
J
H
E
P
0
4
(
2
0
2
0
)
0
3
1

Published for SISSA by Springer

Received: February 19, 2020

Accepted: March 23, 2020

Published: April 6, 2020

UV sensitivity of the axion mass from instantons in

partially broken gauge groups
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1 Introduction

The past few decades have seen axions become an ever more important ingredient of mod-

ern particle physics beyond the standard model (BSM). The QCD axion provides the most

plausible solution to the strong CP problem [1–4], and at the same time is also a natu-

ral dark matter candidate. Besides the QCD axion, axion-like particles (ALPs) are also

ubiquitous in string theory, and can be used for many different purposes in BSM model

building. For a pedagogic introduction to the axion and the strong CP problem, see for

example [5].

While the coupling of the QCD axion is set by the unknown large Peccei-Quinn (PQ)

symmetry breaking scale fa, its mass is surprisingly well predicted. Even though it is due

to uncalculable strongly coupled QCD effects, chiral symmetry relates the uncalculable

axion mass to the equally uncalculable pion mass, and one obtains the famous relation (see

e.g. [6])

m2
a =

mumd

(mu +md)2
m2
πf

2
π

f2a
(1.1)

This formula depends only on known IR quantities in addition to the axion decay con-

stant fa (which sets the coupling strength of the axion), and has been the basis of axion
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physics ever since the first attempts to directly detect axions. Eq. (1.1) seems like a ro-

bust prediction: it is an IR effect where the QCD instantons are strongly coupled, and

the expectation is that they will dominate over any additional UV instanton effect, which

would be weakly coupled, and hence suppressed. Indeed one can easily check that for the

simplest UV completions of QCD the effects of small instantons are strongly suppressed, as

long as the theory remains weakly coupled. One possible way to enhance the contributions

of small instantons is to change the running of coupling in the UV and make QCD or its

UV completion strongly coupled again [7–9]. A particularly elegant realization is to embed

QCD into a higher dimensional theory, and it was indeed shown in [10] that small instanton

contributions are naturally enhanced in some 5D theories. This observation allowed [11]

to construct a 5D model where the axion mass is raised by small instantons.

However, recently Agrawal and Howe (AH) [12, 13] presented the surprising result

that for a particular type of UV completion based on product groups small instantons

could provide the dominant contribution to the axion mass even if the UV theory remains

weakly coupled (and hence fully calculable). This possibility opens up new regions of the

parameter space on the m2
a, fa plane. Interesting models implementing the mechanism

of [12] were proposed in [14–18], applications to models of inflation were studied in [19].

Other approaches to modify the axion mass within QCD were proposed in [20–23] while

in [24–30] the axion mass is raised by coupling it to a new confining gauge group.

In this paper we re-examine the models presented in [12, 13] in order to identify the

underlying dynamics responsible for an enhancement of small instanton contributions. We

identify the non-trivial embedding of QCD into a high-energy gauge group G as the main

source behind this enhancement. It is well-known that a spontaneous symmetry breaking

can result in unusual matching relations [31, 32] of the form

(

ΛG
M

)kbG

=

(

ΛQCD

M

)bQCD

(1.2)

where the integer k is commonly referred to as the index of embedding [31], ΛG and ΛQCD

(bG and bQCD) are the dynamical scales (beta functions) of the high and low energy the-

ories respectively, and M is the symmetry breaking scale. Such a scale matching relation

implies that the ordinary 1-instanton solution of the low energy theory is identified with a

k-instanton solution of the high energy theory [32]. To be more precise, there are certain

small instanton configurations that live fully in the broken group, and do not have corre-

sponding instantons in the low energy theory. We will show that the contributions of these

configurations to the QCD axion mass scale as

m2
k

m2
QCD

∝ 1

(4π)F

(

ΛQCD

v

)F ( M

ΛQCD

)4−
bQCD

k

(1.3)

where ΛQCD is the QCD scale, v is the Higgs VEV, F is the number of flavors and bQCD =
11
3 Nc − 2

3F . While for k = 1 every factor in (1.3) is smaller than 1 leading to a strong

suppression, we find that already for k = 2 small instanton contributions are enhanced

by powers of M/ΛQCD that may overwhelm the other suppression factors for sufficiently

large M .
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The aim of this paper is twofold. First we want to explain how (1.3) is obtained,

and the physics leading to it in terms of the effects of the instantons in the partially

broken group. Our second aim is to present a detailed estimate of the actual contribution

of these instantons to the axion mass. After accounting for all O(1) factors, including

the perturbation of the classical instanton action in the presence of the Higgs VEV,1 we

will be able to identify specific models which successfully implement the Agrawal-Howe

enhancement mechanism.

The paper is organized as follows: in section 2 we present a back-of-the-envelope

estimate for the scaling of the various small instanton contributions in partially broken

gauge theories, and explain why the case with the non-trivial embeddings of the low-

energy instanton is the most interesting one. The actual instanton calculation is set up in

section 3 where we show how to do the instanton calculation in a completely broken SU(N)

theory. Note that in this section we show how to obtain a non-vanishing contribution

in the presence of fermions without using the ’t Hooft operator approximation, but rather

directly performing the integral over the fermionic and bosonic modes, which automatically

includes the effects of additional scalar loops closing up the external fermion lines in the ’t

Hooft operator. We apply these results to the product group theories in section 4 and there

we show how much enhancement we can obtain for the axion mass in the various models.

We conclude in section 5. We also present two appendices. Appendix A contains a detailed

description of how to use the ’t Hooft operator approximation and a comparison to the full

calculation, while in appendix B we present the conversion from the Pauli-Villars regulator

scheme to the commonly used MS scheme.

2 Small instantons in partially broken groups and index of embedding

Before diving into the details of the full instanton calculation we would like to present

a back-of-the-envelope estimate for the magnitude of the instanton corrections for various

UV completions of QCD. There are two novel aspects of the calculation of [12] both related

to the fact that we are considering small instantons of size ρ≪ Λ−1
QCD.

• At high energies the Higgs boson(s) become propagating particles allowing us to also

consider the effects of closing up the fermion legs of the instanton vertex using Higgs

loops (rather than Higgs VEV insertions as is usually done)

• There may be non-trivial embeddings of QCD into the UV theory where the small

instantons of the UV theory correspond to “fractional instantons” of QCD.

Below we will be estimating the effects of small instantons using both the traditional

Higgs VEV insertions as well as the novel loop diagrams. We will see that for the simplest

embeddings of QCD into the UV gauge theory all such effects will be negligible. However we

will explain that for the cases with non-trivial embeddings there could be an enhancement

by some power of the ratio M/ΛQCD which opens up the possibility of these contributions

1The importance of this perturbation was also pointed out by the authors of [15] who considered a

similar setup.
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to dominate over the IR contributions of the ordinary QCD instantons. We will show

that the examples of small instanton dominance presented in [12] fall in this category of

non-trivial embeddings.

Let us assume that the high energy gauge group G is broken to the low energy group

H (in phenomenological applications we will, of course, choose H to be SU(3)QCD) at the

scale M by the VEV of some heavy scalars. We will assume that the theory has F flavors

of matter fields in the fundamental representation of G. In expectation of our results to

the Standard Model we will choose F to be even. In addition, we will introduce gauge

singlet scalars H coupled to the matter fields through Yukawa couplings y. These scalars

will eventually be identified with the Higgs scalar(s) of the SM. Thus we will assume that

in the low energy theory H has both a VEV and a mass of order v. Finally, we will assume

that the Yukawa couplings of H are small. This leads us to consider the following hierarchy

of scales

yv ≪ ΛQCD ≪ v ≪ Λ ≪M , (2.1)

where Λ and ΛQCD denote RG invariant scales of high and low energy theories respectively.

When the embedding of the low energy group into G is trivial the matching relation between

these scales is given by
(

ΛQCD

M

)bQCD

=

(

Λ

M

)bG

. (2.2)

Our choice of the hierarchy of scales leads to several important consequences. First, the

contributions of the instantons in the broken group (i.e. instantons of size ρ . 1/M) to

the effective action are completely calculable. Furthermore, the contributions of small

instantons with size ρ ≪ 1/ΛQCD (and, in particular, of size ρ . 1/v) within the low

energy theory but still above the QCD scale are also calculabe. Finally, the Higgses H

decouple from the low energy physics within the weak coupling regime while the matter

fields are effectively massless2 even at the strong coupling scale ΛQCD.

To obtain a simple estimate of the magnitudes of the effects of the small instantons we

use an effective Lagrangian below the symmetry breaking scale M . Integrating over the

instantons of size ρ < 1/M generates a ’t Hooft operator which must be included in the

Lagrangian of the effective theory

ΛbG

M bG+3F−4

F
∏

i

ψiψ̄i . (2.3)

These ’t Hooft operators will also contribute to the mass of the axion once the fermion legs

are closed up with Higgs VEV insertions or via Higgs loops. Such contributions can be

represented by the diagrams in figure 1. One important issue to consider is which of these

diagrams can possibly contribute to the axion mass. The axion is the Goldstone boson

resulting from the spontaneous breaking of the anomalous U(1)PQ symmetry at a high

scale fa. However if the classical action possesses additional exact anomalous unbroken

2To streamline the analysis we assume here that all the matter fields are light compared to ΛQCD.

Accounting for the mass of heavy SM flavors, t, b, c, will not affect the relative importance of contributions

from different energy scales.
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to the contributions from the diagram obtained by closing the Higgs loops:

m′2
Mf

2
a =

(

y

4π

)F ΛbG

M bG−4
. (2.7)

wherem2
M andM ′2

a represent the contributions of small instantons3 (ρ . 1/M) to the axion

mass obtained from VEV-insertion and loop-induced diagrams respectively. For sufficiently

large symmetry breaking scale, the suppression of (2.6) by (v/M)F may easily overcome the

suppression of the loop-induced contribution by loop factors, making (2.7) the dominant

contribution from this regime.

There will be similar small instanton contribution to the axion mass from instantons

of size 1/M . ρ . 1/v:

m2
vf

2
a = yF

Λ
bQCD

QCD

vbQCD−4

m′2
v f

2
a =

(

y

4π

)F Λ
bQCD

QCD

vbQCD−4
,

(2.8)

where m2
v and and m′2

v denote the VEV insertion and the Higgs loop induced contributions

respectively.4 It is easy to see that loop-induced contributions in (2.7) are small both

compared to VEV-insertion and loop-induced contributions in (2.8).

Below the Higgs mass v the Higgs decouples from the theory and loop-induced con-

tributions are absent. However, given our choice of small Yukawas, the fermions remain

light and the instanton diagrams with Higgs VEV insertions still contribute both to the

’t Hooft operator and the axion potential. These contributions remain calculable in the

1/v < ρ ≪ 1/ΛQCD regime and at the renormalization scale µ satisfying ΛQCD ≪ µ ≪ v

are given by

m2
µf

2
a = (yv)F

Λ
bQCD

QCD

µbQCD−4
. (2.9)

Once again, instanton contributions from lower scales in (2.9) dominate over the instantons

of size 1/v in (2.8) and instantons of size 1/M in (2.6)and (2.7). As the renormalization

scale µ approaches the actual strong coupling scale ΛQCD, the perturbative calculation in

the one instanton background becomes unreliable. In this regime the contributios of the

non-perturbative dynamics to the axion mass are a priori incalculable, however they can

be obtained from chiral perturbation theory by relating the axion mass to the pion mass.

Nevertheless, one can estimate the final axion mass by taking a naive µ→ ΛQCD limit:

m2
QCDf

2
a = (yv)F Λ4−F

QCD = mFΛ4−F
QCD , (2.10)

where F is the number of flavors that remain light at ΛQCD and mQCD represents the QCD

contribution to the axion mass.

We can now estimate the ratio of loop-induced small instanton and QCD contributions

to the axion mass:
M ′2
a

m2
a

∼ 1

(4π)F

(

ΛQCD

v

)F (ΛQCD

M

)bQCD−4

. (2.11)

3These effects are dominated by instantons of inverse size M .
4These effects are dominated by instantons of inverse size v.
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As expected the axion mass is dominated by strong coupling QCD contributions while the

contributions of small instantons are highly suppressed by powers of Λ/M and otherwise

are UV independent. Indeed, every term in (2.11) is smaller than one. As a reminder,

bQCD is the QCD beta function just below the matching scale with all flavors assumed

to be massless: bQCD = 11
3 Nc − 2

3F = 7 for QCD with 6 flavors, but most importantly

bQCD > 4 implying a strong suppression by powers of ΛQCD/M .

There is however an important caveat in the above argument, which is what Agrawal

and Howe have exploited [12, 13]. The matching relation (2.2) can be modified if the

embedding of QCD into the bigger group G is non-trivial. In fact, (2.2) has a very simple

and intuitive interpretation: the 1-instanton solution of the low energy H theory is also

a 1-instanton solution of the high energy G theory (with additional bosonic zero modes

of the high energy theory lifted by spontaneous symmetry breaking). However, other

kinds of embedding are possible [32] — for example, the 1-instanton solution of the low

energy theory may represent a 2-instanton, or in general a k-instanton configuration in the

high energy theory. The first examples of non-trivial effects due to such instantons were

identified in the context of exact results in SUSY gauge theories by Intriligator, Seiberg

and Leigh [31]. In this case the matching relation (2.2) would be modified to

(

Λ

M

)kbG

=

(

ΛQCD

M

)bQCD

(2.12)

where the integer k is usually referred to as the index of embedding, first identified

in [31, 33, 34] and explained extensively in [32]. Such a non-trivial factor usually ap-

pears when there are instantons in the partially broken gauge group [32], meaning that

the instantons of the unbroken group do not map one-to-one to the instantons of the high

energy theory. Topologically it is the homotopy group π3(G/H) that will be relevant,

and when both G and H are simple one can show that π3(G/H) = Zk, where k is the

index of embedding. In this paper we are interested in models where one breaks a prod-

uct group to its diagonal subgroup. For example, when the symmetry breaking pattern

is given by SU(N) × SU(N) → SU(N) the 1-instanton of the low-energy theory actually

corresponds to a (1, 1) of the UV theory, while for SU(N)k → SU(N) the 1-instanton will

be a (1, 1, 1, . . . , 1) instanton. For the product group case the relevant homotopy group

will be π3(SU(N)k/SU(N)) = Z×Z× . . . Z with k− 1 Z-factors. Either way, if dynamical

scales and beta function coefficients of all UV gauge group factors are equal, the matching

relation will be given by eq. (2.12). More generally the scale matching relation (2.12) is

replaced by a relation where factors of dynamical scale on the right-hand side are replaced

by a product of 1-instanton weights of UV gauge group factors:

k
∏

i

(

Λi
M

)bi

=

(

ΛD
M

)bD

. (2.13)

We can see now how this non-trivial mapping of instantons (and matching of dynamical

scales) would possibly lead to an enhancement of the small instanton contributions. When

one has a non-trivial index of embedding, some of the broken instantons are actually
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topologically distinct from those eventually giving rise to the QCD instanton corrections,

hence they will scale differently. From the point of view of scaling they will appear as

“fractional” 1/k instantons, and their contributions may be enhanced compared to the

usual QCD instantons. For a case with index of embedding k while the expression of the

contribution of the small instantons from the partially broken group are still given by (2.7),

the use of the modified matching (2.12) will result in

M ′2
a

m2
a

∼ 1

(4π)F

(

ΛQCD

v

)F (ΛQCD

M

)

bQCD
k

−4

. (2.14)

Already for k = 2 the sign of the exponent of ΛQCD/M will flip, and lead to the possibility of

these terms dominating over the ordinary QCD contributions when M is taken to be large.

In the rest of the paper we will present a detailed calculation of the small instanton

effects in the partially broken gauge group to replace (2.14) with a more precise expression,

paying careful attention to all the relevant O(1) factors and perturbation of the classical

instanton action in the presence of spontaneous symmetry breaking. This will give us a bet-

ter understanding of models and parameter regions in which small instanton contributions

are dominant.

3 One instanton effects in a broken SU(N)

We now turn to the actual instanton calculation that will verify the validity of our estimates

in section 2 and provide us with more precise results. As we have explained, contributions

of small instantons that are topologically equivalent to single instanton configurations of

the low energy theory are always subleading. Instead we will consider instantons of the high

energy theory that are absent from the effective low energy description. These instantons

must be carefully integrated out and their effects must be taken into account explicitly

when constructing the low energy description. We will be especially interested in product

group theories broken to a diagonal subgroup, for example, SU(N)1×SU(N)2 → SU(N)D.

The low-energy SU(N)D theory contains only a subset of the instanton solutions of the full

SU(N)1 × SU(N)2 theory [32]. For example a 1-instanton configuration in the diagonal

subgroup is a (1, 1) combination of simultaneous 1-instanton solutions in the individual

SU(N) factors. However, configurations with instantons in only one of the SU(N) factors

(e.g. (1, 0) or (0, 1)) are absent from the effective theory. Since these instantons are embed-

ded in the completely broken factor of the high energy gauge group, it is useful to review

the instanton calculus in (spontaneously broken) SU(N) gauge theories before re-examining

the explicit models in [12]. We will loosely follow the instanton calculation in supersymmet-

ric QCD by Cordes [39] with slight modifications due to the non-sypersymmetric nature

of the problem at hand. It is common practice to perform instanton calculations using

Pauli-Villars (PV) regularization, which we will also use here. However, in perturbative

calculations dimensional regularization and the MS or MS scheme are more common. We

summarize the formulae needed to convert from PV to MS scheme in appendix B.
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In the following we consider an SU(N) gauge theory with a matter sector consisting

of S ≥ N − 1 scalars5 φn, n = 1, . . . , S and F (approximately) massless fermions ψf , f =

1, . . . , F in the fundamental representation of SU(N). The euclidean action for this model

is given by

SE = SG + Sφ + Sψ , (3.1)

where

SG =

∫

d4x

[

1

4
GAµνG

A
µν + iθ

g2

32π2
GAµνG̃

A
µν + Lghost(η, η̄)

]

, (3.2)

Sφ =

∫

d4x
[

(Dµφn)
†Dµφn + V (φn)

]

, (3.3)

Sψ =

∫

d4x ψ̄f (−iγµDµ)ψf , (3.4)

with Dµφn = (∂µ − igAAµT
A)φn. TA, A = 1, . . . , N2 − 1 are the SU(N) generators. A

sum over the scalar and fermion generations is implied. We assume the scalar poten-

tial V (φf ) to be such that the scalars develop a VEV which breaks the SU(N) gauge

symmetry completely.

For vanishing scalar VEVs the euclidean Yang-Mills action SG possesses exact instan-

ton solutions for the classical equations of motion. The one instanton solution, centered at

x0, with unit topological charge (Q = 1) in singular gauge takes the form [40]

AQ=1
µ (x) =

2ρ2

g
η̄aµν

(x− x0)v
(x− x0)2((x− x0)2 + ρ2)

Ja , (3.5)

where η̄aµν are ’t Hooft symbols, ρ is the instanton size and Ja, a = 1, 2, 3 are the generators

of the SU(2) subgroup into which the instanton is embedded. In the following we will work

with the so called minimal embedding, where one embeds the SU(2) into the 2 × 2 upper-

left-hand corner of the N × N matrices which generate the fundamental representation

of SU(N).

Once the scalars obtain a VEV |〈φn〉| > 0 and break SU(N) completely, no exact

instanton solutions exist.6 However, one expects that for small instantons, gρ|〈φn〉| ≪ 1,

the solution (3.5) remains a good approximation and the path integral is still dominated by

instanton-like configurations. The path integral can be performed by using the constrained

instanton formalism of Affleck [41]. In the constrained instanton formalism the scalars

satisfy the equation of motion in the classical instanton background, D2(Acl)φ = 0. As a

result to leading order in gρ|〈φ〉| the scalar profile is given by

φin(x) =











(

x2

x2+ρ2

)1/2

〈φin〉 for i = 1, 2

〈φin〉 for i = 3, . . . , N

, (3.6)

where i is the SU(N) index of the scalar multiplets.

5In order to break SU(N) completely one needs at least N − 1 scalar fields.
6If SU(N) is only partially broken with an unbroken residual SU(2) subgroup, i.e. rank(〈φin〉) < N − 1,

exact instanton solutions still exist in the unbroken SU(2).
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Evaluating the classical action of the constrained instanton with Q = 1 in the presence

of the scalar profile, one finds7

S0(ρ) =
8π2

g2
+ 2π2ρ2

2
∑

i=1

S
∑

n=1

|〈φin〉|2 + iθ . (3.7)

Thus large instantons (gρ|〈φf 〉| ≫ 1) are exponentially suppressed. This provides a natural

IR cutoff for the instanton size and makes instanton contributions to observables calculable.

In the following we are interested in WSU(N), the one-instanton semi-classical approx-

imation of the vacuum to vacuum amplitude

WSU(N) ≡ 〈0|0〉∆Q=1 =

∫

1−instDAµDηDη̄DφfDφ
†
fDψDψ̄n e−SE

∫

Acl
µ=0DAµDηDη̄DφfDφ

†
fDψDψ̄n e−SE

. (3.8)

We can evaluate the functional integral in eq. (3.8) in the semi-classical approximation by

expanding the euclidean action to second order in the fields around the classical solutions

in eq. (3.6) and (3.5)

SE = S0(ρ) +

∫

d4x

[

1

2
AµMAAµ + η̄Mghostη + φ†Mφφ+ ψ̄Mψψ

]

, (3.9)

where φ = (φ1, . . . , φS)
T and ψ = (ψ1, . . . , ψF )

T are vectors containing all scalar and

fermion generations, and perform the functional integral.

The various contributions to the generating functional will be discussed thoroughly in

the next sections, but we already present the final expression of the general result here.

For the above field content the vacuum to vacuum amplitude is given by

WSU(N) = e−iθ
∫

d4x0dρ

ρ5
dN (ρ)

∫

dµ̃ e−2π2ρ2
∑2

i=1

∑S
n=1 |〈φ̃in〉(µ̃)|

2

∫ 2F
∏

f=1

ρ1/2dξ
(0)
f , (3.10)

where dN (ρ) is the instanton density in vacuum

dN (ρ) =
C1e

−(S−2F )α(1/2)

(N − 1)!(N − 2)!

(

8π2

g2

)2N

e
−

8π2

g2(1/ρ)
−C2N

. (3.11)

C1 and C2 are defined as

C1 =
2e5/6

π2
≈ 0.466 , (3.12)

C2 =
5

3
ln 2− 17

36
+

1

3
(ln 2π + γ) +

2

π2

∞
∑

s=1

ln s

s2
≈ 1.678 . (3.13)

α(t) is defined in [40] (with α(0) = 0, α(1/2) = 0.145873, α(1) = 0.443307),
∫

dµ̃ is the

integral over the collective coordinates corresponding to the orientation of the instanton

within SU(N) normalized to unity, and
∫

dξ
(0)
f is the integral over the fermion zero modes.

Note that 〈φ̃in〉(µ̃) are the scalar VEVs rotated in group space to account for the arbitrary

location of the instanton SU(2) inside SU(N).

7Note that in the background of an instanton with topological charge Q, g2

32π2

∫
d4x(GA

µνG̃
A
µν)inst = Q.
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3.1 Bosonic contributions

Performing the integral in eq. (3.8) over the bosonic sector of the theory, i.e. integrating

over the gauge, scalar and ghost fields one obtains

WSU(N) =

∫

∏

i

dγiJ(γ)e
−S0(ρ)Iψ(γ)

(det′MA(γ))
−1/2(det′Mghost(γ))(det

′Mφ(γ))
−2

((detMA)−1/2(detMghost)(detMφ)−2)Acl
µ=0

,

(3.14)

where the contribution from the fermions is encoded in Iψ, which will be computed later,

and the determinants det′ are taken over non-zero modes only.

The zero modes are flat directions in the action and can be parameterised in terms of

collective coordinates γi

γi =















(x0)i i = 1, . . . , 4

ρ i = 5

tA i = A+ 5 = 6, . . . , N2 + 4

(3.15)

where x0 is the instanton position, ρ its size and tA are the N2 − 1 parameters describing

general SU(N) transformations. The group theoretic zero modes depend on the embedding

of the instanton into SU(N) and their effects can be found by classifying how the generators

TA of the full group transform under the Ja generators of the SU(2) subgroup in which

the instanton is embedded. For SU(N) one finds i) one triplet (Ja themselves) ii) 2(N −2)

doublets and iii) N2−4N+4 singlets. There are no normalizable zero modes corresponding

to singlet generators, which means there are 4N normalizable zero modes altogether.

Replacing the integration over the zero modes in the functional integral by an integra-

tion over the collective coordinates introduces the Jacobian J(γ) in eq. (3.14). Using the

normalization of the zero modes one finds (see e.g. [39] and [42])8

∫ 4N
∏

i

dγi J(γ) =

∫

d4x0 dρ dµ
27

ρ5

(

πρ2

g2

)2N

, (3.16)

where dµ is the Haar measure of the quotient group SU(N)/TN , with TN being the stability

group of the instanton, i.e. the subgroup of SU(N) that leaves the instanton invariant.

In [39] it is shown that for integrands invariant under TN , the group integration can be

expressed as
∫

SU(N)/TN

dµ =
V (SU(N − 1))

V (TN )

∫

SU(N)/SU(N−1)
dµ

=
24N−6πN−2

(N − 2)!

∫

S2N−1

δ(
√

∑

|yi|2 − 1) d2y1 . . . d
2yN .

(3.17)

We will denote a general element of the coset SU(N)/SU(N − 1) by Ω. It is possible to

parameterise Ω in terms of the yi [39], but the explicit form of Ω will not be needed in

8Cordes [39] and Bernard [42] use different normalizations for the SU(N) generators, which is reflected

in their different results for the zero-mode normalization (apart from the missing factor of ρ in ||A
(isodoub)
µ ||

in eq. (5.7) of [39], which is clearly a typo). In the following we will follow Cordes’ conventions.
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the following. Using the fact that the surface of the S2N−1 sphere is given by S(S2N−1) =

2πN/(N − 1)!, we can define a normalized integration measure

∫

dµ̃ =
(N − 1)!

2πN

∫

S2N−1

δ

(

√

∑

|yi|2 − 1

)

d2y1 . . . d
2yN . (3.18)

As a last step we need to evaluate the functional determinants over the non-zero modes.

This calculation has been done in ’t Hooft’s original paper [40] for an SU(2) gauge theory.

The generalization to SU(N) is straightforward (see e.g. [42]) and yields in Pauli-Villars

regularization

(det′MA(γ))
−1/2(det′Mghost(γ))(det

′Mφ(γ))
−2

((detMA)−1/2(detMghost)(detMφ)−2)Acl
µ=0

= exp

[

−
(

1

3
N +

1

6

∑

t

S(t)C(t)

)

ln(µ0ρ)− α(1)− 2(N − 2)α(1/2)−
∑

t

S(t)α(t)

]

,

(3.19)

where t denotes the isospin representation under the instanton SU(2). S(t) is the number

of scalar multiplets with isospin t, where each complex multiplet counts as 1 and each real

multiplet as 1/2 and C(t) = 2
3 t(t + 1)(2t + 1). Each scalar fundamental contributes one

multiplet in the isospin 1/2 representation and (N − 2) singlets.

Substituting eqs. (3.16), (3.17), (3.18) and (3.19) into eq. (3.14) and recalling that

in Pauli-Villars regularization each zero-mode yields a factor µ0 of the regulator field,

we obtain

WSU(N) =
C1 e

−NSα(1/2)

(N − 1)!(N − 2)!
e−iθ

(

8π2

g2

)2N ∫ d4x0 dρ

ρ5
(µ0ρ)

b0e−8π2/g2−C2N

×
∫

dµ̃ Iψ(γ) e
−2π2ρ2

∑2
i=1

∑S
n=1 |〈φin〉|

2
,

(3.20)

where b0 =
11
3 N − 1

6S is the bosonic contribution to the β-function and

C1 =
4 e−α(1)+4α(1/2)

π2
, C2 = 2 ln 2 + 2α(1/2) . (3.21)

Note that when using the explicit expression for α(t), the above definition of C1 and C2

agrees with eqs. (3.12) and (3.13).

The group integration
∫

dµ̃ in eq. (3.20) corresponds to rotating the instanton embed-

ding in SU(N). This is equivalent to keeping the instanton fixed and instead rotating all

other fields, in particular the scalar fields and their VEVs, by a general SU(N)/SU(N − 1)

group element Ω, i.e. in eq. (3.20) we should make the replacement

〈φin〉 → 〈φ̃in〉(µ̃) =
N
∑

j=1

Ωij〈φjn〉 . (3.22)
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3.2 Fermionic contributions

Analogously to the bosonic contributions to the vacuum to vacuum amplitude, one can

isolate the zero modes in the integration over the fermionic fields, i.e.

DψDψ̄ =
∏

f

||ψ(0)
f ||−1 dξ

(0)
f

∏

f ′

||ψ̄(0)
f ′ ||−1 dξ̄

(0)
f ′ Dψ′Dψ̄′ , (3.23)

where ψ
(0)
f and ψ̄

(0)
f are the zero mode wave functions of the Dirac operator Mmn

ψ =

−iδmnγµDµ and dξ
(0)
f , dξ̄

(0)
f are Grassmann integration measures with mass dimension

[dξ
(0)
f ] = [dξ̄

(0)
f ] = 1

2 . The explicit form of the normalized zero-modes in singular gauge, for

an instanton centered at x0, is given by [43]

ψ
(0)
f (x)αi =

ρ

π

(x− x0)µ

((x− x0)2)1/2((x− x0)2 + ρ2)3/2

(

0

i(τ+µ )jiϕαj

)

ǫαk , (3.24)

where α, i, j = 1, 2 are the spinor and SU(N) indices (restricted to the instanton SU(2)

with ψ
(0)
f (x)αi = 0 for i = 3, . . . , N), respectively.9 τ+µ is defined as τ+µ = (~τ ,−i) with

~τ being the Pauli matrices. ϕαj is a two component Weyl spinor with ϕαj = ǫαj . Note

that for small instantons, far from the instanton center, the zero mode wavefunction is

proportional to the free fermion propagator SF (x) =
γµxµ

2π2(x2)2
. Each massless Dirac fermion

in the fundamental representation possesses two zero modes, one for each chirality, in the

one instanton background. This implies that in the model with F fermion flavors we have

2F fermionic zero modes.

The integral over the non-zero modes can be directly performed, which yields

Iψ =

∫ 2F
∏

f=1

dξ
(0)
f µ−F0

(

det′M †
ψMψ

(detM †
ψMψ)Acl

µ=0

)1/2

, (3.25)

where we assumed normalized zero modes and collectively denoted the zero mode integra-

tion measure as dξ
(0)
f . Additionally we inserted a factor µ

−1/2
0 of the regulator field for

each of the 2F zero modes, since we work in Pauli-Villars regularization scheme.

The non-zero mode determinant was computed by ’t Hooft in his original paper [40]

(

det′M †
ψMψ

(detM †
ψMψ)Acl

µ=0

)1/2

= exp

[

1

3
F ln(ρµ0) + 2Fα(1/2)

]

. (3.26)

Combining eqs. (3.25) and (3.26), we obtain the full fermionic contribution to WSU(N)

Iψ = ρF e−
2
3F ln(ρµ0)+2Fα(1/2)

∫ 2F
∏

f=1

dξ
(0)
f . (3.27)

Plugging this result into eq. (3.20), one obtains the vacuum to vacuum amplitude for a

broken SU(N) gauge theory in a one instanton background, which we already previewed

in eq. (3.10).

9Note that the zero modes naively seem to have the wrong dimension (mass dimension 2 instead of

3/2), but the combination with the corresponding Grassmann variable ξ
(0)
f in the expansion ψf (x) =

∑
k ψ

(k)
f (x) ξ

(k)
f has the right dimension ([ξ

(k)
f ] = −1/2, s.t.

∫
dξ

(k)
f ξ

(k)
f = 1).
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3.3 Vacuum energy/axion potential

Instanton configurations in the vacuum to vacuum amplitude generate a contribution to the

vacuum energy which depends on the θ angle. This can be encoded in terms of an effective

Lagrangian that captures the 1-(anti)instanton effects in terms of a potential for the θ

angle, which in the presence of an axion will be interpreted as an effective potential/mass

term for the axion itself. In a theory without massless fermions this potential is simply

given by

− δLF=0 = 2

∫

dρ

ρ5

∫

dµ̃CN (ρ) cos(θ) , (3.28)

where CN (ρ) contains the instanton density and the action of the Higgs scalars

CN (ρ) = dN (ρ) e
−2π2ρ2

∑2
i=1

∑S
n=1 |〈φ̃in〉|

2
. (3.29)

If the theory contains massless fermions, eq. (3.27) implies that due to the ξ
(0)
f integration

any correlation function, including the vacuum to vacuum amplitude, which does not in-

clude the full set of 2F chiral fermions vanishes. Effectively the integration projects out the

zero mode wave functions, i.e. for a fermion field expanded in eigenmodes ψf = ψ
(0)
f ξ

(0)
f +. . .,

the integration yields
∫

dξ
(0)
f ψf = ψ

(0)
f . Thus the effect of massless fermions in the instanton

background is captured by an effective 2F -fermion operator, the so called ’t Hooft operator.

However, even in the presence of massless fermions instantons can still generate a

potential for the θ angle if the theory contains further interactions. The easiest way to

see that is by working in the effective theory with a ’t Hooft operator and closing up

the external legs using the additional interaction terms forming a vacuum bubble (see

figure 1), which contributes to the vacuum energy. Alternatively one can calculate the non-

vanishing contribution to the vacuum to vacuum amplitude directly from the path integral

by including higher orders in the interaction that includes all massless fermions. In the

following we will pursue the second approach, which corresponds to the full calculation.

We do expect the effective ’t Hooft operator approach to be a good approximation to the

full calculation, which we will indeed verify in appendix A where we present the ‘t Hooft

operator method and also compare the results of the two approaches.

Let us assume the theory contains an additional scalar H (which we will later identify

with the SM Higgs), which couples to the massless fermions via Yukawa interactions, i.e.

let us add the following term to the Euclidean action

∆S = S0[H]− i

∫

d4x

F
∑

f=1

yf√
2
H(x)ψ̄f (x)ψf (x) , (3.30)

where S0[H] is the free action for the scalar H. With this addition the vacuum to vacuum

amplitude now takes the form

WSU(N) = e−iθ
∫

d4x0

∫

dµ̃

∫

dρ

ρ5
CN (ρ)

∫

DH e−S0[H]

×
∫ F
∏

f=1

ρ dξ
(0)
f dξ̄

(0)
f e

i
∫
d4x

∑F
f=1

yf√
2
H(x)ψ̄f (x)ψf (x) .

(3.31)
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At order F in the Yukawa couplings, the expansion of the exponential contains a term with

all 2F massless fermions. The integration over ξ
(0)
f and ξ̄

(0)
f projects out the corresponding

zero mode wave functions and all lower order terms vanish due to this integration. The

leading contribution to WSU(N), assuming F is even so that the path integral of the Higgs

field does not vanish (ie. the Higgs loops can be closed up), is therefore10

WSU(N) = e−iθ
∫

d4x0

∫

dµ̃

∫

dρ

ρ5
CN (ρ)

∫

DH e−S0[H]

×
F
∏

f=1

(

iyfρ√
2

∫

d4xH(x)ψ̄
(0)
f (x)ψ

(0)
f (x)

)

.
(3.32)

Performing the path integral for H, only fully contracted Higgs fields survive, each con-

traction giving a Feynman propagator

WSU(N) = e−iθ
∫

d4x0

∫

dµ̃

∫

dρ

ρ5
CN (ρ)κF

F
∏

f=1

(

yfρ√
2

)

IF/2 , (3.33)

where κF = (F − 1) · (F − 3) · · · 1 counts the number of equivalent contractions and I is

the integral over the fermion zero modes and scalar Feynman propagators ∆F (x1 − x2)

I = −
∫

d4x1

∫

d4x2 ψ̄
(0)
f (x1)ψ

(0)
f (x1)ψ̄

(0)
f ′ (x2)ψ

(0)
f ′ (x2)∆F (x1 − x2) . (3.34)

Using the explicit form for the fermion zero modes11 ψ
(0)
f in eq. (3.24) I simplifies to

I =
ρ4

4π8

∫

d4x1

∫

d4x2

∫

d4p
1

p2 +m2
H

e−ipx1

(x21 + ρ2)3
eipx2

(x22 + ρ2)3
. (3.35)

Using the identity
∫

d4x
e−ipx

(x2 + ρ2)3
=

π2

2ρ2
(pρ)K1(pρ) , (3.36)

where K1 is a modified Bessel function of the second kind, we can evaluate I explicitly in

the limit ρ≪ 1/mH

I ≃ 1

12π2ρ2
. (3.37)

Plugging this into eq. (3.33) we can immediately write down the leading contribution to

the potential for the θ angle, generated by 1-(anti)instanton configurations, for theories

with massless fermions and a Yukawa interaction

− δLF = 2

∫

dρ

ρ5

∫

dµ̃CN (ρ)κF

F
∏

f=1

(

yf√
24π

)

cos(θ) . (3.38)

10Note that the 1/F ! from the expansion of the exponential is compensated by F ! terms which are

identical after renaming the integration variables.
11Note that similarly to the scalars φin one should rotate ψ

(0)
f with the general SU(N)/SU(N − 1) coset

element Ω. However, due to the SU(N) invariant Yukawa interaction, the Ω dependence cancels out and I

is independent of µ̃.
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broken at fai > M . This yields one axion for each SU(3)

L =
k
∑

i=1

Li , Li = −1

4
Gai µνG

aµν
i +

g2i
32π2

(

ai
fai

− θi

)

Gai µνG̃
aµν
i . (4.2)

As depicted in figure 2, the gauge group is broken to SU(3)QCD by higgsing it with k − 1

scalar link fields Σi i+1, which transform as a bifundamental (3, 3̄) under SU(3)i×SU(3)i+1.

A potential12 of the form [12, 44]

V (Σ) = −m2
ΣTr(ΣΣ

†) +
λ

2
[Tr(ΣΣ†)]2 +

κ

2
Tr(ΣΣ†ΣΣ†) (4.3)

for each of the link fields induces a VEV

〈Σ〉 = mΣ√
κ+ 3λ

13 ≡ vΣ13 , (4.4)

which for simplicity we take to be the same for all link fields. Each symmetry breaking VEV

results in one massive gauge and one massive scalar multiplet in the adjoint representation

of the unbroken diagonal group. The masses of gauge and scalar multiplets are of the

order13 givΣ and κvΣ and they can be integrated out. The dynamical scale of the low

energy effective field theory is given by

Λ
bQCD

QCD =

∏k
i Λ

bi
i

M
∑

i bi−bQCD
, (4.5)

where the matching scale M is the geometric mean of the eigenvalues of the mass matrix

for the heavy states. In terms of the QCD coupling constant gs this implies the usual

matching relation at M

1

g2s(M)
=

k
∑

i=1

1

g2i (M)
, (4.6)

The QCD θ angle is simply the sum of the individual SU(3)i θ angles

θ̄QCD =

k
∑

i=1

θ̄i , (4.7)

where θ̄ = θ+arg det Mf is the physical theta angle, which contains a possible CP violating

phase from the fermion mass matrix. At the same time one also has to integrate out the

small instantons in the UV theory, which generate a potential for the axions. Thus the

effective Lagrangian for the axion fields takes the form14

La =
k
∑

i=1

m2
aif

2
ai cos

(

ai
fai

− θ̄i

)

+
g2s

32π2

k
∑

i=1

(

ai
fai

− θ̄i

)

GaµνG̃
µν
i . (4.8)

12One can add U(1) factors to forbid terms like µ detΣ [12].
13For simplicity we will assume that g2/κ ∼ 1 and will not distinguish between the gauge boson and

scalar thresholds.
14In [12] the mass scale of the potential m2

ai
f2
ai

was denoted Λ4
i .
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One can see θ̄QCD is relaxed to zero due to two independent effects. First, small instanton

contributions in broken gauge factors relax each individual θ̄i to zero. In addition, once

QCD confines, the potential is generated for the linear combination a/fa =
∑

i ai/fai which

relaxes θ̄QCD to zero just like the usual axion would. In contrast to standard axion models

there is not just one but k axions in the IR spectrum and it is the lightest mass eigenstate

which plays the role of the QCD axion. When small instanton contributions are dominant

the mass of this lightest state can be significantly higher than the standard QCD prediction

in eq. (1.1).

4.2 Small instanton contributions

When working in the EFT one has to take into account the instanton configurations which

are not mapped to the low energy theory, i.e. QCD. These are the independent 1-instanton

contributions from SU(3)1, . . . , SU(3)k. Since they are broken to their diagonal combination

each SU(3) factor considered separately is completely broken and therefore we can use the

formalism of section 3 with three Higgs scalars φn, n = 1, 2, 3 for each link field, which

develop a VEV15

〈φin〉 = vΣ δin , (4.9)

where i = 1, 2, 3 are the SU(3) indices. This allows us to evaluate the classical action for

the Higgs scalars from one of the link fields in the instanton background explicitly

Sφ0 (ρ) = 2π2ρ2
2
∑

i=1

3
∑

n=1

|〈φ̃in〉|2 = 2π2ρ2v2Σ

2
∑

i=1

3
∑

n=1

|Ωin|2 = 4π2ρ2v2Σ , (4.10)

where we considered the rotated VEVs (see eq. (3.22)) to account for arbitrary instanton

locations inside SU(3).16 The result is independent of µ̃ and we can therefore do the

now trivial group integration in the results of section 3.3. Note that the scalar action for

SU(3)2, . . . , SU(3)k−1 is twice as large, since each of them couples to two link fields.

We begin by considering the SU(3) sectors without fermions. The last of these sectors,

i.e. SU(3)k, has only one scalar link, i.e. S = 3 scalars in the fundamental representation,

and the beta function coefficient bk = 21/2. For this sector the vacuum-vacuum amplitude

contributes directly to the axion potential (see eq. (3.28)) with a mass scale mak of

m2
ak
f2ak =

(

Λk
M

)bk
(

M

2πvΣ

)bk−4

M4 , (4.11)

where the factor (M/2πvΣ)
bk−4 converts between the physical mass threshold at M and

the effective cutoff of the instanton size integral at 1/ρ ∼ 2πvΣ, while the RG invariant

scale of SU(3)k sector is defined by

Λbkk = d3(M)|Sk,F=0 Γ[bk/2− 2]M bk , (4.12)

15From the point of view of one of the SU(3)i factors the bifundamental Σi i+1 looks like three scalars in

the fundamental representation.
16Note that the explicit form of Ω in SU(3) is not needed to obtain the factor of 2.

∑2
i=1

∑3
f=1 |Ωif |

2

sums the norms of the first two row vectors in Ω and since Ω ∈ SU(3) each row vector is normalized to

unity.
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and the instanton weight d3(M)|Sk,F=0 is given in (3.11). The remaining sectors i =

2, . . . , k − 1 have two link fields, i.e. S = 6 scalars in the fundamental representation and

the beta function coefficient bi = 10. The vacuum-vacuum amplitude contributes to the

axion potential in these sectors with a mass scale mai which is given by eq. (4.11) after the

replacement k → i and vΣ →
√
2 vΣ. The additional suppression by 22−bi/2 originates from

the scalar action which is twice as large, since all of these sectors couple to two link fields.

All the SM quarks are charged under the SU(3)1 sector. Thus its particle content

is characterized by F = 6 approximately massless fermions17 and S = 3 scalars in the

fundamental representation, corresponding to a beta function coefficient of b1 = 13/2.

Taking the result for the vacuum energy in the instanton background with massless quarks

and a Yukawa interaction from eq. (3.38) for N = 3 and θ = θ̄1 − a1
fa1

and matching it to

the axion potential in eq. (4.8) we obtain the scale m2
a1f

2
a1

m2
a1f

2
a1 = K

∫

dρ

ρ5
2C3(ρ) . (4.13)

where K is given by

K =
40

9

yuydysycybyt
(16π2)3

. (4.14)

Note that K reproduces a loop factor expected from an EFT diagram in figure 1(b) and

included in the results of [12]. However, the full calculation of correlation functions in the

instanton background performed in section 3.3 allows us to extract the exact numerical

coefficient multiplying this loop factor. Performing the ρ integral in eq. (4.13) we find

m2
a1f

2
a1 = K

(

Λ1

M

)b1 ( M

2πvΣ

)b1−4

M4 , (4.15)

where the dynamical scale of SU(3)1 is defined by

Λb11 = d3(M)|S=3,F=6 Γ[b1/2− 2]M b1 , (4.16)

and once again the instanton weight d3(M)|S=3,F=6 is given in (3.11). Note that these

results are in agreement with the qualitative discussion of section 2.

The unusual scaling of the axion mass with the physical QCD scale can be seen from

the fact that d3(M) ∼ exp(− 8π2

g2i (M)
) where g2i is the coupling of the ith SU(3) factor rather

than the actual QCD coupling, implying that Λbii will be a fractional power of Λ
bQCD

QCD , where

the actual fraction depends on the ratios of coupling strengths and the distribution of the

matter fields among the different group factors.

However the full expression of the corrections to the axion mass eqs. (4.11)–(4.15) also

includes an additional suppression factors, for example the conversion factor (M/2πvΣ)
bi−4.

Indeed the presence of this factor implies that, up to an order one coefficient, our results

for m2
aif

2
ai are smaller than the previous estimates (m̃2

aif
2
ai) in [12] by a factor of

m2
ai

m̃2
ai

≃ 2−6 ·
(

M

2πvΣ

)bi−4

. (4.17)

17To a good approximation all SM quarks are massless at scales M ≫TeV.
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This suppression is due to two independent reasons:

• Our vacuum instanton density dN (ρ)|S=F=0 is smaller by a factor of 2−2N than the

one used in [12]. This discrepancy originates from a small error in ’t Hooft’s original

calculation [40], which was later corrected in an Erratum. However, the source for

the instanton density [45] cited in [12] still contains this error.

• In [12] the ρ integration was cut off at ρ = 1/M by hand. However, when working

in the constrained instanton framework the ρ integral is convergent and we find that

the actual cutoff is roughly ρ ∼ 1/(2πvΣ) (see also [15]).

The actual size of the suppression depends on the relation between the matching scale M

and the VEV vΣ. Since M corresponds to the mass scale of the massive gauge bosons, it

scales like M = geff vΣ, where geff is some combination of g1, . . . , gk. For couplings of O(1)

this leads to a suppression of (2π)4−bi , which is strongest for the SU(3) group factors that

do not couple to fermions. As we will show momentarily, this suppression is significant

in the minimal model with only two group factors, but is less important once more SU(3)

factors are included and the matching relation in eq. (4.6) allows larger couplings in the

individual SU(3) factors.

4.3 Example SU(3)2, SU(3)3 → SU(3)QCD

Let us now have a look at the minimal model with k = 2. In this case the matching scale

is directly set by masses of the heavy gauge bosons (and scalars)

M2 = (g21 + g22)v
2
Σ . (4.18)

In order to do the matching we use the RG equation to run the MS QCD coupling from the

top mass at αs(mt) = 0.10 to the matching scale M . The small instanton contribution to

the axion mass relative to the QCD contribution can now be computed using the mass scales

m2
a2f

2
a2 and m2

a1f
2
a1 from eqs. (4.11) and (4.15) respectively. For simplicity we will assume

that fa1 = fa2 = fa and use eq. (1.1) to obtain a numerical value for fama = (75.5 MeV)2.

This ratio is shown for both axions (solid for ma1/ma and dashed for ma2/ma) for the

choice of M = 1014GeV for the symmetry breaking scale in figure 3(a). In contrast to

previous estimates [12] (shown in red), the full calculation shows that there is no region

in parameter space where both axion masses are enhanced by more than an O(1) factor

compared to the pure QCD prediction at the same time. One of the axions might be

heavy, but then the other will be dominated by the QCD contribution to its potential

and will therefore be like the standard QCD axion. The largest effect of small instanton

contributions to both axion masses is found at the intersection of the two curves where both

axions have the same mass which is about Ma/ma = 2.4 times heavier than the standard

QCD axion. Figure 3(b) shows the maximal enhancement of the axion mass due to small

instantons as a function of the symmetry breaking scale M . This shows that even taking

M to be at the Planck scale the axion mass cannot deviate by more than a factor of ∼ 100

from the QCD prediction. Due to the suppression factor in eq. (4.17) the enhancement is

lower by about two orders of magnitude than the initial prediction in [12].
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the large QCD instantons and significantly raise the axion mass away from the usual

m2
a − fa relation.

We have carried out the full 1-instanton calculation of the vacuum-to-vacuum transition

amplitude of the broken product gauge group theories. As a first step we calculated the

1-instanton contribution to the vacuum bubble for a fully broken bosonic SU(N) theory by

performing the integral over the bosonic zero modes and non-zero modes. Since the gauge

group is broken the effects of large instantons are exponentially cut off, and the calculation

can be reliably carried out. While the inclusion of fermions and their interactions is usually

handled using a ’t Hooft operator approximation, we were able to evaluate the effects of

the fermionic modes along with the Higgs loops needed to close up the zero modes directly

without resorting to the ’t Hooft operator approximation. This has the advantage that the

result is manifestly finite and does not require the introduction of a regulator via a cutoff

(whose exact definition in simple estimates usually leads to some uncertainty on the exact

numerical value of the corrections).

Using this method we were able to perform the calculation in the full theory with

product groups broken to the diagonal and verify the scalings expected from our simple

estimates. While the numerical value of the enhancement is not significant for the simplest

2 product group extension, already for 3 group factors we can obtain a large enhancement

of the axion mass.
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A ’t Hooft operator approach

In this appendix we compute the small instanton contribution to the vacuum energy or ax-

ion potential in the presence of massless fermions using the ’t Hooft operator approximation

and compare it to the full calculation in section 3.3.

In a gauge theory with F massless fermion flavors in the fundamental representation

of SU(N) the pure vacuum-vacuum amplitude in the instanton background vanishes and

the instanton configuration only contributes to correlation functions in which each fermion
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flavor and chirality appears at least once, i.e. for example 〈0|
∏

f (ψ̄fψf )|0〉∆Q=1 6= 0. The

effect of the instanton can thus be captured by the ’t Hooft operator, which is an effective

2F fermion operator of the form (see e.g. [40])

− δLF = e−iθ
∫

dρ

ρ5
CN (ρ)ρ

3F
(

κ
(Nf )
N

)i1···i2F det
f,f ′

(ψ̄Rf (x0)ψLf ′(x0))i1···i2F + h.c. , (A.1)

where the determinant goes over flavor indices and the hermitian conjugate results from the

anti-instanton configuration. CN (ρ) is defined in eq. (3.29) and
(

κ
(Nf )
N

)i1···i2F is obtained by

computing the 2F fermion correlation function in the instanton background and matching

the result to the above effective operator. Note that the integration over the instanton

location inside SU(N), for which we assumed that
∑2

i=1

∑3
n=1 |〈φ̃in〉|2 inside CN (ρ) is

independent of the instanton position, projects out all invariant contractions of the fermion

SU(N) indices i1, . . . , iF . For one fermion flavor the matching is straightforward (see [46]

for an example in SU(2) and SU(3)) and gives

− δLF=1 = e−iθ
∫

dρ

ρ5
CN (ρ)ρ

3κ
(1)
N ψ̄R 1(x0)ψL 1(x0) + h.c. , (A.2)

where we used that
(

κ
(1)
N

)i1i2 = κ
(1)
N δi1i2 (for example for SU(3): κ

(1)
3 = 4π2

3 ).

Since we want to close the ‘t Hooft operator with Higgs loops, we are only interested

in flavor diagonal SU(N) contractions of the form (ψ̄RψL)
F . Therefore we will consider

the effective Lagrangian

− δLF ≃ e−iθ
∫

dρ

ρ5
CN (ρ)(ρ

3κ
(1)
N )F

F
∏

f=1

ψ̄Rf (x0)ψLf (x0) + h.c. . (A.3)

Note that due to Fierz relations among SU(N) invariants, the prefactor (κ
(1)
N )F is not exact,

but will deviate from the full prefactor by an O(1) factor.

Such a ’t Hooft operator contributes to the axion potential if one closes the fermion

legs with loops. The leading contribution arises from closing the operator with Higgs loops

via Yukawa couplings to the fermions as shown in figure 1(b). This is the case since the

diagram only includes marginal couplings and therefore scales as M3F
cut where Mcut is the

cutoff for the divergent loop integrals.

Focusing on SU(3) and identifying θ = θ̄−a1/fa1 , we can match the resulting operator

to the effective Lagrangian in eq. (4.8) to obtain ma1fa1

m2
a1f

2
a1 = 2K

∫

dρ

ρ5
C3(ρ)(4π

2M3ρ3)F , (A.4)

where K contains the Yukawa couplings and loop factors

K =
F
∏

f=1

yf
4π

. (A.5)

Note that we canceled a factor N = 3 from the sum over colors in the loop for each fermion

flavor with the 3−F from (κ
(1)
3 )F . Computing the ρ integral one obtains

m2
a1f

2
a1 = K d3(M)|S=3,F (4π2)FΓ

[

3F + b
(1)
0 − 4

2

](

M

2πvΣ

)b
(1)
0 −4(Mcut

2πvΣ

)3F

M4 , (A.6)

where M is the matching scale for the couplings.
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Comparing this result to eq. (4.15), which was obtained by including the SM Higgs and

Yukawa couplings directly in the path integral evaluation of the vacuum-vacuum amplitude,

one finds that with Mcut, the cutoff of the loop integrals, an additional scale appears.

However, the exact definition of Mcut is ambiguous and always introduces an uncertainty.

Since Mcut enters m
2
a1f

2
a1 with a large power, even O(1) changes in the definition of Mcut

can have a significant impact on m2
a1f

2
a1 . This ambiguity is removed in the calculation in

section 3.3, since the result is manifestly finite.

Both methods are equivalent and therefore we can use the result from section 3.3 to

infer the appropriate definition of Mcut for this process. We find that both approaches

yield the same result, up to an O(1) factor, if one identifies Mcut ≃ vΣ, in nice agreement

with our intuitive expectations.

B Converting results to MS scheme

All results in section 3 were derived in the Pauli-Villars regularization scheme. However,

in perturbative calculations dimensional regularization and the MS or MS scheme are

more common. In this appendix we briefly summarize how to convert the results to these

schemes.

Already in [40] ’t Hooft showed that in order to convert the results to dimensional

regularization one has to do the substitutions

lnµ0 →
1

4− n
− 1

2
γ +

1

2
ln 4π (zero-modes) , (B.1)

lnµ0 →
1

4− n
− 1

2
γ +

1

2
ln 4π − 1

2
(kinetic terms) , (B.2)

where the first substitution has to be made for the µ0 originating from gauge and fermion

zero-modes and the second for µ0 from kinetic terms, i.e. from the non-zero modes and

scalar fields.18 This substitution only affects the running coupling in the exponential

− 8π2

g2(1/ρ)
= − 8π2

g2B(µ0)
+ ln(µ0ρ)

[

(4N − F ) +

(

1

3
F − 1

3
N − 1

6
S

)]

(B.3)

→ 8π2

g2B(n)
+

(

ln ρ+
1

4− n
+

1

2
(ln 4π − γ)

)

b0 −
1

2

(

1

3
F − 1

3
N − 1

6
S

)

, (B.4)

where we separated in eq. (B.3) the contributions to b0 originating from zero modes (first

bracket) from the ones from non-zero modes (second bracket). The renormalized coupling

now depends on the renormalization scheme. Here we will consider MS and MS scheme

18In [40] ’t Hooft found − 5
12

instead of the − 1
2
in eq. (B.2). This mistake was noted by Hasenfratz

and Hasenfratz [47] and reconciled the disagreement with Shore, who did the instanton calculation using

dimensional regularization [48]. ’t Hooft corrected the − 5
12

in eq. (B12) of [49] to −1. However, this was

later again corrected by Shifman [43] to the − 1
2
we use in eq. (B.2).
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which are defined by

8π2

g2MS(1/ρ)
=

8π2

g2B(n)
+

(

ln ρ+
1

4− n

)

b0 , (B.5)

8π2

g2
MS

(1/ρ)
=

8π2

g2B(n)
+

(

ln ρ+
1

4− n
+

1

2
(ln 4π − γ)

)

b0 . (B.6)

Note that in the above we have to identify [40]

gB(n) → gMS(µ) and ln ρ+
1

4− n
→ ln(ρµ) , (B.7)

gB(n) → gMS(µ) and ln ρ+
1

4− n
+

1

2
(ln 4π − γ) → ln(ρµ) , (B.8)

where µ is the renormalization scale in dimensional regularization. Thus to convert our

results to MS scheme we have to replace

e−8π2/g2(1/ρ)−C2N → e−
1
12 (2F−S)e−8π2/g2

MS
(1/ρ)−CMS

2 N , (B.9)

with CMS
2 given by

CMS
2 = C2 −

1

6
. (B.10)

Using this the instanton density in MS scheme is given by

dMS
N (ρ)

∣

∣

∣

F,S
= e−

1
12 (2F−S)+

1
6N dN (ρ)|F,S . (B.11)
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