

On Grids in Point-Line Arrangements in the Plane

Mozhgan Mirzaei

Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA
momirzae@ucsd.edu

Andrew Suk

Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA
asuk@ucsd.edu

Abstract

The famous Szemerédi-Trotter theorem states that any arrangement of n points and n lines in the plane determines $O(n^{4/3})$ incidences, and this bound is tight. In this paper, we prove the following Turán-type result for point-line incidence. Let \mathcal{L}_a and \mathcal{L}_b be two sets of t lines in the plane and let $P = \{\ell_a \cap \ell_b : \ell_a \in \mathcal{L}_a, \ell_b \in \mathcal{L}_b\}$ be the set of intersection points between \mathcal{L}_a and \mathcal{L}_b . We say that $(P, \mathcal{L}_a \cup \mathcal{L}_b)$ forms a *natural $t \times t$ grid* if $|P| = t^2$, and $\text{conv}(P)$ does not contain the intersection point of some two lines in \mathcal{L}_a and does not contain the intersection point of some two lines in \mathcal{L}_b . For fixed $t > 1$, we show that any arrangement of n points and n lines in the plane that does not contain a natural $t \times t$ grid determines $O(n^{\frac{4}{3}-\varepsilon})$ incidences, where $\varepsilon = \varepsilon(t) > 0$. We also provide a construction of n points and n lines in the plane that does not contain a natural 2×2 grid and determines at least $\Omega(n^{1+\frac{1}{14}})$ incidences.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

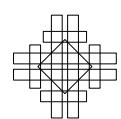
Keywords and phrases Szemerédi-Trotter Theorem, Grids, Sidon sets

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.50

Funding *Mozhgan Mirzaei*: Supported by NSF grant DMS-1800746.

Andrew Suk: Supported by an NSF CAREER award and an Alfred Sloan Fellowship.

1 Introduction


Given a finite set P of points in the plane and a finite set \mathcal{L} of lines in the plane, let $I(P, \mathcal{L}) = \{(p, \ell) \in P \times \mathcal{L} : p \in \ell\}$ be the set of incidences between P and \mathcal{L} . The *incidence graph* of (P, \mathcal{L}) is the bipartite graph $G = (P \cup \mathcal{L}, I)$, with vertex parts P and \mathcal{L} , and $E(G) = I(P, \mathcal{L})$. If $|P| = m$ and $|\mathcal{L}| = n$, then the celebrated theorem of Szemerédi and Trotter [16] states that

$$|I(P, \mathcal{L})| \leq O(m^{2/3}n^{2/3} + m + n). \quad (1.1)$$

Moreover, this bound is tight which can be seen by taking the $\sqrt{m} \times \sqrt{m}$ integer lattice and bundles of parallel “rich” lines (see [13]). It is widely believed that the extremal configurations maximizing the number of incidences between m points and n lines in the plane exhibit some kind of lattice structure. The main goal of this paper is to show that such extremal configurations must contain large *natural grids*.

Let P and P_0 (respectively, \mathcal{L} and \mathcal{L}_0) be two sets of points (respectively, lines) in the plane. We say that the pairs (P, \mathcal{L}) and (P_0, \mathcal{L}_0) are *isomorphic* if their incidence graphs are isomorphic. Solymosi made the following conjecture (see page 291 in [2]).

► **Conjecture 1.1.** *For any set of points P_0 and for any set of lines \mathcal{L}_0 in the plane, the maximum number of incidences between n points and n lines in the plane containing no subconfiguration isomorphic to (P_0, \mathcal{L}_0) is $o(n^{\frac{4}{3}})$.*

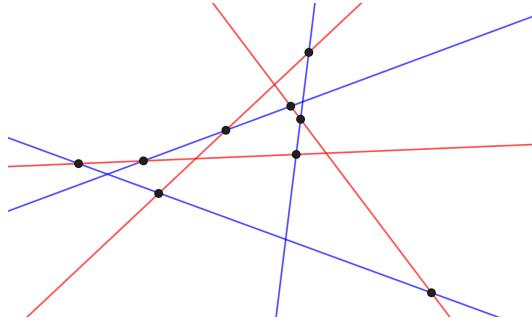


Figure 1 An example with $|\mathcal{L}_a| = |\mathcal{L}_b| = 3$ and $|P| = 9$ in Theorem 1.3.

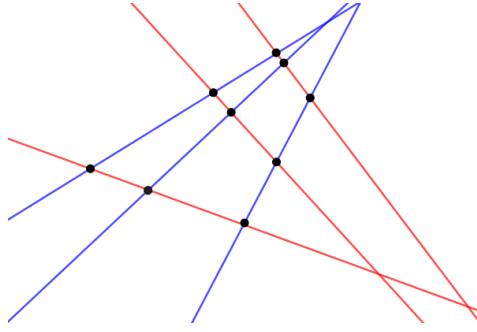
In [15], Solymosi proved this conjecture in the special case that P_0 is a fixed set of points in the plane, no three of which are on a line, and \mathcal{L}_0 consists of all of their connecting lines. However, it is not known if such configurations satisfy the following stronger conjecture.

► **Conjecture 1.2.** *For any set of points P_0 and for any set of lines \mathcal{L}_0 in the plane, there is a constant $\varepsilon = \varepsilon(P_0, \mathcal{L}_0)$, such that the maximum number of incidences between n points and n lines in the plane containing no subconfiguration isomorphic to (P_0, \mathcal{L}_0) is $O(n^{4/3-\varepsilon})$.*

Our first theorem is the following.

► **Theorem 1.3.** *For fixed $t > 1$, let \mathcal{L}_a and \mathcal{L}_b be two sets of t lines in the plane, and let $P_0 = \{\ell_a \cap \ell_b : \ell_a \in \mathcal{L}_a, \ell_b \in \mathcal{L}_b\}$ such that $|P_0| = t^2$. Then there is a constant $c = c(t)$ such that any arrangement of m points and n lines in the plane that does not contain a subconfiguration isomorphic to $(P_0, \mathcal{L}_a \cup \mathcal{L}_b)$ determines at most $c(m^{\frac{2t-2}{3t-2}} n^{\frac{2t-1}{3t-2}} + m^{1+\frac{1}{6t-3}} + n)$ incidences.*

See the Figure 1. As an immediate corollary, we prove Conjecture 1.2 in the following special case.


► **Corollary 1.4.** *For fixed $t > 1$, let \mathcal{L}_a and \mathcal{L}_b be two sets of t lines in the plane, and let $P_0 = \{\ell_a \cap \ell_b : \ell_a \in \mathcal{L}_a, \ell_b \in \mathcal{L}_b\}$. If $|P_0| = t^2$, then any arrangement of n points and n lines in the plane that does not contain a subconfiguration isomorphic to $(P_0, \mathcal{L}_a \cup \mathcal{L}_b)$ determines at most $O(n^{\frac{4}{3}-\frac{1}{9t-6}})$ incidences.*

In the other direction, we prove the following.

► **Theorem 1.5.** *Let \mathcal{L}_a and \mathcal{L}_b be two sets of 2 lines in the plane, and let $P_0 = \{\ell_a \cap \ell_b : \ell_1 \in \mathcal{L}_a, \ell_2 \in \mathcal{L}_b\}$ such that $|P_0| = 4$. For $n > 1$, there exists an arrangement of n points and n lines in the plane that does not contain a subconfiguration isomorphic to $(P_0, \mathcal{L}_a \cup \mathcal{L}_b)$, and determines at least $\Omega(n^{1+\frac{1}{14}})$ incidences.*

Given two sets \mathcal{L}_a and \mathcal{L}_b of t lines in the plane, and the point set $P_0 = \{\ell_a \cap \ell_b : \ell_a \in \mathcal{L}_a, \ell_b \in \mathcal{L}_b\}$, we say that $(P_0, \mathcal{L}_a \cup \mathcal{L}_b)$ forms a *natural $t \times t$ grid* if $|P_0| = t^2$, and the convex hull of P_0 , $\text{conv}(P_0)$, does not contain the intersection point of any two lines in \mathcal{L}_a and does not contain the intersection point of any two lines in \mathcal{L}_b . See Figure 2.

► **Theorem 1.6.** *For fixed $t > 1$, there is a constant $\varepsilon = \varepsilon(t)$, such that any arrangement of n points and n lines in the plane that does not contain a natural $t \times t$ grid determines at most $O(n^{\frac{4}{3}-\varepsilon})$ incidences.*

■ **Figure 2** An example of a natural 3×3 grid.

Let us remark that $\varepsilon = \Omega(1/t^2)$ in Theorem 1.6, and can be easily generalized to the off-balanced setting of m points and n lines.

We systemically omit floor and ceiling signs whenever they are not crucial for the sake of clarity of our presentation. All logarithms are assumed to be base 2. For $N > 0$, we let $[N] = \{1, \dots, N\}$.

2 Proof of Theorem 1.3

In this section we will prove Theorem 1.3. We first list several results that we will use. The first lemma is a classic result in graph theory.

► **Lemma 2.1** (Kövari-Sós-Turán [10]). *Let $G = (V, E)$ be a graph that does not contain a complete bipartite graph $K_{r,s}$ ($1 \leq r \leq s$) as a subgraph. Then $|E| \leq c_s |V|^{2-\frac{1}{r}}$, where $c_s > 0$ is constant which only depends on s .*

The next lemma we will use is a partitioning tool in discrete geometry known as *simplicial partitions*. We will use the dual version which requires the following definition. Let \mathcal{L} be a set of lines in the plane. We say that a point p *crosses* \mathcal{L} if it is incident to at least one member of \mathcal{L} , but not incident to all members in \mathcal{L} .

► **Lemma 2.2** (Matousek [12]). *Let \mathcal{L} be a set of n lines in the plane and let r be a parameter such that $1 < r < n$. Then there is a partition on $\mathcal{L} = \mathcal{L}_1 \cup \dots \cup \mathcal{L}_r$ into r parts, where $\frac{n}{2r} \leq |\mathcal{L}_i| \leq \frac{2n}{r}$, such that any point $p \in \mathbb{R}^2$ crosses at most $O(\sqrt{r})$ parts \mathcal{L}_i .*

Proof of Theorem 1.3. Set $t \geq 2$. Let P be a set of m points in the plane and let \mathcal{L} be a set of n lines in the plane such that (P, \mathcal{L}) does not contain a subconfiguration isomorphic to $(P_0, \mathcal{L}_a \cup \mathcal{L}_b)$.

If $n \geq m^2/100$, then (1.1) implies that $|I(P, \mathcal{L})| = O(n)$ and we are done. Likewise, if $n \leq m^{\frac{t}{2t-1}}$, then (1.1) implies that $|I(P, \mathcal{L})| = O(m^{1+\frac{1}{6t-3}})$ and we are done. Therefore, let us assume $m^{\frac{t}{2t-1}} < n < m^2/100$. In what follows, we will show that $|I(P, \mathcal{L})| = O(m^{\frac{2t-2}{3t-2}} n^{\frac{2t-1}{3t-2}})$. For sake of contradiction, suppose that $|I(P, \mathcal{L})| \geq cm^{\frac{2t-2}{3t-2}} n^{\frac{2t-1}{3t-2}}$, where c is a large constant depending on t that will be determined later.

Set $r = \lceil 10n^{\frac{4t-2}{3t-2}} / m^{\frac{2t}{3t-2}} \rceil$. Let us remark that $1 < r < n/10$ since we are assuming $m^{\frac{t}{2t-1}} < n < m^2/100$. We apply Lemma 2.2 with parameter r to \mathcal{L} , and obtain the partition $\mathcal{L} = \mathcal{L}_1 \cup \dots \cup \mathcal{L}_r$ with the properties described above. Note that $|\mathcal{L}_i| > 1$. Let G be the incidence graph of (P, \mathcal{L}) . For $p \in P$, consider the set of lines in \mathcal{L}_i . If p is incident to exactly one line in \mathcal{L}_i , then delete the corresponding edge in the incidence graph G . After performing

this operation between each point $p \in P$ and each part \mathcal{L}_i , by Lemma 2.2, we have deleted at most $c_1 m \sqrt{r}$ edges in G , where c_1 is an absolute constant. By setting c sufficiently large, we have

$$c_1 m \sqrt{r} = \sqrt{10} c_1 m^{\frac{2t-2}{3t-2}} n^{\frac{2t-1}{3t-2}} < (c/2) m^{\frac{2t-2}{3t-2}} n^{\frac{2t-1}{3t-2}}.$$

Therefore, there are at least $(c/2) m^{\frac{2t-2}{3t-2}} n^{\frac{2t-1}{3t-2}}$ edges remaining in G . By the pigeonhole principle, there is a part \mathcal{L}_i such that the number of edges between P and \mathcal{L}_i in G is at least

$$\frac{cm^{\frac{2t-2}{3t-2}} n^{\frac{2t-1}{3t-2}}}{2r} = \frac{cm^{\frac{4t-2}{3t-2}}}{20n^{\frac{2t-1}{3t-2}}}.$$

Hence, every point $p \in P$ has either 0 or at least 2 neighbors in \mathcal{L}_i in G . We claim that (P, \mathcal{L}_i) contains a subconfiguration isomorphic to $(P_0, \mathcal{L}_a \cup \mathcal{L}_b)$. To see this, let us construct a graph $H = (\mathcal{L}_i, E)$ as follows. Set $V(H) = \mathcal{L}_i$. Let $Q = \{q_1, \dots, q_w\} \subset P$ be the set of points in P that have at least two neighbors in \mathcal{L}_i in the graph G . For $q_j \in Q$, consider the set of lines $\{\ell_1, \dots, \ell_s\}$ from \mathcal{L}_i incident to q_j , such that $\{\ell_1, \dots, \ell_s\}$ appears in clockwise order. Then we define $E_j \subset \binom{\mathcal{L}_i}{2}$ to be a matching on $\{\ell_1, \dots, \ell_s\}$, where

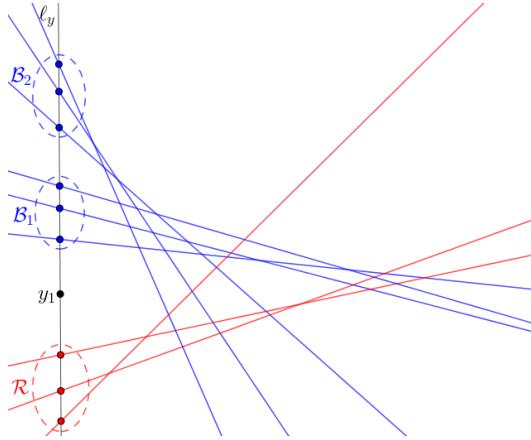
$$E_j = \begin{cases} \{(\ell_1, \ell_2), (\ell_3, \ell_4), \dots, (\ell_{s-1}, \ell_s)\} & \text{if } s \text{ is even.} \\ \{(\ell_1, \ell_2), (\ell_3, \ell_4), \dots, (\ell_{s-2}, \ell_{s-1})\} & \text{if } s \text{ is odd.} \end{cases}$$

Set $E(H) = E_1 \cup E_2 \cup \dots \cup E_w$. Note that E_j and E_k are disjoint, since no two points are contained in two lines. Since $|E_j| \geq 1$, we have

$$|E(H)| \geq \frac{cm^{\frac{4t-2}{3t-2}}}{60n^{\frac{2t-1}{3t-2}}}.$$

Since

$$|V(H)| = |\mathcal{L}_i| \leq \frac{m^{\frac{2t}{3t-2}}}{5n^{\frac{t}{3t-2}}},$$


this implies

$$|E(H)| \geq \frac{c}{60 \cdot 25} (V(H))^{2-\frac{1}{t}}.$$

By setting $c = c(t)$ to be sufficiently large, Lemma 2.1 implies that H contains a copy of $K_{t,t}$. Let $\mathcal{L}'_1, \mathcal{L}'_2 \subset \mathcal{L}_i$ correspond to the vertices of this $K_{t,t}$ in H , and let $P' = \{\ell_1 \cap \ell_2 \in P : \ell_1 \in \mathcal{L}'_1, \ell_2 \in \mathcal{L}'_2\}$. We claim that $(P', \mathcal{L}'_1 \cup \mathcal{L}'_2)$ is isomorphic to $(P_0, \mathcal{L}_a \cup \mathcal{L}_b)$. It suffices to show that $|P'| = t^2$. For the sake of contradiction, suppose $p \in \ell_1 \cap \ell_2 \cap \ell_3$, where $\ell_1, \ell_2 \in \mathcal{L}'_1$ and $\ell_3 \in \mathcal{L}'_2$. This would imply $(\ell_1, \ell_3), (\ell_2, \ell_3) \in E_j$ for some j which contradicts the fact that $E_j \subset \binom{\mathcal{L}_i}{2}$ is a matching. Same argument follows if $\ell_1 \in \mathcal{L}'_1$ and $\ell_2, \ell_3 \in \mathcal{L}'_2$. This completes the proof of Theorem 1.3. \blacktriangleleft

3 Natural Grids

Given a set of n points P and a set of n lines \mathcal{L} in the plane, if $|I(P, \mathcal{L})| \geq cn^{\frac{4}{3} - \frac{1}{9k-6}}$, where c is a sufficiently large constant depending on k , then Corollary 1.4 implies that there are two sets of k lines such that each pair of them from different sets intersects at a unique point in P . Therefore, Theorem 1.6 follows by combining Theorem 1.3 with the following lemma.

■ **Figure 3** Sets \mathcal{R} , \mathcal{B}_1 , \mathcal{B}_2 in the proof of Lemma 3.1.

► **Lemma 3.1.** *There is a natural number c such that the following holds. Let \mathcal{B} be a set of ct^2 blue lines in the plane, and let \mathcal{R} be a set of ct^2 red lines in the plane such that for $P = \{\ell_1 \cap \ell_2 : \ell_1 \in \mathcal{B}, \ell_2 \in \mathcal{R}\}$ we have $|P| = c^2t^4$. Then $(P, \mathcal{B} \cup \mathcal{R})$ contains a natural $t \times t$ grid.*

To prove Lemma 3.1, we will need the following lemma which is an immediate consequence of Dilworth's Theorem.

► **Lemma 3.2.** *For $n > 0$, let \mathcal{L} be a set of n^2 lines in the plane, such that no two members intersect the same point on the y -axis. Then there is a subset $\mathcal{L}' \subset \mathcal{L}$ of size n such that the intersection point of any two members in \mathcal{L}' lies to the left of the y -axis, or the intersection point of any two members in \mathcal{L}' lies to the right of the y -axis.*

Proof. Let us order the elements in $\mathcal{L} = \{\ell_1, \dots, \ell_{n^2}\}$ from bottom to top according to their y -intercept. By Dilworth's Theorem [5], \mathcal{L} contains a subsequence of n lines whose slopes are either increasing or decreasing. In the first case, all intersection points are to the left of the y -axis, and in the latter case, all intersection points are to the right of the y -axis. ◀

Proof of Lemma 3.1. Let $(P, \mathcal{B} \cup \mathcal{R})$ be as described above, and let ℓ_y be the y -axis. Without loss of generality, we can assume that all lines in $\mathcal{B} \cup \mathcal{R}$ are not vertical, and the intersection point of any two lines in $\mathcal{B} \cup \mathcal{R}$ lies to the right of ℓ_y . Moreover, we can assume that no two lines intersect at the same point on ℓ_y .

We start by finding a point $y_1 \in \ell_y$ such that at least $|\mathcal{B}|/2$ blue lines in \mathcal{B} intersect ℓ_y on one side of the point y_1 (along ℓ_y) and at least $|\mathcal{R}|/2$ red lines in \mathcal{R} intersect ℓ_y on the other side. This can be done by sweeping the point y_1 along ℓ_y from bottom to top until $ct^2/2$ lines of the first color, say red, intersect ℓ_y below y_1 . We then have at least $ct^2/2$ blue lines intersecting ℓ_y above y_1 . Discard all red lines in \mathcal{R} that intersect ℓ_y above y_1 , and discard all blue lines in \mathcal{B} that intersect ℓ_y below y_1 . Hence, $|\mathcal{B}| \geq ct^2/2$.

Set $s = \lfloor ct^2/4 \rfloor$. For the remaining lines in \mathcal{B} , let $\mathcal{B} = \{b_1, \dots, b_{2s}\}$, where the elements of \mathcal{B} are ordered in the order they cross ℓ_y , from bottom to top. We partition $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ into two parts, where $\mathcal{B}_1 = \{b_1, \dots, b_s\}$ and $\mathcal{B}_2 = \{b_{s+1}, \dots, b_{2s}\}$. By applying an affine transformation, we can assume all lines in \mathcal{R} have positive slope and all lines in $\mathcal{B}_1 \cup \mathcal{B}_2$ have negative slope. See Figure 3.

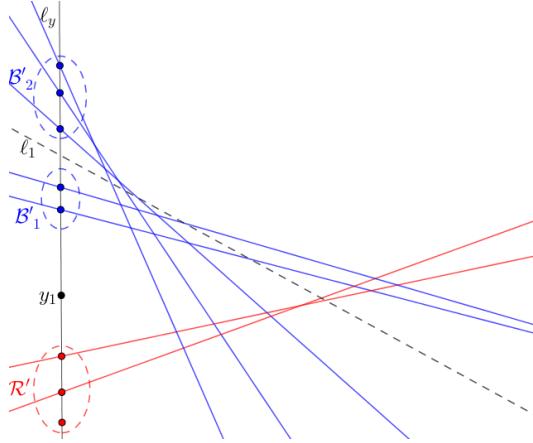


Figure 4 An example for the line ℓ_1 .

Let us define a 3-partite 3-uniform hypergraph $H = (\mathcal{R} \cup \mathcal{B}_1 \cup \mathcal{B}_2, E)$, whose vertex parts are $\mathcal{R}, \mathcal{B}_1, \mathcal{B}_2$, and $(r, b_i, b_j) \in \mathcal{R} \times \mathcal{B}_1 \times \mathcal{B}_2$ is an edge in H if and only if the intersection point $p = b_i \cap b_j$ lies above the line r . Note, if b_i and b_j are parallel, then $(r, b_i, b_j) \notin E$. Then a result of Fox et al. on semi-algebraic hypergraphs implies the following (see also [3] and [9]).

► **Lemma 3.3** (Fox et al. [8], Theorem 8.1). *There exists a positive constant α such that the following holds. In the hypergraph above, there are subsets $\mathcal{R}' \subseteq \mathcal{R}, \mathcal{B}'_1 \subseteq \mathcal{B}_1, \mathcal{B}'_2 \subseteq \mathcal{B}_2$, where $|\mathcal{R}'| \geq \alpha |\mathcal{R}|, |\mathcal{B}'_1| \geq \alpha |\mathcal{B}_1|, |\mathcal{B}'_2| \geq \alpha |\mathcal{B}_2|$, such that either $\mathcal{R}' \times \mathcal{B}'_1 \times \mathcal{B}'_2 \subseteq E$, or $(\mathcal{R}' \times \mathcal{B}'_1 \times \mathcal{B}'_2) \cap E = \emptyset$.*

We apply Lemma 3.3 to H and obtain subsets $\mathcal{R}', \mathcal{B}'_1, \mathcal{B}'_2$ with the properties described above. Without loss of generality, we can assume that $\mathcal{R}' \times \mathcal{B}'_1 \times \mathcal{B}'_2 \subseteq E$, since a symmetric argument would follow otherwise. Let ℓ_1 be a line in the plane such that the following holds.

1. The slope of ℓ_1 is negative.
2. All intersection points between \mathcal{R}' and \mathcal{B}'_1 lie above ℓ_1 .
3. All intersection points between \mathcal{R}' and \mathcal{B}'_2 lie below ℓ_1 .

See Figure 4.

► **Observation 3.4.** *Line ℓ_1 defined above exists.*

Proof. Let U be the upper envelope of the arrangement $\bigcup_{\ell \in \mathcal{R}} \ell$, that is, U is the closure of all points that lie on exactly one line of \mathcal{R}' and strictly above exactly the $|\mathcal{R}'| - 1$ lines in \mathcal{R}' .

Let P_1 be the set of intersection points between the lines in \mathcal{B}'_1 with U . Likewise, we define P_2 to be the set of intersection points between the lines in \mathcal{B}'_2 with U . Since U is x -monotone and convex the set P_2 lies to the left of the set P_1 . Then the line ℓ_1 that intersects U between P_1 and P_2 and intersects ℓ_y between \mathcal{B}'_1 and \mathcal{B}'_2 satisfies the conditions above. ◀

Now we apply Lemma 3.2 to \mathcal{R}' with respect to the line ℓ_1 , to obtain $\sqrt{\alpha c/2} \cdot t$ members in \mathcal{R}' such that every pair of them intersects on one side of ℓ_1 . Discard all other members in \mathcal{R}' . Without loss of generality, we can assume that all intersection points between any two members in \mathcal{R}' lie below ℓ_1 , since a symmetric argument would follow otherwise. We now discard the set \mathcal{B}'_2 .

Notice that the order in which the lines in \mathcal{R}' cross $b \in \mathcal{B}'_1$ will be the same for any line $b \in \mathcal{B}'_1$. Therefore, we order the elements in $\mathcal{R}' = \{r_1, \dots, r_m\}$ with respect to this ordering, from left to right, where $m = \lceil \sqrt{\alpha c/2} \cdot t \rceil$. We define ℓ_2 to be the line obtained by slightly perturbing the line $r_{\lfloor m/2 \rfloor}$ such that:

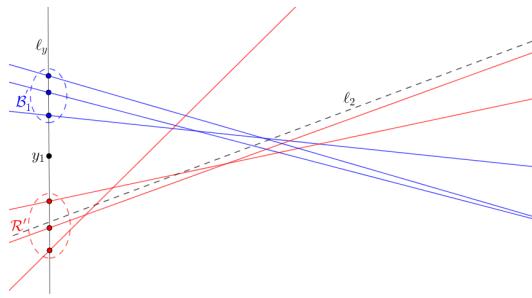


Figure 5 An example for the line ℓ_2 .

1. The slope of ℓ_2 is positive.
2. All intersection points between \mathcal{B}'_1 and $\{r_1, \dots, r_{\lfloor m/2 \rfloor}\}$ lie above ℓ_2 .
3. All intersection points between \mathcal{B}'_1 and $\{r_{\lfloor m/2 \rfloor + 1}, \dots, r_m\}$ lie below ℓ_2 .

See the Figure 5.

Finally, we apply Lemma 3.2 to \mathcal{B}'_1 with respect to the line ℓ_2 , to obtain at least $\sqrt{\alpha c} \cdot t/2$ members in \mathcal{B}'_1 with the property that any two of them intersect on one side of ℓ_2 . Without loss of generality, we can assume that any two such lines intersect below ℓ_2 since a symmetric argument would follow. Set $\mathcal{B}^* \subset \mathcal{B}'_1$ to be these set of lines. Then $\mathcal{B}^* \cup \{r_1, \dots, r_{\lfloor m/2 \rfloor}\}$ and their intersection points form a natural grid. By setting $c = c(t)$ to be sufficiently large, we obtain a natural $t \times t$ grid. \blacktriangleleft

4 Lower Bound Construction

In this section, we will prove Theorem 1.5. First, let us recall the definitions of Sidon and k -fold Sidon sets.

Let A be a finite set of positive integers. Then A is a *Sidon set* if the sum of all pairs are distinct, that is, the equation $x + y = u + v$ has no solutions with $x, y, u, v \in A$, except for trivial solutions given by $u = x, y = v$ and $x = v, y = u$. We define $s(N)$ to be the size of the largest Sidon set $A \subset \{1, \dots, N\}$. Erdős and Turán proved the following.

► **Lemma 4.1** (See [7] and [14]). *For $N > 1$, we have $s(N) = \Theta(\sqrt{N})$.*

Let us now consider a more general equation. Let u_1, \dots, u_4 be integers such that $u_1 + u_2 + u_3 + u_4 = 0$, and consider the equation

$$u_1x_1 + u_2x_2 + u_3x_3 + u_4x_4 = 0. \quad (4.1)$$

We are interested in solutions to (4.1) with $x_1, x_2, x_3, x_4 \in \mathbb{Z}$. Suppose $(x_1, x_2, x_3, x_4) = (a_1, a_2, a_3, a_4)$ is an integer solution to (4.1). Let $d \leq 4$ be the number of distinct integers in the set $\{a_1, a_2, a_3, a_4\}$. Then we have a partition on the indices

$$\{1, 2, 3, 4\} = T_1 \cup \dots \cup T_d,$$

where i and j lie in the same part T_ν if and only if $x_i = x_j$. We call (a_1, a_2, a_3, a_4) a *trivial* solution to (4.1) if

$$\sum_{i \in T_\nu} u_i = 0, \quad \nu = 1, \dots, d.$$

Otherwise, we will call (a_1, a_2, a_3, a_4) a *nontrivial* solution to (4.1).

In [11], Lazebnik and Verstraëte introduced k -fold Sidon sets which are defined as follows. Let k be a positive integer. A set $A \subset \mathbb{N}$ is a k -fold Sidon set if each equation of the form

$$u_1x_1 + u_2x_2 + u_3x_3 + u_4x_4 = 0, \quad (4.2)$$

where $|u_i| \leq k$ and $u_1 + \dots + u_4 = 0$, has no nontrivial solutions with $x_1, x_2, x_3, x_4 \in A$. Let $r(k, N)$ be the size of the largest k -fold Sidon set $A \subset \{1, \dots, N\}$.

► **Lemma 4.2.** *There is an infinite sequence $1 = a_1 < a_2 < \dots$ of integers such that*

$$a_m \leq 2^8 k^4 m^3,$$

and the system of equations (4.2) has no nontrivial solutions in the set $A = \{a_1, a_2, \dots\}$. In particular, for integers $N > k^4 \geq 1$, we have $r(k, N) \geq ck^{-4/3}N^{1/3}$, where c is a positive constant.

The proof of Lemma 4.2 is a slight modification of the proof of Theorem 2.1 in [14]. For the sake of completeness, we include the proof here.

Proof. We put $a_1 = 1$ and define a_m recursively. Given a_1, \dots, a_{m-1} , let a_m be the smallest positive integer satisfying

$$a_m \neq -\left(\sum_{i \in S} u_i\right)^{-1} \sum_{1 \leq i \leq 4, i \notin S} u_i x_i, \quad (4.3)$$

for every choice u_i such that $|u_i| \leq k$, for every set $S \subset \{1, \dots, 4\}$ of subscripts such that $\left(\sum_{i \in S} u_i\right) \neq 0$, and for every choice of $x_i \in \{a_1, \dots, a_{m-1}\}$, where $i \notin S$. For a fixed S with $|S| = j$, this excludes $(m-1)^{4-j}$ numbers. Since $|u_i| \leq k$, the total number of excluded integers is at most

$$(2k+1)^4 \sum_{j=1}^3 \binom{4}{j} (m-1)^{4-j} = (2k+1)^4 (m^4 - (m-1)^4 - 1) < 2^8 k^4 m^3.$$

Consequently, we can extend our set by an integer $a_m \leq 2^8 k^4 m^3$. This will automatically be different from from a_1, \dots, a_{m-1} , since putting $x_i = a_j$ for all $i \notin S$ in (4.3) we get $a_m \neq a_j$. It will also satisfy $a_m > a_{m-1}$ by minimal choice of a_{m-1} .

We show that the system of equations (4.2) has no nontrivial solutions in the set $\{a_1, \dots, a_m\}$. We use induction on m . The statement is obviously true for $m = 1$. We establish it for m assuming for $m-1$. Suppose that there is a nontrivial solution (x_1, x_2, x_3, x_4) to (4.2) for some u_1, u_2, u_3, u_4 with the properties described above. Let S denote the set of those subscripts for which $x_i = a_m$. If $\sum_{i \in S} u_i \neq 0$, then this contradicts (4.3). If $\sum_{i \in S} u_i = 0$, then by replacing each occurrence of a_m by a_1 , we get another nontrivial solution, which contradicts the induction hypothesis. ◀

For more problems and results on Sidon sets and k -fold Sidon sets, we refer the interested reader to [11, 14, 4].

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We start by applying Lemma 4.1 to obtain a Sidon set $M \subset [n^{1/7}]$, such that $|M| = \Theta(n^{1/14})$. We then apply Lemma 4.2 with $k = n^{1/7}$ and $N = \frac{1}{4}n^{11/14}$, to obtain a k -fold Sidon set $A \subset [N]$ such that

$$|A| \geq cn^{1/14},$$

where c is defined in Lemma 4.2. Without loss of generality, let us assume $|A| = cn^{1/14}$.

Let $P = \{(i, j) \in \mathbb{Z}^2 : i \in A, 1 \leq j \leq n^{13/14}\}$, and let \mathcal{L} be the family of lines in the plane of the form $y = mx + b$, where $m \in M$ and b is an integer such that $1 \leq b \leq n^{13/14}/2$. Hence, we have

$$|P| = |A| \cdot n^{13/14} = \Theta(n),$$

$$|\mathcal{L}| = |M| \cdot \frac{n^{13/14}}{2} = \Theta(n).$$

Notice that each line in \mathcal{L} has exactly $|A| = cn^{1/14}$ points from P since $1 \leq b \leq n^{13/14}/2$. Therefore,

$$|I(P, \mathcal{L})| = |\mathcal{L}| |A| = \Theta(n^{1+1/14}).$$

▷ **Claim 4.3.** There are no four distinct lines $\ell_1, \ell_2, \ell_3, \ell_4 \in \mathcal{L}$ and four distinct points $p_1, p_2, p_3, p_4 \in P$ such that $\ell_1 \cap \ell_2 = p_1, \ell_2 \cap \ell_3 = p_2, \ell_3 \cap \ell_4 = p_3, \ell_4 \cap \ell_1 = p_4$.

Proof. For the sake of contradiction, suppose there are four lines $\ell_1, \ell_2, \ell_3, \ell_4$ and four points p_1, p_2, p_3, p_4 with the properties described above. Let $\ell_i = m_i x + b_i$ and let $p_i = (x_i, y_i)$. Therefore,

$$\begin{aligned} \ell_1 \cap \ell_2 &= p_1 = (x_1, y_1), \\ \ell_2 \cap \ell_3 &= p_2 = (x_2, y_2), \\ \ell_3 \cap \ell_4 &= p_3 = (x_3, y_3), \\ \ell_4 \cap \ell_1 &= p_4 = (x_4, y_4). \end{aligned}$$

Hence,

$$p_1 \in \ell_1, \ell_2 \implies (m_1 - m_2)x_1 + b_1 - b_2 = 0,$$

$$p_2 \in \ell_2, \ell_3 \implies (m_2 - m_3)x_2 + b_2 - b_3 = 0,$$

$$p_3 \in \ell_3, \ell_4 \implies (m_3 - m_4)x_3 + b_3 - b_4 = 0,$$

$$p_4 \in \ell_4, \ell_1 \implies (m_4 - m_1)x_4 + b_4 - b_1 = 0.$$

By summing up the four equations above, we get

$$(m_1 - m_2)x_1 + (m_2 - m_3)x_2 + (m_3 - m_4)x_3 + (m_4 - m_1)x_4 = 0.$$

By setting $u_1 = m_1 - m_2, u_2 = m_2 - m_3, u_3 = m_3 - m_4, u_4 = m_4 - m_1$, we get

$$u_1 x_1 + u_2 x_2 + u_3 x_3 + u_4 x_4 = 0, \tag{4.4}$$

where $u_1 + u_2 + u_3 + u_4 = 0$ and $|u_i| \leq n^{1/7}$. Since $x_1, \dots, x_4 \in A$, (x_1, x_2, x_3, x_4) must be a trivial solution to (4.4). The proof now falls into the following cases, and let us note that no line in \mathcal{L} is vertical.

Case 1. Suppose $x_1 = x_2 = x_3 = x_4$. Then ℓ_i is vertical and we have a contradiction.

Case 2. Suppose $x_1 = x_2 = x_3 \neq x_4$ and $u_1 + u_2 + u_3 = 0$ and $u_4 = 0$. Then ℓ_1 and ℓ_4 have the same slope which is a contradiction. The same argument follows if $x_1 = x_2 = x_4 \neq x_3$, $x_1 = x_3 = x_4 \neq x_2$, or $x_2 = x_3 = x_4 \neq x_1$.

Case 3. Suppose $x_1 = x_2 \neq x_3 = x_4$, $u_1 + u_2 = 0$, and $u_3 + u_4 = 0$. Since $p_1, p_2 \in \ell_2$ and $x_1 = x_2$, this implies that ℓ_2 is vertical which is a contradiction. A similar argument follows if $x_1 = x_4 \neq x_2 = x_3$, $u_1 + u_4 = 0$, and $u_2 + u_3 = 0$.

Case 4. Suppose $x_1 = x_3 \neq x_2 = x_4$, $u_1 + u_3 = 0$, and $u_2 + u_4 = 0$. Then $u_1 + u_3 = 0$ implies that $m_1 + m_3 = m_2 + m_4$. Since M is a Sidon set, we have either $m_1 = m_2$ and $m_3 = m_4$ or $m_1 = m_4$ and $m_2 = m_3$. The first case implies that ℓ_1 and ℓ_2 are parallel which is a contradiction, and the second case implies that ℓ_2 and ℓ_3 are parallel, which is again a contradiction. \triangleleft

This completes the proof of Theorem 1.5. \blacktriangleleft

5 Concluding Remarks

- An old result of Erdős states that every n -vertex graph that does not contain a cycle of length $2k$, has $O_k(n^{1+1/k})$ edges. It is known that this bound is tight when $k = 2, 3$, and 5 , but it is a long standing open problem in extremal graph theory to decide whether or not this upper bound can be improved for other values of k . Hence, Erdős's upper bound of $O(n^{5/4})$ when $k = 4$ implies Theorem 1.3 when $t = 2$ and $m = n$. It would be interesting to see if one can improve the upper bound in Theorem 1.3 when $t = 2$. For more problems on cycles in graphs, see [17].
- The proof of Lemma 3.1 is similar to the proof of the main result in [1]. The main difference is that we use the result of Fox et al. [8] instead of the Ham-Sandwich Theorem. We also note that a similar result was established by Dujmović and Langerman (see Theorem 6 in [6]).

References

- 1 Boris Aronov, Paul Erdős, Wayne Goddard, Daniel Kleitman, Michael Klugerman, János Pach, and Leonard J. Schulman. Crossing families. *Combinatorica*, 14(2):127–134, 1994.
- 2 Peter Brass, William O.J. Moser, and János Pach. *Research problems in discrete geometry*. Springer Science & Business Media, 2006.
- 3 Boris Bukh and Alfredo Hubard. Space crossing numbers. *Combin. Probab. Comput.*, 21(3):358–373, 2012.
- 4 Javier Cilleruelo and Craig Timmons. k -Fold Sidon Sets. *Electron. J. Combin.*, 21(4):P4–12, 2014.
- 5 Robert P Dilworth. A decomposition theorem for partially ordered sets. *Ann. of Math.*, pages 161–166, 1950.
- 6 Vida Dujmović and Stefan Langerman. A Center Transversal Theorem for Hyperplanes and Applications to Graph Drawing. *Discrete Comput. Geom.*, 49(1):74–88, January 2013. doi:10.1007/s00454-012-9464-y.
- 7 Paul Erdős and Pál Turán. On a problem of Sidon in additive number theory, and on some related problems. *J. Lond. Math. Soc. (2)*, 1(4):212–215, 1941.
- 8 Jacob Fox, Mikhail Gromov, Vincent Lafforgue, Assaf Naor, and János Pach. Overlap properties of geometric expanders. *J. Reine Angew. Math.*, 2012(671):49–83, 2012.
- 9 Jacob Fox, János Pach, and Andrew Suk. A polynomial regularity lemma for semialgebraic hypergraphs and its applications in geometry and property testing. *SIAM J. Comput.*, 45(6):2199–2223, 2016.
- 10 Tamás Kovári, Vera Sós, and Pál Turán. On a problem of K. Zarankiewicz. 3(1):50–57, 1954.
- 11 Felix Lazebnik and Jacques Verstraëte. On hypergraphs of girth five. *Electron. J. Combin.*, 10:1–25, 2003.
- 12 Jiří Matoušek. Efficient partition trees. *Discrete Comput. Geom.*, 8(3):315–334, 1992.

- 13 János Pach and Pankaj K Agarwal. *Combinatorial geometry*, volume 37. John Wiley & Sons, 2011.
- 14 Imre Z Ruzsa. Solving a linear equation in a set of integers I. *Acta Arith.*, 65(3):259–282, 1993.
- 15 József Solymosi. Dense arrangements are locally very dense I. *SIAM J. Discrete Math.*, 20(3):623–627, 2006.
- 16 Endre Szemerédi and William T. Trotter. Extremal problems in discrete geometry. *Combinatorica*, 3(3-4):381–392, 1983.
- 17 Jacques Verstraëte. Extremal problems for cycles in graphs. In *Recent Trends in Combinatorics*, pages 83–116. Springer, 2016.