field approach to learn word meanings, and Matuszek et al. (77) used a ma-
chine translation approach to learn to follow instructions in real-world environments, including
counting and procedural language such as “the third door” or “until the end of the hall.” Robotic
platforms used for this problem include a robotic wheelchair (14, 66), robotic unmanned aerial ve-
hicles (92), and mobile robots (150). Understanding navigational commands remains a significant
and ongoing area of research (151).

A second class of problems is interpreting natural language commands for manipulator robots.
This problem has been studied in the subdomains of interpreting textual recipes (152, 153), fol-
lowing instructions for a robotic forklift (83), and interpreting instructions to a tabletop arm (32,
67) and in Baxter robots (73, 74). Such language may refer only to the robot’s motion; for exam-
ple, Correa et al. (154) created a robotic forklift with a multimodal user interface that interpreted
shouted commands such as “stop!” However, since manipulators manipulate things in the world at
least some of the time, this class of commands is frequently blended with understanding language
about objects.

Another frequently studied task is understanding instructions in cooking, particularly focusing
on following the semiconstrained language of recipes. Beetz et al. (153) used a reasoning system
to interpret recipes and cook pancakes. Tasse & Smith (155) created a data set of recipes mapped
to a formalsymbolic representatiaile Kiddon et al(156)created an unsupervised hard
expectation-maximization approach to automatically map recipes to sequenced action graphs;
neither system used robots. Bollini et al. (152) created a system for interpreting recipes but did
not ground ingredients into perception. Although the language of recipes is constrained, under-
standing them remains a challenging problem, in part because ingredients are combined into new
things that do not exist at the time of original interpretation—for example, flour, eggs, water, and
sugar are transformed into a batter, which is then transformed into a quick bread. Interpreting
forward-looking language that maps to objects that do not yet exist is a difficult problem. Simi-
larly, instructions often require the robot to detect certain perceptual properties, as in “cook until
the cornbread is brown.” Correctly detecting these properties requires advances in perception
combined with language to create or select a visual detector to identify when this condition has
been met.

4.1.2.Giving robots information about the Avsetdnd element of language interpre-
tation is enabling robots to use language to improve their knowledge of the world. Compared
with instruction following, this topic is a less studied area, but there is nonetheless a rich array of
approaches. Cantrell et al. (157) created a system that updates its planning model based on human
instructions, while the system of Walter et al. (158) incorporates information from language into a
semantic map of the environment. Pronobis & Jensfelt (159) described a multimodal probabilistic
framework that incorporates semantic information from a wide variety of modalities, including
perceived objects and places as well as human input.

We briefly discuss two specific important subproblems in human-to-robot communication:
how robots can resolve references to and understand descriptions of objects, and understanding
descriptions involving spatial relationships. One of the major areas in which robots have the po-
tential to help people is in interacting with objects in the environment, meaning it is critical to
be able to learn about and understand physical references, both spatial (as in “the door near the
elevators”) and descriptive (as in “the yellow one between the two toys” or, more abstractly, “a nice
view").

4.1.2.1References to objRabsis may need to retrieve, manipulate, avoid, or otherwise be
aware of objects being referred to in language. Language about objects and landmarks in the world
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can be broken down by level of specificity; we roughly categorize language at these different levels
of abstraction as (a) general language about object characteristics, such as color, shape, or size (3
160, 161); (b) descriptions of objects at the type, or category membership, level, which encompass
approaches that tie language into object recognition (80, 96, a6@,(@dbRBmnguage about
particular instances of objects, such as “my mug” (14, 62, 83, 112). These categories often overlap
For example, the first step for recognizing an instance is often finding all objects in that category,
or object types might be further differentiated by their attributes, as in “the yellow block.”

Another issue is interpreting complex descriptions. For example, one route direction corpus
contains the instruction “you will see a nice view,” referring to a view out of a set of windows
the robot would pass. This expression requires the robot to make a subjective judgment about the
world. A corpus of object descriptions contains the phrase “a small pyramid like the pharaohs lived
in” (32), which requires differentiating direct physical descriptions from background knowledge.
In addition, it is not always clear what defines an object. A bottle consists of a bottle and a cap, and
a person referencing “the bottle” may mean both, or they may say, “Grab the bottle and then turn
the cap,” referring to them separately. For assembly tasks, a part such as a screw and a table leg n
combine to form a completed assembly, the table (94, 164). Grounding these sorts of expressions
is an open problem.

4.1.2.2Referring-expression resolirtderstanding natural language expressions that de-

note particular things in the robot’s environment is another key subproblem. Referring expressions
may occur in commands (e.g., “go through the door near the elevators,” in which the robot must
identify the referenced door) as well as manipulation instructions (e.g., “pick up the green pep-
per”) (62, 83). Chai et al. (165) created a system that interprets multimodal referring expressions
using a graph-based approach. Matuszek et al. (32) and Whitney et al. (166) merged information
from language and gesture to interpret multimodal referring expressions in real time using a fil-
tering approach and a joint classification approach, respectively; an image from Matuszek et al.
(32) is shown in Figure 1d. Golland et al. (167) generated spatial descriptions using game theory
to generate human-interpretable referring expressions in a virtual environment.

4.1.2.3Spatial relationshiprpreting spatial relationships is a well-known, complex prob-

lem in NLP. For route instructions, the language may take the form of “the door near the eleva-
tors” or “past the kitchen”; for object descriptions, it may take the form of “at the top left corner.”
Understanding these instructions frequently requires not only referring-expression resolution to
understand phrases referring to landmarks but also pragmatic disambiguation of possible mean-
ings. Spatial prepositions are frequently used to refer to objects, places, or paths in the physical
world. Spatial prepositions are a closed-class part ofsspgaich| language has only a few,

and new ones are rarely added. Cognitive semantics has focused on the structure of spatial lan-
guage and how humans use it, especially the argument structure as well as semantic features that
allow it to be interpreted (36, 168). Some work has focused specifically on spatial prepositions (11,
127, 169, 170). This problem also arises in the context of referring-expression resolution, since
expressions such as “near” or “between” require identifying a place or an object from distractors.

4.2. Robot-to-Human Communication

In the context of natural language user interfaces, people frequently expect spoken responses whe
they speak to a system such as a robot. Language is an obvious way to engage in active disambigu
tion, convey information, and provide context. Researchers have studied the problem of enabling a
robot to produce natural language to answer questions, ask for help, or provide instructions. This
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problem is the inverse of language understanding: The robot desires to communicate something
to the person and must find words that convey its ideas. Subproblems include robots instructing
people, robots asking questions, and robots informing people.

4.2.1 Robots instructing people and asking q@éhiomsobot might use language to

try to get a person to do something, typically by asking for help or asking the person to carry out an
action. The most basic approach to language generation is template-based or scripted approaches,
in which a designer encodes the words the robot will say. For example, Fasold &6Matari

used templates to generate language to motivate physical exercise for older adults (as shown in
Figure 1h). This approach is straightforward and can result in sophisticated sentences but is lim-
ited in its adaptability to novel environments and situations. Other approaches focus on enabling

a robot to adaptively generate sentences based on the context. Knepper et al. (164) generated
natural language requests for help in assembling lkea furniture from untrained, distracted users.
CoBots navigate an office environment delivering objects and ask for navigation help using a
human-centered planner to determine whom to ask for assistance (171).

A second sort of instruction is actively using language to induce a person to provide additional
information, for example, by asking a question. Deits et al. (93) presented an algorithm to generate
targeted questions based on information theory to reduce confusion. Rosenthal & Veloso (172)
modeled humans as information providers, using a partially observable Markov decision process
to ask questions when the robot encountered problems. Thomason et al. (173) created a system
for opportunistically collecting information from someone about objects in its environment (in
which a robot asks about objects near a person, including questions irrelevant to the immediate
task) and learning about objects from attributes (174) (as shown in Figure 1c). Pillai et al. (125),
Cakmak & Thomaz (131), and others have used active learning to select focused questions that
allow the robot to efficiently collect information. All of these approaches use statistical frameworks
to generate instructions or queries given the robot’s current physical context.

4.2.2 Robots informing peopia@ddition to trying to instruct people with language, a robot

may also need to inform people about aspects of the world. For example, Chen et al. (84) cre-
ated a system that learns to generate natural language descriptions of RoboCup soccer games by
probabilistically mapping between word meanings and game events. Mutlu et al. (175) created a
storytelling robot that uses language as well as gaze to engage a human listener. Cascianelli et al.
(176) created a system that enables a robot to learn to describe events in a video stream and re-
leased a data set for service robotics applications. All of these applications require the robot to
communicate with a person about aspects of the environment.

4.2.3.Generating references to objectdhe same reasons that a robot may need to un-

derstand references to things in its environment (see Section 4.1.2.1), a robot may need to gen-
erate referring expressions about objects, landmarks, or people. Dale & Reiter (177) carried out
seminal work on generating referring expressions for definite noun phrases referring to physical
objects, such as “the red cup,” following Gricean maxims of quantity and quality of the communi-
cation (178) and focusing on computational cost. This approach assumes a symbolic representation
of context, rather than grounding to perception. Golland et al. (167) generated spatial descriptions
using game theory to produce referring expressions in a virtual environment that are interpretable
by a human partner. Mitchell et al. (179) generated expressions that refer to visible objects that

a robot might observe with its camera. Tellex et al. (94) provided an inverse-semantics algorithm
for generating requests for help, including expressions such as “the black leg on the white table”
(shown in Figure 1la). Fang et al. (180) created a system for collaborative referring-expression
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generation using a graph-based approach that changes the generated language based on human
feedback, while Zender et al. (181) created a system for enabling a mobile robot to generate natu-
ral language referring expressions for objects in the environment and to resolve expressions, using
context to determine how specific or general to make the resolution. From a robotics perspective,
these examples represent different contexts in which a physical agent may use language productio
to improve its ability to accomplish real-world tasks or goals.

4.3. Two-Way Communication

Two-way communication involves enabling a collaborative interaction between a human and a
robot, either asynchronously or in dialogue. Such a robot must both interpret a person’s commu-
nicative acts and generate communicative actions of its own. Two-way communication requires
more than simply combining language understanding and generation; the robot must reason about
uncertainty in its own percepts, retain conversational state, react quickly to a person’s input, and
work toward a communicative collaboration. Partly as a result of these challenges, much work

has focused on issues that arise from building robotic systems that engage in dialogue with a user
and the associated design questions that arise. A variety of end-to-end robotic systems have been
created that use language. These systems typically involve the integration of many software and
hardware components in order to create an end-to-end user interaction. The focus is often on
multimodal communication, where language constitutes one communication mode in the overall
interaction.

For example, Bohus & Horvitz (182) created a computational framework for turn-taking that
allows an embodied conversational agent to take and release the conversational floor using gaze,
gesture, and speech. Some of these systems communicate by understanding language, performing
actions, and seeking help when problems are encountered. Matuszek et al. (32) created a system
for learning from unscripted deictic gesture combined with language in order to perform manip-
ulations. Okuno et al. (183) created a robot for giving route directions by integrating language
utterances, gestures, and timing. Fasola & Mdt@)icreated a socially assistive robot system
designed to engage elderly users in physical exercise. Veloso et al. (184) created the CoBots, mobil
robots that engage in tasks in an office environment, such as fetching objects. Marge et al. (185)
created a heads-up, hands-free approach for controlling a pack-bot as it moved on the ground. Tse
& Campbell (186) created a system that incorporates and communicates probabilistic information
about the environment. A more direct approach is to learn the spatial semantics of actions directly
from language (187) (shown in Figure 1b). The CoBot systems learned to follow commands such
as “take me to the meeting room,” engaging in dialogue with humans in their environment to
improve their abilities (188) (shown in Figure 1f).

While these robots understand language, the robot-to-human side of communication can take
a form other than, or in addition to, speech. This multimodality reflects the multimodal nature of
interagent communication: Even when talking, humans expect to be able to use gesture, gaze, and
body language, as well as utterance timing and even prosody (voice tone and inflection). Language
using robots must therefore be aware of these expectations and work to address or mitigate them;
failing to do so runs the risk of frustrating users when attempting to communicate.

5. CONCLUSION AND OPEN QUESTIONS

Language-using robots require models that span all areas of robotics, from perception to planning
to action. Researchers from diverse communities have contributed to ongoing work in this exciting
area, and much remains to be done. In this article, we have reviewed methods for robots that use
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language. We covered technical approaches, ranging from formal methods to machine learning

to HRI approaches. We discussed problems to solve for robotic language use, including learning
from and receiving information from people, asking questions, and giving people instructions. We
presented some of the most immediately relevant NLP problems, such as referring-expression
resolution. Additionally, we briefly reviewed work in related areas, including linguistics, cognitive
science, computational linguistics, vision and language, ontologies and formal representations, and
nonverbal communication.

Research in formal methods has pointed toward mechanisms for capturing complex linguistic
phenomena such as anaphora resolution, interpreting commands about ongoing action, and ab-
stract objects. However, statistical methods often use simpler representations focused on concrete
noun phrases and commands for ease of learning. As more sophisticated formal models mature,
statistical methods will enable learning of formal-methods-based representations, combining ben-
efits of robustness with more capable and complex language understanding. At the same time,
advances in deep learning have enabled approaches that can learn from less data with end-to-end
supervision. We expect that deep learning applied to robotic language use will build on existing
work to learn with less and less supervision over time. We see opportunities for sophisticated se-
mantic structures from formal methods combined with learning approaches from deep learning
to create a new generation of language using robots capable of robustly interpreting sophisticated
commands produced by untrained users.

The power and challenge of language lie in its ability to construct arbitrarily fine-grained and
specific sentences that apply tpaats of the robot and its environm&sata resultrobust
language-using robots must integrate language with all parts of a robotic system, a formidable
task. As we move toward language-using collaborative robots, we need more robust models for
the entire planning and perceptual stack of the robot in order to integrate with natural language
requests, questions people might pose, learning from language, and the generation of appropri-
ate language and dialogue by the robot. Similarly, the robot must combine verbal and nonverbal
modalities in interactive systems in order to fully understand how people interact and to detect
and recover from errors. Although daunting, the scale and complexity of the problems described in
this survey are indicative of the potential power in bringing language into robotics and in building
flexible, interactive, and robust systems by bringing the fields together.
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