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ABSTRACT: We calculate a new contribution to the axion mass that arises from gluons
propagating in a 5th dimension at high energies. By uplifting the 4D instanton solution
to five dimensions, the positive frequency modes of the Kaluza-Klein states generate a
power-law term in the effective action that inversely grows with the instanton size. This
causes HD small instantons to enhance the axion mass in a way that does not spoil the
axion solution to the strong CP problem. Moreover this enhancement can be much larger
than the usual QCD contribution from large instantons, although it requires the 5D gauge
theory to be near the non-perturbative limit. Thus our result suggests that the mass range
of axions (or axion-like particles), which is important for ongoing experimental searches,
can depend sensitively on the UV modification of QCD.
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1 Introduction

The axion is arguably the best motivated new particle beyond the Standard Model (SM).
Its existence is required by the Peccei-Quinn mechanism [1], which is a popular solution to
the strong CP problem. In particular, the axion is identified with the Nambu-Goldstone
boson [2, 3] that arises from a spontaneously broken U(1) symmetry. This symmetry is
explicitly broken by QCD instantons, which generate a nonzero axion mass and makes
the axion a viable dark matter candidate [4-6]. A large experimental effort is devoted to
searching for the axion, and therefore knowing the mass range of the axion is important.
The origin of the axion mass can be traced to the so-called large instanton contribu-
tions! in QCD. These are contributions to the path integral that arise from instantons of
size p ~ 1/Aqcp, where Aqcp is the QCD strong coupling scale. This IR contribution
dominates the integration measure over the instanton collective coordinates because the
theory is asymptotically free and therefore instantons of much smaller (UV) size give negli-
gible contributions to the non-perturbatively generated axion potential in QCD. However

!Large instanton contributions correspond to the strong coupling regime of QCD and thus are not
calculable. However, using chiral symmetry one can relate the axion mass to the equally incalculable but
experimentally known pion mass, see for example [7].



this implicitly assumes that the QCD coupling remains asymptotically free in the UV and
QCD dynamics is not modified below the Planck scale.

Thus in attempts to enhance the axion mass it is natural to speculate on possible UV
modifications of QCD dynamics, such as those considered in refs. [8-16]. Of particular
interest to us will be the possibility proposed in [17-19], where QCD is strongly coupled
in the UV and thus enhances the small instanton contributions to the axion potential. In
this paper we explicitly construct such a UV modification by embedding QCD in a five-
dimensional (5D) theory. In addition to the bulk QCD gluons, we identify the axion with
the 5th component of a U(1) gauge field, while the axion-gluon coupling arises from a 5D
Chern-Simons term.

This UV modification of QCD implies that the axion mass can now receive contribu-
tions from 5D small instantons. The 5D instanton solution is obtained by simply uplifting
the usual 4D instanton [20] to five dimensions. This gives a finite 5D action provided the
extra dimension is compact (of size 7R), and leads to a well-defined semiclassical expansion
of the path integral around this solution [21]. The axion mass contributions can then be
calculated in the perturbative limit by restricting the number of Kaluza-Klein modes. As
was shown in [22] using deconstruction, besides the usual logarithmic terms present in the
effective action in the instanton density, there is a power-law term R/p that arises from the
positive frequency modes of the Kaluza-Klein gluon states. We show that this result can
also be obtained by performing a fully 5D calculation of the Kaluza-Klein contributions to
the effective action which is just a 5D version of 't Hooft’s computation [23]. The power-
law term in the effective action can be sizeable for small instantons (p < R), leading to a
possible enhancement of the axion mass.

This new contribution to the axion mass can be compared with the usual low-energy
QCD contribution from large instantons. Interestingly, we will see that the 5D small in-
stantons can provide the dominant contribution, but at the expense of the 5D theory being
near the non-perturbative limit. In addition the enhancement is maximized only when the
SM fermions are confined to the boundary of the extra dimension. Under these conditions
we find that the axion mass can be enhanced by many orders of magnitude, depending on
the size of the extra dimension. Since the 5D theory is near the non-perturbative limit we
also consider the impact of higher dimension terms in the 5D Lagrangian, and show that
they lead to noticeable but controllable effects provided the scale suppressing the higher
dimension terms is smaller than the scale at which the 5D theory becomes strongly coupled.
Our results for the axion mass have consequences for the experimental efforts searching
for the axion (or axion-like particles, in general) with the conclusion that large regions of
parameter space could remain viable.

The outline of this paper is as follows. In section 2 we present our 5D model for a
pure Yang-Mills theory. The 4D instanton solution is then uplifted to five dimensions and
shown to give a power-law term in the effective action in section 2.1. The effect of including
higher dimension terms is discussed in section 2.2, and the contributions to the axion mass
are calculated in section 2.3. In section 3 we consider the fermion contributions to the
axion mass for the case of boundary fermions (section 3.1) and bulk fermions (section 3.2).
In section 3.3 we compare the dynamics of 5D small instantons with the small instantons



of 4D moose models introduced in [24, 25]. Our concluding remarks are given in section 4.
Appendix A contains the details of the 5D calculation of the Kaluza-Klein contributions
to the effective action, while the calculation performed using the 4D deconstruction is
summarized in appendix B.

2 5D instantons and the axion mass in a pure Yang-Mills theory

We will consider a 5D spacetime (z*,y) where the 5th dimension, y is compactified on an
orbifold of size L = R with the QCD gauge group SU(3). in the bulk. The bulk QCD
gauge boson Ay (M = p,5) will have (+, +) boundary conditions for the A, components,
while the A5 components will have (—, —) boundary conditions.? The QCD gluon is thus
identified with the zero mode A,(LO). In addition, the bulk contains a U(1) gauge group
where the U(1) gauge boson Bjs has (—, —) boundary conditions for the B, components,
and (+, +) boundary conditions for the Bs component. This ensures that there is a massless
pseudoscalar zero mode Béo) (to be identified with the axion), whereas the Kaluza-Klein
(KK) scalar modes (Bs) are eaten by the KK U(1) gauge bosons to become massive. We
will start by first considering the pure YM case without any fermions.

In order to generate an anomalous axion coupling to gluons below the compactifica-
tion scale 1/R, a bulk Chern-Simons term must also be added. The 5D action of the
SU(3). x U(1) theory with a Chern-Simons term is given by

L
1 bos 1
Ss=— [ d* dy [ — Tr[G2 MNRST B\ TY[G Ny rG —F? ),
5 / 33/0 y<4g§ r| MN]+3271_2€ MTr[GNR ST]+4Q§ MN Tt o

where Gy n(Fan) is the gluon (U(1)) field-strength tensor, bog is a dimensionless con-
stant and we have equally normalized the non-Abelian and Abelian gauge fields with g5 the
(dimensionful) gauge coupling. The 5D gauge theory has a UV cutoff A5 whose maximum
value occurs where the theory becomes strongly coupled, g2A5/(2473) ~ 1. Higher dimen-
sion terms in the Lagrangian are expected to be suppressed by As, and for now they have
been neglected in (2.1). Later we will see that they can have an important effect on the 5D
instanton. Note that a 6 term is not allowed in the 5D action (2.1) due to Lorentz invari-
ance, but can be present on the 4D boundaries. However the U(1) symmetry in (2.1) can be
used to eliminate these boundary 6 terms. This is one of the distinguishing features of our
5D model compared to that of the 4D moose models [24, 25] where there is a theta angle
for each SU(3) gauge group, and therefore one has to also introduce an axion at each site.

Upon compactification we obtain the effective 4D action

1 1 a ~ 1
_ 4 2 v 2
Sy = /d @ <4ggTr[GW] + 573 7 TG G + 5 (Oua) + . > , (2.2)

2The notation (-,-) refers to either Neumann (4) or Dirichlet (—) boundary conditions at y = 0 (first
entry) and y = L (second entry).



where g, is the 4D QCD gauge coupling, G, = G,(?l,) is the QCD gluon field strength

tensor, a = Béo)/ gs is the axion,® and the couplings are identified as

1L 1

92 g f

= bosgsL . (2.3)

We will assume that the 5D cutoff of the model, A5 lies at or below the strong coupling
scale ~ 2473 /g2. Using (2.3) this translates into the limit

S

where as = ¢g2/(4m) and for an orbifold, L = wR. Thus for as ~ 0.1 we obtain AsR < 200.

2.1 5D small instantons

The extra dimension provides a UV modification of QCD at the scale 1/R > Aqcp, where
Aqcp >~ 300 MeV is the QCD strong scale. It is thus possible that instantons of size S R
can give large contributions to the axion mass. Let us consider first how the instanton
calculus is modified in the 5D pure YM SU(3) theory. The compactified 5D theory admits
the following instanton solution in Euclidean space:

Al(z,y) = AP (z),  Al(z,y) =0, (2.5)
where ) ( )
Da T]ay T —Zo)v
AP () = - (2.6)

(x —x0)%2 + p2’
is the 4D instanton configuration [20] in the regular gauge with center xo and size p. The
tensors 7, are the group-theoretic 't Hooft eta-symbols [23] and a denotes the gauge
isospin index. The 5D instanton solution (2.5) can be simply thought of as wrapping the
4D solution (2.6) around the compact dimension.

Note that in the deconstructed version of [22] the above 5D solution corresponds to a
multi-instanton configuration with winding numbers (1,1,...,1). Importantly, it does not
appear to be the continuum limit of the 4D instantons used in the moose model of [24] that
corresponds to the combination of (1,0,0...,0)+(0,1,0...,0)4+(0,0,1...,0)+.... This
latter configuration would correspond to instantons localized in the bulk i.e. A,(x,y) =
A,(f) (2)0(y). However this is not a solution of the 5D equations of motion, and therefore
the 4D moose model of [24] does not reconstruct to a 5D theory.

The 5D instanton solution (2.5) minimizes the action (2.1) to give (ignoring for now
the axion terms)

n_ 8mR  2m
T
where we have used the relation (2.3) with L = wR. To obtain the contribution of the

instanton to the partition function we must also consider the fluctuations of the 5D gauge

53

(2.7)

3 Alternatively the axion could be a localized boundary field that couples to Tr[G,Wé‘“’]A Our analysis
also applies in this case.
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Figure 1. ¢ as a function of R/p.

fields about the instanton solution (2.5). This means not only including the gluon fluctua-
tions but also the KK contributions. The details of this calculation are given in appendix A,
and the final result for a pure Yang-Mills SU(N) theory is presented in (A.15). For SU(3)

the result is
R qp < o )6 K
— OB ———= | e 7t = — 2.8
/1//\5 I 3] as(1/R) RY 28)

where C[3] ~ 1.5 x 1073, and the effective action is given by

2m R R
Seft = a.(1/R) 3§(R/P); +boln rk (2.9)

where a5(1/R) is the YM coupling evaluated at 1/R (see (A.14) for the exact definition)
and by = 11 (the pure QCD S function coefficient) is the contribution from the gauge boson
zero modes. The function {(R/p) is plotted in figure 1. The quantity K that appears on
the r.h.s. of (2.8) is a dimensionless factor resulting from evaluating the integral in (2.8).
Note that since we are only considering the effect of 5D small instantons, the integration
region in (2.8) is limited to 1/A5 < p < R. The dependence of the lower limit of integration
on 1/A5 can make the contribution very sensitive to the UV completion details. This will
be further discussed in section 2.2.

The result (2.8) reveals a new, interesting feature. There is a power-law term (R/p) in
the exponent arising from the KK modes with a positive coefficient, {(R/p) > 0, which now
causes the integral over the instanton size p to receive a large contribution from the small
instantons of size, p ~ 1/A5. As we will show, in some parameter regions this contribution
can overcome the IR contribution dominated by large instantons of order p ~ 1/Aqcp.

An approximate expression for the dimensionless factor K on the r.h.s. of (2.8) can
be obtained by evaluating the integral in (2.8) and using the fact that £&(R/p) ~ 1/3 for



R/p Z 20. This gives

27
2 6 __2m AR 2 6 eias(l/R)JrAsR
K~CBBl [ —22—) (A:R)3 e aa/m T8 — (03
61 (i) o INaom) —mrr
(2.10)
Thus we see that for sufficiently large As R, the power-law term in the effective action (2.9)

leads to an exponential enhancement that can overcome the suppression from e~27/@s(1/R)

to give a UV-dominated contribution to the integral in (2.8). Note that for the calculation
to be reliable, AsR cannot saturate the bound (2.4), otherwise higher-loop corrections
in the instanton background will be equally important. Furthermore the fact that the
contribution (2.10) is cutoff dependent suggests that higher dimension terms in the 5D
Lagrangian are also important and should be considered.

2.2 Higher dimension terms

To study the impact of higher dimension terms, we consider the addition of the following
dimension six term to the 5D action:

1 L
ASs = _ﬁ /d4x/ dy 0—62 Ty GMNDGMN , (2'11)
95 0 A5

where cg is a dimensionless constant. We will assume that cg > 0 so that it stabilizes the
instanton action. Substituting (2.5) into (2.11) and performing the 5D integration leads to

2r 3T cg

where the logarithmic term in (2.9) has been neglected. Note that the instanton solu-
tion (2.5) is itself modified by the order 1/A2 terms in (2.11). However these corrections
lead to subleading terms of order 1/ (Asp)* in Seg, and can be neglected. Whereas Seg is
extremized near the UV size 1/A5 when ¢g = 0, the inclusion of the higher dimension term
in (2.12) instead leads to an extremum

13 G2As
= Zeng) (55) as. (2.13)

where the p dependence in £(R/p) has been neglected since it is approximately constant for
p < R. Aslong as the theory is perturbative at the cutoff, g2A5/(2473) < 1, the extremum
condition (2.13) implies p. > 1/A5, and therefore the contribution (2.8) is dominated by
instantons of size p4. As alluded to earlier, this means that the instanton size is effectively
cutoff at ps, and the factor K is approximately given by the expression (2.10) with Aj
replaced by 1/p,. Of course there is no need to rely on the approximate expression, and
one can simply perform the numerical integration in (2.8) to obtain the exact factor K.
To reiterate the salient point, the integral in (2.8) with the higher dimension term (2.11)
included, is dominated by instantons of size p, where the 5D theory remains perturbative,
and therefore contributions from instantons of size 1/A5 are suppressed. Furthermore,
higher dimension terms (beyond those of (2.11)) can be neglected, as they are suppressed
by higher powers of ﬁp* < 1, and the calculation remains under theoretical control.



2.3 5D small instanton corrections to the axion mass

To calculate the contribution to the axion mass from the enhanced instanton density,
we next add the axion field. For a constant background axion field, a, in the instanton
background (2.5) we obtain

.a

Zii
f 32m2

/ d*z T[G DGO = z% (2.14)
where the winding number is one. The effective action (2.9) is then modified by replacing
Set — Seft — ta/f. Summing over both instanton and anti-instanton contributions in the

dilute instanton gas approximation [26, 27], leads to

n

Z = nz n'n' 1;[ </d4xke i;> H (/d‘lxk;ei{;)

= exp [2R4/d4mcos (;)] . (2.15)

We conclude that the contribution of the 5D small instantons to the axion mass is

a_f2R47

m

(2.16)

where K is defined in (2.8) and f is given in (2.3).

To understand the importance of the 5D small instanton contributions to the axion
mass, it is instructive to compare these UV contributions with the IR (large) instanton
contributions, which for the pure YM case are estimated to be mgm ~ A%R /f%, and

1 ___2¢n
AR = Ee boas(1/R) | (2.17)

is defined as the IR scale at which the gauge coupling becomes strong. The axion mass
ratio is then

ma or 31 7%(%mfA5R>
= Va0 (7 ) e (), (218)

_ ? (AIRR)"/? 1AsR
& (as 1/R>> AR < (2.19)

where we have used the approximation (2.10). It is clear that m, 2 mgmr when the
exponent in (2.18) is 2 0. By writing

6me

Asft = /Ry

(2.20)
where € < 1 using the perturbativity condition (2.4), we obtain a positive exponent in (2.18)
for € 2 7/33 ~ 0.21. This shows that a large contribution to the axion mass from 5D
small instantons requires values of AsR near the non-perturbative limit. In figure 2 we
plot the mass ratio m,/mgr using the exact result for K, and taking different values of



Figure 2. The axion mass ratio for the pure YM case as a function of Ajg R for various contours
of € = (0.3,0.25,0.2) (top to bottom). The solid blue lines are the exact numerical integration
results using (2.8) with no higher dimension terms (¢g = 0). The green dashed line represents the
addition of the higher dimension term (2.11) with ¢g = 0.5 and € = 0.52(0.47) for the upper (lower)
line. The red line represents the maximum enhancement using m, s that would occur at the 5D
strong-coupling limit.

the perturbativity parameter e defined in (2.20). We see that in order to have a large
contribution to the axion mass we must be quite close to the non-perturbative limit € ~ 1.

In the limit in which the theory is strongly coupled at A5 (¢ ~ 1) and the instanton
contributions are dominated by instantons of size 1/A5, we cannot reliably calculate the 5D
instanton contribution to the axion mass. However a naive dimensional analysis estimate

gives
o A5
M5~ —
a,b f2 ’

up to an order-one constant. This estimate corresponds to the maximum value of the axion

(2.21)

mass from 5D instantons, and is shown as a red line in figure 2.

3 Fermion contributions and QCD axion mass

So far we have considered a pure YM theory. We next introduce fermions in order to discuss
QCD in the SM. In five dimensions the fermions are not chiral, and thus to reproduce the
SM matter content one must impose boundary conditions that project out the unwanted
Weyl components of the Dirac fermions. Alternatively, one can assume that all SM matter
fields are confined to the boundary of the extra dimension. Indeed, the assumption that
all SM fermions are on the boundary is essential for our purposes: as explained in [22] the
sign of the R/p term responsible for the enhancement of the small instanton contribution
flips if the number of bulk fermions is sufficiently large. As shown in appendix A, in the 5D
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Figure 3. Instanton vacuum diagram arising from closing the SM fermion legs with Higgs loops.

orbifolded theory this happens when Ny > 9N/4. Thus in section 3.1 we will first consider
boundary fermions (identified with SM matter fields), and calculate the small instanton
contributions to the axion mass assuming the 5D theory is in the perturbative regime.
We will also estimate the axion mass when the UV cutoff is at the strong-coupling scale
~ 2473 /g2. Bulk fermions will then be discussed in section 3.2.

3.1 Boundary fermions

If the SM fermions (as well as the Higgs field) are on the boundary and SU(3) is in the
bulk, the instanton integral remains the same as (2.8) except that by = 7 (to account for
the fermion zero modes). Furthermore, fermion zero modes would naively lead to an extra
suppression factor in the instanton density of the form (pm f)N / where my are the fermion
masses and Ny the number of flavors. However since the fermion masses in the SM arise
from a Higgs mechanism, the fermion legs in an instanton vacuum diagram can be closed
with a Higgs loop (see figure 3). Thus the suppression is only proportional to the Yukawa
couplings and loop factors, namely:

; (3.1)

where ¥y 4.5 are the SM Yukawa couplings. This is one of the ingredients leading to
the enhancement of the axion mass in the 4D moose models of [24, 25], as well as in our
5D model.

With the introduction of fermions, the axion mass low-energy contribution can be
unambiguously determined from QCD chiral perturbation theory to be [2, 28],

mymg  m2 f2
My, + md)2 f2 ’

mg,QCD = ( (3.2)

where m, ~ 135MeV, fr ~ 92MeV, and m,/mg ~ 0.46. Using the result (2.10) with
bp = 7 and including the factor (3.1), the axion mass ratio becomes:

1 As R)

27
mg 2 3 (mu + md) 1 e 2 <0¢s(1/R) N
—— ~/2k¢C[3 ] 3.3
Ma,QCD m <as(1/R)> Vuma MrfzR? (A5 R)2(b0—3) (3:3)
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Figure 4. The axion mass ratio for the boundary fermions case (assuming as(mz) = 0.118), as a
function of 1/R for various contours of € = (0.3,0.25,0.2) (top to bottom). The solid lines are the
exact results obtained from a numerical integration of (2.8) and no higher dimension terms (¢ = 0).
The green dashed line represents the addition of the higher dimension term (2.11) with ¢ = 0.5
and € = 0.52(0.47) for the upper (lower) line. The red line depicts the maximum enhancement in
the strong coupling limit using mq 5f.

Here we have not considered higher dimension terms, so the path integral is dominated by
instantons of size p. ~ 1/A5. As discussed in section 2.2, the presence of higher dimension
terms can increase p,., making the result less dependent on the cutoff. Note that in (3.3)
the chiral suppression factor x; is mitigated by the fact that oy runs slower towards the
UV due to the SM fermions, and therefore as(1/R) is larger, implying that the exponential
suppression is smaller. Using (2.20) and approximating the pion and quark masses with
the QCD scale, we obtain a positive exponent in (3.3) for € 2 0.14. The exact numerical
result for m,/mq qcp is plotted in figure 4, where a sizeable enhancement can be seen that
depends sensitively on €. An enhancement at low compactification scales requires larger
values of e.

The maximum possible enhancement occurs when the 5D theory is strongly coupled
at As. In this case the naive dimensional analysis estimate for the axion mass with fermion
contributions then becomes A

mzﬁf ~ Rf?g > (34)
where the suppression factor #y defined in (3.1) has been included, since we assume that
there are no other sources of chiral breaking in the 5D model beyond the SM Higgs Yukawas.

The fermion suppression xy in (3.4) could actually be removed if we relax this as-
sumption and consider extra heavy Higgs fields coupled to the SM quarks with order one
Yukawa couplings [8]. However this comes at the expense of possibly introducing new
CP phases in the heavy Higgs couplings that could spoil the axion solution to the strong
CP problem. Even if these heavy Higgs fields are introduced (and for some reason do

~10 -



not introduce new phases) the suppression cannot be entirely removed because there is
a maximum value for the 5D instanton contribution to the axion mass. This arises from

the fact that 5D small instantons can also contribute to the up-quark Yukawa coupling

(for instance, yl(f)) that cannot be larger than the experimental value y,, ~ m, /v (unless
we tune yz(f) with the SM Yukawa coupling). By closing the up-quark and Higgs legs of

this instanton contribution, we can then obtain a two-loop contribution to the axion mass

2 sy AL yr A :
a ™~ U < o2 72 Absent a fine tuning between the tree-level (y,,)
and the instanton (yff ) contributions this would then represent the maximum possible

of order m

enhancement allowed for alleviating the x; suppression in (3.4).

Finally one may ask why the result of our 5D instanton calculation is interpreted as
an additional contribution relative to the low-energy expression (3.2), rather than being
merged into it. The point is that there are different symmetry breaking parameters that
control (3.1) and (3.2). The chiral perturbation theory result (3.2) vanishes in the limit
of vanishing quark masses, m, 4 — 0, while our instanton contribution to the axion mass
squared is proportional to the Yukawa couplings y,, 4 (as seen in (3.1)). In fact the instanton
result does not vanish in the limit of zero Higgs vacuum expectation value as can be
inferred from the diagram in figure 3. The Yukawa couplings explicitly break the axial
U(1)4 symmetry, and this effect is combined with the anomalous U(1) 4 breaking by the
instanton to give the total instanton contribution depicted in figure 3. On the other hand
the chiral perturbation theory contribution to the axion mass results from current quark
masses which formally is a different source of explicit U(1) 4 and the SU(2) chiral symmetry
breaking. In summary there are two independent contributions to the axion mass: one
proportional to m,mg and the other proportional to ¥,¥y4, and they should both be taken
into account.

3.2 Bulk fermions

Next we consider the fermions propagating in the 5th dimension. For each chiral SM field
we need to introduce a Dirac fermion in the 5D bulk. Thus assuming Ny quark flavors
there are 2Ny Dirac fermions. The QCD contribution from the gauge boson and fermion
zero modes still gives by = 7, but now there is also a contribution from the massive Dirac
KK fermions. Using the results in appendix A we see that for the SU(3) case, we have (2.9)
with the replacement

3¢(R/p) — (3 — 4Ny /3)E(R/p). (3-5)

Compared to the pure YM case given in (2.8), the enhancement in the exponential factor
e~ from the power-law R/p term is now reduced as the number of flavors in the bulk
increases. In fact for Ny = 3 the sign of the power-law R/p term flips, which now suppresses
the 5D instanton contribution. Furthermore, the fermion zero modes again lead to a
suppression in the instanton vacuum diagrams due to Yukawa couplings and Higgs loops
(assuming the Higgs is confined to the boundary). Therefore generically the best possible
case for an axion mass enhancement occurs when there are no bulk fermions.

However we would like to point out that the introduction of bulk fermions can increase
the size of the dominant instantons, p., and therefore make the 5D calculation less de-

- 11 -



pendent on the cutoff. Indeed, if bulk fermions have large boundary localized mass terms,
mp > 1/R, then their KK modes will not contribute to the effective instanton action
at scales between 1/R and mp. On the other hand, these heavy fermion KK modes will
contribute to the effective instanton action at scales above mp. As a result the effective
action will have an extremum at 1/p. ~ mp that can be chosen to be smaller than the
strong scale 2473 /g2.

3.3 Relation to 4D moose models

The contribution of small instantons from a compactified 5th dimension shares some fea-
tures with the 4D moose model [24, 25]. In moose models the enhanced contributions of
small instantons arise due to a high index of embedding of a QCD instanton into the gauge
group of the microscopic theory [29]. Indeed, in the simplest moose model the QCD gauge
group, SU(3),, arises as a diagonal subgroup of a larger product group, SU(3); x SU(3)2 at
some UV scale, with a theta angle and axion at each site. The QCD instanton of the two-
site moose model corresponds to a multi-instanton configuration of the microscopic theory
(specifically, the (1,1) configuration). In other words, the small instantons in the broken
gauge group factors correspond to “fractional” instantons of QCD, and their weights, All’1
and Ab2, are large compared to the weight of the QCD instanton contribution, AgCD [29]
(where b1, by, and b are the § function coefficients of the corresponding gauge groups). As
a result, the small instanton contributions to the axion masses in the broken factors are en-
hanced. Since the lightest mass eigenstate of these two axions plays the role of the QCD ax-
ion, this may be heavier than predicted by QCD alone. The detailed calculation in ref. [29]
shows that the small instanton enhancement is not sufficiently large in a two-site model*
but could be significant in k-site models with k£ > 3. Increasing the number of sites invokes
the analogy between moose models and the deconstructed description of 5D theories.

It is important to note that there is a significant qualitative difference between multi-
axion moose models and truly 5D theories. In fact, the moose models of [24, 25] do not have
a 5D continuum limit because they have more than one axion and theta angle. Furthermore
in truly 5D theories, the enhancement of small instanton contributions is not a consequence
of a non-trivial index of embedding. Indeed, in the fully 5D theory, the gauge group is
SU(3) both in the UV and IR, and therefore it is obvious that the index of embedding for
both small and large instantons is the same. Instead, the instanton action has two minima
— one in the IR where QCD becomes strong and another in the UV where the 5D theory
becomes strong. It is the existence of this second minimum in the instanton action that is
responsible for the axion mass enhancement.

4 Conclusion

We have shown that if QCD gluons propagate in a 5th dimension at high energies, then
the effective action receives a power-law term R/p due to the positive frequency modes of
the Kaluza-Klein states arising from the uplifted 4D instanton solution. This power-law

4This is a consequence of interactions between the Higgs field responsible for breaking the product gauge
group, and the small instantons in the broken gauge group factors [29, 30].
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term can cause the 5D small instanton contributions to the axion mass to dominate over
the large instanton contribution in the IR, and therefore enhance the axion mass. However
as shown in figure 2, the effects are sizeable only near the non-perturbative limit of the
5D theory. Therefore higher loop contributions could change our conclusions. We have
also considered the inclusion of higher dimension terms and shown that they lead to an
extremum in the effective action at instanton sizes p, > 1/As5. In this case the dominant
contribution to the axion mass arises from small instantons of sizes larger than the cutoff.

When the Standard Model fermions are included there is a suppression in the axion
mass proportional to the product of Yukawa couplings. The axion mass can still receive a
sizeable enhancement from the 5D small instantons provided the fermions are confined to
the boundary. Otherwise if fermions propagate in the bulk, the KK fermion contribution
reduces the coefficient of the power-law term (or can even flip its sign), therefore making
the enhancement much smaller.

Importantly the 5D small instanton contribution to the axion mass calculated in this
paper can preserve the Peccei-Quinn solution to the strong CP problem. This is evident
because the axion potential arises only from the anomalous coupling aTr[GWCNJW], and
not from other sources of Peccei-Quinn breaking. In other words, there is no misalignment
and the 5D small instanton contributions only scale up the axion potential. Therefore the
fact that instantons depend on physics at high energy scales suggests that the axion mass
can also be a sensitive probe of UV physics.
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A Five-dimensional instanton

Let us consider an SU(N) gauge theory and study the 5D fluctuations d Ay, around the
instanton solution (2.5). We choose a 5D generalization of the 't Hooft gauge [23]:

1 (1) ?
Lo = —@TT DM A, + 05A5| (A.1)
5
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where D,(LI)AM = 0,A, — i[ALI),AM], is the gauge covariant derivative evaluated on the
instanton background. This requires a 5D Faddeev-Popov ghost term:

Loy = Tr[ (D> +a§)c] , (A.2)

295
where c is the ghost field. Performing a KK decomposition for the fluctuations of the gauge

field 0A,,, ghost dc, and 5th component §As:

6Au(r,y) = 6A, 0)(2) + \fz 5A x) cos(ny/R), (A.3)

de(z,y) = 6c9(z) + V2 Z 5¢™ (z) cos(ny/R) (A.4)

5A5(z,y) = V2 Z 5A™ (z) sin(ny/R) (A.5)
n=1

and replacing A, — ALI) +0A,, As — 0As and ¢ — dc in the action (2.1), we obtain at
quadratic order, and after integrating over the extra dimension:

S5 =54 - d'x Tr | 6 A0 MH 5 AD) 1620 Mgy, 5¢(® (A.6)

2g?2

+Z<6A (M £m26,,)6 AT +56) (Mg +m2)5e™ +6A™ (M +m? )5A(")>

where g5 is defined in (2.3), my, = n/R, and the expressions for the gauge boson (gluon)
operator M'}” and ghost operator Mgy, can be found in [23]. The 5Aén) fluctuations behave
as 4D scalars of mass m,, in the adjoint representation of the SU(N) group, and therefore
M is the same as the operator expression for a 4D massless scalar Mg given in [23].
The existence of 4N zero-frequency modes for (SALO), corresponding to those of a 4D
instanton (four associated with the instanton location (x(), one for its size (p) and the
rest for the orientation in group space), tells us that there are 4N eigenstates satisfying
MZV(SAI(,O) = 0. Therefore, since M"” is the same for the zero mode as well as for the n-th
KK mode, we have that for each KK mode there are 4N eigenstates satisfying M"/ V5A(")
25A( ) - 25AEL ), i.e., they have eigenvalues m?2. Using a 5D Pauli-Villars field of mass
M > 1/R to regularize the theory (whose KK squared masses are M? + m2), we can
integrate the path integral over these 4N modes and obtain the following contribution to

[ (M) .

2
my

the partition function:

n=1

(0)

The 4N zero-frequency modes of §A,’ must be treated as collective coordinates, which
means including a pre-factor in the integration of the form

[t [ %o (Z)QN (MY, (A.8)
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where the coefficient C[N] is given by

01 6_02N

CINl = (N — DI(N —2)”

(A.9)

and Cp, Cy are order one constants (C7; = 0.466, Cy = 1.679 using Pauli-Villars
regularization [27]).

In addition to the zero-frequency modes, there are also positive frequency modes for
5A£0) and 5A§Ln) and their corresponding ghosts. In 4D this was calculated in [23], where
it was shown that the massless gauge bosons and ghosts combine to give a contribution
equivalent to two real scalars in the adjoint of SU(N). The contribution is approximately

e~ 5 n(Mp) (A.10)

For the nth KK mode we expect a similar contribution where both the transverse part of the
gauge bosons and ghosts combine to give the contribution of two real scalars of mass m2. In
addition this must also be combined with the contribution of the longitudinal component,

(5Aén) to provide three real scalars of mass m2.

Due to their masses, the contribution
deviates from the massless result (A.10) and the massive contribution was numerically
calculated in ref. [31]. We have used this latter result to obtain the contribution of positive

frequency modes of all nth-KK modes:

oo M24m2 r O
6_3Nzn_1(1121n(m%)+;1n(mnp)+F§en(mnp)):H< _omy > MNERIDT (A1)

=z

M2 +m2 ’

where I'S,_ is defined in [31] and we have used the quite accurate interpolating function
given in eq. (6.2) of [31]. The function £(R/p) defined from (A.11) is shown in figure 1.
Notice that for R > p the function tends to a constant value £(R/p) ~ 0.35, and therefore
the exponent in (A.11) has a power-law enhancement o R/p.

Finally, combining the contributions (A.7), (A.8), (A.10) and (A.11) gives the SU(N)
result:

2 N on
H (M +m2 > /d4 /de ( ) e—ifs—i-N(%ln(Mp)-‘r&(R/p)%)' (A12)

n=1

To understand the physical implication of this contribution, it is convenient to write the
bare coupling «s appearing in the exponent of (A.12) as a function of a more physical
gauge coupling. To do so, we first calculate the one-loop self-energy of the massless mode
A,SO) regularized by the 5D Pauli-Villars field. This is given by

1 1 > M? +m
I(¢%) = T [boln —I—bKKZIH +A?)] (A.13)

where by = 11N/3, bxr = 7TN/2. The value of A(qg?) is independent of M and m,,, and
for ¢*> < 1/R? is very small, A(g?) < 0.01, and can be neglected. We can then define the
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renormalized one-loop gauge coupling of the massless mode A,(f)) at the compactification

scale as
1 11 . M?+m?
— = =47rll(* =R ?) ~ — — — |bgIn(MR)*> +b In———= Al4
as(1/R) mil(g” = B as  Am [0 n(MR)"+ KKnZ_:l . m2 ( )
Substituting (A.14) into (A.12), we obtain the SU(N) result
2N
/ o / 9 o] (27’> ¢t B f—boln ] (A.15)
p a

where we see that the Pauli-Villars mass regulator M has disappeared from the exponent.
The result for N = 3 is given in (2.8). There still remains the bare coupling «; in the
pre-factor that when written in terms of as(1/R) will depend on the regulator mass M (as
can be seen from (A.14)). To eliminate this regulator dependence one should go beyond the
one-loop level calculation. As a good estimate for p < R, one can replace a; by as(1/R).

A.1 Fermion contributions

It is straightforward to incorporate the effect of fermions. For the instanton to contribute
to the vacuum energy and the axion potential, fermion zero modes need to be soaked
up. Usually this is achieved by lifting zero eigenvalues with insertions of the Higgs vac-
uum expectation value. In the single Higgs doublet models considered here the instanton
contribution can be obtained by soaking up sets of four fermion zero modes with the
Higgs propagators (see figure 3). As discussed in the main text, this leads to a pre-factor
ys/(4m) for each fermion, and (A.15) is now modified by having by = 11N/3 — 2Ny /3 and
NE(R/p) — (N — 4Ng/3)E(R/p), where Ny is the number of 5D bulk fermions in the
fundamental representation. In the case of just boundary fermions, by still changes but
NE¢(R/p) remains unchanged.

B 4D deconstruction

In this appendix we present the calculation of the small instanton contributions using the
4D deconstruction method in [22]. In the notation of [22] the 5D instanton solution (2.5)
corresponds to a multi-instanton configuration with winding numbers (1,1,...,1). Using
this solution, the effective action Seg is given by the SU(N) generalization of equation (27)
in [22], namely®
27 R R
Sef(R>p>1/A5) = ——— — N — + 64N In — | B.1
B> 0> 1/Ag) = T — 6N ; (B.1)
where Aj is the 5D cutoff. In the step approximation, the numerical factor {y = & =1
for a pure 5D gauge theory compactified on a circle of radius R. The coefficient of the In
term, 4N is the number of bosonic instanton zero modes.

®Note the coefficient of the log term in eq. (27) of [22] should be 8 corresponding to the number of
bosonic zero modes for SU(2).
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In orbifold compactifications Aéo) is projected out and there are half as many KK

states, therefore the expressions of [22] must be modified. We find &, = % and & = j—g. The
step approximation can be improved by including threshold corrections which can further
modify &1 (an example with a bulk scalar in the fundamental representation shown in
section 5 of [22] reveals an approximately 30% change). The expression (B.1) assumes that
1/p is sufficiently below the top of the KK tower, and also that R/p > O(10) so there is
a large number of KK modes lighter than 1/p that feel the instanton. Substituting (B.1)
into the partition function gives the leading behaviour

27 R_ R
¢ = ¢ ms(u/m TN AN G (B.2)

This expression reveals that there is an exponential enhancement of the instanton density
for small instantons of size p < R (assuming &, > 0) due to the power-law term in (B.1).
It is instructive to compare this effect with the 4D moose models of [24, 25]. In that
model the instanton density at each site is suppressed by a factor e 27/ = ¢=27/(Nas)
since 1/as =1/a;+1/ag+--- = N/aj, assuming approximately equal site gauge couplings
and N sites. Clearly as N — oo the large exponential suppression is mitigated. Alterna-
tively this is equivalent to the freedom in choosing a large site gauge coupling «;. Instead
in the extra dimension a single axion receives contributions from the N sites which sum

—2m/as  There is no factor of N in the denominator of the exponent

to give the factor e
as found in the 4D moose model, and instead a sum over KK modes gives the power-law
enhancement in (B.1).

To obtain the full instanton contribution to the partition function, the instanton den-
sity must be integrated over the instanton size p. The integration over the instanton size is
divergent but is regulated by the finite size of the extra dimension. Assuming an orbifold

compactification (§y = %,51 = %) we obtain

6
/R dpc3< 2r > e mam ey (ot g
1/As p° as(1/p)

27 3
2 69 ¢ asam T2l
~ C[3] u =L (B.3)
as(1/R)

3 (AsR)—9/4 RA’
where C[3] ~ 1.5 x 1073 using (A.9) and by = 11. This expression is consistent with the

5D calculation (2.10). If the step approximation is improved then the exponent in AR

AsR

is reduced by approximately 30% to become ~ e
Note that the running of the gauge coupling with instanton size, as(1/p) has only been
crudely approximated in (B.3). The actual running coupling is given by:

27 27 K@)
= +bgln— —b In pmy, ,
as(l/p) ~ as(i/R) " p  EE Zl P
27 R 1 R
= — — - = In — B.4
as(l/R)+bKKp+<b0 2bKK) n (B.4)

where K (p) is the number of KK levels lighter than 1/p, and bxx = IN is the KK contri-
bution to the S-function arising from a massive gauge boson [32]. In the second line of (B.4)
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we have used the fact that in flat space m, = n/R and Zf:('i) In pmy, = —% —3In%. Us
ing (B.4) clearly makes the integrand in (B.3) larger for 1/A5 < p < R and therefore the
analytic expression in (B.3) is a conservative lower limit. Thus to obtain a sizeable contri-
bution to the integral in (B.3), the exponential suppression 6_% must be overcome by
having a large number of KK states, AsR.

B.1 Fermion contributions

Next we consider fermions propagating in the 5th dimension compactified on an orbifold.
For each chiral SM field we need to introduce a Dirac fermion in the 5D bulk. Thus
assuming N; quark flavors there are 2N; Dirac fermions at each KK level. Using the
results in [22] the effective action for SU(N) becomes:

Set(R>p>1/A5) :Oz5(217;R)_ <;N—§Nf> f—l—(boﬁ-iN—;Nf) Inf, (B.5)
where by = 7 is the QCD contribution from the gauge boson and fermion zero modes.
Compared to the pure YM case given in (B.1) the enhancement in the exponential factor
e~ from the power-law R/p term is now reduced as the number of flavors increases. In
fact for N = 3 there is only an enhancement for Ny < 2.

The fermion zero modes again lead to a suppression in the instanton vacuum diagrams
due to Yukawa couplings and Higgs loops (assuming the Higgs is confined to the boundary).
Using (B.3) and the suppression factor in (3.1) the axion mass ratio in the case of bulk
fermions then becomes:

1 _2m 3, 2Ny
Ma Q’ffc[?’] < Y )3 (my + mg) 1 e 2(0-9(1/57) 21773 )A5R
Ma,QCD \/ﬁ as(1/R) Saiitg mafaR2  (AgR)9/5N;/6

where (3.2) has been used and Ny in this expression refers to the number of bulk fermion

, (B.6)

flavors in the fundamental representation. In particular when Ny = 0 there are only
boundary fermions (with by = 7) and we are consistent with the relation (3.3). Recall that
for the 4D deconstruction we have used the step approximation, and corrections to this
method will reduce the pure YM exponent from 3/2 to ~ 1.
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