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—— Abstract

The famous Szemerédi-Trotter theorem states that any arrangement of n points and n lines in the
plane determines O(n*/?) incidences, and this bound is tight. In this paper, we prove the following
Turan-type result for point-line incidence. Let £, and L; be two sets of ¢ lines in the plane and let
P={laN¥y: Ly € La, by € L} be the set of intersection points between £, and L,. We say that
(P, Lo U Ly) forms a natural t x t grid if |P| = t*, and conv(P) does not contain the intersection
point of some two lines in £, and does not contain the intersection point of some two lines in L.
For fixed ¢ > 1, we show that any arrangement of n points and n lines in the plane that does not
contain a natural ¢ x t grid determines O(n%_g) incidences, where £ = €(t) > 0. We also provide
a construction of n points 1and n lines in the plane that does not contain a natural 2 x 2 grid and
1+ i )

determines at least Q(n incidences.
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1 Introduction

Given a finite set P of points in the plane and a finite set £ of lines in the plane, let
I(P, L) ={(p,f) € P x L:p € L} be the set of incidences between P and L. The incidence
graph of (P, L) is the bipartite graph G = (P U L, I), with vertex parts P and £, and
E(G) = I(P,L). If |P| = m and |£| = n, then the celebrated theorem of Szemerédi and
Trotter [16] states that

[I(P,L)| < O(m?**n?3 +m+n). (1.1)

Moreover, this bound is tight which can be seen by taking the \/m X /m integer lattice and
bundles of parallel “rich” lines (see [13]). It is widely believed that the extremal configurations
maximizing the number of incidences between m points and n lines in the plane exhibit
some kind of lattice structure. The main goal of this paper is to show that such extremal
configurations must contain large natural grids.

Let P and P, (respectively, £ and L) be two sets of points (respectively, lines) in the
plane. We say that the pairs (P, £) and (Py, Lo) are isomorphic if their incidence graphs are
isomorphic. Solymosi made the following conjecture (see page 291 in [2]).

» Conjecture 1.1. For any set of points Py and for any set of lines Ly in the plane, the
mazimum number of incidences between n points and n lines in the plane containing no
.o . . 4

subconfiguration isomorphic to (Py, Lo) is o(n3).
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Figure 1 An example with |£,| = |£y]| = 3 and |P| =9 in Theorem 1.3.

In [15], Solymosi proved this conjecture in the special case that Py is a fixed set of points
in the plane, no three of which are on a line, and £ consists of all of their connecting lines.
However, it is not known if such configurations satisfy the following stronger conjecture.

» Conjecture 1.2. For any set of points Py and for any set of lines Ly in the plane, there is
a constant € = £(Py, Ly), such that the mazimum number of incidences between n points and
n lines in the plane containing no subconfiguration isomorphic to (Py, Lo) is O(n*/37#).

Our first theorem is the following.

» Theorem 1.3. For fixed t > 1, let L, and Ly be two sets of t lines in the plane, and let

Po={l, Nty :Lly €Ly, € Ly} such that |Py| = t2. Then there is a constant ¢ = c(t)

such that any arrangement of m points and n lines in the plane ch%t gloels not contain a
t— t—

subconfiguration isomorphic to (Po, Lo ULp) determines at most ¢(m3=2n3=2 +miters +n)
incidences.

See the Figure 1. As an immediate corollary, we prove Conjecture 1.2 in the following
special case.

» Corollary 1.4. For fixed t > 1, let L, and Ly be two sets of t lines in the plane, and let
Po={laNly:ly €Ly, by € Ly} If |Py| = t2, then any arrangement of n points and n lines
in the plane that does not contain a subconfiguration isomorphic to (Py, L, U Ly) determines
at most O(néfﬁ) incidences.

In the other direction, we prove the following.

» Theorem 1.5. Let L, and Ly, be two sets of 2 lines in the plane, and let Py = {ly, N &y :
by € Lo, by € Ly} such that |Py| = 4. For n > 1, there exists an arrangement of n points and
n lines in the plane that does not contain a subconfiguration isomorphic to (Py, L, U Ly),
and determines at least Q(n'+11) incidences.

Given two sets £, and L, of ¢ lines in the plane, and the point set Py = {€, N &y : £, €
Lo, 0y € Ly}, we say that (Py, £, U L) forms a natural t x t grid if |Py| = t2, and the convex
hull of Py, conv(Py), does not contain the intersection point of any two lines in £, and does
not contain the intersection point of any two lines in L. See Figure 2.

» Theorem 1.6. For fized t > 1, there is a constant € = £(t), such that any arrangement of
n points and n lines in the plane that does not contain a natural t X t grid determines at
most O(n3~¢) incidences.
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Figure 2 An example of a natural 3 x 3 grid.

Let us remark that ¢ = Q(1/¢?) in Theorem 1.6, and can be easily generalized to the
off-balanced setting of m points and n lines.

We systemically omit floor and ceiling signs whenever they are not crucial for the sake
of clarity of our presentation. All logarithms are assumed to be base 2. For N > 0, we let
[N]={1,...,N}.

2 Proof of Theorem 1.3

In this section we will prove Theorem 1.3. We first list several results that we will use. The
first lemma is a classic result in graph theory.

» Lemma 2.1 (Koévari-Sés-Turan [10]). Let G = (V, E) be a graph that does not contain a
complete bipartite graph K, , (1 <r < s) as a subgraph. Then |E| < c,|V|>~+, where ¢s > 0
is constant which only depends on s.

The next lemma we will use is a partitioning tool in discrete geometry known as simplicial
partitions. We will use the dual version which requires the following definition. Let £ be
a set of lines in the plane. We say that a point p crosses L if it is incident to at least one
member of £, but not incident to all members in L.

» Lemma 2.2 (Matousek [12]). Let L be a set of n lines in the plane and let v be a parameter
such that 1 < r < n. Then there is a partition on L = L1 U ---U L, into r parts, where
5 <L < 27”, such that any point p € R? crosses at most O(\/T) parts L;.

Proof of Theorem 1.3. Set ¢t > 2. Let P be a set of m points in the plane and let £ be a
set of n lines in the plane such that (P, £) does not contain a subconfiguration isomorphic to
(P(), L, U Eb).

If n > m?/100, then (1.1) implies that |[I(P,£)| = O(n) and we are done. Likewise, if
n < m¥7, then (1.1) implies that [I(P, £)| = O(m”ﬁ) and we are done. Therefore, let us
assume m¥ T < n < m?/100. In what follows, we will show that |I(P, £)| = O(m%n%)
For sake of contradiction, suppose that I(P, L) > cme2 n%, where c is a large constant
depending on ¢ that will be determined later.

Set r = HOn%/m%] Let us remark that 1 < r < n/10 since we are assuming
mTET < n < m?/100. We apply Lemma 2.2 with parameter r to £, and obtain the partition
L =LyU---UL, with the properties described above. Note that |£;| > 1. Let G be the
incidence graph of (P, £). For p € P, consider the set of lines in £;. If p is incident to exactly

one line in £;, then delete the corresponding edge in the incidence graph G. After performing
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this operation between each point p € P and each part £;, by Lemma 2.2, we have deleted
at most c¢;m+/r edges in G, where c; is an absolute constant. By setting ¢ sufficiently large,
we have

2t—1 2t—1

crmy/r = V10emF 2 3= < (0/2)m%nm.

—2 2t—1

Therefore, there are at least (c/2)m§i—2 n3—2 edges remaining in G. By the pigeonhole
principle, there is a part £; such that the number of edges between P and £; in G is at least

2t—2  2t—1 4t—2
cms3t—2n3t—2 cm 3t—2
= 2t—1 *
2r 20n 32

Hence, every point p € P has either 0 or at least 2 neighbors in £; in G. We claim that
(P, L;) contains a subconfiguration isomorphic to (Py, £, U Lp). To see this, let us construct
a graph H = (L£;, E) as follows. Set V(H) = L;. Let Q = {q1,...,qw} C P be the set of
points in P that have at least two neighbors in £; in the graph G. For ¢; € @, consider the
set of lines {¢1,...,4s} from £; incident to g;, such that {{q,...,¢,} appears in clockwise
order. Then we define E; C (g) to be a matching on {1, ..., s}, where

{(él,gg),(ég,&;),...,(és_l,és)} if s is even.
E; =
{(61,62), (63,64), ceey (65_2765_1)} if s is odd.

Set E(H) = E1UEyU---UE,. Note that E; and E}, are disjoint, since no two points are
contained in two lines. Since |E;| > 1, we have

4t—2
cm3t=2

|E(H)| > —5—-
60n3t=2

Since

m3t—2

VH)| = [Li] < —,

this implies
¢

o0 o5 V(H)* "

By setting ¢ = ¢(t) to be sufficiently large, Lemma 2.1 implies that H contains a copy of K ;.
Let £}, L, C L; correspond to the vertices of this K;; in H, and let P’ = {{1 Nl € P: ¢y €

1502 € L4}, We claim that (P’, £} U L)) is isomorphic to (Pp, L, U Lp). It suffices to show
that |P'| = t2. For the sake of contradiction, suppose p € £1 N 3 N {3, where {1, {5 € L} and
{3 € L5. This would imply (¢1,/3), (¢2,¢3) € E; for some j which contradicts the fact that
E; C (Ll) is a matching. Same argument follows if ¢; € £| and ¢5, ¢35 € £}. This completes

2
the proof of Theorem 1.3. <

[E(H)| >

3 Natural Grids

Given a set of n points P and a set of n lines £ in the plane, if |I(P, £)| > cn%_ﬁ, where
c is a sufficiently large constant depending on k, then Corollary 1.4 implies that there are
two sets of k lines such that each pair of them from different sets intersects at a unique point
in P. Therefore, Theorem 1.6 follows by combining Theorem 1.3 with the following lemma.
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Figure 3 Sets R, B1, B2 in the proof of Lemma 3.1.

» Lemma 3.1. There is a natural number ¢ such that the following holds. Let B be a set
of ct? blue lines in the plane, and let R be a set of ct? red lines in the plane such that for
P={1Nly: ¥l €B,ly € R} we have |P| = *t*. Then (P,BUR) contains a natural
t Xt grid.

To prove Lemma 3.1, we will need the following lemma which is an immediate consequence
of Dilworth’s Theorem.

» Lemma 3.2. Forn >0, let £ be a set of n? lines in the plane, such that no two members
intersect the same point on the y-axis. Then there is a subset L' C L of size n such that the
intersection point of any two members in L' lies to the left of the y-axis, or the intersection
point of any two members in L' lies to the right of the y-axis.

Proof. Let us order the elements in £ = {{1,...,£,2} from bottom to top according to their
y-intercept. By Dilworth’s Theorem [5], £ contains a subsequence of n lines whose slopes
are either increasing or decreasing. In the first case, all intersection points are to the left of
the y-axis, and in the latter case, all intersection points are to the right of the y-axis. <

Proof of Lemma 3.1. Let (P, BUR) be as described above, and let ¢, be the y-axis. Without
loss of generality, we can assume that all lines in BUR are not vertical, and the intersection
point of any two lines in BU R lies to the right of £,. Moreover, we can assume that no two
lines intersect at the same point on £,,.

We start by finding a point y; € ¢, such that at least |B]/2 blue lines in B intersect £, on
one side of the point y; (along ¢,) and at least |R|/2 red lines in R intersect ¢, on the other
side. This can be done by sweeping the point y; along ¢, from bottom to top until ct?/2
lines of the first color, say red, intersect ¢, below y;. We then have at least ct? /2 blue lines
intersecting ¢, above y;. Discard all red lines in R that intersect £, above y1, and discard all
blue lines in B that intersect ¢, below y;. Hence, |B| > ct?/2.

Set s = [ct?/4]. For the remaining lines in B, let B = {by,...,bas}, where the elements
of B are ordered in the order they cross £,, from bottom to top. We partition B = B; U B
into two parts, where By = {b1,...,bs} and Bz = {bsy1,...,b2s}. By applying an affine
transformation, we can assume all lines in R have positive slope and all lines in B; U By have
negative slope. See Figure 3.
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Figure 4 An example for the line /¢;.

Let us define a 3-partite 3-uniform hypergraph H = (R U By U By, E), whose vertex parts
are R, B1, B2, and (7, b;,b;) € R x By x By is an edge in H if and only if the intersection point
p = b; N b; lies above the line r. Note, if b; and b; are parallel, then (r,b;,b;) ¢ E. Then a
result of Fox et al. on semi-algebraic hypergraphs implies the following (see also [3] and [9]).

» Lemma 3.3 (Fox et al. [8], Theorem 8.1). There exists a positive constant o such that
the following holds. In the hypergraph above, there are subsets R' C R,B] C By, B, C Ba,
where |R'| > «|R|,|By| > «|Bi|,|Bs| > «|Bal, such that either R' x B} x By C E, or
(R’ x By x BLYNE = 0.

We apply Lemma 3.3 to H and obtain subsets R', B}, B, with the properties described
above. Without loss of generality, we can assume that R’ x B} x B, C E, since a symmetric
argument would follow otherwise. Let £1 be a line in the plane such that the following holds.

1. The slope of ¢; is negative.

2. All intersection points between R’ and B’; lie above ¢;.
3. All intersection points between R’ and B’5 lie below ¢;.
See Figure 4.

» Observation 3.4. Line {1 defined above exists.

Proof. Let U be the upper envelope of the arrangement | J,c, ¢, that is, U is the closure of
all points that lie on exactly one line of R’ and strictly above exactly the |R’| — 1 lines in R'.

Let P; be the set of intersection points between the lines in B} with U. Likewise, we define
P, to be the set of intersection points between the lines in B with U. Since U is a-monotone
and convex the set P, lies to the left of the set P;. Then the line #; that intersects U between
Py and P, and intersects ¢, between B] and B satisfies the conditions above. <

Now we apply Lemma 3.2 to R’ with respect to the line ¢1, to obtain \/ac/2 -t members
in R’ such that every pair of them intersects on one side of £1. Discard all other members in
R’. Without loss of generality, we can assume that all intersection points between any two
members in R’ lie below ¢1, since a symmetric argument would follow otherwise. We now
discard the set 35.

Notice that the order in which the lines in R’ cross b € Bf will be the same for any line
b € B). Therefore, we order the elements in R’ = {ry,...,r,} with respect to this ordering,
from left to right, where m = [y/ac/2 - t|. We define ¢ to be the line obtained by slightly
perturbing the line r|,, 2| such that:
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Figure 5 An example for the line /5.

1. The slope of /5 is positive.
2. All intersection points between By and {ri,...,7|m/2)} lie above /5.
3. All intersection points between By and {r|;,/2j41,--.,7m} lie below 5.

See the Figure 5.

Finally, we apply Lemma 3.2 to B} with respect to the line £s, to obtain at least v/ac-t/2
members in B} with the property that any two of them intersect on one side of £5. Without
loss of generality, we can assume that any two such lines intersect below /5 since a symmetric
argument would follow. Set B* C Bj to be these set of lines. Then B* U {ry,...,7m/2)} and
their intersection points form a natural grid. By setting ¢ = ¢(t) to be sufficiently large, we
obtain a natural ¢ x t grid. |

4 Lower Bound Construction

In this section, we will prove Theorem 1.5. First, let us recall the definitions of Sidon and
k-fold Sidon sets.

Let A be a finite set of positive integers. Then A is a Sidon set if the sum of all pairs are
distinct, that is, the equation « + y = v + v has no solutions with z,y,u,v € A, except for
trivial solutions given by u = z,y = v and = v,y = u. We define s(NN) to be the size of the
largest Sidon set A C {1,..., N}. Erdés and Turdn proved the following.

» Lemma 4.1 (See [7] and [14]). For N > 1, we have s(N) = ©(v/N).

Let us now consider a more general equation. Let wuq,...,us be integers such that
u1 + ue + ug + u4 = 0, and consider the equation

w1y + UsTo + usxrs + ugwg = 0. (4.1)

We are interested in solutions to (4.1) with x1, 22, x3, 24 € Z. Suppose (1, T2, Z3, L) =
(a1, az,as3,a4) is an integer solution to (4.1). Let d < 4 be the number of distinct integers in
the set {a1,as,as,as}. Then we have a partition on the indices

{1,2,3,4} =Ty U---UTy,

where ¢ and j lie in the same part T, if and only if z; = ;. We call (a1, az, as, a4) a trivial
solution to (4.1) if

Zm:O, v=1,...,d.

€T,

Otherwise, we will call (a1, a2, as,aq4) a nontrivial solution to (4.1).

50:7
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In [11], Lazebnik and Verstragte introduced k-fold Sidon sets which are defined as follows.
Let k be a positive integer. A set A C N is a k-fold Sidon set if each equation of the form

UL + UaT + U3T3 + Usxs = 0, (4.2)

where |u;| <k and uj + - - + ug4 = 0, has no nontrivial solutions with x1,zo, z3, x4 € A. Let
r(k, N) be the size of the largest k-fold Sidon set A C {1,...,N}.

» Lemma 4.2. There is an infinite sequence 1 = a1 < ag < --- of integers such that
am < 2816471137

and the system of equations (4.2) has no nontrivial solutions in the set A = {a1,ag,...}.
In particular, for integers N > k* > 1, we have r(k,N) > ck=*/3N3 where ¢ is a
positive constant.

The proof of Lemma 4.2 is a slight modification of the proof of Theorem 2.1 in [14]. For
the sake of completeness, we include the proof here.

Proof. We put a; = 1 and define a,, recursively. Given aq,...,amnm_1, let a,, be the smallest
positive integer satisfying

am#—(Zui)ﬂ Z UL, (4.3)

ies 1<i<4,i¢S

for every choice u; such that |u;| < k, for every set S C {1,...,4} of subscripts such that
(Zies ul) # 0, and for every choice of z; € {a1,...,am—1}, where i ¢ S. For a fixed S with

|S| = j, this excludes (m — 1)*~J numbers. Since |u;| < k, the total number of excluded
integers is at most

(2k +1)* Z (4> (m—1)*7 = 2k + 1)*(m* — (m — 1)* — 1) < 28k*m3.
PR

Consequently, we can extend our set by an integer a,, < 28k*m3. This will automatically
be different from from as,...,an—1, since putting z; = a; for all ¢ ¢ S in (4.3) we get
am # aj. It will also satisfy a,, > a,,—1 by minimal choice of ay,—1.

We show that the system of equations (4.2) has no nontrivial solutions in the set
{a1,...,an}. We use induction on m. The statement is obviously true for m = 1. We establish
it for m assuming for m — 1. Suppose that there is a nontrivial solution (x1, s, x3,x4) to
(4.2) for some uq, us, us, us with the properties described above. Let S denote the set of those
subscripts for which z; = a,,. If > ;g u; # 0, then this contradicts (4.3). If ;. qu; = 0,
then by replacing each occurrence of a,, by ai, we get another nontrivial solution, which
contradicts the induction hypothesis. |

For more problems and results on Sidon sets and k-fold Sidon sets, we refer the interested
reader to [11, 14, 4].
We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We start by applying Lemma 4.1 to obtain a Sidon set M C [n1/7],
such that |M| = ©(n!/™). We then apply Lemma 4.2 with &k = n!/7 and N = inn/m, to
obtain a k-fold Sidon set A C [N] such that

|A] > en'/1,

where c is defined in Lemma 4.2. Without loss of generality, let us assume |A| = cn'/14.
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Let P ={(i,j) € Z* :i € A,1 < j < n'3/1} and let £ be the family of lines in the plane
of the form y = mz + b, where m € M and b is an integer such that 1 < b < n13/14/2.
Hence, we have

|P| = [A] - '/ = O(n),
n13/14

2] = M| - — = 6(n).

Notice that each line in £ has exactly |A| = en'/!* points from P since 1 < b < n!3/14/2,
Therefore,

[1(P,£)] = |L]|A] = ©(n' /).

> Claim 4.3. There are no four distinct lines ¢, ¢s,¥3,¢,4 € L and four distinct points
P1,D2,P3,p4 € P such that €4 N ly = p1, o Nl = pa, 3N Ly = p3, 4 Nl = py.

Proof. For the sake of contradiction, suppose there are four lines ¢1, ¢, ¢3, ¢4 and four points
P1,D2,P3, P4 with the properties described above. Let ¢; = m;xz + b; and let p; = (z;, y;).
Therefore,

b Nly =p1 = (71,Y1),
by Nl = pz = (22,92),
b3 N Ly = p3 = (23,93),
LNl = py = (T4,Ya).

Hence,

p1€€1,£2 :>(m1—m2)a:1—|—b1—b2:0,
p2€£27€3 :>(m2—m3)x2+b2—b3:(),
p3 € U3, 0, — (m3 — m4)x3 + b3 — by =0,

ps €Ly, 0y = (my —my)xzg+ by — by =0.
By summing up the four equations above, we get
(m1 —ma)x1 + (M2 — ms)xa + (Mg — myg)xsz + (Mg —my)ay = 0.
By setting u; = m1 — ma, us = ma — ms, u3 = ms — my, uqg = My — My, we get
u1T1 + u1xs + uzxs + ugry = 0, (4.4)

where u1 + ug + ug +ug = 0 and |u;| < n/7. Since x1,...,x4 € A, (21,9, 23, 24) must be a
trivial solution to (4.4). The proof now falls into the following cases, and let us note that no
line in £ is vertical.

Case 1. Suppose x1 = 9 = 3 = x4. Then /; is vertical and we have a contradiction.

Case 2. Suppose r1 = 29 = x3 # x4 and uy + us + uz = 0 and ugy = 0. Then ¢; and ¢4 have
the same slope which is a contradiction. The same argument follows if z; = x5 = x4 # z3,
T1 = XT3 = Ty F£ Lo, OF To = T3 = Ty 7 T1.

50:9
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50:10 On Grids in Point-Line Arrangements in the Plane

Case 3. Suppose r1 = 2 #* T3 = x4, u1 +us = 0, and ug + uq4 = 0. Since py,p2 € £ and

r1 = g, this implies that £ is vertical which is a contradiction. A similar argument
follows if 1 = x4 # x93 = 3, u1 + u4 = 0, and uy + ug = 0.

Case 4. Suppose 1 = x3 # X9 = x4, U1 +uz = 0, and us +ug = 0. Then u; +ug = 0 implies

5
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