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axion solution to the strong CP problem. Moreover this enhancement can be much larger
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theory to be near the non-perturbative limit. Thus our result suggests that the mass range

of axions (or axion-like particles), which is important for ongoing experimental searches,

can depend sensitively on the UV modification of QCD.
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1 Introduction

The axion is arguably the best motivated new particle beyond the Standard Model (SM).

Its existence is required by the Peccei-Quinn mechanism [1], which is a popular solution to

the strong CP problem. In particular, the axion is identified with the Nambu-Goldstone

boson [2, 3] that arises from a spontaneously broken U(1) symmetry. This symmetry is

explicitly broken by QCD instantons, which generate a nonzero axion mass and makes

the axion a viable dark matter candidate [4–6]. A large experimental effort is devoted to

searching for the axion, and therefore knowing the mass range of the axion is important.

The origin of the axion mass can be traced to the so-called large instanton contribu-

tions1 in QCD. These are contributions to the path integral that arise from instantons of

size ρ ∼ 1/ΛQCD, where ΛQCD is the QCD strong coupling scale. This IR contribution

dominates the integration measure over the instanton collective coordinates because the

theory is asymptotically free and therefore instantons of much smaller (UV) size give negli-

gible contributions to the non-perturbatively generated axion potential in QCD. However

1Large instanton contributions correspond to the strong coupling regime of QCD and thus are not

calculable. However, using chiral symmetry one can relate the axion mass to the equally incalculable but

experimentally known pion mass, see for example [7].
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this implicitly assumes that the QCD coupling remains asymptotically free in the UV and

QCD dynamics is not modified below the Planck scale.

Thus in attempts to enhance the axion mass it is natural to speculate on possible UV

modifications of QCD dynamics, such as those considered in refs. [8–16]. Of particular

interest to us will be the possibility proposed in [17–19], where QCD is strongly coupled

in the UV and thus enhances the small instanton contributions to the axion potential. In

this paper we explicitly construct such a UV modification by embedding QCD in a five-

dimensional (5D) theory. In addition to the bulk QCD gluons, we identify the axion with

the 5th component of a U(1) gauge field, while the axion-gluon coupling arises from a 5D

Chern-Simons term.

This UV modification of QCD implies that the axion mass can now receive contribu-

tions from 5D small instantons. The 5D instanton solution is obtained by simply uplifting

the usual 4D instanton [20] to five dimensions. This gives a finite 5D action provided the

extra dimension is compact (of size πR), and leads to a well-defined semiclassical expansion

of the path integral around this solution [21]. The axion mass contributions can then be

calculated in the perturbative limit by restricting the number of Kaluza-Klein modes. As

was shown in [22] using deconstruction, besides the usual logarithmic terms present in the

effective action in the instanton density, there is a power-law term R/ρ that arises from the

positive frequency modes of the Kaluza-Klein gluon states. We show that this result can

also be obtained by performing a fully 5D calculation of the Kaluza-Klein contributions to

the effective action which is just a 5D version of ’t Hooft’s computation [23]. The power-

law term in the effective action can be sizeable for small instantons (ρ ≪ R), leading to a

possible enhancement of the axion mass.

This new contribution to the axion mass can be compared with the usual low-energy

QCD contribution from large instantons. Interestingly, we will see that the 5D small in-

stantons can provide the dominant contribution, but at the expense of the 5D theory being

near the non-perturbative limit. In addition the enhancement is maximized only when the

SM fermions are confined to the boundary of the extra dimension. Under these conditions

we find that the axion mass can be enhanced by many orders of magnitude, depending on

the size of the extra dimension. Since the 5D theory is near the non-perturbative limit we

also consider the impact of higher dimension terms in the 5D Lagrangian, and show that

they lead to noticeable but controllable effects provided the scale suppressing the higher

dimension terms is smaller than the scale at which the 5D theory becomes strongly coupled.

Our results for the axion mass have consequences for the experimental efforts searching

for the axion (or axion-like particles, in general) with the conclusion that large regions of

parameter space could remain viable.

The outline of this paper is as follows. In section 2 we present our 5D model for a

pure Yang-Mills theory. The 4D instanton solution is then uplifted to five dimensions and

shown to give a power-law term in the effective action in section 2.1. The effect of including

higher dimension terms is discussed in section 2.2, and the contributions to the axion mass

are calculated in section 2.3. In section 3 we consider the fermion contributions to the

axion mass for the case of boundary fermions (section 3.1) and bulk fermions (section 3.2).

In section 3.3 we compare the dynamics of 5D small instantons with the small instantons

– 2 –



J
H
E
P
0
3
(
2
0
2
0
)
0
6
3

of 4D moose models introduced in [24, 25]. Our concluding remarks are given in section 4.

Appendix A contains the details of the 5D calculation of the Kaluza-Klein contributions

to the effective action, while the calculation performed using the 4D deconstruction is

summarized in appendix B.

2 5D instantons and the axion mass in a pure Yang-Mills theory

We will consider a 5D spacetime (xµ, y) where the 5th dimension, y is compactified on an

orbifold of size L = πR with the QCD gauge group SU(3)c in the bulk. The bulk QCD

gauge boson AM (M = µ, 5) will have (+,+) boundary conditions for the Aµ components,

while the A5 components will have (−,−) boundary conditions.2 The QCD gluon is thus

identified with the zero mode A
(0)
µ . In addition, the bulk contains a U(1) gauge group

where the U(1) gauge boson BM has (−,−) boundary conditions for the Bµ components,

and (+,+) boundary conditions for the B5 component. This ensures that there is a massless

pseudoscalar zero mode B
(0)
5 (to be identified with the axion), whereas the Kaluza-Klein

(KK) scalar modes (B5) are eaten by the KK U(1) gauge bosons to become massive. We

will start by first considering the pure YM case without any fermions.

In order to generate an anomalous axion coupling to gluons below the compactifica-

tion scale 1/R, a bulk Chern-Simons term must also be added. The 5D action of the

SU(3)c ×U(1) theory with a Chern-Simons term is given by

S5 = −
∫

d4x

∫ L

0
dy

(
1

4g25
Tr[G2

MN ] +
bCS

32π2
εMNRSTBMTr[GNRGST ] +

1

4g25
F 2
MN + . . .

)
,

(2.1)

where GMN (FMN ) is the gluon (U(1)) field-strength tensor, bCS is a dimensionless con-

stant and we have equally normalized the non-Abelian and Abelian gauge fields with g5 the

(dimensionful) gauge coupling. The 5D gauge theory has a UV cutoff Λ5 whose maximum

value occurs where the theory becomes strongly coupled, g25Λ5/(24π
3) ∼ 1. Higher dimen-

sion terms in the Lagrangian are expected to be suppressed by Λ5, and for now they have

been neglected in (2.1). Later we will see that they can have an important effect on the 5D

instanton. Note that a θ term is not allowed in the 5D action (2.1) due to Lorentz invari-

ance, but can be present on the 4D boundaries. However the U(1) symmetry in (2.1) can be

used to eliminate these boundary θ terms. This is one of the distinguishing features of our

5D model compared to that of the 4D moose models [24, 25] where there is a theta angle

for each SU(3) gauge group, and therefore one has to also introduce an axion at each site.

Upon compactification we obtain the effective 4D action

S4 =

∫
d4x

(
1

4g2s
Tr[G2

µν ] +
1

32π2

a

f
Tr[GµνG̃

µν ] +
1

2
(∂µa)

2 + . . .

)
, (2.2)

2The notation (·, ·) refers to either Neumann (+) or Dirichlet (−) boundary conditions at y = 0 (first

entry) and y = L (second entry).
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where gs is the 4D QCD gauge coupling, Gµν ≡ G
(0)
µν is the QCD gluon field strength

tensor, a ≡ B
(0)
5 /gs is the axion,3 and the couplings are identified as

1

g2s
≡ L

g25
,

1

f
≡ bCSgsL . (2.3)

We will assume that the 5D cutoff of the model, Λ5 lies at or below the strong coupling

scale ∼ 24π3/g25. Using (2.3) this translates into the limit

Λ5R .
6π

αs
, (2.4)

where αs = g2s/(4π) and for an orbifold, L = πR. Thus for αs ∼ 0.1 we obtain Λ5R . 200.

2.1 5D small instantons

The extra dimension provides a UV modification of QCD at the scale 1/R ≫ ΛQCD, where

ΛQCD ≃ 300MeV is the QCD strong scale. It is thus possible that instantons of size . R

can give large contributions to the axion mass. Let us consider first how the instanton

calculus is modified in the 5D pure YM SU(3) theory. The compactified 5D theory admits

the following instanton solution in Euclidean space:

Aa
µ(x, y) = A(I)a

µ (x), Aa
5(x, y) = 0, (2.5)

where

A(I)a
µ (x) =

2 ηaµν(x− x0)ν

(x− x0)2 + ρ2
, (2.6)

is the 4D instanton configuration [20] in the regular gauge with center x0 and size ρ. The

tensors ηaµν are the group-theoretic ’t Hooft eta-symbols [23] and a denotes the gauge

isospin index. The 5D instanton solution (2.5) can be simply thought of as wrapping the

4D solution (2.6) around the compact dimension.

Note that in the deconstructed version of [22] the above 5D solution corresponds to a

multi-instanton configuration with winding numbers (1, 1, . . . , 1). Importantly, it does not

appear to be the continuum limit of the 4D instantons used in the moose model of [24] that

corresponds to the combination of (1, 0, 0 . . . , 0)+ (0, 1, 0 . . . , 0)+ (0, 0, 1 . . . , 0)+ . . . . This

latter configuration would correspond to instantons localized in the bulk i.e. Aµ(x, y) =

A
(I)
µ (x)δ(y). However this is not a solution of the 5D equations of motion, and therefore

the 4D moose model of [24] does not reconstruct to a 5D theory.

The 5D instanton solution (2.5) minimizes the action (2.1) to give (ignoring for now

the axion terms)

S
(I)
5 =

8π3R

g25
=

2π

αs
, (2.7)

where we have used the relation (2.3) with L = πR. To obtain the contribution of the

instanton to the partition function we must also consider the fluctuations of the 5D gauge

3Alternatively the axion could be a localized boundary field that couples to Tr[GµνG̃
µν ]. Our analysis

also applies in this case.
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Figure 1. ξ as a function of R/ρ.

fields about the instanton solution (2.5). This means not only including the gluon fluctua-

tions but also the KK contributions. The details of this calculation are given in appendix A,

and the final result for a pure Yang-Mills SU(N) theory is presented in (A.15). For SU(3)

the result is
∫ R

1/Λ5

dρ

ρ5
C[3]

(
2π

αs(1/R)

)6

e−Seff ≡ K

R4
, (2.8)

where C[3] ≃ 1.5× 10−3, and the effective action is given by

Seff =
2π

αs(1/R)
− 3ξ(R/ρ)

R

ρ
+ b0 ln

R

ρ
, (2.9)

where αs(1/R) is the YM coupling evaluated at 1/R (see (A.14) for the exact definition)

and b0 = 11 (the pure QCD β function coefficient) is the contribution from the gauge boson

zero modes. The function ξ(R/ρ) is plotted in figure 1. The quantity K that appears on

the r.h.s. of (2.8) is a dimensionless factor resulting from evaluating the integral in (2.8).

Note that since we are only considering the effect of 5D small instantons, the integration

region in (2.8) is limited to 1/Λ5 6 ρ 6 R. The dependence of the lower limit of integration

on 1/Λ5 can make the contribution very sensitive to the UV completion details. This will

be further discussed in section 2.2.

The result (2.8) reveals a new, interesting feature. There is a power-law term (R/ρ) in

the exponent arising from the KK modes with a positive coefficient, ξ(R/ρ) > 0, which now

causes the integral over the instanton size ρ to receive a large contribution from the small

instantons of size, ρ ∼ 1/Λ5. As we will show, in some parameter regions this contribution

can overcome the IR contribution dominated by large instantons of order ρ ∼ 1/ΛQCD.

An approximate expression for the dimensionless factor K on the r.h.s. of (2.8) can

be obtained by evaluating the integral in (2.8) and using the fact that ξ(R/ρ) ∼ 1/3 for

– 5 –



J
H
E
P
0
3
(
2
0
2
0
)
0
6
3

R/ρ & 20. This gives

K ≃ C[3]

(
2π

αs(1/R)

)6

(Λ5R)3−b0e
−

2π
αs(1/R)

+Λ5R = C[3]

(
2π

αs(1/R)

)6 e
−

2π
αs(1/R)

+Λ5R

(Λ5R)8
.

(2.10)

Thus we see that for sufficiently large Λ5R, the power-law term in the effective action (2.9)

leads to an exponential enhancement that can overcome the suppression from e−2π/αs(1/R)

to give a UV-dominated contribution to the integral in (2.8). Note that for the calculation

to be reliable, Λ5R cannot saturate the bound (2.4), otherwise higher-loop corrections

in the instanton background will be equally important. Furthermore the fact that the

contribution (2.10) is cutoff dependent suggests that higher dimension terms in the 5D

Lagrangian are also important and should be considered.

2.2 Higher dimension terms

To study the impact of higher dimension terms, we consider the addition of the following

dimension six term to the 5D action:

∆S5 = − 1

4g25

∫
d4x

∫ L

0
dy

c6
Λ2
5

TrGMN�GMN , (2.11)

where c6 is a dimensionless constant. We will assume that c6 > 0 so that it stabilizes the

instanton action. Substituting (2.5) into (2.11) and performing the 5D integration leads to

Seff =
2π

αs
+

3π

αs

c6
(Λ5ρ)2

− 3ξ(R/ρ)
R

ρ
+ . . . , (2.12)

where the logarithmic term in (2.9) has been neglected. Note that the instanton solu-

tion (2.5) is itself modified by the order 1/Λ2
5 terms in (2.11). However these corrections

lead to subleading terms of order 1/(Λ5ρ)
4 in Seff , and can be neglected. Whereas Seff is

extremized near the UV size 1/Λ5 when c6 = 0, the inclusion of the higher dimension term

in (2.12) instead leads to an extremum

1

ρ∗
≃ 3

c6
ξ(R/ρ)

(
g25Λ5

24π3

)
Λ5 , (2.13)

where the ρ dependence in ξ(R/ρ) has been neglected since it is approximately constant for

ρ ≪ R. As long as the theory is perturbative at the cutoff, g25Λ5/(24π
3) ≪ 1, the extremum

condition (2.13) implies ρ∗ ≫ 1/Λ5, and therefore the contribution (2.8) is dominated by

instantons of size ρ∗. As alluded to earlier, this means that the instanton size is effectively

cutoff at ρ∗, and the factor K is approximately given by the expression (2.10) with Λ5

replaced by 1/ρ∗. Of course there is no need to rely on the approximate expression, and

one can simply perform the numerical integration in (2.8) to obtain the exact factor K.

To reiterate the salient point, the integral in (2.8) with the higher dimension term (2.11)

included, is dominated by instantons of size ρ∗ where the 5D theory remains perturbative,

and therefore contributions from instantons of size 1/Λ5 are suppressed. Furthermore,

higher dimension terms (beyond those of (2.11)) can be neglected, as they are suppressed

by higher powers of 1
Λ5ρ∗

≪ 1, and the calculation remains under theoretical control.
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2.3 5D small instanton corrections to the axion mass

To calculate the contribution to the axion mass from the enhanced instanton density,

we next add the axion field. For a constant background axion field, a, in the instanton

background (2.5) we obtain

i
a

f

1

32π2

∫
d4xTr[G(I)

µν G̃
(I)µν ] = i

a

f
, (2.14)

where the winding number is one. The effective action (2.9) is then modified by replacing

Seff → Seff − ia/f . Summing over both instanton and anti-instanton contributions in the

dilute instanton gas approximation [26, 27], leads to

Z =

∞∑

n,n̄=0

1

n!n̄!

n∏

k=1

(∫
d4xk

K

R4
e
−i a

f

) n̄∏

k̄=1

(∫
d4xk̄

K

R4
e
i a
f

)

= exp

[
2
K

R4

∫
d4x cos

(
a

f

)]
. (2.15)

We conclude that the contribution of the 5D small instantons to the axion mass is

m2
a =

2K

f2R4
, (2.16)

where K is defined in (2.8) and f is given in (2.3).

To understand the importance of the 5D small instanton contributions to the axion

mass, it is instructive to compare these UV contributions with the IR (large) instanton

contributions, which for the pure YM case are estimated to be m2
a,IR ∼ Λ4

IR/f
2, and

ΛIR =
1

R
e
−

2π
b0αs(1/R) , (2.17)

is defined as the IR scale at which the gauge coupling becomes strong. The axion mass

ratio is then

ma

ma,IR
≃

√
2C[3]

(
2π

αs(1/R)

)3 1

(Λ5R)4
e
−

1
2

(

7
11

2π
αs(1/R)

−Λ5R
)

, (2.18)

=
√

2C[3]

(
2π

αs(1/R)

)3 (ΛIRR)7/2

(Λ5R)4
e

1
2
Λ5R , (2.19)

where we have used the approximation (2.10). It is clear that ma & ma,IR when the

exponent in (2.18) is & 0. By writing

Λ5R =
6πǫ

αs(1/R)
, (2.20)

where ǫ . 1 using the perturbativity condition (2.4), we obtain a positive exponent in (2.18)

for ǫ & 7/33 ≃ 0.21. This shows that a large contribution to the axion mass from 5D

small instantons requires values of Λ5R near the non-perturbative limit. In figure 2 we

plot the mass ratio ma/ma,IR using the exact result for K, and taking different values of
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Figure 2. The axion mass ratio for the pure YM case as a function of ΛIRR for various contours

of ǫ = (0.3, 0.25, 0.2) (top to bottom). The solid blue lines are the exact numerical integration

results using (2.8) with no higher dimension terms (c6 = 0). The green dashed line represents the

addition of the higher dimension term (2.11) with c6 = 0.5 and ǫ = 0.52(0.47) for the upper (lower)

line. The red line represents the maximum enhancement using ma,5 that would occur at the 5D

strong-coupling limit.

the perturbativity parameter ǫ defined in (2.20). We see that in order to have a large

contribution to the axion mass we must be quite close to the non-perturbative limit ǫ ∼ 1.

In the limit in which the theory is strongly coupled at Λ5 (ǫ ∼ 1) and the instanton

contributions are dominated by instantons of size 1/Λ5, we cannot reliably calculate the 5D

instanton contribution to the axion mass. However a naive dimensional analysis estimate

gives

m2
a,5 ∼

Λ4
5

f2
, (2.21)

up to an order-one constant. This estimate corresponds to the maximum value of the axion

mass from 5D instantons, and is shown as a red line in figure 2.

3 Fermion contributions and QCD axion mass

So far we have considered a pure YM theory. We next introduce fermions in order to discuss

QCD in the SM. In five dimensions the fermions are not chiral, and thus to reproduce the

SM matter content one must impose boundary conditions that project out the unwanted

Weyl components of the Dirac fermions. Alternatively, one can assume that all SM matter

fields are confined to the boundary of the extra dimension. Indeed, the assumption that

all SM fermions are on the boundary is essential for our purposes: as explained in [22] the

sign of the R/ρ term responsible for the enhancement of the small instanton contribution

flips if the number of bulk fermions is sufficiently large. As shown in appendix A, in the 5D
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Figure 3. Instanton vacuum diagram arising from closing the SM fermion legs with Higgs loops.

orbifolded theory this happens when Nf > 9N/4. Thus in section 3.1 we will first consider

boundary fermions (identified with SM matter fields), and calculate the small instanton

contributions to the axion mass assuming the 5D theory is in the perturbative regime.

We will also estimate the axion mass when the UV cutoff is at the strong-coupling scale

∼ 24π3/g25. Bulk fermions will then be discussed in section 3.2.

3.1 Boundary fermions

If the SM fermions (as well as the Higgs field) are on the boundary and SU(3) is in the

bulk, the instanton integral remains the same as (2.8) except that b0 = 7 (to account for

the fermion zero modes). Furthermore, fermion zero modes would naively lead to an extra

suppression factor in the instanton density of the form (ρmf )
Nf where mf are the fermion

masses and Nf the number of flavors. However since the fermion masses in the SM arise

from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed

with a Higgs loop (see figure 3). Thus the suppression is only proportional to the Yukawa

couplings and loop factors, namely:

κf =
yu
4π

yd
4π

yc
4π

ys
4π

yt
4π

yb
4π

≈ 10−23 , (3.1)

where yu,d,c,s,t,b are the SM Yukawa couplings. This is one of the ingredients leading to

the enhancement of the axion mass in the 4D moose models of [24, 25], as well as in our

5D model.

With the introduction of fermions, the axion mass low-energy contribution can be

unambiguously determined from QCD chiral perturbation theory to be [2, 28],

m2
a,QCD =

mumd

(mu +md)2
m2

πf
2
π

f2
, (3.2)

where mπ ≃ 135MeV, fπ ≃ 92MeV, and mu/md ≃ 0.46. Using the result (2.10) with

b0 = 7 and including the factor (3.1), the axion mass ratio becomes:

ma

ma,QCD
≃

√
2κfC[3]

(
2π

αs(1/R)

)3 (mu +md)√
mumd

1

mπfπR2

e
−

1
2

(

2π
αs(1/R)

−Λ5R
)

(Λ5R)
1
2
(b0−3)

. (3.3)
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Figure 4. The axion mass ratio for the boundary fermions case (assuming αs(mZ) = 0.118), as a

function of 1/R for various contours of ǫ = (0.3, 0.25, 0.2) (top to bottom). The solid lines are the

exact results obtained from a numerical integration of (2.8) and no higher dimension terms (c6 = 0).

The green dashed line represents the addition of the higher dimension term (2.11) with c6 = 0.5

and ǫ = 0.52 (0.47) for the upper (lower) line. The red line depicts the maximum enhancement in

the strong coupling limit using ma,5f .

Here we have not considered higher dimension terms, so the path integral is dominated by

instantons of size ρ∗ ∼ 1/Λ5. As discussed in section 2.2, the presence of higher dimension

terms can increase ρ∗, making the result less dependent on the cutoff. Note that in (3.3)

the chiral suppression factor κf is mitigated by the fact that αs runs slower towards the

UV due to the SM fermions, and therefore αs(1/R) is larger, implying that the exponential

suppression is smaller. Using (2.20) and approximating the pion and quark masses with

the QCD scale, we obtain a positive exponent in (3.3) for ǫ & 0.14. The exact numerical

result for ma/ma,QCD is plotted in figure 4, where a sizeable enhancement can be seen that

depends sensitively on ǫ. An enhancement at low compactification scales requires larger

values of ǫ.

The maximum possible enhancement occurs when the 5D theory is strongly coupled

at Λ5. In this case the naive dimensional analysis estimate for the axion mass with fermion

contributions then becomes

m2
a,5f ∼ κf

Λ4
5

f2
, (3.4)

where the suppression factor κf defined in (3.1) has been included, since we assume that

there are no other sources of chiral breaking in the 5D model beyond the SM Higgs Yukawas.

The fermion suppression κf in (3.4) could actually be removed if we relax this as-

sumption and consider extra heavy Higgs fields coupled to the SM quarks with order one

Yukawa couplings [8]. However this comes at the expense of possibly introducing new

CP phases in the heavy Higgs couplings that could spoil the axion solution to the strong

CP problem. Even if these heavy Higgs fields are introduced (and for some reason do
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not introduce new phases) the suppression cannot be entirely removed because there is

a maximum value for the 5D instanton contribution to the axion mass. This arises from

the fact that 5D small instantons can also contribute to the up-quark Yukawa coupling

(for instance, y
(I)
u ) that cannot be larger than the experimental value yu ∼ mu/v (unless

we tune y
(I)
u with the SM Yukawa coupling). By closing the up-quark and Higgs legs of

this instanton contribution, we can then obtain a two-loop contribution to the axion mass

of order m2
a ∼ y

(I)
u yu

(16π2)2
Λ4
5

f2 .
y2u

(16π2)2
Λ4
5

f2 . Absent a fine tuning between the tree-level (yu)

and the instanton (y
(I)
u ) contributions this would then represent the maximum possible

enhancement allowed for alleviating the κf suppression in (3.4).

Finally one may ask why the result of our 5D instanton calculation is interpreted as

an additional contribution relative to the low-energy expression (3.2), rather than being

merged into it. The point is that there are different symmetry breaking parameters that

control (3.1) and (3.2). The chiral perturbation theory result (3.2) vanishes in the limit

of vanishing quark masses, mu,d → 0, while our instanton contribution to the axion mass

squared is proportional to the Yukawa couplings yu,d (as seen in (3.1)). In fact the instanton

result does not vanish in the limit of zero Higgs vacuum expectation value as can be

inferred from the diagram in figure 3. The Yukawa couplings explicitly break the axial

U(1)A symmetry, and this effect is combined with the anomalous U(1)A breaking by the

instanton to give the total instanton contribution depicted in figure 3. On the other hand

the chiral perturbation theory contribution to the axion mass results from current quark

masses which formally is a different source of explicit U(1)A and the SU(2) chiral symmetry

breaking. In summary there are two independent contributions to the axion mass: one

proportional to mumd and the other proportional to yuyd, and they should both be taken

into account.

3.2 Bulk fermions

Next we consider the fermions propagating in the 5th dimension. For each chiral SM field

we need to introduce a Dirac fermion in the 5D bulk. Thus assuming Nf quark flavors

there are 2Nf Dirac fermions. The QCD contribution from the gauge boson and fermion

zero modes still gives b0 = 7, but now there is also a contribution from the massive Dirac

KK fermions. Using the results in appendix A we see that for the SU(3) case, we have (2.9)

with the replacement

3ξ(R/ρ) → (3− 4Nf/3)ξ(R/ρ) . (3.5)

Compared to the pure YM case given in (2.8), the enhancement in the exponential factor

e−Seff from the power-law R/ρ term is now reduced as the number of flavors in the bulk

increases. In fact for Nf = 3 the sign of the power-law R/ρ term flips, which now suppresses

the 5D instanton contribution. Furthermore, the fermion zero modes again lead to a

suppression in the instanton vacuum diagrams due to Yukawa couplings and Higgs loops

(assuming the Higgs is confined to the boundary). Therefore generically the best possible

case for an axion mass enhancement occurs when there are no bulk fermions.

However we would like to point out that the introduction of bulk fermions can increase

the size of the dominant instantons, ρ∗, and therefore make the 5D calculation less de-
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pendent on the cutoff. Indeed, if bulk fermions have large boundary localized mass terms,

mB ≫ 1/R, then their KK modes will not contribute to the effective instanton action

at scales between 1/R and mB. On the other hand, these heavy fermion KK modes will

contribute to the effective instanton action at scales above mB. As a result the effective

action will have an extremum at 1/ρ∗ ∼ mB that can be chosen to be smaller than the

strong scale 24π3/g25.

3.3 Relation to 4D moose models

The contribution of small instantons from a compactified 5th dimension shares some fea-

tures with the 4D moose model [24, 25]. In moose models the enhanced contributions of

small instantons arise due to a high index of embedding of a QCD instanton into the gauge

group of the microscopic theory [29]. Indeed, in the simplest moose model the QCD gauge

group, SU(3)c, arises as a diagonal subgroup of a larger product group, SU(3)1×SU(3)2 at

some UV scale, with a theta angle and axion at each site. The QCD instanton of the two-

site moose model corresponds to a multi-instanton configuration of the microscopic theory

(specifically, the (1, 1) configuration). In other words, the small instantons in the broken

gauge group factors correspond to “fractional” instantons of QCD, and their weights, Λb1
1

and Λb2
2 , are large compared to the weight of the QCD instanton contribution, Λb

QCD [29]

(where b1, b2, and b are the β function coefficients of the corresponding gauge groups). As

a result, the small instanton contributions to the axion masses in the broken factors are en-

hanced. Since the lightest mass eigenstate of these two axions plays the role of the QCD ax-

ion, this may be heavier than predicted by QCD alone. The detailed calculation in ref. [29]

shows that the small instanton enhancement is not sufficiently large in a two-site model4

but could be significant in k-site models with k ≥ 3. Increasing the number of sites invokes

the analogy between moose models and the deconstructed description of 5D theories.

It is important to note that there is a significant qualitative difference between multi-

axion moose models and truly 5D theories. In fact, the moose models of [24, 25] do not have

a 5D continuum limit because they have more than one axion and theta angle. Furthermore

in truly 5D theories, the enhancement of small instanton contributions is not a consequence

of a non-trivial index of embedding. Indeed, in the fully 5D theory, the gauge group is

SU(3) both in the UV and IR, and therefore it is obvious that the index of embedding for

both small and large instantons is the same. Instead, the instanton action has two minima

— one in the IR where QCD becomes strong and another in the UV where the 5D theory

becomes strong. It is the existence of this second minimum in the instanton action that is

responsible for the axion mass enhancement.

4 Conclusion

We have shown that if QCD gluons propagate in a 5th dimension at high energies, then

the effective action receives a power-law term R/ρ due to the positive frequency modes of

the Kaluza-Klein states arising from the uplifted 4D instanton solution. This power-law

4This is a consequence of interactions between the Higgs field responsible for breaking the product gauge

group, and the small instantons in the broken gauge group factors [29, 30].
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term can cause the 5D small instanton contributions to the axion mass to dominate over

the large instanton contribution in the IR, and therefore enhance the axion mass. However

as shown in figure 2, the effects are sizeable only near the non-perturbative limit of the

5D theory. Therefore higher loop contributions could change our conclusions. We have

also considered the inclusion of higher dimension terms and shown that they lead to an

extremum in the effective action at instanton sizes ρ∗ ≫ 1/Λ5. In this case the dominant

contribution to the axion mass arises from small instantons of sizes larger than the cutoff.

When the Standard Model fermions are included there is a suppression in the axion

mass proportional to the product of Yukawa couplings. The axion mass can still receive a

sizeable enhancement from the 5D small instantons provided the fermions are confined to

the boundary. Otherwise if fermions propagate in the bulk, the KK fermion contribution

reduces the coefficient of the power-law term (or can even flip its sign), therefore making

the enhancement much smaller.

Importantly the 5D small instanton contribution to the axion mass calculated in this

paper can preserve the Peccei-Quinn solution to the strong CP problem. This is evident

because the axion potential arises only from the anomalous coupling aTr[GµνG̃
µν ], and

not from other sources of Peccei-Quinn breaking. In other words, there is no misalignment

and the 5D small instanton contributions only scale up the axion potential. Therefore the

fact that instantons depend on physics at high energy scales suggests that the axion mass

can also be a sensitive probe of UV physics.
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We thank Prateek Agrawal, Csaba Csáki, Max Ruhdorfer and Misha Shifman for helpful

conversations. The work of T.G. is supported in part by the DOE Grant No.DE-SC0011842

at the University of Minnesota, and the Simons Foundation. The research of V.V.K. is

partially supported by the STFC consolidated grant ST/T001011/1. The work of A.P. is

supported by the Catalan ICREA Academia Program and grants FPA2017-88915-P, 2017-

SGR-1069 and SEV-2016-0588. Y.S. is supported in part by the NSF grant PHY-1915005.

We acknowledge the Munich Institute for Astro- and Particle Physics (MIAPP) of the

DFG Excellence Cluster Origins, where this work was initiated. T.G. and A.P. also thank

the Kavli Institute of Theoretical Physics in Santa Barbara where part of this work was

done. Y.S. also thanks the Aspen Center for Physics for hospitality while this work was

in progress.

A Five-dimensional instanton

Let us consider an SU(N) gauge theory and study the 5D fluctuations δAM around the

instanton solution (2.5). We choose a 5D generalization of the ’t Hooft gauge [23]:

LGF = − 1

2g25
Tr

[
D(I)

µ Aµ + ∂5A5

]2
, (A.1)
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where D
(I)
µ Aµ = ∂µAµ − i[A

(I)
µ , Aµ], is the gauge covariant derivative evaluated on the

instanton background. This requires a 5D Faddeev-Popov ghost term:

Lgh = − 1

2g25
Tr

[
c̄(−D(I) 2

µ + ∂2
5)c

]
, (A.2)

where c is the ghost field. Performing a KK decomposition for the fluctuations of the gauge

field δAµ, ghost δc, and 5th component δA5:

δAµ(x, y) = δA(0)
µ (x) +

√
2

∞∑

n=1

δA(n)
µ (x) cos(ny/R) , (A.3)

δc(x, y) = δc(0)(x) +
√
2

∞∑

n=1

δc(n)(x) cos(ny/R) , (A.4)

δA5(x, y) =
√
2

∞∑

n=1

δA
(n)
5 (x) sin(ny/R) , (A.5)

and replacing Aµ → A
(I)
µ + δAµ, A5 → δA5 and c → δc in the action (2.1), we obtain at

quadratic order, and after integrating over the extra dimension:

S5=S
(I)
5 − 1

2g2s

∫
d4xTr

[
δA(0)

µ Mµν
A δA(0)

ν +δc̄(0)Mghδc
(0) (A.6)

+

∞∑

n=1

(
δA(n)

µ (Mµν
A +m2

nδµν)δA
(n)
ν +δc̄(n)(Mgh+m2

n)δc
(n)+δA

(n)
5 (M5+m2

n)δA
(n)
5

)]
,

where gs is defined in (2.3), mn = n/R, and the expressions for the gauge boson (gluon)

operator Mµν
A and ghost operator Mgh can be found in [23]. The δA

(n)
5 fluctuations behave

as 4D scalars of mass mn in the adjoint representation of the SU(N) group, and therefore

M5 is the same as the operator expression for a 4D massless scalar MΦ given in [23].

The existence of 4N zero-frequency modes for δA
(0)
µ , corresponding to those of a 4D

instanton (four associated with the instanton location (x0), one for its size (ρ) and the

rest for the orientation in group space), tells us that there are 4N eigenstates satisfying

Mµν
A δA

(0)
ν = 0. Therefore, since Mµν

A is the same for the zero mode as well as for the n-th

KK mode, we have that for each KK mode there are 4N eigenstates satisfying Mµν
A δA

(n)
ν +

m2
nδA

(n)
µ = m2

nδA
(n)
µ , i.e., they have eigenvalues m2

n. Using a 5D Pauli-Villars field of mass

M ≫ 1/R to regularize the theory (whose KK squared masses are M2 + m2
n), we can

integrate the path integral over these 4N modes and obtain the following contribution to

the partition function:
∞∏

n=1

(
M2 +m2

n

m2
n

)2N

. (A.7)

The 4N zero-frequency modes of δA
(0)
µ must be treated as collective coordinates, which

means including a pre-factor in the integration of the form

∫
d4x0

∫
dρ

ρ5
C[N ]

(
2π

αs

)2N

(Mρ)4N , (A.8)
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where the coefficient C[N ] is given by

C[N ] =
C1 e

−C2N

(N − 1)!(N − 2)!
, (A.9)

and C1, C2 are order one constants (C1 = 0.466, C2 = 1.679 using Pauli-Villars

regularization [27]).

In addition to the zero-frequency modes, there are also positive frequency modes for

δA
(0)
µ and δA

(n)
µ and their corresponding ghosts. In 4D this was calculated in [23], where

it was shown that the massless gauge bosons and ghosts combine to give a contribution

equivalent to two real scalars in the adjoint of SU(N). The contribution is approximately

e−
N
3
ln(Mρ) . (A.10)

For the nth KK mode we expect a similar contribution where both the transverse part of the

gauge bosons and ghosts combine to give the contribution of two real scalars of mass m2
n. In

addition this must also be combined with the contribution of the longitudinal component,

δA
(n)
5 to provide three real scalars of mass m2

n. Due to their masses, the contribution

deviates from the massless result (A.10) and the massive contribution was numerically

calculated in ref. [31]. We have used this latter result to obtain the contribution of positive

frequency modes of all nth-KK modes:

e
−3N

∑

∞

n=1

(

1
12

ln

(

M2+m2
n

m2
n

)

+ 1
6
ln(mnρ)+Γ̃S

ren(mnρ)

)

=
∞∏

n=1

(
m2

n

M2 +m2
n

)N
4

e
Nξ(R/ρ)R

ρ , (A.11)

where Γ̃S
ren is defined in [31] and we have used the quite accurate interpolating function

given in eq. (6.2) of [31]. The function ξ(R/ρ) defined from (A.11) is shown in figure 1.

Notice that for R ≫ ρ the function tends to a constant value ξ(R/ρ) ∼ 0.35, and therefore

the exponent in (A.11) has a power-law enhancement ∝ R/ρ.

Finally, combining the contributions (A.7), (A.8), (A.10) and (A.11) gives the SU(N)

result:

∞∏

n=1

(
M2 +m2

n

m2
n

) 7N
4
∫

d4x0

∫
dρ

ρ5
C[N ]

(
2π

αs

)2N

e
−

2π
αs

+N
(

11
3

ln(Mρ)+ξ(R/ρ)R
ρ

)

. (A.12)

To understand the physical implication of this contribution, it is convenient to write the

bare coupling αs appearing in the exponent of (A.12) as a function of a more physical

gauge coupling. To do so, we first calculate the one-loop self-energy of the massless mode

A
(0)
µ regularized by the 5D Pauli-Villars field. This is given by

Π(q2) =
1

g2s
− 1

16π2

[
b0 ln

M2

q2
+ bKK

∞∑

n=1

ln
M2 +m2

n

m2
n

+∆(q2)

]
, (A.13)

where b0 = 11N/3, bKK = 7N/2. The value of ∆(q2) is independent of M and mn, and

for q2 . 1/R2 is very small, ∆(q2) . 0.01, and can be neglected. We can then define the
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renormalized one-loop gauge coupling of the massless mode A
(0)
µ at the compactification

scale as

1

αs(1/R)
≡ 4πΠ(q2 = R−2) ≃ 1

αs
− 1

4π

[
b0 ln(MR)2 + bKK

∞∑

n=1

ln
M2 +m2

n

m2
n

]
. (A.14)

Substituting (A.14) into (A.12), we obtain the SU(N) result

∫
d4x0

∫
dρ

ρ5
C[N ]

(
2π

αs

)2N

e
−

2π
αs(1/R)

+Nξ(R/ρ)R
ρ
−b0 ln

R
ρ , (A.15)

where we see that the Pauli-Villars mass regulator M has disappeared from the exponent.

The result for N = 3 is given in (2.8). There still remains the bare coupling αs in the

pre-factor that when written in terms of αs(1/R) will depend on the regulator mass M (as

can be seen from (A.14)). To eliminate this regulator dependence one should go beyond the

one-loop level calculation. As a good estimate for ρ . R, one can replace αs by αs(1/R).

A.1 Fermion contributions

It is straightforward to incorporate the effect of fermions. For the instanton to contribute

to the vacuum energy and the axion potential, fermion zero modes need to be soaked

up. Usually this is achieved by lifting zero eigenvalues with insertions of the Higgs vac-

uum expectation value. In the single Higgs doublet models considered here the instanton

contribution can be obtained by soaking up sets of four fermion zero modes with the

Higgs propagators (see figure 3). As discussed in the main text, this leads to a pre-factor

yf/(4π) for each fermion, and (A.15) is now modified by having b0 = 11N/3− 2Nf/3 and

Nξ(R/ρ) → (N − 4Nf/3)ξ(R/ρ), where Nf is the number of 5D bulk fermions in the

fundamental representation. In the case of just boundary fermions, b0 still changes but

Nξ(R/ρ) remains unchanged.

B 4D deconstruction

In this appendix we present the calculation of the small instanton contributions using the

4D deconstruction method in [22]. In the notation of [22] the 5D instanton solution (2.5)

corresponds to a multi-instanton configuration with winding numbers (1, 1, . . . , 1). Using

this solution, the effective action Seff is given by the SU(N) generalization of equation (27)

in [22], namely5

Seff(R ≫ ρ ≫ 1/Λ5) =
2π

αs(1/R)
− ξ0N

R

ρ
+ ξ14N ln

R

ρ
, (B.1)

where Λ5 is the 5D cutoff. In the step approximation, the numerical factor ξ0 = ξ1 = 1

for a pure 5D gauge theory compactified on a circle of radius R. The coefficient of the ln

term, 4N is the number of bosonic instanton zero modes.

5Note the coefficient of the log term in eq. (27) of [22] should be 8 corresponding to the number of

bosonic zero modes for SU(2).
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In orbifold compactifications A
(0)
5 is projected out and there are half as many KK

states, therefore the expressions of [22] must be modified. We find ξ0 =
1
2 and ξ1 =

47
48 . The

step approximation can be improved by including threshold corrections which can further

modify ξ0,1 (an example with a bulk scalar in the fundamental representation shown in

section 5 of [22] reveals an approximately 30% change). The expression (B.1) assumes that

1/ρ is sufficiently below the top of the KK tower, and also that R/ρ ≥ O(10) so there is

a large number of KK modes lighter than 1/ρ that feel the instanton. Substituting (B.1)

into the partition function gives the leading behaviour

e−Seff = e
−

2π
αs(1/R)

+ξ0N
R
ρ
−ξ14N ln R

ρ . (B.2)

This expression reveals that there is an exponential enhancement of the instanton density

for small instantons of size ρ < R (assuming ξ0 > 0) due to the power-law term in (B.1).

It is instructive to compare this effect with the 4D moose models of [24, 25]. In that

model the instanton density at each site is suppressed by a factor e−2π/α1 = e−2π/(Nαs),

since 1/αs = 1/α1+1/α2+ · · · ≈ N/α1, assuming approximately equal site gauge couplings

and N sites. Clearly as N → ∞ the large exponential suppression is mitigated. Alterna-

tively this is equivalent to the freedom in choosing a large site gauge coupling αi. Instead

in the extra dimension a single axion receives contributions from the N sites which sum

to give the factor e−2π/αs . There is no factor of N in the denominator of the exponent

as found in the 4D moose model, and instead a sum over KK modes gives the power-law

enhancement in (B.1).

To obtain the full instanton contribution to the partition function, the instanton den-

sity must be integrated over the instanton size ρ. The integration over the instanton size is

divergent but is regulated by the finite size of the extra dimension. Assuming an orbifold

compactification (ξ0 =
1
2 , ξ1 =

47
48) we obtain

∫ R

1/Λ5

dρ

ρ5
C[3]

(
2π

αs(1/ρ)

)6

e
−

2π
αs(1/R)

+ 3
2

R
ρ
−(b0+

3
4
) ln R

ρ

≈ C[3]

(
2π

αs(1/R)

)6 2

3

e
−

2π
αs(1/R)

+ 3
2
Λ5R

(Λ5R)b0−9/4

1

R4
, (B.3)

where C[3] ≃ 1.5 × 10−3 using (A.9) and b0 = 11. This expression is consistent with the

5D calculation (2.10). If the step approximation is improved then the exponent in e
3
2
Λ5R

is reduced by approximately 30% to become ∼ eΛ5R.

Note that the running of the gauge coupling with instanton size, αs(1/ρ) has only been

crudely approximated in (B.3). The actual running coupling is given by:

2π

αs(1/ρ)
=

2π

αs(1/R)
+ b0 ln

R

ρ
− bKK

K(ρ)∑

n=1

ln ρmn ,

=
2π

αs(1/R)
+ bKK

R

ρ
+

(
b0 −

1

2
bKK

)
ln

R

ρ
, (B.4)

where K(ρ) is the number of KK levels lighter than 1/ρ, and bKK = 7
2N is the KK contri-

bution to the β-function arising from a massive gauge boson [32]. In the second line of (B.4)
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we have used the fact that in flat space mn = n/R and
∑K(ρ)

n=1 ln ρmn = −R
ρ − 1

2 ln
ρ
R . Us-

ing (B.4) clearly makes the integrand in (B.3) larger for 1/Λ5 ≤ ρ ≤ R and therefore the

analytic expression in (B.3) is a conservative lower limit. Thus to obtain a sizeable contri-

bution to the integral in (B.3), the exponential suppression e
−

2π
αs(1/R) must be overcome by

having a large number of KK states, Λ5R.

B.1 Fermion contributions

Next we consider fermions propagating in the 5th dimension compactified on an orbifold.

For each chiral SM field we need to introduce a Dirac fermion in the 5D bulk. Thus

assuming Nf quark flavors there are 2Nf Dirac fermions at each KK level. Using the

results in [22] the effective action for SU(N) becomes:

Seff(R≫ ρ≫ 1/Λ5)=
2π

αs(1/R)
−
(
1

2
N− 2

3
Nf

)
R

ρ
+

(
b0+

1

4
N− 1

3
Nf

)
ln

R

ρ
, (B.5)

where b0 = 7 is the QCD contribution from the gauge boson and fermion zero modes.

Compared to the pure YM case given in (B.1) the enhancement in the exponential factor

e−Seff from the power-law R/ρ term is now reduced as the number of flavors increases. In

fact for N = 3 there is only an enhancement for Nf ≤ 2.

The fermion zero modes again lead to a suppression in the instanton vacuum diagrams

due to Yukawa couplings and Higgs loops (assuming the Higgs is confined to the boundary).

Using (B.3) and the suppression factor in (3.1) the axion mass ratio in the case of bulk

fermions then becomes:

ma

ma,QCD
≃

√
2κfC[3]√
3
2 − 2

3Nf

(
2π

αs(1/R)

)3 (mu +md)√
mumd

1

mπfπR2

e
−

1
2

(

2π
αs(1/R)

−
3
2
+

2Nf
3

)

Λ5R

(Λ5R)19/8−Nf/6
, (B.6)

where (3.2) has been used and Nf in this expression refers to the number of bulk fermion

flavors in the fundamental representation. In particular when Nf = 0 there are only

boundary fermions (with b0 = 7) and we are consistent with the relation (3.3). Recall that

for the 4D deconstruction we have used the step approximation, and corrections to this

method will reduce the pure YM exponent from 3/2 to ∼ 1.
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