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Abstract—In large-scale distributed computing clusters, such
as Amazon EC2, there are several types of “system noise” that
can result in major degradation of performance: system failures,
bottlenecks due to limited communication bandwidth, latency
due to straggler nodes, etc. There have been recent results that
demonstrate the impact of coding for efficient utilization of
computation and storage redundancy to alleviate the effect of
stragglers and communication bottlenecks in homogeneous clus-
ters. In this paper, we focus on general heterogeneous distributed
computing clusters consisting of a variety of computing machines
with different capabilities. We propose a coding framework for
speeding up distributed computing in heterogeneous clusters by
trading redundancy for reducing the latency of computation. In
particular, we propose Heterogeneous Coded Matrix Multiplication
(HCMM) algorithm for performing distributed matrix multiplica-
tion over heterogeneous clusters that is provably asymptotically
optimal for a broad class of processing time distributions.
Moreover, we show that HCMM is unboundedly faster than
any uncoded scheme that partitions the total work load among
the workers. To demonstrate how the proposed HCMM scheme
can be applied in practice, we provide results from numerical
studies and Amazon EC2 experiments comparing HCMM with
three benchmark load allocation schemes – Uniform Uncoded,
Load-balanced Uncoded, and Uniform Coded. In particular, in
our numerical studies, HCMM achieves speedups of up to 73%,
56% and 42% respectively over the three benchmark schemes
mentioned above. Furthermore, we carry out experiments over
Amazon EC2 clusters and demonstrate how HCMM can be
combined with rateless codes with nearly linear decoding com-
plexity. In particular, we show that HCMM combined with the
Luby transform (LT) codes can significantly reduce the overall
execution time. HCMM is found to be up to 61%, 46% and
36% faster than the aforementioned three benchmark schemes,
respectively. Additionally, we provide a generalization to the
problem of optimal load allocation in heterogeneous settings,
where we take into account the monetary costs associated
with distributed computing clusters. We argue that HCMM is
asymptotically optimal for budget-constrained scenarios as well.
In particular, we characterize the minimum possible expected
cost associated with a computation task over a given cluster of
machines. Furthermore, we develop a heuristic algorithm for
(HCMM) load allocation for the distributed implementation of
budget-limited computation tasks.

Index Terms—Coded computation, distributed computing,
heterogeneous clusters.

I. INTRODUCTION

A. Reisizadeh and R. Pedarsani are with the Department of Electrical and
Computer Engineering, University of California, Santa Barbara, Santa Bar-
bara, CA 93106 USA (e-mail: reisizadeh@ucsb.edu; ramtin@ece.ucsb.edu).

S. Prakash and A. S. Avestimehr are with the the Department of Electrical
and Computer Engineering, University of Southern California, Los Angeles,
CA 90089 USA (e-mail: sauravpr@usc.edu; avestimehr@ee.usc.edu).

A part of this work was presented in IEEE International Symposium on
Information Theory, 2017 [1].

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

GENERAL distributed computing frameworks, such as
MapReduce [2] and Spark [3], along with the availability

of large-scale commodity servers, such as Amazon EC2, have
made it possible to carry out large-scale data analytics at the
production level. These “virtualized data centers” enjoy an
abundance of storage space and computing power, and are
cheaper to rent by the hour than maintaining dedicated data
centers round the year. However, these systems suffer from
various forms of “system noise” which reduce their efficiency:
system failures, limited communication bandwidth, straggler
nodes, etc.

The current state-of-the-art approaches to mitigate the im-
pact of system noise in cloud computing environments involve
creation of some form of “computation redundancy”. For
example, replicating the straggling task on another available
node is a common approach to deal with stragglers [4], while
partial data replication is also used to reduce the commu-
nication load in distributed computing [5]. However, there
have been recent results demonstrating that coding can play a
transformational role for creating and exploiting computation
redundancy to effectively alleviate the impact of system noise.
In particular, there have been two coding concepts proposed
to deal with the communication and straggler bottlenecks in
distributed computing.

The first coding concept introduced in [6]–[8] enables an
inverse-linear tradeoff between computation load and commu-
nication load in distributed computing. This result implies that
increasing the computation load by a factor of r (i.e. evaluating
each computation at r carefully chosen nodes) can create novel
coding opportunities that reduce the required communication
load for computing by the same factor r. Hence, these codes
can be utilized to pool the underutilized computing resources
at network edge to slash the communication load of Fog com-
puting [9]. Other related works tackling the communication
bottleneck in distributed computation include [10]–[14].

In the second coding concept introduced in [10], an inverse-
linear tradeoff between computation load and computation
latency (i.e. the overall job response time) is established for
distributed matrix multiplication in homogeneous computing
environments. More specifically, this approach utilizes coding
to effectively inject redundant computations to alleviate the
effects of stragglers and speed up the computations. Hence,
by utilizing more computation resources, this can significantly
speed up distributed computing applications. A number of re-
lated works have been proposed recently to mitigate stragglers
in distributed computation. In [15], the authors propose the
use of redundant short dot products to speed up distributed
computation of linear transforms. The work in [16] proposes
coding schemes for mitigating stragglers in distributed batch
gradient computation. Coding schemes for high-dimensional
matrix-matrix multiplication have been developed in [17]–



2

[21]. Techniques for efficient straggler mitigation for matrix-
vector computation in distributed wireless settings have been
developed in [22]. In [23], the potential of the multicore nature
of computing machines is studied. In [24], the authors propose
an anytime approach to distributed computing, developing an
approximate matrix multiplication scheme. The authors in
[25] propose a novel encoding scheme for achieving large
sparsity in the encoded matrix. Work in [26] develops a
coding strategy for mitigating straggling decoders in cloud
radio access network. Speeding up the computation of lin-
ear transformations with unreliable components is studied in
[27]. Straggler mitigation through data encoding in distributed
optimization is proposed in [28]. A coded scheme based on
LT codes is proposed in [29] for multiplying a matrix by a set
of vectors in a distributed computing environment. Addressing
stragglers has attracted a lot of attention in the queuing-based
frameworks for large-scale computation as well [30], [31].
These works utilize the technique of dynamically replicating
the tasks in a careful manner to minimize run-time.

We extend the problem of distributed matrix multiplication
in homogeneous clusters in [10] to heterogeneous environ-
ments. As discussed in [4], the computing environments in
virtualized data centers are heterogeneous and algorithms
based on homogeneous assumptions can result in significant
performance reduction. In this paper, we focus on general
heterogeneous distributed computing clusters consisting of
a variety of computing machines with different capabilities.
Specifically, we propose a coding framework for speeding
up distributed matrix multiplication in heterogeneous clus-
ters with straggling servers, named Heterogeneous Coded
Matrix Multiplication (HCMM). Matrix multiplication is a
crucial computation module in many engineering and scientific
disciplines. In particular, it is a fundamental component of
many popular machine learning algorithms such as logistic
regression, reinforcement learning and gradient descent-based
algorithms. Implementations that speed up matrix multiplica-
tion would naturally speed up the execution of a wide variety
of popular algorithms. Therefore, we envision HCMM to play
a fundamental role in speeding up big data analytics in virtu-
alized data centers by leveraging the wide range of computing
capabilities provided by these heterogeneous environments.

We now describe the main ideas behind HCMM, which
results in asymptotically optimal performance. In a coded im-
plementation of distributed matrix-vector multiplication, each
worker node is assigned the task of computing inner products
of the assigned coded rows with the input vector, where the
assigned coded rows are random linear combinations of the
rows of the original matrix. Computation time at each worker
is a random variable, which is first assumed to have shifted
exponential distribution, and we later generalize it to shifted
Weibull distribution. The master node receives the results
from the worker nodes and aggregates them until it receives
a decodable set of inner products and recovers the matrix-
vector multiplication. We are interested in finding the optimal
load allocation that minimizes the expected waiting time to
complete this computation. However, due to heterogeneity,
finding the exact solution to the optimization problem seems
intractable.

As the main contribution of the paper, we propose an alter-
native optimization that focuses on maximizing the expected
number of returned computation results from the workers.
Apart from being computationally tractable, the alternative
optimization asymptotically approximates the problem of find-
ing the optimal computation load allocation. Specifically, we
develop the HCMM algorithm that is derived as a solution
to the alternative formulation, and prove it is asymptotically
optimal. Furthermore, we prove that given a heterogeneous
cluster of n workers, HCMM is Θ(log n) times faster than
uncoded schemes under the shifted exponential distribution
for run-time. We further generalize the proposed HCMM algo-
rithm to shifted Weibull model and provide similar unbounded
gains over uncoded scenarios.

In addition to proving the asymptotic optimality of HCMM,
we carry out numerical studies and experiments over Amazon
EC2 clusters to demonstrate how HCMM can be used in
practice. We compare HCMM with three benchmark schemes
– Uniform Uncoded, Load-balanced Uncoded, and Uniform
Coded. In our numerical analysis, HCMM results in significant
speedups of up to 73%, 56% and 42% over the three afore-
mentioned benchmark schemes, respectively. In experiments
using Amazon EC2 clusters, we use the Luby transform (LT)
codes for coding and demonstrate that HCMM combined with
LT codes significantly reduces the overall execution time in
comparison to uncoded and coded schemes. In particular,
HCMM achieves gains of up to 61%, 46% and 36%, re-
spectively over Uniform Uncoded, Load-balanced Uncoded
and Uniform Coded. Furthermore, the overall computation
load of HCMM is less than the one of Uniform Coded.
Our results demonstrate that HCMM combines the benefits of
both Load-balanced Uncoded and Uniform Coded schemes by
achieving efficient load balancing along with minimal number
of redundant computations.

Furthermore, we consider the problem of load allocation
under budget constraints, considering an intuitive and con-
vincing pricing model. In particular, we show that HCMM
is the (asymptotically) optimal load allocation in feasible
budget-constrained scenarios as well, and determine whether a
budget-constrained computation task is feasible given a cluster
of machines. We then develop a heuristic algorithm to find
the (sub)optimal load allocations using the proposed HCMM
scheme. The heuristic is based on the observation that given a
computation task and a set of machines, decreasing the number
of fastest machines participating in HCMM results in smaller
average cost.

Notation. We denote by [n] the set {1, · · · , n} for any
n ∈ N. For non-negative sequences g(n) and h(n), we denote
g(n) = O

(
h(n)

)
if there exist constants c > 0 and n0 ∈ N

such that g(n) ≤ c ·h(n) for all n > n0; and g(n) = Θ
(
h(n)

)
if g(n) = O

(
h(n)

)
and h(n) = O

(
g(n)

)
. Moreover, we write

g(n) = o
(
h(n)

)
if limn→∞ g(n)/h(n) = 0.

II. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we describe our computation model, the
network model and the precise problem formulation. We then
conclude with four theorems highlighting the main contribu-
tions of the paper.
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A. Computation Model

We consider the problem of matrix-vector multiplication, in
which given a matrix A ∈ Rr×m for some positive integers
r and m, we want to compute the output y = Ax for an
input vector x ∈ Rm. Due to limited computing power, the
computation cannot be carried out at a single server and a dis-
tributed implementation is required. As an example, consider
a matrix A with an even number of rows and two computing
nodes. The matrix can be divided into two equally tall matrices
A1 and A2, and each will be stored in a different worker
node. The master node receives the input x and broadcasts
it to the two worker nodes. These nodes will then compute
y1 = A1x and y2 = A2x locally and return their results to
the master node, which combines them to obtain the intended
outcome y = [y1;y2] = Ax. This example also illustrates an
uncoded implementation of distributed computing, in which
results from all the worker nodes are required to recover the
final result.

We now present the formal definition of Coded Distributed
Computation.

Definition 1. (Coded Distributed Computation) The coded
distributed implementation of a computation task fA(·) is
specified by:

• local data blocks 〈Ai〉ni=1 and local computation tasks〈
f iAi

(·)
〉n
i=1

;
• a decoding function that outputs fA(·) given the results

from a decodable set of local computations.

For matrix-vector multiplication tasks in particular, local
data blocks Ai ∈ R`i×m are matrices consisting of coded
combinations of the rows in A, for non-negative integers
`i. To assign the computation tasks to each worker, we use
random linear combinations of the r rows of the matrix A,
such that the master node can recover the result Ax from
any r inner products received from the worker nodes with
probability 1. As an example, if worker i is assigned a matrix-
vector multiplication with matrix size `i×m, it will compute
`i inner products of the assigned coded rows of A with x.
The master node shall wait for the first r inner products and
will use them to decode the required output. In order to ensure
the recovery of the output from any r inner products received
from the workers, we pick the computation matrix assigned to
worker i as Ai = SiA, where Si ∈ R`i×r is the coding matrix
with i.i.d. N (0, 1) entries. Worker i computes Aix and returns
the result to the master node. Upon receiving r inner products,
the aggregated results at the master will be in the form of
z = S(r)Ax, where S(r) ∈ Rr×r is the aggregated coding
matrix, and it is full-rank with probability 1 [32]. Therefore,

the master node can recover Ax = S−1
(r)z with probability 1.1,2

B. Network Model

The network model is based on a master-worker setup
illustrated in Fig. 1. The master node receives an input x
and broadcasts it to all the workers. Each worker computes
its assigned set of computations and unicasts the result to the
master node. The master node aggregates the results from the
worker nodes until it receives a decodable set of computations
and recovers the output Ax.

A1 A2 An· · ·

W1 W2 Wn· · ·

x

M

x

A1 A2 An· · ·

W1 W2 Wn· · ·

A1x A2x Anx

M

Ax

Fig. 1: Master-worker setup of the computing clusters: The master
node receives the input vector x and broadcasts it to all the worker
nodes. Upon receiving the input, worker node i starts computing the
inner products of the input vector with the locally assigned rows, i.e.,
yi = Aix, and unicasts the output vector yi to the master node upon
completing the computation. The results are aggregated at the master
node until r inner products are received and the desired output Ax
is recovered.

We denote by Ti the random variable representing the task
run-time at node i and assume that the run-times T1, · · · , Tn
are mutually independent. We consider the distribution of run-
time random variables to be exponential, and later generalize
it to Weibull distribution. More specifically, we consider a
2-parameter shifted exponential distribution for the execution
time of each worker, i.e., the CDF of execution time of worker
node i, Ti, loaded with `i row vectors is as follows:

Pr[Ti ≤ t] = 1− e−
µi
`i

(t−ai`i), (1)

for t ≥ ai`i and i ∈ [n], where ai > 0 is the shift parameter
and µi > 0 denotes the straggling parameter associated with
worker node i. The shifted exponential model for computation
time, which is the sum of a constant (deterministic) term and
a variable (stochastic) term, is motivated by the distribution
model proposed by authors in [33] for latency in querying data
files from cloud storage systems. As demonstrated in [10] as

1Although we consider random linear coding in our theoretical analysis,
other codes such as Maximum-Distance Separable (MDS) codes and Luby
transform (LT) codes are compatible with HCMM as well, given a decodable
set of results at the master. For example, in the MDS case, the entries in
the coding matrix {Si}ni=1 are drawn from a finite field. Specifically, one
can encode the rows of A using an (

∑n
i=1 `i, r) MDS code and assign `i

coded rows to the worker node i. The output Ax can be recovered from the
inner products of any r coded rows with the input vector x. Furthermore,
to implement the ideas developed in this work, we use LT codes in our
experiments over Amazon EC2 clusters.

2Instead of i.i.d. Gaussian, we could use any continuous distribution for
the random entries, since Schwartz-Zippel lemma ensures that such random
matrix is full-rank with high probability
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well as by our own experiments, exponential model provides
a good fit for the distribution of computation times over
cloud computing environments such as Amazon EC2 clusters.
Moreover, these experiments confirm the assumption that as
a first order approximation, both shift and mean parameters
of the shifted exponential distributions linearly scale with the
load size.

We further generalize the analysis to shifted Weibull distri-
bution in Section IV, where we consider a 3-parameter shifted
Weibull distribution for the execution time of each worker.
That is, the CDF of task run-time at worker node i, loaded
with `i row vectors is as follows:

Pr[Ti ≤ t] = 1− e−
(
µi
`i

(t−ai`i)
)αi

, (2)

for t ≥ ai`i and i ∈ [n], where ai > 0 denotes the shift
parameter, µi > 0 is the straggling parameter and αi > 0
represents the shape parameter associated with worker i. A
similar model has been considered in [34] as well.

C. Problem Formulation

We consider the problem of using a cluster of n worker
nodes for distributedly computing the matrix-vector multipli-
cation Ax, where A is a size r × m matrix for positive
integers r and m. Let ` = (`1, · · · , `n) be the load allocation
vector where `i denotes the number of rows assigned to worker
node i. Let TCMP be the random variable denoting the waiting
time for receiving a decodable set of results, i.e. at least r
inner products. We aim at finding the optimal load allocation
vector that minimizes the average waiting time by solving the
following optimization problem:

Pmain : minimize
`

E[TCMP]. (3)

For a homogeneous cluster, to achieve a coded solution, one
can divide A into k equal size submatrices, and apply an
(n, k) MDS code to these submatrices. The master node can
then obtain the final result from any k responses. In [10], the
authors find the optimal k for minimizing the average running
time for the shifted exponential run-time model.

For heterogeneous clusters, however, assigning equal loads
to servers is clearly not optimal. Moreover, directly finding the
optimal solution to Pmain is hard. In homogeneous clusters, the
problem of finding a sufficient number of inner products can
be mapped to the problem of finding the waiting time for a set
of fastest responses, and thus closed form expressions for the
expected computation time can be found using order statistics
of i.i.d. run-times. However, this is not straight-forward in
heterogeneous clusters, where the load allocation is non-
uniform. In Section III, we present an alternative formulation
to Pmain in (3), and show that the solution to the alternative
formulation – which we shall name HCMM – is tractable and
provably asymptotically optimal.

Assumptions. From now onward, we consider the practi-
cally relevant regime where the size of the problem scales
linearly with the size of the network, while the computing
power and the storage capacity of each worker node remain
constant. Specifically, we assume r = Θ(n), ai = Θ(1),
µi = Θ(1) and αi = Θ(1) for each worker i.

D. Main Results

Having set the model and formulation of the problem,
we now present the main contributions of this paper. The
following theorem characterizes the asymptotic optimality of
HCMM for the shifted exponential run-time model.
Theorem 1. Let THCMM be the random variable denoting the
finish time of the HCMM algorithm and TOPT be the random
variable representing the finish time of the optimum algo-
rithm obtained by solving Pmain. Then, for shifted exponential
run-times in (1) with constant parameters ai = Θ(1) and
µi = Θ(1) for each worker i ∈ [n] and r = Θ(n), we have
limn→∞ E[THCMM] = limn→∞ E[TOPT].

Remark 1. Theorem 1 demonstrates that our proposed HCMM
algorithm is asymptotically optimal as the number of workers
n approaches infinity. In other words, the optimal computation
load allocation problem Pmain in (3) can be optimally solved
using the proposed HCMM algorithm as n gets large.

Remark 2. We note that Pmain in (3) is a hard combinatorial
optimization problem since it will require checking all load
combinations to minimize the overall expected execution time.
The key idea in Theorem 1 is to consider an alternative
formulation to (3) focusing on maximizing the expected num-
ber of returned computation results from the workers, i.e.
maximizing the aggregate return. As we describe in Section
III, the alternative optimization problem not only can be solved
efficiently in a tractable way giving rise to HCMM algorithm,
it also asymptotically approximates Pmain and allows us to
establish Theorem 1.

Remark 3. While Theorem 1 theoretically characterizes the
optimality of our proposed scheme HCMM, we also demon-
strate gains that one can get in practice. In particular, we
carry out numerical studies and experiments over Amazon EC2
clusters that demonstrate that HCMM can provide significant
gains in a wide variety of computing scenarios. In particular,
we compare HCMM’s performance with three benchmark
load allocation policies – Uniform Uncoded, Load-balanced
Uncoded, and Uniform Coded. In numerical studies, HCMM
achieves speedups of up to 71% over Uniform Uncoded, up
to 53% over Load-balanced Uncoded, and up to 39% over
Uniform Coded. In EC2 experiments, HCMM combined with
the Luby transform (LT) codes provides speedups of up to
61%, 46% and 36% over Uniform Uncoded, Load-balanced
Uncoded and Uniform Coded, respectively.

Theorem 2. Let TUC denote the completion time of the un-
coded distributed matrix multiplication algorithm. Then, for
the shifted exponential run-times with constant parameters and
r = Θ(n),

E[TUC]

E[THCMM]
= Θ

(
log n

)
.

Remark 4. As Theorem 2 shows, our proposed HCMM guar-
antees an improvement of Θ

(
log n

)
in expected execution

time over any uncoded scheme, including the one that op-
timally allocates the workers’ loads. This result illustrates that
by leveraging coded computing, one achieves the same order-
wise gain over heterogeneous clusters as over homogeneous
clusters [10].
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Although Theorems 1 and 2 are based on the shifted
exponential model (1) for run-time random variables for the
workers, our analyses are general and can be extended to other
models. The following two theorems generalize the results
when the execution time of each worker follows the Weibull
distribution as described in (2).
Theorem 3. For the shifted Weibull distribution of run-times
with constant parameters ai = Θ(1), µi = Θ(1) and
αi = Θ(1) for each worker i ∈ [n] and r = Θ(n), the
proposed HCMM algorithm is asymptotically optimal, i.e.,
limn→∞ E[THCMM] = limn→∞ E[TOPT].
Theorem 4. Under the Weibull distribution for run-times with
constant parameters and r = Θ(n), the proposed HCMM
scheme unboundedly outperforms the uncoded scheme, i.e.,

E[TUC]

E[THCMM]
≥ Θ

(
(log n)1/α̃

)
,

where α̃ = maxi∈[n] αi is the largest shape parameter among
the workers.

Remark 5. As stated in Theorem 4, HCMM provides an
unbounded gain over any uncoded scheme – including the
optimal uncoded load allocation – under the Weibull distri-
bution for workers’ run-times. Furthermore, our numerical
simulations demonstrate speedups of up to 73%, 56% and 42%
over Uniform Uncoded, Load-balanced Uncoded and Uniform
Coded, respectively.

In the following section, we describe our alternative formu-
lation based on aggregate return and describe our proposed
HCMM algorithm that solves the alternative optimization.

III. THE PROPOSED HCMM SCHEME AND PROOFS OF
THEOREMS 1 AND 2

In this section, we prove Theorems 1 and 2 for the exponen-
tial model (1). In particular, we start by describing the HCMM
algorithm and show that it asymptotically achieves the optimal
performance, as stated in Theorem 1, and lastly conclude the
section by characterizing the gain of HCMM over uncoded
scheme.

To derive HCMM, we start by reformulating Pmain defined
in (3) and show that the alternative formulation can be
efficiently solved, as opposed to solving Pmain that needs
an exhaustive search over all possible load allocations. The
solution to the alternative problem gives rise to HCMM. We
will further prove the optimality of HCMM and compare its
average run-time to uncoded schemes.

A. Alternative Formulation of Pmain via Maximal Aggregate
Return

Consider an n-tuple load allocation ` = (`1, · · · , `n) and
let t be a feasible time for computation, i.e., t ≥ max

i
{ai `i}.

The number of equations received from worker i ∈ [n] at
the master node till time t is a random variable, Xi(t) =
`i 1{Ti≤t}, where Ti is the random execution time for machine
i that is assigned the load `i and 1{·} denotes the indicator

function. Then, the aggregate return at the master node at time
t is:

X(t) =

n∑
i=1

Xi(t).

We propose the following two-step alternative formulation
for Pmain defined in (3). First, for a fixed feasible time t, we
maximize the aggregate return over different load allocations,
i.e., we solve

P(1)
alt : `∗(t) = arg max

`
E
[
X(t)

]
. (4)

Then, given the load allocation `∗(t) =
(
`∗1(t), · · · , `∗n(t)

)
obtained from P(1)

alt , we find the smallest time t such that with
high probability, there is enough aggregate return by time t at
the master node, i.e., we solve

P(2)
alt : minimize t

subject to Pr
[
X∗(t) < r

]
= o

(
1

n

)
,

(5)

where X∗(t) is the aggregate return at time t for load
allocation obtained from P(1)

alt , that is

X∗(t) =

n∑
i=1

X∗i (t) =

n∑
i=1

`∗i (t)1{Ti≤t}.

From now onward, we denote the solution to P(2)
alt by t∗ and

hence `∗(t∗) denotes the solution to the two-step alternative
formulation in (4) and (5) which gives rise to our proposed
HCMM scheme described next.

B. Solving the Alternative Formulation

Considering the exponential distribution for workers’ run-
times, we first proceed to solve P(1)

alt in (4). The expected
number of equations aggregated at the master node at time t
is:

E
[
X(t)

]
=

n∑
i=1

E
[
Xi(t)

]
=

n∑
i=1

`i

(
1− e−

µi
`i

(t−ai `i)
)
.

Since there is no constraint on load allocations, P(1)
alt can be

decomposed to n decoupled optimization problems, i.e.,

`∗i (t) = arg max
`i

E
[
Xi(t)

]
, (6)

for all workers i ∈ [n]. The solution to (6) satisfies the
following optimality condition:

∂

∂`i
E [Xi(t)] = 1− e−

µi
`i

(t−ai`i)
(
µit

`i
+ 1

)
= 0,

which yields

`∗i (t) =
t

λi
, (7)

where λi = Θ(1) is a constant independent of t and is the
positive solution to the following equation:

eµiλi = eaiµi(µiλi + 1).
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Algorithm 1 Heterogeneous Coded Matrix Multiplication
(HCMM)

Input: computation time parameters (ai, µi) for each
worker i 3

Output: computation load assigned to each worker i
1: procedure HCMM
2: solve P(1)

alt for any feasible t
3: obtain `∗i (t) = t

λi

4: solve P(2)
alt and obtain t∗

5: return `∗i (t
∗) = t∗

λi
row vector computations for

6: worker i

One can easily check that the condition t ≥ ai`∗i (t) holds for
all i as well. Moreover, we denote by t∗ the solution to P(2)

alt .
Now, we define the HCMM load allocation as

`∗i (t
∗) =

t∗

λi
, (8)

for all workers i. In the following, we formally define the
HCMM algorithm which is basically the solution to Palt.
Remark 6. We note that in order to implement any load
allocation scheme, each worker supposedly admits an integer
number of rows as its associated computation load. However,
the load allocation `∗i (t

∗) given by HCMM scheme in Algo-
rithm 1 is a real number for any worker i and therefore one
needs to round the result before proceeding with experiments.
In practical scenarios, `∗i (t

∗) is fairly large, e.g. in the order
of 100 row vectors. Therefore, the effect of rounding the load
allocations shall be insignificant.

We now provide an approximation to t∗ and show it
asymptotically converges to t∗. The expected aggregate return
at time t for optimal loads obtained in (7) is

E [X∗(t)] =

n∑
i=1

`∗i (t)
(

1− e−
µi
`∗
i
(t)

(t−ai`∗i (t))
)

=

n∑
i=1

t

λi

(
1− e−

µi
t/λi

(
t− aitλi

))
= ts, (9)

where

s =

n∑
i=1

1

λi

(
1− e−µiλi(1−

ai
λi

)
)

=

n∑
i=1

µi
1 + µiλi

= Θ(n),

since µi = Θ(1) and λi = Θ(1). Let τ∗ be the solution to the
following equation when solved for t:

E
[
X∗(t)

]
=

n∑
i=1

`∗i (t)
(

1− e−
µi
`∗
i
(t)

(t−ai`∗i (t))
)

= r. (10)

In other words, τ∗ is the time for which there are exactly r
inner products – on average – aggregated at the master node,
when the workers are loaded according to the loading obtained
in (7). Using (7), (9) and (10), we find that

τ∗ =
r

s
= Θ(1), (11)

`∗i (τ
∗) =

τ∗

λi
=

r

sλi
= Θ(1). (12)

We now present the following lemma, which shows that τ∗

converges to t∗ for large n (see Appendix for proof).
Lemma 1. Let t∗ be the solution to the alternative formulation
Palt in (4-5) and τ∗ be the solution to (10). Then,

τ∗ ≤ t∗ ≤ τ∗ + o(1).

C. Asymptotic Optimality of HCMM
In this subsection, we prove the asymptotic optimality of

HCMM as claimed in Theorem 1.

Proof of Theorem 1. Consider the HCMM load assignment in
(8). Let the random variable THCMM denote the finish time
associated to this load allocation, i.e. the waiting time to
receive at least r inner products from the workers. Let Tmax be
the random variable denoting the finish time of all the workers
for the HCMM load assignment.

First, we show that

E[THCMM] ≤ t∗ + o(1).

Let us define two events E1 and E2 as follows:

E1 = {Tmax > Θ(n)} and E2 = {THCMM > t∗}.
Conditioning on these events, we can write

E[THCMM] = E[THCMM|E1] Pr[E1]

+ E[THCMM|E1c ∩ E2] Pr[E1c ∩ E2]

+ E[THCMM|E1c ∩ E2c] Pr[E1c ∩ E2c]. (13)

We can write the second term in RHS of (13) as follows:

E[THCMM|E1c ∩ E2] Pr[E1c ∩ E2]

= E[THCMM|Tmax ≤ Θ(n), THCMM > t∗]

× Pr[Tmax ≤ Θ(n), THCMM > t∗]

≤ E[Tmax|Tmax ≤ Θ(n), THCMM > t∗] Pr[THCMM > t∗]

(a)

≤ Θ(n) · o
(

1

n

)
= o(1). (14)

To prove (a), we note that HCMM returns r inner products
by time THCMM. Moreover, the aggregate return is increasing
in time. Therefore,

Pr[THCMM > t∗] ≤ Pr[X∗(t∗) < r] = o

(
1

n

)
.

Furthermore, we have

E[Tmax|Tmax ≤ Θ(n), THCMM > t∗]

=
1

Pr[Tmax ≤ Θ(n), THCMM > t∗]

×
∫ Θ(n)

t1=0

∫ ∞
t2=t∗

t1dPr[Tmax ≤ t1, THCMM ≤ t2]

≤ Θ(n)

Pr[Tmax ≤ Θ(n), THCMM > t∗]

×
∫ Θ(n)

t1=0

∫ ∞
t2=t∗

dPr[Tmax ≤ t1, THCMM ≤ t2]

= Θ(n).

3For the shifted Weibull distribution, parameters (ai, µi, αi) are taken as
inputs.
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Moreover, the third term in RHS of (13) can be written as

E[THCMM|E1c ∩ E2c] Pr[E1c ∩ E2c]
= E[THCMM|Tmax ≤ Θ(n), THCMM ≤ t∗]
× Pr[Tmax ≤ Θ(n), THCMM ≤ t∗]
≤ E[THCMM|Tmax ≤ Θ(n), THCMM ≤ t∗]
(b)

≤ t∗, (15)

where proof of (b) is similar to proof of (a) in (14). Regarding
the first term in RHS of (13), we have

E[THCMM|E1] Pr[E1] = E[THCMM|Tmax > Θ(n)]

× Pr[Tmax > Θ(n)]

≤ E[Tmax|Tmax > Θ(n)]

× Pr[Tmax > Θ(n)]

=

∫ ∞
Θ(n)

tfmax(t) dt

(c)

≤
∫ ∞

Θ(n)

tnk1e
−k1t

(
1− e−k1t

)n−1
dt

≤
∫ ∞

Θ(n)

nk1te
−k1t dt

≤
∫ ∞

Θ(n)

1

t2
dt = o(1), (16)

for some k1 = Θ(1) and large enough n. To derive inequality
(c), we find a stochastic upper bound on Tmax by considering
n i.i.d. copies of the worker run-times with largest shift and
smallest straggling parameters that are also Θ(1), and use the
PDF of the maximum of n i.i.d. exponential random variables.
As we later use in the proof of Theorem 3, one can similarly
write for the shifted Weibull distribution:

E[THCMM|E1] Pr[E1]

≤
∫ ∞

Θ(n)

tfmax(t) dt

≤
∫ ∞

Θ(n)

nk1k2t
k2e−k1t

k2
(

1− e−k1t
k2
)n−1

dt

≤
∫ ∞

Θ(n)

nk1k2t
k2e−k1t

k2
dt

≤
∫ ∞

Θ(n)

1

t2
dt = o(1), (17)

for some constants k1 and k2. Therefore, using (14), (15) and
(16) (or (17) for the shifted Weibull model) in (13) we have

E[THCMM] ≤ t∗ + o(1).

Let `OPT = (`OPT,1, · · · , `OPT,n) denote the optimal load
allocation corresponding to Pmain in (3) and XOPT(·) represent
the aggregate return under load allocation `OPT. Now we prove
the following lower bound on the average completion time of
the optimum algorithm:

E[TOPT] ≥ t∗ − o(1).

To this end, we show the following two inequalities,

E[TOPT]
(d)

≥ τ − δ1
(e)

≥ t∗ − δ2 − δ1,

where δ1 = Θ
(

logn√
n

)
, δ2 = Θ

(
logn√
n

)
and τ is the solution

to E[XOPT(τ)] = r. We have

r − E[XOPT(τ − δ1)]

=

n∑
i=1

`OPT,i

(
Pr[Ti < τ ]− Pr[Ti < τ − δ1]

)
=

n∑
i=1

`OPT,i

(
d

dτ
Pr[Ti < τ ]δ1 +O

(
δ2
1

))
= Θ(nδ1) +O

(
nδ2

1

)
= Θ(nδ1),

where we used the fact that `OPT,i = Θ(1)4. By McDiarmid’s
inequality (see Appendix for its description), we have

Pr[XOPT(τ − δ1) ≥ r]
= Pr[XOPT(τ − δ1)− E[XOPT(τ − δ1)]

≥ r − E[XOPT(τ − δ1)]]

≤ exp

(
−

2
(
E[XOPT(τ − δ1)]− r

)2∑n
i=1 `

2
OPT,i

)

= e−Θ(nδ21) = o

(
1

n

)
,

which implies inequality (d). We proceed to prove (e) by
showing the following two inequalities,

τ ≥ τ∗, (18)

τ∗ ≥ t∗ − δ2, (19)

where τ∗ is obtained in (11). Given the fact that HCMM
maximizes the expected aggregate return, we have

E[X∗(t)] ≥ E[XOPT(t)],

for every feasible t, which implies (18). Moreover, Lemma 1
proves (19). All in all, we have

t∗ − o(1) ≤ E[TOPT] ≤ E[THCMM] ≤ t∗ + o(1),

which yields limn→∞ E[THCMM] = limn→∞ E[TOPT] and the
claim is concluded.

D. Comparison with Uncoded Schemes

This subsection provides the proof of Theorem 2 by com-
paring the performance of HCMM to uncoded scheme. In an
uncoded scheme, the redundancy factor is 1; thus, the master
node has to wait for the results from all the worker nodes in
order to complete the computation.

4We argue that the allocated loads in the optimum coded scheme are all
Θ(1). Without loss of generality, suppose `OPT,1 > Θ(1) which implies
limn→∞ Pr[T1 < t] = 0 for any t = Θ(1). We have already implemented
HCMM, a (sub-)optimal algorithm achieving computation time τ∗ = Θ(1),
therefore the optimal scheme should have a better finishing time τ ≤ Θ(1).
Now assume the load of machine 1 is replaced by ˜̀

OPT,1 = Θ(1). Clearly,
for any time t = Θ(1), the aggregate return for the new set of loads is larger
than the former one by any Θ(1) time, almost surely. This is in contradiction
to optimality assumption.
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Proof of Theorem 2. We start by characterizing the expected
run-time of the best uncoded scheme. Particularly, we show
that

E[TUC] = Θ
(

log n
)
,

where TUC denotes the completion time of the optimum
uncoded distributed matrix multiplication algorithm. To do so,
we start by showing that

E[TUC] ≥ c log n,

for a constant c independent of n. For a set of machines with
parameters {(ai, µi)}ni=1, let ã = mini ai and µ̃ = maxi µi.
Now, consider another set of n machines in which every
machine is replaced with a faster machine with parameters
(ã, µ̃). Since the computation times of the new set of machines
are i.i.d., one can show that the optimal load allocation for
these machines is uniform, i.e.,˜̀∗

i =
r

n
,

for every machine i ∈ [n]. Let {T̃i}ni=1 represent the i.i.d.
shifted exponential random variables denoting the execution
times for the new set of machines where each machine is
loaded by ˜̀∗i = r

n . Therefore, the CDF of the completion time
of each new machine can be written as

Pr
[
T̃i ≤ t

]
=1− e

− µ̃˜̀∗
i
(t−ã˜̀∗i )

=1− e−µ̃
n
r (t−ã rn ),

for t ≥ ãr
n and the expected computation time can be written

as
E
[
T̃i

]
=
r

n

(
ã+

1

µ̃

)
,

for all i ∈ [n]. Since the master needs to wait for all of the
machines to return their results, the total run-time is T̃UC =
maxi∈[n] T̃i. Therefore,

E
[
T̃UC

]
= E

[
max
i∈[n]

T̃i

]
=
ãr

n
+
rHn

nµ̃
, (20)

where Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n is the sum of the harmonic

series. We can further bound (20) using the fact that

ãr

n
+
rHn

nµ̃
≥ ãr

n
+

r

nµ̃
log(n+ 1) ≥ c log n,

for a constant c independent of n, since r = Θ(n), ã = Θ(1),
and µ̃ = Θ(1) for all i ∈ [n]. All in all, we have the following
lower bound on the optimal uncoded scheme:

E[TUC] ≥ E
[
T̃UC

]
≥ c log n. (21)

Now consider another set of n machines, where each
machine is replaced with a slower one with parameters (â, µ̂)
for â = maxi ai and µ̂ = mini µi. By an argument similar to
the one employed the lower bound, we can write

E[TUC] ≤ âr

n
+

r

nµ̂
Hn ≤ C log n, (22)

for another constant C. From (21) and (22), one can conclude
that

E[TUC] = Θ
(

log n
)
. (23)

Further, by Theorem 1 and Lemma 1, we find that

E[THCMM] = Θ(1). (24)

Comparing (23) to (24) demonstrates that HCMM outperforms
the best uncoded scheme by a factor of Θ(log n), i.e.,

E[TUC]

E[THCMM]
= Θ

(
log n

)
.

IV. GENERALIZATION TO THE SHIFTED WEIBULL MODEL
AND PROOFS OF THEOREMS 3 AND 4

In this section, we consider the shifted Weibull distribution
for the workers’ execution times, which captures a broader
class of run-time models than the exponential distribution.
We particularly generalize our proposed HCMM algorithm to
the class of shifted Weibull distributed run-times and prove
Theorems 3 and 4. More specifically, we argue that asymptotic
optimality of HCMM is derived similar to the shifted expo-
nential case and further show that HCMM provides unbounded
gain over uncoded schemes, asymptotically.

A random variable T has Weibull distribution with shape
parameter α > 0 and scale parameter µ > 0, denoted by
T ∼ W(α, µ), if the CDF of T is of the following form:

Pr[T ≤ t] = 1− e−(µt)α , t ≥ 0.

The expected value of the Weibull distribution is known to be
E[T ] = 1

µΓ(1+1/α), where Γ(·) denotes the Gamma function.
As stated in Section II-B, we consider a 3-parameter shifted

Weibull distribution for workers’ run-times defined in (2). The
mean value of the worker i’s run-times is then E[Ti] = ai`i+
`i
µi

Γ(1 + 1/αi). Clearly, shifted exponential distribution is a
special case of the shifted Weibull model when αi = 1. By
slight reparameterizations, this model can be similarly applied
to the HCMM algorithm proposed in Algorithm 1, meaning
that the main and alternative optimization problems defined in
(3), (4) and (5) can be similarly analyzed under the shifted
Weibull model.

As in the exponential case, we begin by maximizing the
expected aggregate return at the master node (P(1)

alt ) under the
shifted Weibull distribution, which is given by

E [X(t)] =

n∑
i=1

E [Xi(t)] =

n∑
i=1

`i

(
1− e−

(
µi
`i

(t−ai`i)
)αi)

.

The optimal load allocation that maximizes the individual
expected aggregate returns at each worker (and thus the total
aggregate return) can be found by solving the following
equation:
∂

∂`i
E [Xi(t)]

= 1− e−
(
µi
`i

(t−ai`i)
)αi (

1 +
µi
αiαit

`i

(
t

`i
− ai

)αi−1
)

= 0. (25)

Solving (25) for `i yields `∗i (t) = t
λi

where the constant λi >
ai is the positive solution to

eµi
αi (λi−ai)αi = 1 + αiµi

αiλi(λi − ai)αi−1.
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Similar to Section III, we can define s as follows,

s =
E [X∗(t)]

t

=
1

t

n∑
i=1

`∗i (t)

(
1− e

−
(

µi
`∗
i
(t)

(t−ai`∗i (t))

)αi)

=

n∑
i=1

1

λi

(
1− e−

(
µiλi

(
1− aiλi

))αi)
=

n∑
i=1

αiµi
αi(λi − ai)αi−1

1 + αiµiαiλi(λi − ai)αi−1

= Θ(n).

The last equality uses the fact that all the distribution pa-
rameters are constants. The expected aggregate return with
optimal loads, E [X∗(t)], equals to r at time t = τ∗. Thus,
τ∗ = r

s = Θ(1) and `∗i (τ
∗) = τ∗

λi
= r

sλi
= Θ(1).

Proof of Theorem 3. With the aforementioned reparametriza-
tions of λi, s and τ∗, the HCMM algorithm defined in Algo-
rithm 1 is identically applicable to the Weibull model. Proof
of the asymptotic optimality of HCMM under the Weibull
distribution follows the similar steps as in the proof for the
exponential case in Section III-C (unless specifically justified,
e.g. (17)). We avoid rewriting these steps for the purpose of
readability of the paper, but we note that the concentration
inequalities used to establish the proof of Theorem 1 can be
applied to a wide class of distributions including the Weibull
distribution.

As an implication of Theorem 3, the induced expected
execution time by HCMM algorithm is asymptotically con-
stant, that is E[THCMM] = Θ(1); which was also the case for
shifted exponential distribution. To compare with the uncoded
scenario, we start by the following lemma which characterizes
the extreme value of a sequence of Weibull random variables.
Lemma 2. Let {Ti}∞i=1 be a sequence of i.i.d. W(α, µ)
random variables and T ∗n = maxi∈[n] Ti denote the maximum
of the first n variables. Then,

E [T ∗n ] ≥ Θ
(

(log n)1/α
)
.

Proof. Consider the sequence of maximums {T ∗i }∞i=1. From
Markov’s inequality, we have E[T∗

n ]
tn
≥ Pr[T ∗n ≥ tn], for any

tn > 0 and n ∈ N. Pick tn = 1
µ

(
log n

)1/α
. Therefore,

E[T ∗n ]

1
µ

(
log n

)1/α ≥ Pr

[
T ∗n ≥

1

µ

(
log n

)1/α]
= 1− Pr

[
T ∗n <

1

µ

(
log n

)1/α]
= 1−

n∏
i=1

Pr

[
Ti <

1

µ

(
log n

)1/α]
= 1−

(
1− e− logn

)n
= 1−

(
1− 1

n

)n
.

Therefore,

lim
n→∞

E[T ∗n ]

1
µ

(
log n

)1/α ≥ lim
n→∞

1−
(

1− 1

n

)n
= 1− 1

e
> 0.63,

which implies E[T ∗n ] ≥ Θ
(
(log n)1/α

)
.

Now we complete the proof of Theorem 4.

Proof of Theorem 4. Recall that TUC denotes the completion
time of the optimum uncoded distributed matrix multipli-
cation algorithm across n workers parametrized by tuples
{(ai, µi, αi, )}ni=1. To bound the mean of TUC, assume that
every machine is replaced with a stochastically faster machine
with parameters (ã, µ̃, α̃) where ã = mini ai, µ̃ = maxi µi
and α̃ = maxi αi, i.e., the expected run-time of the latter
scenario is no greater than that of the former one. For the new
set of n identical machines, the optimal loading is uniform,
i.e., ˜̀∗i = r

n . Let {T̃i}ni=1 denote the i.i.d. shifted Weibull run
times for new set of machines which have CDFs of the form

Pr
[
T̃i ≤ t

]
=1− e

−
(
µ̃˜̀∗
i
(t−ã˜̀∗i ))α̃

=1− e−(µ̃nr (t−ã rn ))
α̃

,

for t ≥ ãr
n . The mean of computation time for the new set of

machines is

E
[
T̃UC

]
= E

[
max
i∈[n]

T̃i

]
=
ãr

n
+ E

[
max
i∈[n]

˜̃T i] ,
where ˜̃T i = T̃i− ãr

n are i.i.d.W(α̃, µ̃nr ) for all workers i ∈ [n].
Using Lemma 2, we can write

E[TUC] ≥ E
[
T̃UC

]
≥ ãr

n
+Θ

(
(log n)1/α̃

)
= Θ

(
(log n)1/α̃

)
.

Comparing the best uncoded scheme with the proposed coded
algorithm demonstrates that HCMM outperforms the best
uncoded scheme by a factor of at least Θ

(
(log n)1/α̃

)
, i.e.,

E[TUC]

E[THCMM]
≥ Θ

(
(log n)1/α̃

)
.

V. NUMERICAL STUDIES AND EXPERIMENTS USING
AMAZON EC2 MACHINES

In this section, we present our results both from simulations
as well as from experiments over Amazon EC2 clusters.
These results demonstrate how HCMM can provide significant
speedups in comparison to state-of-the-art load allocation
schemes.

A. Numerical Analysis

We now present numerical results evaluating the perfor-
mance of HCMM. We consider both the shifted exponential
model in (1) and the shifted Weibull model in (2) for run-time
distributions in our simulations, assuming the unit seconds per
row (s/row) for a and 1/µ. The underlying computation task
is to compute r = 10000 inner products using a heterogeneous
cluster of n = 100 workers, where different scenarios for
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Fig. 2: Illustration of the performance gain of HCMM over the three
benchmark schemes for the exponential run-time model. Among the
three scenarios, HCMM achieves a performance improvement of up
to 71% over Uniform Uncoded, up to 53% over Load-balanced
Uncoded, and up to 39% over Uniform Coded. Furthermore, the
coding redundancy

∑n
i=1 `i/r for the three scenarios is in the range

of 1.41−1.46 for HCMM and in the range of 2.3−2.8 for Uniform
Coded. This demonstrates the efficient utilization of resources by
HCMM.

heterogeneity are considered. For each scenario under consid-
eration, we implement the following load allocation schemes5:

1) Uniform Uncoded: Each worker is assigned an equal
number of rows, i.e., `i = r/n for all workers i.

2) Load-balanced Uncoded: Each worker is assigned a
load which is inversely proportional to its expected time
for computing one inner product, i.e., for the shifted
exponential model, `i ∝ µi/(aiµi + 1), while for the
shifted Weibull model, `i ∝ µi/(aiµi + Γ(1 + 1/αi))
for all workers i. Furthermore, we set

∑n
i=1 `i = r.

3) Uniform Coded: Equal number of coded rows are
assigned to each worker. Redundancy is numerically
optimized for minimizing the average computation time
for receiving results of at least r inner products at the
master node.

4) HCMM: Each worker is assigned the asymptotically
optimal load allocation derived in Section III-B, i.e.,
`i = τ∗/λi for each worker i according to (8) and (12).

For simulations under the shifted exponential model, we
consider the following three scenarios:
• Scenario 1 (2-mode heterogeneity): (ai, µi) = (1, 1)

for 50 workers, and (ai, µi) = (4, 0.5) for the other 50
workers.

• Scenario 2 (3-mode heterogeneity): (ai, µi) = (1, 0.5)
for 25 workers, (ai, µi) = (4, 2) for 25 workers, and
(ai, µi) = (12, 0.25) for the remaining 50 workers.

• Scenario 3 (Random heterogeneity): For each worker i,
parameters ai and µi are sampled from the sets {1, 4, 12},
{0.5, 2, 0.25}, respectively and all uniformly at random.

The following three scenarios are considered for simulations
under the shifted Weibull distribution for run-times:

5For each scheme, the load number for each worker is approximated to the
nearest larger integer using the ceil() function. For the practical large load
regime considered in simulations, this rounding step has negligible impact on
load allocation and on the overall results.

Fig. 3: Illustration of the performance gain of HCMM over the three
benchmark schemes for Weibull model for run-time. Among the three
scenarios, HCMM achieves a performance improvement of up to 73%
over Uniform Uncoded, up to 56% over Load-balanced Uncoded, and
up to 42% over Uniform Coded. Furthermore, the coding redundancy∑n

i=1 `i/r for the three scenarios is in the range of 1.30− 1.42 for
HCMM and in the range of 2.0 − 2.5 for Uniform Coded. This
demonstrates the efficient utilization of resources by HCMM.

• Scenario 1 (2-mode heterogeneity): (ai, µi, αi) =
(1, 1, 1.2) for 50 workers, and (ai, µi, αi) = (4, 0.5, 0.8)
for the other 50 workers.

• Scenario 2 (3-mode heterogeneity): (ai, µi, αi) =
(1, 0.5, 0.9) for 25 workers, (ai, µi, αi) = (4, 2, 1.2) for
25 workers, and (ai, µi, αi) = (12, 0.25, 1.5) for the
remaining 50 workers.

• Scenario 3 (Random heterogeneity): For each worker
i, parameters ai, µi and αi are sampled from the sets
{1, 4, 12}, {0.5, 2, 0.25} and {0.9, 1.2, 1.5}, respectively
and all uniformly at random.

Fig. 2 and 3 illustrate the performance comparison of the
four schemes for the two run-time models. We make the
following conclusions from the results.

• HCMM significantly outperforms the benchmark load
allocation schemes. In particular, for the shifted expo-
nential model, HCMM provides speedups of up to 71%
over Uniform Uncoded, up to 53% over Load-balanced
Uncoded, and up to 39% over Uniform Coded, among the
three scenarios. When the machine run-time is assumed
to have a shifted Weibull distribution, among the three
scenarios HCMM results in gains of up to 73%, 56% and
42% over Uniform Uncoded, Load-balanced Uncoded,
and Uniform Coded respectively.

• The coding redundancy
∑n
i=1 `i/r for Uniform Coded

is higher in comparison to the one for HCMM. In
particular, for simulations under the shifted exponential
model, the coding redundancy for the three scenarios is
in the range of 2.3 − 2.8 for Uniform Coded and in the
range of 1.41− 1.46 for HCMM. For simulations under
the shifted Weibull distribution, the coding redundancy is
in the range of 2.0 − 2.5 for Uniform Coded, while for
HCMM, it is in the range 1.30−1.42. This demonstrates
that HCMM leads to a better utilization of computing
resources.

• Both Load-balanced Uncoded and Uniform Coded im-
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prove upon the performance of Uniform Uncoded. In
Load-balanced Uncoded scheme, assigning larger loads
to faster machines leads to better performance, while
for Uniform Coded, repeated computations lead to better
performance as the master does not need to wait for all the
results. HCMM provides the best expected execution time
among the four schemes as it combines the gains of Load-
balanced Uncoded and Uniform Coded by employing
efficient load balancing along with minimal number of
redundant computations.

Next, we present the results from our experiments over
Amazon EC2 clusters. These results show agreement with our
numerical studies.

B. Experiments using Amazon EC2 machines

We use Python with mpi4py package [35] to implement
our developed HCMM scheme over Amazon EC2 clusters. To
emulate the straggler effects in large-scale systems [36], we
inject artificial delays.6 This is achieved by selecting some
workers to be stragglers at the beginning of experiments and
slowing down each such worker by making it wait for 3 times
the amount of time it spends in computation before it sends its
results to the master. This is done using the sleep() function
in time package. For each scenario, the choice of stragglers is
made by drawing a sample from the Bernoulli(0.5) distribution
for each worker, i.e., each worker is chosen to be a straggler
with probability 0.5.

In line with our simulation studies, we compare the perfor-
mance of HCMM with the three benchmark load allocation
schemes. For Load-balanced Uncoded, the number of uncoded
rows `i assigned to a worker i is proportional to the number
of virtual CPUs, and the loads are normalized to have a
sum equal to r. For the encoding and the decoding steps
for Uniform Coded as well as HCMM, we utilize the Luby
transform (LT) codes with peeling decoder which provides
nearly linear decoding complexity [38]. Utilization of LT
codes for distributed computing is proposed in [39] as well.
However, they perform a homogeneous load allocation by
assigning an equal number of rows of the encoded data matrix
to each worker and hence do not capture the heterogeneity of
the computing cluster in distributing the encoded data matrix.
Towards this end, we relax our goal of recovering all the inner
products from any r of the coded inner products to recovering
all the inner products from any r′ = r(1 + ε) coded inner
products with high probability. Ideally, we would like to have
ε > 0 to be as small as possible. In our experiments, we
keep r = 10000, and based on the results in [39], we use
the robust Soliton degree distribution with (c, δ) = (0.03, 0.1)
and select ε = 0.13, where c is a tuning parameter and δ is a
bound on the probability of failure of decoding from a certain
number of received coded inner products (see [39] for details).
Therefore, for both HCMM and Uniform Coded, we design
the load allocation such that the master needs to wait only for

6Artificial delays are injected since stragglers are rarely observed in small
clusters in Amazon EC2. Though other emerging platforms such as federated
learning, computation with deadline, mobile edge computing, fog computing,
etc., still suffer from stragglers where our ideas can be employed [37].

Fig. 4: Illustration of the performance gain of HCMM over the three
benchmark schemes. Among the three scenarios, HCMM achieves a
performance improvement of up to 61% over Uniform Uncoded, up
to 46% over Load-balanced Uncoded, and up to 36% over Uniform
Coded. Furthermore, the coding redundancy

∑n
i=1 `i/r for the three

scenarios is approximately 1.4 for HCMM and in the range of
2.12 − 2.26 for Uniform Coded. Therefore, HCMM gives the best
overall execution time among the four scenarios with minimal coding
overhead.

r′ = 11300 coded inner products. The total computation time
is equal to the waiting time for r′ = 11300 results plus the
average time for decoding the r = 10000 inner products from
the received r′ = 11300 coded inner products.7 For HCMM,
we use the shifted exponential distribution for estimating the
computation model for each worker.

For performance comparison of the four schemes, we con-
sider the following three computing scenarios:

• Scenario 1: Each row has 500000 elements. We use a
heterogeneous cluster of 11 machines – one master of
instance type m4.xlarge, four workers of instance type
r4.2xlarge, and six workers of instance type r4.xlarge.

• Scenario 2: Each row has 500000 elements. We use a
heterogeneous cluster of 16 machines – one master of
instance type m4.xlarge, six workers of instance type
r4.2xlarge, and nine workers of instance type r4.xlarge.

• Scenario 3: Each row has 1000000 elements. We use the
same heterogeneous cluster as in the previous scenario.

Fig. 4 provides a performance comparison of HCMM with
the benchmark load allocation schemes for the three scenarios,
where the decoding time is taken into account as well. Fig. 5
presents the typical cumulative distribution functions for the
instances used in the experiments. We make the following
conclusions from the results:

• As demonstrated in Fig. 5, the shifted exponential model
is a good first order fit for the run-times of the workers.

• HCMM achieves significant speedups over the bench-
mark load allocation policies. In particular, HCMM
combined with LT codes provides gains in the overall
execution time of up to 61% over Uniform Uncoded, up
to 46% over Load-balanced Uncoded, and up to 36% over
Uniform Coded.

7The average time for decoding r = 10000 inner products from any r(1+
ε) coded inner products is obtained using a m4.xlarge instance.
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(a) (a, 1/µ) = (1.37× 10−3s/row, 8.25× 10−6s/row)

(b) (a, 1/µ) = (2.00× 10−3s/row, 8.72× 10−6s/row)

Fig. 5: Typical empirical cumulative distribution functions for two
instances used in Scenario 3 of our experiments. The measurements
were taken in the absence of any manual delay. As demonstrated
here, shifted exponential distribution is a good model for the task
execution time in EC2 machines.

TABLE I: Total computation load (
∑n

i=1 `i) of HCMM and Uniform
Coded

Scenario n HCMM Uniform Coded
1 10 11397 22600
2 15 11402 21201
3 15 11403 21201

• As presented in Table I, HCMM has significantly lower
total computation load compared to Uniform Coded.
Hence, HCMM leads to efficient utilization of the com-
puting resources, combining the benefits of both Load-
balanced Uncoded and Uniform Coded schemes.

These results demonstrate that HCMM can provide signifi-
cant speedups in large-scale computing environments.

VI. GENERALIZATION TO COMPUTING SCENARIOS UNDER
BUDGET CONSTRAINTS

In this section, we consider the optimization problem in
(3) under the shifted exponential distribution with a monetary
constraint for carrying out the overall computation. Running
computation tasks on a commodity server costs depending
on several factors including CPU, memory, ECU, storage,
bandwidth, etc. Different cloud computing platforms employ
different pricing policies, and these need to be taken into
account for developing efficient task allocation and execution
algorithms [40]–[44]. For example, Table II summarizes the
cost per hour of using Amazon EC2 clusters with different

TABLE II: Amazon EC2 Pricing for Linux

machine vCPU ECU Memory
(GiB)

Instance
Storage
(GB)

price
(/Hour)

m3.medium 1 3 3.75 1×4 SSD $0.077
m3.large 2 6.5 7.5 1×32 SSD $0.154

m3.xlarge 4 13 15 2×40 SSD $0.308
m3.2xlarge 8 26 30 2×80 SSD $0.616

parameters (at the time of writing this manuscript) [45]. In this
section, we take into account the monetary constraint in the
optimization problem in (3) and provide a heuristic algorithm
towards finding the optimal load allocation under cost budget
constraint.

We now present the precise problem formulation we are
interested in. For a computation task and a given set of N
machines, the goal is to minimize the expected run-time while
satisfying the budget constraint C, that is

Pmain-constrained : minimize
`

E[TCMP]

subject to
N∑
i=1

ci1{`i>0}E[TCMP] ≤ C,

(26)
where ci represents the cost per time unit of using machine
i ∈ [N ]. According to the pricing polices provided by AWS,
e.g. Table II, a linear model for cost (versus performance pa-
rameters) is intuitive and convincing. Considering the last two
rows of Table II for instance, doubling the parameters results
in doubled cost. To be general, we model the computation
cost of a single machine as c = κµγ per unit of time, which
captures a convex dependency of the speed parameter µ for
constants γ ≥ 1 and κ > 0.

We assume that there are K types of machines parame-
terized with {(ak, µk)}Kk=1, and Nk, k ∈ [K] of each type
is available to run a distributed computation task, where
N =

∑K
k=1Nk is the total number of available machines.

We also assume that µ1 ≤ · · · ≤ µK and a1µ1 = · · · =
aKµK = ξ for a constant ξ.8 As we showed in Theorem
1, HCMM is asymptotically optimal (i.e. optimal within a
vanishing deviation) regarding the average run-time. In this
section, we also consider the asymptotic regime, i.e. for large
enough number of machines and hence HCMM attains the
optimality per Pmain in (3).

The following lemma states a useful observation regarding
the solutions to the constrained problem Pmain-constrained and the
minimum possible cost for carrying out a computation task.

Lemma 3. HCMM is the (asymptotic) solution to the feasible
Pmain-constrained. Moreover, given a computation task and a set of
machines, decreasing the number of fastest (slowest) machines
in HCMM, results in smaller (greater) expected cost. And, the
minimum (maximum) cost of HCMM is induced by running
the task only on any number of the slowest (fastest) machines.

8The latter assumption can be intuitively justified as follows. If a machine
is c times more powerful than another machine, as the first order estimation,
one can assume that both the shift (ak) and the straggling parameter (µk) of
the computation are c times stronger.
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Proof. We first argue that if the budget-constrained problem
defined in Pmain-constrained is feasible, then HCMM determines
the asymptotically optimal load allocation. Consider a set of
N machines and assume that M of them are assigned non-
zero loads in the optimal budget-constrained scheme. Now,
one can run HCMM load allocation over the set of these
M machines and according to asymptotic optimality results,
HCMM asymptotically attains the optimal run-time while
satisfying the budget constraint.

Now assume that nk number of type k ∈ [K] machine is
used. Then, by assigning the loads obtained from HCMM and
the result of Theorem 1, the induced expected cost (for large
number of machines) can be written as

cost
(
HCMM(n1, · · · , nK)

)
= τ∗

K∑
k=1

nkck

=
r

s

K∑
k=1

nkck

=
r∑K

k=1
nkµk

1+µkλk

K∑
k=1

nkκµ
γ
k

= κrxξ

∑K
k=1 nkµ

γ
k∑K

k=1 nkµk
, (27)

where xξ = 1+µkλk is the solution to the equation exξ−ξ−1 =
xξ for all machine type k ∈ [K]. In another scenario, assume
that we remove one machine of type K (the fastest machine
type) and run HCMM accordingly, i.e. nk of type k ∈ [K−1]
and nK −1 of type K. The expected cost of this scenario can
be written as follows:

cost
(
HCMM(n1, · · · , nK − 1)

)
= κrxξ

∑K−1
k=1 nkµ

γ
k + (nK − 1)µγK∑K−1

k=1 nkµk + (nK − 1)µK
(f)

≤ κrxξ

∑K
k=1 nkµ

γ
k∑K

k=1 nkµk

= cost
(
HCMM(n1, · · · , nK)

)
, (28)

where inequality (f) can be easily verified given that µ1 ≤
· · · ≤ µK . We can iteratively apply the same argument and
conclude that the minimum expected cost is achieved when
only the slowest machines are used, that is

Cmin := cost
(
HCMM(n1, 0, · · · , 0)

)
= κrxξµ

γ−1
1 , (29)

for any 1 ≤ n1 ≤ N1. Similar to (28), one can show
that reducing the number of participating slowest machines
increases the induced expected cost of HCMM, that is

cost
(
HCMM(n1 − 1, · · · , nK)

)
≥ cost

(
HCMM(n1, · · · , nK)

)
. (30)

Therefore, applying (30) iteratively shows that the maximum
expected cost occurs when only the fastest machines are
employed, that is

Cmax := cost
(
HCMM(0, · · · , 0, nK)

)
= κrxξµ

γ−1
K ,

for any 1 ≤ nK ≤ NK .

Lemma 3 implies that if the available budget C is less than
Cmin defined in (29), then Pmain-constrained is infeasible and it
is impossible to run the task on the given set of machines
while satisfying the budget constraint. Moreover, reducing one
machine from the available set of fastest machines along with
HCMM results in a lower expected cost; and reducing the
number of participating slowest machines results in a larger
expected cost.

Now that HCMM asymptotically solves the feasible budget-
constrained problem in (26), i.e. for C ≥ Cmin, finding the
optimal number of machines of each type to use in HCMM
requires combinatorial search over all possible allocations.
However, as Lemma 3 suggests, using faster machines induces
a larger cost. Further, the computation time increases if we
decrease the number of machines. This is the motivation
behind our heuristic algorithm for an efficient search to find
the number of machines of each type to include in HCMM,
which we describe next.

Algorithm 2 Heuristic Search

1: procedure HEURISTIC SEARCH
2: (n1, · · · , nK)← (N1, · · · , NK)
3: top:
4: Run HCMM with (n1, · · · , nK)
5: if cost

(
HCMM(n1, · · · , nK)

)
> C then

6: nj ← nj − 1 where j = max{k : nk > 0}
7: goto top
8: else
9: return (n1, · · · , nK)

First, Algorithm 2 runs HCMM algorithm using all ma-
chines, i.e., nk = Nk for each k ∈ [K]. Then, it calcu-
lates the corresponding cost according to (27). If the cost
is > C, it starts to decrease the number of available fastest
machines, i.e. nK ← nK − 1, and runs HCMM again.
While the cost is > C, the algorithm keeps decreasing
the number of used fast machines till nK = 0. Then, the
algorithm sets nK = 0 and starts decreasing nK−1 and so
on, until a feasible cost is achieved. Thus, the algorithm
returns (N1, · · · , Nj , nj+1, 0, · · · , 0) which is the first tuple
that satisfies the cost constraint. Therefore, the search space
complexity of the heuristic is O(N1 + · · · + NK) = O(N)
which is more efficient than the exhaustive search where the
complexity is O(N1 · · ·NK). The pseudo-code in Algorithm
2 summarizes the heuristic.
Example. In this example, we consider two different scenarios
to demonstrate the application of the proposed heuristic search
algorithm. For the cost model, we assume γ = 2 and κ = 1,
i.e. c = µ2. Further, we consider the task of computing r =
100 equations.
• Scenario 1: Two types of machines are available param-

eterized by (a1, µ1) = (0.5, 2) and (a2, µ2) = (0.25, 4),
assuming 10 machines available of each type. Further,
the available budget is C = 860. Using Lemma 3, the
minimum and maximum induced costs are Cmin = 629.2
and Cmax = 1258.4. As C ≥ Cmin, there exists an HCMM
load allocation which is asymptotically optimal per (26).
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n2

n1

≈

0 1 2 3 4 5 6 7 8 9 10
0

1

2

9

10

a· · ·

...

1048.71033.71016.4996.2972.4943.8908.8865.1808.9

1063.11048.7· · ·

1258.41258.4· · ·

Fig. 6: Total cost associated with every pair of (n1, n2); 0 ≤ n1, n2 ≤ 10.

n2

n1

≈

0 1 2 3 4 5 6 7 8 9 10
0

1

2

9

10

a· · ·

...

5.245.616.056.557.157.868.739.8311.23

5.425.82· · ·

7.868.73· · ·

Fig. 7: Expected time associated with every pair of (n1, n2); 0 ≤ n1, n2 ≤ 10.

Applying the proposed heuristic search, it takes 9 itera-
tions (see Fig. 6 and 7) to arrive at the load allocation
(n1, n2) = (10, 2) which corresponds to the expected cost
808.9 and average execution time E[THCMM] = 11.23.

• Scenario 2: Three types of machines are available which
are parameterized by (a1, µ1) = (1, 1), (a2, µ2) =
(0.5, 2) and (a3, µ3) = (0.125, 8), assuming 10 machines
of each type available. Further, the available budget is
C = 475. Using Lemma 3, the minimum and maximum
induced costs for the task of computing r = 100 equa-
tions are Cmin = 314.6 and Cmax = 2516.8 respectively.
It takes 15 iterations for the proposed heuristic search
algorithm to arrive at the tuple (n1, n2, n3) = (10, 6, 0).
This corresponds to the expected cost 486.2 and the
average time E[THCMM] = 14.3.

VII. CONCLUSION

In this paper, we proposed a coding framework for dis-
tributed matrix-vector multiplication in heterogeneous cloud
computing environments. In particular, we considered two
distributions for machines’ run-times, i.e. shifted exponen-
tial and shifted Weibull and tackled the intractable problem
of minimizing the average run-time of a computation task
over all possible load allocations by proposing a tractable

alternative formulation. The solution to the alternative prob-
lem established our proposed HCMM load allocation scheme
which we proved to be asymptotically optimal. We also
demonstrated the speedup of HCMM over three benchmark
load allocation schemes and presented both the numerical
and the experimental results. Experiments over Amazon EC2
clusters demonstrate that HCMM combined with LT codes and
peeling decoders can provide significant gains in the average
overall execution time. Moreover, we argued that HCMM is
the asymptotically optimal allocation in budget-constrained
scenarios as well, which led to providing a heuristic search
in order to find a (sub)optimal load-machine assignment for
a given set of machines while satisfying a pre-defined budget
constraint.
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APPENDIX

McDiarmid’s Inequality: Let X1, · · · , Xn be independent
random variables taking values in X . Further, let the function

https://aws.amazon.com/ec2/pricing/
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f : Xn → R be Li-Lipschitz for all i ∈ [n], that is

|f(x1, · · · , xi, · · · , xn)− f(x1, · · · , x′i, · · · , xn)| ≤ Li,

for any x1, · · · , xn, x′i ∈ X and i ∈ [n]. Then, for any ε > 0,

Pr
[
f(X1, · · · , Xn)−E[f(X1, · · · , Xn)] ≥ ε

]
≤ exp

(
− 2ε2∑n

i=1 L
2
i

)
,

Pr
[
E[f(X1, · · · , Xn)]−f(X1, · · · , Xn) ≥ ε

]
≤ exp

(
− 2ε2∑n

i=1 L
2
i

)
.

For each i, the aggregate return at time t satisfies Xi(t) ∈
{0, `i}. Therefore, we can use McDiarmid’s inequality as
follows:

Pr [X(t)− E[X(t)] ≥ ε] ≤ exp

(
− 2ε2∑n

i=1 `
2
i

)
,

Pr [E[X(t)]−X(t) ≥ ε] ≤ exp

(
− 2ε2∑n

i=1 `
2
i

)
,

for any ε > 0. Now, we proceed to the proof of Lemma 1.

Proof of Lemma 1. Let t = τ∗ + δ for some δ = Θ
(

logn√
n

)
and ε = δ2. The claim is that Pr

[
X∗(t) ≤ r − ε

]
= o

(
1
n

)
.

From McDiarmid’s inequality, we have

Pr
[
X∗(t) ≤ r − ε

]
≤ exp

(
−

2
(
E[X∗(t)]− r + ε

)2∑
i `
∗
i

2(t)

)

= exp

(
−

2
(
ts− r + ε)2∑

i `
∗2
i (t)

)

= exp

(
− 2δ2s2 + 2δ4 + 4δ3s(

( rs )2 + δ2 + 2δ rs
)∑

i λ
2
i

)
(g)
= e−Θ(nδ2) = o

(
1

n

)
.

In above, equality (g) follows from the fact that r = Θ(n),
s = Θ(n), λi = Θ(1), δ = Θ

(
logn√
n

)
, and therefore

∑
i λ

2
i =

Θ(n) and s2 = Θ(n2). Moreover, if t∗ < τ∗, with a positive
probability there are less than r equations at the master node
by time t∗ which is a contradiction. Therefore,

τ∗ ≤ t∗ ≤ τ∗ + δ.
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