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Abstract—We propose an electro-optic approach for trans-
parent optical networking, in which frequency channels are
actively transformed into any desired mapping in a wavelength-
multiplexed environment. Based on electro-optic phase mod-
ulators and Fourier-transform pulse shapers, our all-optical
frequency processor (AFP) is examined numerically for the spe-
cific operations of frequency channel hopping and broadcasting,
and found capable of implementing these transformations with
favorable component requirements. Extending our analysis via
a mutual-information–based metric for system optimization, we
show how to optimize transformation performance under limited
resources in a classical context, contrasting the results with those
found using metrics motivated by quantum information, such as
fidelity and success probability. Given its compatibility with on-
chip implementation, as well as elimination of optical-to-electrical
conversion in frequency channel switching, the AFP looks to offer
valuable potential in silicon photonic network design, as well as
the realization of high-dimensional frequency-bin gates.

Index Terms—Frequency combs, quantum computing, elec-
trooptic modulators, phase modulation, optical pulse shaping.

I. INTRODUCTION

Amid the persistent growth of data traffic and computa-
tional demands throughout the globe, photonic technologies
are increasingly called upon to supplant electronic signal
processing. Given the intrinsically high bandwidth available to
optical carriers—coupled with low-loss transmission in optical
fibers—photonics has successfully expanded into a variety of
communications contexts, from long-haul spans to metro-area
networks [1], datacenters [2], and high-performance comput-
ing (HPC) [3], [4], [5], [6]. As performance at the single-core
level has plateaued in recent years, parallel architectures now
lead the way in HPC, so that data movement dominates much
of the total power budget and thus can be viewed as perhaps
the main hurdle on the path toward the Exascale regime (1018

FLOPs/second) [4]. Accordingly, the greater bandwidth and
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potentially much lower loss of optical technology—compared
to the fundamental limits of copper wire [7], [8]—have posi-
tioned optics as a leader in addressing these challenges, with
CMOS-compatible silicon photonics offering unique potential
in terms of both performance and scalability [9].

It is therefore of utmost importance to design optical
network topologies optimized for the needs of high-speed
computing. Photonics’ amenability to frequency parallelization
proves invaluable in this objective. Each waveguide or fiber
is capable of carrying channels covering many THz, and
high-quality frequency-selective microring resonators (MRRs)
are readily fabricated in silicon photonics; thus wavelength-
division multiplexing (WDM) constitutes a natural, resource-
effective foundation for photonic network architectures [2],
[3], [4]. Nonetheless, transferring data from one frequency
channel onto another is a nontrivial task. From a practical side,
the simplest approach is through optical-to-electrical-to-optical
(OEO) conversion: detecting the symbols on one wavelength
and electrically modulating them onto the desired output
wavelength. However, such OEO conversion is unattractive,
particularly for resource-intensive computing, for it introduces
latency and dissipates extra energy.

By contrast, optically transparent wavelength conversion can
potentially eliminate these challenges, and has been the subject
of long-standing research in the field of all-optical signal pro-
cessing, where typically nonlinear optical interactions are re-
cruited for ultrafast control and logic [10]. Recently, motivated
by the application of quantum information processing [11],
we have introduced an alternative paradigm for all-optical
wavelength control, termed the quantum frequency processor
(QFP). Based on cascading electro-optic phase modulators
(EOMs) and Fourier-transform pulse shapers, the QFP can
in principle realize any unitary operation on frequency bins
in a scalable fashion [12], and several fundamental quantum
gates have been demonstrated experimentally [13], [14], [15],
[16]. Importantly, the QFP’s basic elements—modulators and
frequency-selective phase shifters—are essential components
of on-chip photonics [17], [18], [19], [20], making the QFP
an intriguing tool for future silicon photonic network design
in classical optics as well as quantum. In this Article, we
propose and analyze a basic system for frequency multiplexing
in which the same elements as a QFP function as an all-optical
frequency processor (AFP): a centralized device to route traffic
in a frequency-multiplexed network without OEO conversion.
Using numerical optimization, we obtain designs for two
basic network operations, frequency hopping and broadcasting.
By then adopting an optimization metric based on mutual
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information, we also show how to construct systems for clas-
sical communication in resource-constrained environments.
Overall, our results indicate significant potential in frequency-
bin processing approaches for classical communication as well
as quantum information processing, providing a general recipe
for future designs optimized for specific networks.

This paper is organized as follows. In Sec. II we introduce
the basic idea of our AFP-based silicon photonic network,
comparing it to alternative WDM configurations. Section III
follows with details on our optimization model and simulation
results for specific frequency transforms. We then present in
Sec. IV an alternative optimization model able to incorporate
practical limitations consistently using mutual information as
the sole design metric. Finally, we discuss the implications of
our results in Sec. V and conclude in Sec. VI.

II. GENERAL CONCEPT

Silicon photonic network designs vary widely in complexity,
but typically include similar building blocks: sources, MRRs,
modulators, and detectors [4], [2]. For the purposes of our
discussion here, a simple waveguide network of the form
in Fig. 1(a) is sufficient for the basic features of interest.
Each computing node is designed to receive on one specific
wavelength; for full connectivity, a filter bank containing
N modulators and MRRs is replicated at each node, with
wavelengths matched to each of the other N receivers. (The
optical carriers can be generated independently at each node,
or shared among many.) Since each node can communicate
with any other by simply selecting the appropriate-wavelength
MRR, network latency is low. However, the total number
of MRRs grows quadratically with the number of users,
increasing resource provisioning and total power burden. To
improve scaling, one can partition into subnetworks, where
inter-subnetwork nodes are accessed via OEO conversion at
router interfaces [see Fig. 1(b)]. While reducing provisioning,
this approach suffers from increased latency within OEO
operations. A variety of approaches for optimally balancing
these demands have been discussed in the literature [21], [22],
[23], [24], though the fundamental latency/resource tradeoff
remains.

Motivated by this latency/resource conflict, we propose the
network design in Fig. 1(c). Here, each node has not only
a unique receive wavelength, but also a fixed transmit wave-
length, markedly reducing the resource requirements per node.
The channel routing tasks are offloaded onto a centralized
all-optical frequency processor (AFP) designed to actively
convert the carrier frequencies of input data streams to match
those of the desired destinations. Based on the QFP paradigm
discussed above (a series of EOMs and pulse shapers), this
AFP does include electro-optical manipulation controls, but it
does not involve any form of OEO conversion: the frequency
manipulations occur entirely in the optical domain, eliminating
the associated latency and embodying the sense in which we
apply the term “all-optical.”

A schematic of AFP construction follows in Fig. 2. EOMs
driven by radio-frequency (RF) waveforms periodic at the
channel spacing are separated by pulse shapers that apply

arbitrary phase shifts to each wavelength channel. A cascade
of Q such elements (defined as the sum of all EOMs and
shapers) comprises the AFP. Theoretical considerations [12],
[25] indicate that arbitrary unitary operations on N modes are
realizable with a number of elements Q scaling linearly with
dimension N .

We should note, however, that the total number of MRRs
in the proposed design is not necessarily smaller than in
the original network of Fig. 1(a). If we assume an on-chip
pulse shaper design with two MRRs per frequency mode [18]
and a total number of frequency modes proportional to the
number of channels (to allow for sideband occupation during
the transformation), and then combine this with an anticipated
linear scaling of the total number of pulse shapers with N ,
leads to a total growth in the number of MRRs proportional
to N2. Nevertheless, the linear device scaling argument of
Ref. [12], based on a constructive proof [25], represents an
upper bound; particular frequency-bin transformations may
admit more efficient (fewer-element) EOM/pulse-shaper de-
compositions than that indicated by this scaling. Indeed,
unlike spatial mode transformations where an analytic recipe
is available for constructing any given unitary [26], [27],
[28], our scheme still heavily relies on numerical solvers to
identify the required resources, and thus it is important to
focus on the specific connectivities desired in a particular
network. And at the very least, the AFP can simplify node
functionality demands by concentrating the more difficult
network arbitration capabilities at a central location.

To move beyond the high-level theoretical characteristics of
our proposal, for the remainder of this Article we concentrate
on explicit designs for AFP configurations performing basic
channel routing tasks. The variety of node connections needed
for all network operating states is far too vast for us to consider
all possibilities directly, though we see two as particularly
foundational and instructive: a cyclic frequency hop and 1-
to-N channel broadcast. Consider a single-spatio/polarization-
mode optical field on the bus waveguide [E(t) = E(+)(t) +
c.c.], with

E(+)(t) =
N−1∑
n=0

an(t)e−iωnt, (1)

where the individual carriers are assumed equispaced with
separation ∆ω (ωn = ω0 + n∆ω). As in traditional WDM
systems, the spectra of adjacent channels should be nonover-
lapping in order to minimize interchannel crosstalk. Never-
theless, the data modulation rates can in principle reach the
full channel width ∆ω, in contrast to the narrow frequency
bins considered previously in the quantum regime [12]. With
pulse shapers applying phase filters possessing flat spectral
responses over each ∆ω-wide channel, and sharp rolloff
between channels, the AFP can transform entire frequency
bands with the same fidelity as a narrowband carrier, so that
broadband data is reproduced at the output undistorted. For
example, Nyquist pulse encoding [29], [30], [31] coupled
with pulse shapers based on high-order MRR filters for sharp
spectral rolloff [17], [32], [33], would enable broadband data
modulation approaching ∆ω speeds. For the purposes of this
proposal, we assume the pulse encoding and data rate have
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Fig. 1. Comparison of optical network topologies. (a) Single bus waveguide, where each node communicates with all others by directly transmitting at
the appropriate frequency. (b) Subnet design. Each node communicates optically with nodes inside its subnetwork, with OEO conversion used to send data
between subnets. (c) Proposed design, in which an AFP transforms all input frequencies to outputs matched to each node’s intended receiver.

Fig. 2. AFP example with Q = 3 elements. Each element applies phase
modulation in either time (EOM) or frequency (pulse shaper), realizing some
desired frequency transformation.

been chosen appropriately to match the available spectral
resolution.

The AFP operation can then be modeled as a matrix Vnm
transforming inputs an(t) to outputs bn(t) according to:

bm(t) =
N−1∑
n=0

Vmnan(t). (2)

The matrix Vmn is related to the underlying pulse shaper
and EOM transformations identically as in the fully quantum
analysis in Ref. [12]; the primary difference now is that the
fields are treated as dynamical classical amplitudes, rather than
as bosonic operators. Additionally we note that V is unitary
when considered over all possible frequency bins, that is,

∞∑
n=−∞

V ∗nmVnp = δ[m− p], (3)

where δ[n] is the Kronecker delta function. Insertion loss in
practice introduces an overall scaling factor; but this effect is
absent from ideal phase modulation, so we do not consider it
in the initial design simulations.

For the fundamental frequency-hop operation, we consider
the N ×N permutation matrix SN , with elements

(SN )mn = δ[(m− n− 1) modN ], (4)

and m,n ∈ {0, 1, ..., N − 1}. In words, this transformation
hops the fields at each frequency according to the prescription
ω0 → ω1, ω1 → ω2, ..., ωN−1 → ω0. All other possible
shifts that preserve this sense of ordering can then be written
as powers: SN , S2

N , ..., S
N−1
N . (SNN returns the identity and

the sequence repeats.) Of these N − 1, only powers through
floor(N/2) need be considered in design, as the remaining
are simply transposes which can be obtained physically by
reversing element order and conjugating all phases. While
this permutation set does not encompass all possible one-to-
one frequency channel configurations, it does include all N
hops for a specific channel, while simultaneously demanding
hopping over the remaining N − 1. In this sense, the configu-
rations are more demanding than, e.g., asking only a subset of
channels to hop while keeping the remaining channels fixed.

The second major capability we consider for our AFP
design is a broadcast transformation, which copies the data
stream from one channel onto all N frequencies. One unitary
transformation which accomplishes this is the N -point discrete
Fourier transform (DFT), whose elements are

(FN )mn =
1√
N
e2πimn

N . (5)

Again the indices are defined such that m,n ∈ {0, 1, ..., N −
1}. This operation spreads the data stream from one of the
input channels to all N wavelengths, with a corresponding
reduction in power of 1/N (satisfying energy conservation).
Practically speaking, such a broadcast is valuable when the
other input channels are either quiet or modulating on orthog-
onal temporal modes; otherwise, the symbols will interfere
at the output. As with the permutation matrices, one could
envision less-demanding broadcast configurations—optimized
for only one of the N channels to cast, not all of them—so we
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can view FN as a universal broadcast for a particular N -node
network.

III. NUMERICAL OPTIMIZATION

With these two characteristic operations defined, our main
objective centers on how to efficiently implement them in hard-
ware. We enlist the numerical procedure introduced in [12] for
determining optimal solutions. In the slowly varying symbol
regime [c.f. Eq. (1) and following], the system operation can
be viewed as fully discrete in the frequency domain, and
thus all EOM patterns repeat with period 2π/∆ω set by the
frequency-bin spacing. For simulation purposes, we discretize
this temporal period into M samples and truncate the number
of frequency modes to M as well. Given the possibility of
input channels scattering outside of the desired N -channel
space, we choose M such that M � N . In other words, M
must be sufficiently large to fully encompass all bins occupied
by frequency channels throughout an operation.

In the M -bin discretization, each pulse shaper acts as an
M ×M diagonal unitary D over frequency bins, multiplying
each frequency channel by some arbitrary phase. Conversely,
an EOM is represented as an M × M diagonal unitary D
operating on time samples, or as FMDF

†
M in the frequency do-

main, where we approximate the Fourier transform according
to the DFT matrix FM [cf. Eq. (5)] defined over M samples.
Then a full network of Q elements becomes

V = FMDQF
†
M · · ·D2FMD1F

†
M , (6)

where we have assumed the first element is an EOM and Q
is odd. It is important to note that the DFT matrices in this
expression serve as a numerical approximation for the Fourier
transformation between time and frequency representations of
each applied operation. This is in contrast to the N -point DFT
considered as the fundamental broadcast operation, which is
not merely a basis change but rather a true modification of
the frequency channel inputs. Additionally, throughout this
discretization process, we preserve unitarity by specification,
as V is formed by a product of fully unitary matrices.

To assess the quality of a particular AFP configuration
[Eq. (6)] relative to the desired N × N transformation T
(frequency hop or broadcast), we first define W as the N ×N
submatrix of V within the channel modes of interest. This W
fully characterizes the operation when considering N channels
in and the same N out, and it may or may not prove unitary,
depending on the specific transformation. As long as M is
sufficiently large so that the numerical approximation of V
[Eq. (6)] is valid in the N×N projection, W will correspond to
the true experimentally realizable operation. We then classify
the performance of W compared to T according to fidelity

F =
Tr(W †T ) Tr(T †W )

Tr(W †W ) Tr(T †T )
(7)

and success probability

P =
Tr(W †W )

Tr(T †T )
. (8)

These are identical to the metrics previously considered in
the context of quantum information processing [12], [34]; the

condition F = P = 1 signifies the situation W = eiφT , with
φ an unimportant global phase. In the case of classical optical
communications, the quantum fidelity F is related to the purity
of the operation, while P quantifies the overall efficiency.
Since the EOM/pulse shaper operations are modeled as unitary
matrices, such loss (P < 1) corresponds to power scattering
outside of the N -channel subspace into adjacent frequency
bins, rather than to actual photon absorption.

Finally, before diving into the numerical results, we note that
the chosen frequency-hopping [Eq. (4)] and broadcast [Eq. (5)]
matrices are themselves related by a straightforward decom-
position: SnN = F †ND

n
NFN , where DN is a diagonal matrix

consisting of all N th roots of unity, i.e., (DN )mm = e2πim/N .
This relationship implies that if one can realize the N -channel
DFT, a permutation of any power n follows simply by adding
a pulse shaper (Dn

N ) and a second (conjugated) DFT. While
interesting on a formal level, such a construction requires more
than double the number of elements compared to the given
solution for FN , undesirable from a resource perspective; thus,
in the following simulations we look to synthesize permu-
tations directly, rather than building on broadcast solutions.
The two matrix classes likewise find connections in quantum
information as well. Indeed, the N = 2 incarnations, S2 and
F2, represent the Pauli-X and Hadamard gates, respectively,
and both F2 and F3 have been experimentally realized in the
QFP paradigm [13]. On the other hand, no example of an
SN has been shown with a QFP. Incidentally, this distinction
in progress between the permutation and DFT gates follows
from differences in their functionality. For whereas frequency
hopping demands accurate concentration of an input frequency
channel into one specific output mode, with minimal leakage
into the remaining channels, broadcasting seeks the opposite:
spread a channel’s information into all output modes. Accord-
ingly, in this sense these two operations occupy extremes in
the wider class of useful AFP transformations, making them
extremely valuable test cases.

A. Arbitrary Modulation

In the first round of simulations, we consider the case in
which each EOM is permitted arbitrary modulation patterns;
i.e., all M elements within a temporal period can assume any
value in the interval (−π, π]. In order to ensure the solution
does not contain numerical artifacts from reaching the edge
of the mode space and wrapping around in an unphysical
manner (i.e., aliasing), we limit the number of nonzero pulse
shaper phases to 32, one quarter of the total number of bins
considered in the full discretized space, M = 128. For the
optimization procedure itself, we constrain F ≥ 0.99 and
seek a set of phase values which maximize P . One could
alternatively constrain P , or maximize to the product FP ;
for these first tests, we focus on the F constraint so that
every solution will perform the desired operation well, only
with a reduction in power specified by P . We explicitly
consider AFPs consisting of Q ∈ {1, 3, 5, ...} components,
in which EOMs comprise the first and last devices in the
series, since we have found that the additional phase shifts
available by adding a single pulse shaper on the front or
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Fig. 3. Optimal solutions for arbitrary temporal modulation patterns, with
F ≥ 0.99 as constraint. (a) Frequency hopping matrices Sn

N . (b) Broadcast
(DFT) matrices FN . In both plots, vertical shading divides the results by
dimension N . In (a), the solutions for a given N are ordered left-to-right by
increasing power n ∈ {1, 2, ..., floor(N/2)}.

back end of the AFP does not enable a higher value of
P than the configuration without it. Making use the built-
in nonlinear constrained multivariate optimizer in MATLAB,
specifically the interior point algorithm [35], we run multiple
optimizations with either random values or previous solutions
as starting points, and report the final solution with maximum
P satisfying F ≥ 0.99.

Figure 3(a) presents our findings for all unique permutations
(frequency hops) for N = 2 to N = 10 channels, a total of 25
configurations. The points for each N are sorted left-to-right
by power SnN [n ∈ {1, 2, ..., floor(N/2)}]. For Q = 3, the
shorter hops (smaller n) tend to perform better in terms of
success P; for Q = 5, the number of elements is sufficiently
high for roughly uniform performance with n (note the loga-
rithmic vertical axis). In total, Q = 3 is able to realize all 25
transformations with P > 0.95, and Q = 5 with P > 0.994.
While moving significantly beyond N = 10 is prohibited by
our current computational capabilities, these results certainly
suggest the possibility of extremely favorable sublinear scaling
of the number of components with network size N . The
simulation findings for the DFT broadcast operation follow
in Fig. 3(b), also for N = 2 to N = 10 channels. In this case,
a single EOM is unable to satisfy the constraint F ≥ 0.99, so
Q = 1 has no solutions in this plot. However, the Q = 3
solutions perform even better than for frequency hopping;
P > 0.99 for all configurations examined, and increasing to
Q = 5 boosts these values closer to unity.

Comparing the results for both SN and FN , we see that
the frequency hops summarized in Fig. 3(a) possess relatively
jagged scaling curves, likely due to differences in the com-
plexity of permutations that span different numbers of channels
(powers of SN ). Yet nonetheless, taken as a whole, the success
probabilities for both frequency hopping and broadcasting
are fairly flat, not decaying rapidly with increasing N . Such
behavior for fixed and relatively small AFP sizes (Q ≤ 5)
provides preliminary evidence of improved network scaling
within the AFP paradigm. Nevertheless, further simulations
for larger networks—and perhaps additional transformations
beyond SN and FN primitives—will be required to pin down
precisely the resource requirements for an AFP in specific
applications.

B. Sinewave Modulation

While the fully arbitrary modulation patterns in the previous
section probe the most general capabilities of AFPs, complex
waveforms can prove difficult to implement experimentally,
particularly at common frequency channel spacings. For ex-
ample, at 25 GHz channel separation (a typical value in dense
WDM), an industry-leading 120 GS/s arbitrary waveform
generator [36] provides only 4.8 points per period at the
fundamental tone. In contrast, high-frequency sinewave RF
drives are readily obtained from analog generators, making
AFP configurations based on the simpler case of single-
frequency electro-optic modulation a worthwhile subset to
examine for practical purposes. To do so, we next restrict
the phase applied by each EOM to a sinewave with to-
be-determined amplitude and phase, otherwise keeping the
optimization procedure identical to above.

The maximal success probabilities for the hopping opera-
tions (with F ≥ 0.99) are shown in Fig. 4(a); the broadcast
solutions follow in Fig. 4(b). Due to the increase in Q depth—
and concomitant demands on computational resources—we
simulate only through N = 5 channels here. With fewer
matrices, but more AFP sizes, we now plot each transformation
as a separate curve and take Q as the abscissa. Unlike
the arbitrary modulation findings, the number of components
required for a given success P does increase strongly with
matrix size N . To explore this observation more quantitatively,
we consider the minimum number of elements Q required
for each transformation to reach the threshold P ≥ 0.99, as
summarized in Fig. 4(c). Both permutation and DFT results
are binned by dimension N (N = 4, 5 each have two distinct
permutations shown). While difficult to extrapolate with such
a limited number of data points, we observe that all matrices
fall under the scaling cap Q = 2N + 1; in other words, for
a given N , no operation requires more than 2N + 1 elements
to be realized with F ,P ≥ 0.99. Should this cap hold for
larger dimensions as well, it would show that—at least for
these particular matrices—the linear scaling Q ∝ N expected
for arbitrary temporal/spectral AFP patterns [12], [25] can
hold even for the significantly restricted class of sinewave-
only temporal modulation.

In order to examine scaling in our AFP approach in greater
detail, though, it is important not only consider the circuit
depth Q, but also the effective bandwidth. A large portion of
the resource requirements for a silicon photonic network rests
on the total number of MRRs; and because some scattering
into frequency channels outside of the N -mode network occurs
in the AFP, it is valuable to quantify precisely how many
wavelengths must be individually addressed by each pulse
shaper. Unfortunately, given the relatively few matrices we
have successfully simulated, our initial attempts to determine
the scaling of the number of MRRs with channels N remain
inconclusive. It seems possible that linear resource scaling may
hold, in which case the AFP will eventually win out in terms
of resources compared to networks modeled after Fig. 1(a).
Developing heuristic models which could allow extrapolation
to much larger dimensions thus forms an important objective
for future studies.
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modulation. Success probabilities for (a) permutations Sn
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plotted against the number of AFP elements. (c) Number of elements needed
to reach P ≥ 0.99 for the transformations in (a) and (b).

Finally, we mention one more EOM synthesis approach
falling between the two extremes of arbitrary waveforms and
single sinewaves: RF patterns consisting of the fundamental
tone plus low-order harmonics. For example, an EOM oper-
ating on 25 GHz channels could utilize a sum of 25, 50, and
75 GHz components for more precise control of the optical
sidebands. Given the availability of frequency multipliers
reaching into the W-band (75–110 GHz)—as well as possibili-
ties to generate multitone RF signals directly using line-by-line
optical pulse shaping and fast photodetection [37], [38], [39]—
such Fourier series-like signal construction may prove more
feasible than direct digital synthesis with arbitrary waveform
generators. To test possibilities enabled by such multiharmonic
signals, we have repeated the sinewave-only optimization,
adding harmonics with adjustable amplitude and phase. For
the frequency hopping transformations, our simulations have
suggested that adding RF harmonics can indeed improve
success P for a given Q. In the case of the broadcast (DFT)
operation in particular, we have noticed fascinating behavior
when increasing the number of harmonics. Specifically, we
have found solutions for all DFT matrices from N = 2 to
N = 5 maintaining F ≥ 0.99 and P ≥ 0.98, using only
Q = 3 elements, but exploiting EOM signals with a total of
N−1 tones: e.g., just the fundamental for N = 2, fundamental
plus next harmonic for N = 3, etc. Thus in this particular
case, harmonic addition seems to provide a viable alternative
to cascading additional components. Indeed, this approach
was already demonstrated for the case N = 3, Q = 3,
in a frequency-bin tritter [13]. The additional simulations
here suggest that, rather than a coincidence for the tritter,
harmonic addition may in fact be a general design feature
of the frequency-bin DFT.

IV. OPTIMIZATION FOR LIMITED RESOURCES

When considering frequency-bin operations in either a clas-
sical (AFP) or quantum (QFP) context, any design attaining
both F → 1 and P → 1 is fully optimal, in that it replicates

the desired transformation perfectly. On the other hand, for
configurations which fail to reach unity on one or both of F ,
P—e.g., due to physical limits on the number of elements
or complexity of temporal modulation—it is possible that the
optimal solution for a quantum gate may prove suboptimal
for the equivalent classical AFP transformation. For quantum
applications such as discrete-variable quantum information
processing, F and P possess well-defined and operationally
significant meanings: success P denotes the probability that
the gate will succeed, as defined by photons exiting the setup
within a predefined set of modes, while F quantifies a success-
ful operation’s closeness to the ideal manipulation. Because of
the binary nature of the multiphoton output—i.e., the photons
are either in the desired output channels, or not—such a clear
distinction between F and P appears naturally. By contrast,
in classical signal processing [40], information resides in the
macroscopic properties of an optical field, such as amplitude
and phase. Therefore, faithful data transmission rests on being
able to distinguish between the outputs corresponding to each
of the input symbols, an objective impacted both by total signal
amplitude (related to P) and by additional noise (related to F ).
For this reason, when the ideal F = P = 1 is unattainable
in practice, it is unclear a priori which fidelity/probability
tradeoff is optimal.

To answer this question, we consider a new optimization
metric, mutual information, which expresses the number of
bits shared between two random variables [41], [42], in
our case the sent and received symbols. Mutual information
aggregates all design metrics into a single number, removing
any question of artificial balancing of potentially conflicting
demands. And it can be directly translated into the bit rate
possible on a given communication system, simply by multi-
plying it by the channel symbol rate. The price for considering
this metric, however, is the need to specialize to a particular
encoding format, noise model, and power level (energy per
symbol). Whereas F and P are universal in the sense that they
depend only on the AFP itself, irrespective of the input signal
and noise properties, mutual information is directly affected by
these considerations; the optimal transformation may depend
profoundly on, e.g., whether the input signal-to-noise ratio
(SNR) or interchannel crosstalk dominates errors.

We make these initial observations concrete by specifying
just such a model. We consider N input frequency channels,
each carrying equal average power and independent, Gaus-
sian modulated data—known to attain the channel capacity
bound for a given SNR under additive white Gaussian noise
(AWGN) [41], [42], [43]. Assuming Gaussian modulation with
zero mean and variance σ2 in both available quadratures (X
and Y ), the average photon number per complex symbol
satisfies µ = 2σ2 in our normalization. At the output, we
assume conjugate homodyne detection with an optical hybrid,
so that both X and Y quadratures are measured simultaneously
at each frequency.

In a single output quadrature the N × N channel matrix
W produces a variance in channel k from input l given
by 〈X2

kl〉 = K2µLOησ
2|Wkl|2, where K is an optical-to-

electrical system conversion factor (e.g., photons/pulse to
symbol in volts), µLO the number of photons per symbol
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contained in the local oscillator (LO) entering the hybrid, and
η is an efficiency parameter encompassing all transmissivities
in the system extrinsic to the AFP operation (e.g., detector
and component insertion losses), which we take as equal for
all input channels. Because of rotational symmetry in dual-
quadrature Gaussian modulation, each input frequency ωn will
contribute crosstalk noise which is also Gaussian of variance
K2µLOησ

2|Wkn|2, regardless of the phase relationship be-
tween various input channels (drifting randomly over 2π or
permanently fixed). Because of the independence of input
data streams, the total crosstalk variance is thus 〈X2

c 〉 =
K2µLOησ

2
∑
n6=l |Wkn|2. Finally, we model the detection

noise as Gaussian with variance 〈X2
d〉 = (1 +D)K2 µLO

2 : the
first term corresponds to the vacuum noise in each quadrature,
and D represents additional electronic noise normalized by the
vacuum level. Since µLO � ηµ in this model, we can safely
neglect any modifications to the variance from the signal itself.

Accordingly, the SNR for either quadrature of the kl hop
becomes

Rkl =
〈X2

kl〉
〈X2

c 〉+ 〈X2
d〉

=
ηµ|Wkl|2

1 +D + ηµ
∑
n6=l |Wkn|2

, (9)

where we express the modulation variance in terms of average
photon number per symbol (µ = 2σ2). Because the total noise,
including crosstalk, is still AWGN, the mutual information
between channel k at the output and l at the input attains the
channel capacity, 1

2 log2(1+Rkl) per quadrature [41], [42], or

Ikl = log2

[
1 + µeffPk

1 + µeffPk(1− Ckl)

]
(10)

in total (summing X and Y ). Here we have introduced an
effective photon number µeff = ηµ

1+D , that rescales µ by the
non-AFP noise sources, and defined the channel probability

Pk =

N−1∑
n=0

|Wkn|2, (11)

which falls in the interval [0, 1] because of the unitarity of the
matrix V from which W is derived. We also have specified
the selectivity as

Ckl =
|Wkl|2

Pk
. (12)

Intuitively, we can begin to see useful relationships between
these metrics and the previous F and P . Indeed, P =
1
N

∑N−1
k=0 Pk directly; it is nothing but the average throughput

for each channel. Similarly, the selectivity Ckl is highly
related to fidelity F , though not in such explicit terms. In
particular, Ckl (and the mutual information more generally)
has no dependence on the phase of the elements in W , as a
consequence of the fact each frequency channel is a separate,
independent data carrier. On the other hand, P = 1 if and
only if Pk = 1 ∀ k. Finally, we see that the limiting case of
Pk = Ckl = 1 gives Ikl = log2(1 + µeff), as expected for
perfect dual-quadrature Gaussian modulation.

The above formula [Eq. (10)], which includes crosstalk
effects from adjacent co-transmitting frequencies, aligns well
with the scenario of frequency hopping under its brightest
operating condition (all channels communicating). On the

other hand, broadcasting to all outputs is meaningful only
when one input alone is transmitting. And so for this case,
we modify the mutual information formula by removing
noise effects resulting from interchannel crosstalk, leaving the
simpler expression

Ikl = log2 (1 + µeffPkCkl) . (13)

For example, the case of the ideal DFT operation [Eq. (5)] has
Pk = 1, Ckl = 1

N ∀ k, l, implying a N−1 reduction in SNR for
each output compared to the input, by energy conservation. In
the frequency-hopping scenario, a total of N mutual informa-
tions Ikl prove important: k ∈ {0, 1, ..., N − 1} and l = f(k),
where f(k) is the one-to-one function specifying the desired
I/O connections. Since the broadcast configuration enables
any of the N inputs to cast (though not simultaneously), all
N2 mutual information pairs expressed by Eq. (13) should
be accounted for in the solver. For either situation, we have
found that choosing the average of all relevant I/O paths as
optimization metric tends to produce solutions with widely
varying performance across all channels. So to improve uni-
formity, we select the minimum value over all channels as the
metric. In other words, while each specific set of AFP settings
produces several mutual information values Ikl of interest,
the optimizer only considers the smallest one—regardless of
k, l—in rating the quality of that particular configuration.
This procedure tends to improve channel homogeneity by
effectively redirecting parameter resources toward whichever
channel lags the others in the current iteration of the optimizer.

Because the focus on mutual-information–based metrics is
motivated by the practical constraints encountered in a real-
world system, we intentionally limit the number of elements
to Q = 3 and the available modulation to sinewave-only,
exploring designs for N ∈ {2, 3, 4, 5} channels in numerical
optimization. As evident in both Eqs. (10) and (13), one must
now specify the effective photon number µeff at the onset.
Figure 5(a) plots the mutual information results obtained for
the hopping operation with Q = 3 elements and µeff = 200.
As before, N = 4 and N = 5 have two distinct transforma-
tions represented. At this photon number, the Shannon-limited
channel capacity (perfect hopping) is 7.65 bits (dotted line);
the setup gets extremely close to this limit for N = 2, trailing
by wider gaps as the number of channels increases, which
makes sense given the fixed number of resources.

The results for the broadcast operation are plotted in
Fig. 5(b). As in the hopping cases, the solid bars mark the
average for each solution, and the lighter dots show the
individual channel results. Here the ideal mutual information
(dotted line) now varies with N , as a consequence of sharing
photonic energy among N modes. And because it is an
average, unlike the Shannon limit in the hopping simulations,
individual channels can exceed it, which does occur in the
N = 5 solution. Overall, the solutions perform better than
the mode hopping tests, with all cases within 10% of the
ideal average. Incidentally, the high mutual information in the
N = 5 case contrasts markedly with the DFT simulations of
Fig. 4(b), where no solution with nonzero success probability
was obtained for the matrix F5 with Q = 3 elements and
F > 0.99. Unlike the expression for fidelity [Eq. (7)], in
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Fig. 5. Mutual information simulations for Q = 3 elements and sinewave-
only modulation. Findings for (a) frequency hopping operations through N =
5 and (b) 1-to-N broadcasting. The bars signify averages over all N hops for
a particular matrix, while the separate values for each channel are represented
by lighter dots (for most cases too close to be distinguished on this scale).
(c) Dependence of individual mutual information values on photon number
µeff for the N = 3 solution in (a). (d) Scaling for a second hopping solution
optimized for µeff = 2000. Each curve in (c) and (d) is labeled by the carrier
frequency of the output channel, ωk , where k ∈ {0, 1, 2}.

Eq. (13) the phases of the Wkn matrix elements do not appear,
thereby significantly relaxing demands on the transformations.
This situation illuminates the importance of mutual informa-
tion in streamlining system design requirements.

These solutions offer valuable insights into the interplay be-
tween channel probability [Eq. (11)] and selectivity [Eq. (12)].
For example, the squared-moduli of the elements for the
N = 3 channel hop solution are

|W |2 =

0.00003 0.00005 0.22594
0.26664 0.00094 0.00005
0.00110 0.29725 0.00058

 (14)

Although all channels attain near-identical mutual information
at µeff = 200, their respective Pk and Ckl values vary. For
example, the ω0 output (top row) has appreciably lower proba-
bility, but higher selectivity, compared to ω1 and ω2. Evidently,
the extra flexibility available to the system in letting these
values vary across channels enables higher mutual information
than that possible by requiring completely uniform amplitudes.
The effect of such interchannel differences becomes clear
when examining this solution at photon numbers other than the
designed value. In Fig. 5(c), we plot the mutual information
computed from the above matrix for µeff ranging from 1
to 105. Above the designed value of µeff = 200, channel
ω0 performs best; with the extra power available, the data
rate is primarily limited by crosstalk from other channels,
so ω0’s high selectivity grants it an edge. On the other
hand, the situation reverses at lower photon numbers, where
simply receiving enough photons has the greatest impact; for
µeff < 200, ω0’s lower probability places it at the bottom of
the three channels. As one more example, we plot in Fig. 5(d)
the mutual information values for a solution optimizing the

same N = 3 channel hop, but for µeff = 2000. Now
all three channels coincide at this higher photon level, with
variations moving away from it, again reflecting the specific
matrix elements. Finally, we can also directly compare the
optimal solutions at different design values of µeff , where
we see a similar trend, in which the optimizer tends to find
solutions with better selectivity given higher photon counts.
Considering the two design values in Fig. 5(c) and (d), the
average selectivity over all channels improves from 0.9968
to 0.9997 when µeff is increased from 200 to 2000, and
correspondingly the average success probability drops from
0.26 to 0.23. Accordingly, these simulations highlight how
the mutual information approach balances the parallel pulls
of low crosstalk and high overall throughput, as well as the
importance of the noise model and power level in resource-
limited network designs.

V. DISCUSSION

The research problem we have undertaken here—
application of frequency-bin manipulation approaches to all-
optical networks—is by nature broad and open to a variety of
potential solutions, depending on the characteristics and needs
of a given network. So in our view the main contribution
of this work lies in formalizing the vision and specifying
methods which can be applied quite generally to future de-
signs. In particular, the distinction between the needs of quan-
tum and classical frequency-bin processing steers one toward
information-theoretic metrics, rather than quantum-mechanical
performance measures, in evaluating networks in the classical
context. The explicit numerical solutions illuminate valuable
attributes which seem to apply quite generally to AFPs, such
as: (i) basic operations require few components (sublinear in
N ) when arbitrary modulation is available; (ii) improved re-
source provisioning compared to conventional silicon photonic
networks could be possible for a sufficiently large number
of nodes; and (iii) the interaction between two effects—noise
from interchannel crosstalk and reduction in signal levels from
scattering—plays a central role in establishing the optimal
AFP transformation.

As we look toward scaling up the number of channels
implemented experimentally, an additional challenge—beyond
the more fundamental questions of device requirements—is
insertion loss. For example, in a previous experiment with
a tabletop EOM/pulse shaper/EOM cascade (Q = 3), we
observed 12.9 dB end-to-end loss [13]. Additionally, RF
powers on the order of ∼1 W are typical for high-bandwidth
modulation with discrete fiber-optic EOMs, representing a sig-
nificant power sink. Therefore both optical loss and electrical
power consumption introduce an effective energy overhead,
demanding more power to maintain a desired SNR at the
receiver, so that in some contexts it may be more practical
to utilize a smaller, non-optimal AFP design in the interests
of low energy consumption. In the end, the scalability of the
AFP compared to alternative optical designs will depend on
the practical performance of the available individual elements.

Nonetheless, as our primary motivation for the frequency-
bin AFP is optical networking in datacenter and HPC en-
vironments, the AFP must ultimately be realized on chip,
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which offers fascinating opportunities to improve raw perfor-
mance and energy efficiency as well. For example, an on-chip
phase modulator with <0.5 dB loss has already been demon-
strated [19], and CMOS-compatible MRR-based pulse shapers
with <1 dB loss appear possible from existing foundries [20].
Future designs which can harness these advanced integrated
photonic technologies should provide a compelling path to
scalability. Moreover, the physical realization of spectral shap-
ing via dedicated MRRs on chip could markedly reduce the
demands placed on high-bandwidth EOMs. In pulse shapers
based on spatial dispersion, such as liquid-crystal-on-silicon
technology [44], the minimum frequency spacing is ultimately
limited by spectral resolution, setting a hard lower bound on
the modulation frequency the EOMs must attain. On the other
hand, MRR-based shapers dedicate independent rings to each
frequency bin, all of which can be tuned independently [18];
thus the frequency spacing can in principle be much smaller,
as it does not need to correspond to the FSR of a single ring.

Another essential direction for future exploration comprises
networking-centric aspects such as the real-time updates an
AFP would be expected to implement in a given system. In
order to benefit from the reconfigurability possible within the
frequency-bin processing paradigm, the AFP must be able to
determine the needed functionality (i.e., I/O configuration) in
real time and then update the transformation as fast as possible.
This question of arbitration—managing data traffic flow to pre-
vent errors and packet loss—is generally much more difficult
in photonics than electronics, since optical data streams cannot
be easily buffered [4]. Thus it will be important to consider
adapting specific silicon photonic arbitration protocols [21],
[22], [23], [24] to the AFP paradigm. As one interesting
possibility on this front, perhaps ideas from all-optical signal
processing [10] could be applied for arbitration decisions. For
example, all-optical tapped delay lines relying on nonlinear
frequency conversion have realized pattern recognition at the
channel line rate [45]. Conceivably, such an approach could be
used to continuously check for AFP update requests, although
work remains to assess how these capabilities could be realized
with the basic chip-scale components discussed here. Finally,
the speed of the physical AFP update, following arbitration,
should be extremely high as well. New waveforms can be
applied to each EOM as fast as the inverse electro-optic
bandwidth, which by design must exceed the channel spacing
∆ω—and consequently, the channel modulation rate—so that
EOM updates faster than a single symbol period present
no fundamental difficulties. While thermal phase shifters are
relatively slow, pulse shapers with ∼GHz update speed should
still be attainable via the use of electro-optic phase shifters.
Thus with proper engineering, our AFP paradigm should be
well-matched to the refresh rates desired on a fast optical
network.

VI. CONCLUSION

We have described an approach for all-optical networking
based on wavelength multiplexing and active frequency trans-
formations. Consisting of an alternating chain of temporal
phase modulation and line-by-line pulse shaping, our all-

optical frequency processor (AFP) is able to realize user-
defined and reconfigurable channel mappings designed to
connect network nodes operating at different wavelengths.
Through numerical simulations, we have explicitly designed
one-to-one frequency hoppings and 1-to-N broadcast opera-
tions for small network sizes, considering both fully arbitrary
and sinewave-only temporal modulation. By introducing a
mutual-information-based metric, we reveal how to optimize
system design under resource limitations as well. Our results
extend the unitary frequency-bin operations of quantum fre-
quency processors to classical signal processing, indicating the
value of arbitrary frequency-bin operations in classical as well
as quantum networks.
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