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ABSTRACT: We examine the contribution of small instantons to the axion mass in various
UV completions of QCD. We show that the reason behind the potential dominance of such
contributions is the non-trivial embedding of QCD into the UV theory. The effects from
instantons in the partially broken gauge group appear as “fractional instanton” corrections
in the effective theory. These will exhibit unusual dependences on the various scales in the
problem whenever the index of embedding is non-trivial. We present a full one-instanton
calculation of the axion mass in the simplest product group models, carefully keeping track
of numerical prefactors. Rather than using a 't Hooft operator approximation we directly
evaluate the contributions to the vacuum bubble, automatically capturing the effects of
closing up external fermion lines with Higgs loops. This approach is manifestly finite and
removes the uncertainty associated with introducing a cutoff scale for the Higgs loops. We
verify that the small instantons may dominate over the QCD contribution for very high
breaking scales and at least three group factors.
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1 Introduction

The past few decades have seen axions become an ever more important ingredient of mod-
ern particle physics beyond the standard model (BSM). The QCD axion provides the most
plausible solution to the strong CP problem [1-4], and at the same time is also a natu-
ral dark matter candidate. Besides the QCD axion, axion-like particles (ALPs) are also
ubiquitous in string theory, and can be used for many different purposes in BSM model
building. For a pedagogic introduction to the axion and the strong CP problem, see for
example [5].

While the coupling of the QCD axion is set by the unknown large Peccei-Quinn (PQ)
symmetry breaking scale f,, its mass is surprisingly well predicted. Even though it is due
to uncalculable strongly coupled QCD effects, chiral symmetry relates the uncalculable
axion mass to the equally uncalculable pion mass, and one obtains the famous relation (see
e.g. [6])
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m2 = mﬂzfﬁ (1.1)
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This formula depends only on known IR quantities in addition to the axion decay con-

stant f, (which sets the coupling strength of the axion), and has been the basis of axion




physics ever since the first attempts to directly detect axions. Eq. (1.1) seems like a ro-
bust prediction: it is an IR effect where the QCD instantons are strongly coupled, and
the expectation is that they will dominate over any additional UV instanton effect, which
would be weakly coupled, and hence suppressed. Indeed one can easily check that for the
simplest UV completions of QCD the effects of small instantons are strongly suppressed, as
long as the theory remains weakly coupled. One possible way to enhance the contributions
of small instantons is to change the running of coupling in the UV and make QCD or its
UV completion strongly coupled again [7-9]. A particularly elegant realization is to embed
QCD into a higher dimensional theory, and it was indeed shown in [10] that small instanton
contributions are naturally enhanced in some 5D theories. This observation allowed [11]
to construct a 5D model where the axion mass is raised by small instantons.

However, recently Agrawal and Howe (AH) [12, 13] presented the surprising result
that for a particular type of UV completion based on product groups small instantons
could provide the dominant contribution to the axion mass even if the UV theory remains
weakly coupled (and hence fully calculable). This possibility opens up new regions of the
parameter space on the m?2, f, plane. Interesting models implementing the mechanism
of [12] were proposed in [14-18], applications to models of inflation were studied in [19].
Other approaches to modify the axion mass within QCD were proposed in [20-23] while
in [24-30] the axion mass is raised by coupling it to a new confining gauge group.

In this paper we re-examine the models presented in [12, 13] in order to identify the
underlying dynamics responsible for an enhancement of small instanton contributions. We
identify the non-trivial embedding of QCD into a high-energy gauge group G as the main
source behind this enhancement. It is well-known that a spontaneous symmetry breaking
can result in unusual matching relations [31, 32] of the form
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where the integer k is commonly referred to as the index of embedding [31], A¢ and Aqcp
(be and bgcp) are the dynamical scales (beta functions) of the high and low energy the-
ories respectively, and M is the symmetry breaking scale. Such a scale matching relation
implies that the ordinary l-instanton solution of the low energy theory is identified with a
k-instanton solution of the high energy theory [32]. To be more precise, there are certain
small instanton configurations that live fully in the broken group, and do not have corre-
sponding instantons in the low energy theory. We will show that the contributions of these
configurations to the QCD axion mass scale as

b,
m% 1 Aqcep F M \* =

5 O 7 (1.3)
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where Aqcp is the QCD scale, v is the Higgs VEV, F' is the number of flavors and bgcp =

UN,— 2F. While for k = 1 every factor in (1.3) is smaller than 1 leading to a strong
suppression, we find that already for k& = 2 small instanton contributions are enhanced
by powers of M /Aqcp that may overwhelm the other suppression factors for sufficiently
large M.



The aim of this paper is twofold. First we want to explain how (1.3) is obtained,
and the physics leading to it in terms of the effects of the instantons in the partially
broken group. Our second aim is to present a detailed estimate of the actual contribution
of these instantons to the axion mass. After accounting for all O(1) factors, including
the perturbation of the classical instanton action in the presence of the Higgs VEV,! we
will be able to identify specific models which successfully implement the Agrawal-Howe
enhancement mechanism.

The paper is organized as follows: in section 2 we present a back-of-the-envelope
estimate for the scaling of the various small instanton contributions in partially broken
gauge theories, and explain why the case with the non-trivial embeddings of the low-
energy instanton is the most interesting one. The actual instanton calculation is set up in
section 3 where we show how to do the instanton calculation in a completely broken SU(N)
theory. Note that in this section we show how to obtain a non-vanishing contribution
in the presence of fermions without using the 't Hooft operator approximation, but rather
directly performing the integral over the fermionic and bosonic modes, which automatically
includes the effects of additional scalar loops closing up the external fermion lines in the 't
Hooft operator. We apply these results to the product group theories in section 4 and there
we show how much enhancement we can obtain for the axion mass in the various models.
We conclude in section 5. We also present two appendices. Appendix A contains a detailed
description of how to use the 't Hooft operator approximation and a comparison to the full
calculation, while in appendix B we present the conversion from the Pauli-Villars regulator
scheme to the commonly used MS scheme.

2 Small instantons in partially broken groups and index of embedding

Before diving into the details of the full instanton calculation we would like to present
a back-of-the-envelope estimate for the magnitude of the instanton corrections for various
UV completions of QCD. There are two novel aspects of the calculation of [12] both related
to the fact that we are considering small instantons of size p < AééD.

e At high energies the Higgs boson(s) become propagating particles allowing us to also
consider the effects of closing up the fermion legs of the instanton vertex using Higgs
loops (rather than Higgs VEV insertions as is usually done)

e There may be non-trivial embeddings of QCD into the UV theory where the small
instantons of the UV theory correspond to “fractional instantons” of QCD.

Below we will be estimating the effects of small instantons using both the traditional
Higgs VEV insertions as well as the novel loop diagrams. We will see that for the simplest
embeddings of QCD into the UV gauge theory all such effects will be negligible. However we
will explain that for the cases with non-trivial embeddings there could be an enhancement
by some power of the ratio M/Aqcp which opens up the possibility of these contributions

'The importance of this perturbation was also pointed out by the authors of [15] who considered a
similar setup.



to dominate over the IR contributions of the ordinary QCD instantons. We will show
that the examples of small instanton dominance presented in [12] fall in this category of
non-trivial embeddings.
Let us assume that the high energy gauge group G is broken to the low energy group
H (in phenomenological applications we will, of course, choose H to be SU(3)qcp) at the
scale M by the VEV of some heavy scalars. We will assume that the theory has F' flavors
of matter fields in the fundamental representation of G. In expectation of our results to
the Standard Model we will choose F' to be even. In addition, we will introduce gauge
singlet scalars H coupled to the matter fields through Yukawa couplings y. These scalars
will eventually be identified with the Higgs scalar(s) of the SM. Thus we will assume that
in the low energy theory H has both a VEV and a mass of order v. Finally, we will assume
that the Yukawa couplings of H are small. This leads us to consider the following hierarchy
of scales
yv < Aqop K v KA K M, (2.1)

where A and Aqcp denote RG invariant scales of high and low energy theories respectively.
When the embedding of the low energy group into G is trivial the matching relation between
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Our choice of the hierarchy of scales leads to several important consequences. First, the

these scales is given by

contributions of the instantons in the broken group (i.e. instantons of size p < 1/M) to
the effective action are completely calculable. Furthermore, the contributions of small
instantons with size p < 1/Aqcp (and, in particular, of size p < 1/v) within the low
energy theory but still above the QCD scale are also calculabe. Finally, the Higgses H
decouple from the low energy physics within the weak coupling regime while the matter
fields are effectively massless? even at the strong coupling scale Aqep.

To obtain a simple estimate of the magnitudes of the effects of the small instantons we
use an effective Lagrangian below the symmetry breaking scale M. Integrating over the
instantons of size p < 1/M generates a 't Hooft operator which must be included in the
Lagrangian of the effective theory

Ao
WH%’%- (2.3)

These 't Hooft operators will also contribute to the mass of the axion once the fermion legs
are closed up with Higgs VEV insertions or via Higgs loops. Such contributions can be
represented by the diagrams in figure 1. One important issue to consider is which of these
diagrams can possibly contribute to the axion mass. The axion is the Goldstone boson
resulting from the spontaneous breaking of the anomalous U(1) pg symmetry at a high
scale f,. However if the classical action possesses additional exact anomalous unbroken

2To streamline the analysis we assume here that all the matter fields are light compared to Agcp.
Accounting for the mass of heavy SM flavors, ¢, b, ¢, will not affect the relative importance of contributions
from different energy scales.
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Figure 1. Contributions to the axion mass obtained from closing up the instanton induced 't Hooft
operators. On the left we use Higgs VEV insertions, in the middle we use loops of a dynamical
Higgs boson in a single Higgs theory, while on the right we use Higgs loops in a 2HDM. Note that
the arrows correspond to chiralities.

symmetries, one can always redefine the broken U(1)pg to be anomaly free and the axion
remains exactly massless (this is for example the case when one of the SM quarks are
exactly massless). As usual the presence of an exact anomalous symmetry will also imply
that the QCD 6 angle is unphysical. The Yukawa coupling of the SM fermions breaks any
additional global symmetries, hence to obtain a contribution to the axion mass one needs
to have a diagram proportional to all SM Yukawa couplings. In models with a single Higgs
(like the KSVZ-type axion models [35, 36])

F/2 F
S yHyahi+ Y yH'ah +hee. (2.4)
i=1 i=F/2+1

we can obtain a contribution either through Higgs insertions or via closing up the diagrams
using Higgs loops as already depicted in figure 1(a) and 1(b). In other common axion
models like DFSZ [37, 38] there are two Higgs doublets (2HDM), with Yukawa couplings
of the sort

F/2 F
S yHuohi+ Y yHapih +hee. (2.5)
i=1 i=F/2+1

In this case we can still use Higgs insertions, however in order to be able to produce
diagrams with Higgs loops one needs an additional B,-like term f,H,Hg+ h.c. Such terms
are usually readily present in complete axion models like the DFSZ axion [37, 38], and the
actual diagram will be of the sort presented in figure 1(c). The effective theory below f,
will be a one-Higgs doublet model of the sort (2.4). As long as f, > M we can work in the
effective one-Higgs doublet model. However if f, < M one expects the loop diagrams in
2HDMs to be suppressed by powers of f,/M.

We can now compare the contributions to the axion mass from the Higgs VEV insertion
diagram

F b
yu A°e
m?\/[fa? = <M> Mba—4" (26)



to the contributions from the diagram obtained by closing the Higgs loops:

F be
m2 2 — (4‘1) ﬁ . (2.7)
where m?%, and M/? represent the contributions of small instantons® (p < 1/M) to the axion
mass obtained from VEV-insertion and loop-induced diagrams respectively. For sufficiently
large symmetry breaking scale, the suppression of (2.6) by (v/M)¥ may easily overcome the
suppression of the loop-induced contribution by loop factors, making (2.7) the dominant
contribution from this regime.

There will be similar small instanton contribution to the axion mass from instantons
of size 1/M < p S 1/v:

AbQCD
m2f2 = yF QCD
via pbacp—4
- yacr (2.8)
m'2 f2 _ (Y QCD
vJa Ar UbQCD—4’

where m?2 and and m!? denote the VEV insertion and the Higgs loop induced contributions
respectively.® Tt is easy to see that loop-induced contributions in (2.7) are small both
compared to VEV-insertion and loop-induced contributions in (2.8).

Below the Higgs mass v the Higgs decouples from the theory and loop-induced con-
tributions are absent. However, given our choice of small Yukawas, the fermions remain
light and the instanton diagrams with Higgs VEV insertions still contribute both to the
't Hooft operator and the axion potential. These contributions remain calculable in the
1/v < p < 1/Aqcp regime and at the renormalization scale p satisfying Aqep < p < v

are given by

bqcep
r Aqep

W . (2.9)

m? f3 = (yv)

Once again, instanton contributions from lower scales in (2.9) dominate over the instantons
of size 1/v in (2.8) and instantons of size 1/M in (2.6)and (2.7). As the renormalization
scale ;1 approaches the actual strong coupling scale Aqcp, the perturbative calculation in
the one instanton background becomes unreliable. In this regime the contributios of the
non-perturbative dynamics to the axion mass are a priori incalculable, however they can
be obtained from chiral perturbation theory by relating the axion mass to the pion mass.
Nevertheless, one can estimate the final axion mass by taking a naive u — Aqcp limit:

maenta = ()" AGch = m A, | (2.10)

where F' is the number of flavors that remain light at Aqcp and mqcep represents the QCD
contribution to the axion mass.
We can now estimate the ratio of loop-induced small instanton and QCD contributions

Mf 1 AQCD F AQCD baop—4
mZ  (4m)F v M ' (2.11)

to the axion mass:

3These effects are dominated by instantons of inverse size M.
4These effects are dominated by instantons of inverse size v.



As expected the axion mass is dominated by strong coupling QCD contributions while the
contributions of small instantons are highly suppressed by powers of A/M and otherwise
are UV independent. Indeed, every term in (2.11) is smaller than one. As a reminder,
bqcp is the QCD beta function just below the matching scale with all flavors assumed
to be massless: bqcp = %Nc - %F = 7 for QCD with 6 flavors, but most importantly
bgcp > 4 implying a strong suppression by powers of Agcp/M.

There is however an important caveat in the above argument, which is what Agrawal
and Howe have exploited [12, 13]. The matching relation (2.2) can be modified if the
embedding of QCD into the bigger group G is non-trivial. In fact, (2.2) has a very simple
and intuitive interpretation: the 1l-instanton solution of the low energy H theory is also
a l-instanton solution of the high energy G theory (with additional bosonic zero modes
of the high energy theory lifted by spontaneous symmetry breaking). However, other
kinds of embedding are possible [32] — for example, the 1l-instanton solution of the low
energy theory may represent a 2-instanton, or in general a k-instanton configuration in the
high energy theory. The first examples of non-trivial effects due to such instantons were
identified in the context of exact results in SUSY gauge theories by Intriligator, Seiberg
and Leigh [31]. In this case the matching relation (2.2) would be modified to

) ()

where the integer k is usually referred to as the index of embedding, first identified
in [31, 33, 34] and explained extensively in [32]. Such a non-trivial factor usually ap-
pears when there are instantons in the partially broken gauge group [32], meaning that
the instantons of the unbroken group do not map one-to-one to the instantons of the high
energy theory. Topologically it is the homotopy group m3(G/H) that will be relevant,
and when both G and H are simple one can show that m3(G/H) = Zj, where k is the
index of embedding. In this paper we are interested in models where one breaks a prod-
uct group to its diagonal subgroup. For example, when the symmetry breaking pattern
is given by SU(N) x SU(NN) — SU(N) the 1-instanton of the low-energy theory actually
corresponds to a (1,1) of the UV theory, while for SU(N)¥ — SU(N) the 1-instanton will
be a (1,1,1,...,1) instanton. For the product group case the relevant homotopy group
will be 73(SU(N)*/SU(N)) = Z x Z x ... Z with k—1 Z-factors. Either way, if dynamical
scales and beta function coefficients of all UV gauge group factors are equal, the matching
relation will be given by eq. (2.12). More generally the scale matching relation (2.12) is
replaced by a relation where factors of dynamical scale on the right-hand side are replaced
by a product of 1-instanton weights of UV gauge group factors:

f[ AN _ (A" (2.13)
; M A\ M ’ ’
We can see now how this non-trivial mapping of instantons (and matching of dynamical

scales) would possibly lead to an enhancement of the small instanton contributions. When
one has a non-trivial index of embedding, some of the broken instantons are actually



topologically distinct from those eventually giving rise to the QCD instanton corrections,
hence they will scale differently. From the point of view of scaling they will appear as
“fractional” 1/k instantons, and their contributions may be enhanced compared to the
usual QCD instantons. For a case with index of embedding k£ while the expression of the
contribution of the small instantons from the partially broken group are still given by (2.7),
the use of the modified matching (2.12) will result in

bQcp
M1 (aco)” (Agen) T (2.14)
m2  (4m)F v M ) )

Already for k = 2 the sign of the exponent of Aqcp /M will flip, and lead to the possibility of

these terms dominating over the ordinary QCD contributions when M is taken to be large.

In the rest of the paper we will present a detailed calculation of the small instanton
effects in the partially broken gauge group to replace (2.14) with a more precise expression,
paying careful attention to all the relevant O(1) factors and perturbation of the classical
instanton action in the presence of spontaneous symmetry breaking. This will give us a bet-
ter understanding of models and parameter regions in which small instanton contributions
are dominant.

3 One instanton effects in a broken SU(IN)

We now turn to the actual instanton calculation that will verify the validity of our estimates
in section 2 and provide us with more precise results. As we have explained, contributions
of small instantons that are topologically equivalent to single instanton configurations of
the low energy theory are always subleading. Instead we will consider instantons of the high
energy theory that are absent from the effective low energy description. These instantons
must be carefully integrated out and their effects must be taken into account explicitly
when constructing the low energy description. We will be especially interested in product
group theories broken to a diagonal subgroup, for example, SU(N); x SU(N )2 — SU(N)p.
The low-energy SU(N)p theory contains only a subset of the instanton solutions of the full
SU(N);1 x SU(N)2 theory [32]. For example a l-instanton configuration in the diagonal
subgroup is a (1,1) combination of simultaneous 1-instanton solutions in the individual
SU(N) factors. However, configurations with instantons in only one of the SU(N) factors
(e.g. (1,0) or (0, 1)) are absent from the effective theory. Since these instantons are embed-
ded in the completely broken factor of the high energy gauge group, it is useful to review
the instanton calculus in (spontaneously broken) SU(N) gauge theories before re-examining
the explicit models in [12]. We will loosely follow the instanton calculation in supersymmet-
ric QCD by Cordes [39] with slight modifications due to the non-sypersymmetric nature
of the problem at hand. It is common practice to perform instanton calculations using
Pauli-Villars (PV) regularization, which we will also use here. However, in perturbative
calculations dimensional regularization and the MS or MS scheme are more common. We
summarize the formulae needed to convert from PV to MS scheme in appendix B.



In the following we consider an SU(N) gauge theory with a matter sector consisting
of $ > N — 1 scalars® ¢, n =1,...,5 and F (approximately) massless fermions vy, f =

1,..., F in the fundamental representation of SU(NV). The euclidean action for this model
is given by
Sgp=Sc+ 94+ Sy, (3.1)
where
= / |:4G;,11/GA t1 933 GA GA + ‘Cghost(rh 77) ’ (32)
= / ,u¢n u¢n + V(an)] ) (3'3)
Sy = / d*zg(—ivuDy)by (3.4)

with D¢, = (0, — z'gAﬁTA)qﬁn. TA, A =1,...,N? — 1 are the SU(N) generators. A
sum over the scalar and fermion generations is implied. We assume the scalar poten-
tial V(¢¢) to be such that the scalars develop a VEV which breaks the SU(N) gauge
symmetry completely.

For vanishing scalar VEVs the euclidean Yang-Mills action S¢g possesses exact instan-
ton solutions for the classical equations of motion. The one instanton solution, centered at
xo, with unit topological charge (@ = 1) in singular gauge takes the form [40]

_ 2,0 ($—$O)v a
Ag? Yz) = p nauy(xixO)Q((xi%)hrpz)J , (3.5)

where 7, are 't Hooft symbols, p is the instanton size and J¢, a = 1,2, 3 are the generators
of the SU(2) subgroup into which the instanton is embedded. In the following we will work
with the so called minimal embedding, where one embeds the SU(2) into the 2 x 2 upper-
left-hand corner of the N x N matrices which generate the fundamental representation
of SU(N).

Once the scalars obtain a VEV [(¢,)| > 0 and break SU(N) completely, no exact
instanton solutions exist. However, one expects that for small instantons, gp|(¢,)| < 1,
the solution (3.5) remains a good approximation and the path integral is still dominated by
instanton-like configurations. The path integral can be performed by using the constrained
instanton formalism of Affleck [41]. In the constrained instanton formalism the scalars
satisfy the equation of motion in the classical instanton background, D?(A4.)¢ = 0. As a
result to leading order in gp|(¢)| the scalar profile is given by

L\ 1/2
in () = (ﬁipz) (bin)  fori=1,2

(Bin) fori=3,...,N

where ¢ is the SU(N) index of the scalar multiplets.

®In order to break SU(N) completely one needs at least N — 1 scalar fields.
STf SU(N) is only partially broken with an unbroken residual SU(2) subgroup, i.e. rank({(¢:n)) < N — 1,
exact instanton solutions still exist in the unbroken SU(2).



Evaluating the classical action of the constrained instanton with ) = 1 in the presence
of the scalar profile, one finds”

So(p) = —5- "' 2m P2 Z Z |{in) |2 + 6. (3.7)

i=1 n=1

Thus large instantons (gp|(¢f)| > 1) are exponentially suppressed. This provides a natural
IR cutoff for the instanton size and makes instanton contributions to observables calculable.

In the following we are interested in Wgy(x), the one-instanton semi-classical approx-
imation of the vacuum to vacuum amplitude

fl inst DA DUD"?D¢fD¢ Dw/D’l/_Jn e’SE
fAf}:O DA#DnDnD@cD(ﬁfDQpDJ}n e=Se

Wsuv) = (00)ag=1 = (3.8)

We can evaluate the functional integral in eq. (3.8) in the semi-classical approximation by
expanding the euclidean action to second order in the fields around the classical solutions
in eq. (3.6) and (3.5)

1 _
S = Solp) + / il [2AMMAA# + IMnosn + 61 My + TMy| | (3.9)

where ¢ = (¢1,...,¢5)7 and ¥ = (1,...,%r)T are vectors containing all scalar and
fermion generations, and perform the functional integral.

The various contributions to the generating functional will be discussed thoroughly in
the next sections, but we already present the final expression of the general result here.
For the above field content the vacuum to vacuum amplitude is given by

4
WSU(N) :e_ie/d f)gdpdN(p)/d~ —27r2p221 IZn 1‘ ¢zn /le/Qdf(O) 3 10)

where dy(p) is the instanton density in vacuum

Clef(ssz)a(1/2) 87r2 2N _fi_c&N
e =N i) T (3.1)
C1 and (5 are defined as
9 5/6
=2 ~0.466, (3.12)
5 17 2 Xlns
Cy = 31112—%—!-3(1112%—1—’7 ﬁz?zl.(ﬁ& (3.13)
s=1

a(t) is defined in [40] (with a(0) = 0, (1/2) = 0.145873, a(1) = 0.443307), [ dp is the
integral over the collective coordinates corresponding to the orientation of the instanton
within SU(N) normalized to unity, and [ dfj(co) is the integral over the fermion zero modes.
Note that <<z5m>( ) are the scalar VEVs rotated in group space to account for the arbitrary
location of the instanton SU(2) inside SU(N).

"Note that in the background of an instanton with topological charge Q, 33% J d4x(Gfl,C~1'fl,)inst =Q.

~10 -



3.1 Bosonic contributions

Performing the integral in eq. (3.8) over the bosonic sector of the theory, i.e. integrating
over the gauge, scalar and ghost fields one obtains

(det’ Ma(7))~/2(det’ Mgnost (7)) (det’ My (7)) 2
((det MA)*l/Q (det Mghost)(det M¢)72)AZ1:0 ’
(3.14)
where the contribution from the fermions is encoded in I, which will be computed later,

Wsu(v) Z/Hd%J(V)e_SO(p)Iw(V)

and the determinants det’ are taken over non-zero modes only.
The zero modes are flat directions in the action and can be parameterised in terms of
collective coordinates ~;

(xo)i izl,...,4
tY i=A+5=6,...,N>2+4

where z( is the instanton position, p its size and ¢4 are the N2 — 1 parameters describing
general SU(N) transformations. The group theoretic zero modes depend on the embedding
of the instanton into SU(N) and their effects can be found by classifying how the generators
T4 of the full group transform under the J¢ generators of the SU(2) subgroup in which
the instanton is embedded. For SU(NV) one finds i) one triplet (J* themselves) ii) 2(N — 2)
doublets and iii) N2 —4N +4 singlets. There are no normalizable zero modes corresponding
to singlet generators, which means there are 4N normalizable zero modes altogether.

Replacing the integration over the zero modes in the functional integral by an integra-
tion over the collective coordinates introduces the Jacobian J(7) in eq. (3.14). Using the
normalization of the zero modes one finds (see e.g. [39] and [42])8

4N 27 7'('p2 2N
/Hd% J() :/d4x0dpdup5<g2> , (3.16)

where dpu is the Haar measure of the quotient group SU(N) /Ty, with Ty being the stability
group of the instanton, i.e. the subgroup of SU(N) that leaves the instanton invariant.
In [39] it is shown that for integrands invariant under Ty, the group integration can be
expressed as

V(SU(N — 1))
dp = 22 =)
SU(N)/Tx V(TN) SU(N)/SU(N—1)

94N—6 N—2
- W /521\1_1 5(\/m - 1) d2y1 oo dzyN .

We will denote a general element of the coset SU(N)/SU(N — 1) by Q. It is possible to
parameterise € in terms of the y; [39], but the explicit form of £ will not be needed in

dp
(3.17)

8Cordes [39] and Bernard [42] use different normalizations for the SU(N) generators, which is reflected
in their different results for the zero-mode normalization (apart from the missing factor of p in ||A£L'S°d°"b)||

in eq. (5.7) of [39], which is clearly a typo). In the following we will follow Cordes’ conventions.
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the following. Using the fact that the surface of the S?V~! sphere is given by S(S?V~1) =
27N /(N —1)!, we can define a normalized integration measure

/d/l = (N%_Nl)' /Sm1 5(,/2 lyi|2 — 1) Pyp .. dPyy . (3.18)

As a last step we need to evaluate the functional determinants over the non-zero modes.
This calculation has been done in 't Hooft’s original paper [40] for an SU(2) gauge theory.
The generalization to SU(N) is straightforward (see e.g. [42]) and yields in Pauli-Villars
regularization

(det’ Ma(7))~Y/2(det’ Mgnost (7)) (det’ My(7))~2
((det Ma)~172(det Myhos) (det M) 2) 49—

—exp | = (384 § £ SOCE) ) (o) - al1) 2N = 2)a(1/2) - 3 5(@)at)]

t

(3.19)

where t denotes the isospin representation under the instanton SU(2). S(t¢) is the number
of scalar multiplets with isospin ¢, where each complex multiplet counts as 1 and each real
multiplet as 1/2 and C(t) = 2t(¢t + 1)(2t 4+ 1). Each scalar fundamental contributes one

multiplet in the isospin 1/2 representation and (N — 2) singlets.

Substituting eqgs. (3.16), (3.17), (3.18) and (3.19) into eq. (3.14) and recalling that
in Pauli-Villars regularization each zero-mode yields a factor ug of the regulator field,
we obtain

Wsuv) = Cre el i (87T2>2N/ Loy (pop)loe=87/9°~C2N
(N - 1)'(N - 2)! 92 /75 (3.20)
X /dﬂ I¢(7) 8—2”2/)2 25:1 25:1 |<¢m>|2 ,
where by = %N - %S is the bosonic contribution to the S-function and
4 e—(1)+4a(1/2)
Ci=—5—, Cy=2In2+2a(1/2). (3.21)

T2

Note that when using the explicit expression for «(t), the above definition of C; and Co
agrees with egs. (3.12) and (3.13).

The group integration [ dfi in eq. (3.20) corresponds to rotating the instanton embed-
ding in SU(N). This is equivalent to keeping the instanton fixed and instead rotating all
other fields, in particular the scalar fields and their VEVs, by a general SU(N)/SU(N —1)
group element (2, i.e. in eq. (3.20) we should make the replacement

N

(Gin) = (Gin) (1) = Y Qij(djn) - (3.22)

i=1
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3.2 Fermionic contributions

Analogously to the bosonic contributions to the vacuum to vacuum amplitude, one can
isolate the zero modes in the integration over the fermionic fields, i.e.

DYDY = [[ 11017 ael TT 1011 a6l Dy Dy (3.23)
f 1

where w;o) and 1;}0) are the zero mode wave functions of the Dirac operator MZZ"‘ =
—10""y,D,, and dfﬁo),d%@ are Grassmann integration measures with mass dimension
[ng(P)] = [déj(fo)] = % The explicit form of the normalized zero-modes in singular gauge, for
an instanton centered at xg, is given by [43]

O P (z — 20) 0 .
wf (@)ai = 7 ((x — x0)2)/2((x — ;0)2 + p2)3/2 (i(Tj)gS@ag‘) ok (3:24)

where «, 7,7 = 1,2 are the spinor and SU(N) indices (restricted to the instanton SU(2)
with w;o) (£)ai = 0 for i = 3,..., N), respectively.” le' is defined as le_ = (7, —1) with
7 being the Pauli matrices. ¢,; is a two component Weyl spinor with ¢,; = €,;. Note
that for small instantons, far from the instanton center, the zero mode wavefunction is

T

proportional to the free fermion propagator Sg(x) = % Each massless Dirac fermion

 272(

in the fundamental representation possesses two zero modes, one for each chirality, in the
one instanton background. This implies that in the model with F' fermion flavors we have
2F fermionic zero modes.

The integral over the non-zero modes can be directly performed, which yields
2F Vil 1/2
det’ M| M, /
H 0) — P
Iw_/ d{}),u,OF< t p ) ’
o1 (det Mwa)Azlzo

where we assumed normalized zero modes and collectively denoted the zero mode integra-

/

each of the 2F zero modes, since we work in Pauli-Villars regularization scheme.

(3.25)

tion measure as dfj(co). Additionally we inserted a factor p Y2 of the regulator field for

The non-zero mode determinant was computed by 't Hooft in his original paper [40]

( det/ My My >1/2 [1F1 (ppio) + 2F (1/2)] (3.26)
=exp |4 In(ppo) + 2F . .
(det MJJMw)Agg:o 3
Combining egs. (3.25) and (3.26), we obtain the full fermionic contribution to Wy
) 2F
Iy = pFem 3 (o) +2Fa(1/2) / I - (3.27)
f=1

Plugging this result into eq. (3.20), one obtains the vacuum to vacuum amplitude for a
broken SU(N) gauge theory in a one instanton background, which we already previewed
in eq. (3.10).

9Note that the zero modes naively seem to have the wrong dimension (mass dimension 2 instead of
3/2), but the combination with the corresponding Grassmann variable 5}0) in the expansion 9¢(z) =

>k 1/)5&(3:) §}k) has the right dimension ([E}k)] =-1/2, s.t. fdfj(fk) 5;’0 =1).
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3.3 Vacuum energy/axion potential

Instanton configurations in the vacuum to vacuum amplitude generate a contribution to the
vacuum energy which depends on the 8 angle. This can be encoded in terms of an effective
Lagrangian that captures the 1-(anti)instanton effects in terms of a potential for the 6
angle, which in the presence of an axion will be interpreted as an effective potential /mass
term for the axion itself. In a theory without massless fermions this potential is simply

given by
—oLF=0 = 2/%/@1%@) cos(h) , (3.28)

where C'y(p) contains the instanton density and the action of the Higgs scalars
On(p) = dy(p) €7 iz s [0l (3.29)

If the theory contains massless fermions, eq. (3.27) implies that due to the 5}0) integration
any correlation function, including the vacuum to vacuum amplitude, which does not in-
clude the full set of 2F chiral fermions vanishes. Effectively the integration projects out the
zero mode wave functions, i.e. for a fermion field expanded in eigenmodes 1y = w(o) 3 O "

the integration yields [ dgj(f’)zp ;= w;m' Thus the effect of massless fermions in the instanton
background is captured by an effective 2 F'-fermion operator, the so called 't Hooft operator.

However, even in the presence of massless fermions instantons can still generate a
potential for the 6 angle if the theory contains further interactions. The easiest way to
see that is by working in the effective theory with a 't Hooft operator and closing up
the external legs using the additional interaction terms forming a vacuum bubble (see
figure 1), which contributes to the vacuum energy. Alternatively one can calculate the non-
vanishing contribution to the vacuum to vacuum amplitude directly from the path integral
by including higher orders in the interaction that includes all massless fermions. In the
following we will pursue the second approach, which corresponds to the full calculation.
We do expect the effective 't Hooft operator approach to be a good approximation to the
full calculation, which we will indeed verify in appendix A where we present the ‘t Hooft
operator method and also compare the results of the two approaches.

Let us assume the theory contains an additional scalar H (which we will later identify
with the SM Higgs), which couples to the massless fermions via Yukawa interactions, i.e.
let us add the following term to the Euclidean action

AS = So[H] /d%z Y H(2) (@) bs () (3.30)

where So[H] is the free action for the scalar H. With this addition the vacuum to vacuum
amplitude now takes the form

d
Wsu(v “9/d4 /du/ pCN /DHe—SO

31
(0) ,7(0) i [d*e > “LH ()i s (x)py(x) (3:31)
X degfdgfe 7=13 ACACAC

f=1
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At order F' in the Yukawa couplings, the expansion of the exponential contains a term with
all 2F massless fermions. The integration over fj(po) and {}0) projects out the corresponding
zero mode wave functions and all lower order terms vanish due to this integration. The
leading contribution to Wy (), assuming F is even so that the path integral of the Higgs
field does not vanish (ie. the Higgs loops can be closed up), is therefore!'®

Wsuv) =e ’9/d4xo/du/deN /DH o~ SolH]

LM [ temei e o).

f=1

(3.32)

Performing the path integral for H, only fully contracted Higgs fields survive, each con-
traction giving a Feynman propagator

Wau(v) = ’9/d4xo/du/ P (o H <Z%>IF/2 (3.33)

where kp = (F' — 1) - (F — 3)---1 counts the number of equivalent contractions and Z is
the integral over the fermion zero modes and scalar Feynman propagators Ap(z; — x2)

S / dz: / das 01 (1) (1) 01 (22)0 ) (2) Ap (21 — 22). (3.34)

Using the explicit form for the fermion zero modes'! w](co) in eq. (3.24) Z simplifies to

4 —1ipx1 1PT2
P 4 4 4 1 € €
1= d*x d*x d . 3.35
47 / / Ppmy (@7 + 2P (1 + p?)° (355

Using the identity

do T K
/ g 2 g P Eaee), (3.36)
where K is a modified Bessel function of the second kind, we can evaluate Z explicitly in

the limit p < 1/mpy
1

T~ 7127r2p2 . (3.37)

Plugging this into eq. (3.33) we can immediately write down the leading contribution to
the potential for the 6 angle, generated by 1-(anti)instanton configurations, for theories
with massless fermions and a Yukawa interaction

_oCF zz/i’;/dgc]v(p) Hpi[l <\/y2i47r> cos(f) . (3.38)

Note that the 1/F! from the expansion of the exponential is compensated by F! terms which are

identical after renaming the integration variables.

" Note that similarly to the scalars ¢, one should rotate w?)) with the general SU(N)/SU(N — 1) coset
element Q. However, due to the SU(N) invariant Yukawa interaction, the Q2 dependence cancels out and 7
is independent of fi.
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SM quarks

Figure 2. Illustration of the product gauge group model introduced in [12] to enhance small
instanton contributions to the axion mass. The k SU(3) factors are broken at a scale M by scalar link
fields ¥; ;41 in the bifundamental representation of SU(3); x SU(3);41 to their diagonal combination
which is identified with SU(3)qcp. We further assume that the SM quarks are only charged
under SU(3);.

It is worth emphasizing that Z could be estimated in the effective field theory by soaking
up fermion legs of the 't Hooft operator with the Higgs propagators. However, the EFT
result would be cutoff dependent while the above computation is completely convergent
and calculable. For more on the correct value of the cutoff scale see appendix A.

4 Small instantons in product group models

Small instanton contributions to the axion mass can dominate over the non-perturbative
large QCD instantons in partially broken gauge theories with a non-trivial embedding
of SU(3)qcp (see section 2). An example of such a setup are the models proposed by
Agrawal and Howe [12, 13], in which a product gauge group consisting of k£ SU(3) factors
is spontaneously broken at a scale M to its diagonal subgroup by k — 1 link fields ;;41

SU(3)1 X SU(3)2 X ... X SU(3)k — SU(3)QCD . (4.1)

The diagonal subgroup can then be identified with SU(3)qcp. In the following we will
assume that all SM quarks are only charged under SU(3);. For a diagrammatic depiction
of the model see figure 2. The individual SU(3) factors by themselves are completely
broken and therefore the 1-instanton effects are calculable and finite. The 1-instanton
configuration in low energy QCD corresponds to k-instantons of the UV theory with one
instanton in each SU(3) factor. In the following we will first discuss some details of the
model before we explicitly compute the small instanton contributions to the axion potential
in the two simplest realizations with £ = 2,3 and compare the results to [12]. Note that in
this section we work in Minkowski space.

4.1 Axions in product group models

Each of the SU(3) gauge factors comes with its own CP violating 6 angle. Therefore we
assume that there is also one anomalous U(1)pg for each factor, which is spontaneously
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broken at f,, > M. This yields one axion for each SU(3)

k 2
— . _ ~Na a v gi & a a pv
L= Zz: L= GWG + 3 <f 0; >GW,G : (4.2)
As depicted in figure 2, the gauge group is broken to SU(3)qcp by higgsing it with & — 1
scalar link fields 3,1, which transform as a bifundamental (3, 3) under SU(3); x SU(3);1.
A potential'? of the form [12, 44]

V(Z) = —miTr(2x2h) + %[T&"(EZT)F + gﬂ(zzfzzf) (4.3)

for each of the link fields induces a VEV

() = \/%%3 = v, (4.4)
which for simplicity we take to be the same for all link fields. Each symmetry breaking VEV
results in one massive gauge and one massive scalar multiplet in the adjoint representation
of the unbroken diagonal group. The masses of gauge and scalar multiplets are of the
order'® g;us; and kvy and they can be integrated out. The dynamical scale of the low
energy effective field theory is given by

k A b;
AbQCD _ Hz Az’

QCD = 373 hi-bacn (4.5)

where the matching scale M is the geometric mean of the eigenvalues of the mass matrix
for the heavy states. In terms of the QCD coupling constant gs this implies the usual
matching relation at M

k
1 1
_ , 4.6
G200 ~ & G20 o
The QCD 6 angle is simply the sum of the individual SU(3); 6 angles
— k —_
fqop = Y 0, (4.7)
i=1

where § = 0+arg det M ¢ is the physical theta angle, which contains a possible CP violating
phase from the fermion mass matrix. At the same time one also has to integrate out the
small instantons in the UV theory, which generate a potential for the axions. Thus the

effective Lagrangian for the axion fields takes the form'*

k
- o i & h. _ a ~HV 4
o ; maifai o (fai > 3271'2 Z <fa1 Z )GMVGz : ( .8)

20ne can add U(1) factors to forbid terms like pdet = [12].
13For simplicity we will assume that g?/k ~ 1 and will not distinguish between the gauge boson and

scalar thresholds.
"1n [12] the mass scale of the potential mgiffi was denoted A%
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One can see éQCD is relaxed to zero due to two independent effects. First, small instanton
contributions in broken gauge factors relax each individual 6; to zero. In addition, once
QCD confines, the potential is generated for the linear combination a/f, = >, a;/ f,, which
relaxes éQCD to zero just like the usual axion would. In contrast to standard axion models
there is not just one but k axions in the IR spectrum and it is the lightest mass eigenstate
which plays the role of the QCD axion. When small instanton contributions are dominant
the mass of this lightest state can be significantly higher than the standard QCD prediction
in eq. (1.1).

4.2 Small instanton contributions

When working in the EFT one has to take into account the instanton configurations which
are not mapped to the low energy theory, i.e. QCD. These are the independent 1-instanton
contributions from SU(3)1,...,SU(3)x. Since they are broken to their diagonal combination
each SU(3) factor considered separately is completely broken and therefore we can use the
formalism of section 3 with three Higgs scalars ¢,,, n = 1,2,3 for each link field, which
develop a VEV!?

<¢zn> = Uy 5171 s (49)

where @ = 1,2, 3 are the SU(3) indices. This allows us to evaluate the classical action for
the Higgs scalars from one of the link fields in the instanton background explicitly

2 3 2 3
S§(0) =222 303 (D)2 = 20 2R 303 00 = axtd . (4.10)
i=1n=1 i=1n=1

where we considered the rotated VEVs (see eq. (3.22)) to account for arbitrary instanton
locations inside SU(3).!6 The result is independent of ji and we can therefore do the
now trivial group integration in the results of section 3.3. Note that the scalar action for

SU(3)2,...,SU(3)k_1 is twice as large, since each of them couples to two link fields.
We begin by considering the SU(3) sectors without fermions. The last of these sectors,
i.e. SU(3)k, has only one scalar link, i.e. S = 3 scalars in the fundamental representation,
and the beta function coefficient by, = 21/2. For this sector the vacuum-vacuum amplitude

contributes directly to the axion potential (see eq. (3.28)) with a mass scale mg, of

A b M b —4
2 2 _ k 4
mak ar — <M> (27‘(‘1}2> M y (411)

where the factor (M /2mvs)?%~* converts between the physical mass threshold at M and

the effective cutoff of the instanton size integral at 1/p ~ 2mvy, while the RG invariant
scale of SU(3), sector is defined by

Al = ds(M)|g, poT[br/2 — 2]M" (4.12)

5From the point of view of one of the SU(3); factors the bifundamental ¥;,11 looks like three scalars in
the fundamental representation.

%Note that the explicit form of Q in SU(3) is not needed to obtain the factor of 2. S7_, Z‘;:l Q72
sums the norms of the first two row vectors in © and since Q € SU(3) each row vector is normalized to
unity.
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and the instanton weight d3(M)|s, r=o is given in (3.11). The remaining sectors i =
2,...,k — 1 have two link fields, i.e. S = 6 scalars in the fundamental representation and
the beta function coefficient b; = 10. The vacuum-vacuum amplitude contributes to the
axion potential in these sectors with a mass scale m,, which is given by eq. (4.11) after the
replacement k — i and vs; — v/2vs.. The additional suppression by 22-%/2 originates from
the scalar action which is twice as large, since all of these sectors couple to two link fields.

All the SM quarks are charged under the SU(3); sector. Thus its particle content
is characterized by F = 6 approximately massless fermions'” and S = 3 scalars in the
fundamental representation, corresponding to a beta function coefficient of by = 13/2.
Taking the result for the vacuum energy in the instanton background with massless quarks

ai

and a Yukawa interaction from eq. (3.38) for N = 3 and § = 0; — 7- and matching it to
al

the axion potential in eq. (4.8) we obtain the scale m?2 f2,

d
wd, g2 = K [ %20, (4.13)
where K is given by
40 YuYdysYe Yoyt
= —T—=—" 4.14
9 (1672)3 (4.14)

Note that K reproduces a loop factor expected from an EFT diagram in figure 1(b) and
included in the results of [12]. However, the full calculation of correlation functions in the
instanton background performed in section 3.3 allows us to extract the exact numerical
coefficient multiplying this loop factor. Performing the p integral in eq. (4.13) we find

AN\ Mo\
2 r2 1 4
ms fi, =K <> <2m)2> M=, (4.15)

where the dynamical scale of SU(3); is defined by
AY' = d3(M)|g—s p—gTlb1/2 = 2M™ (4.16)

and once again the instanton weight ds(M)|s=3 p=¢ is given in (3.11). Note that these
results are in agreement with the qualitative discussion of section 2.
The unusual scaling of the axion mass with the physical QCD scale can be seen from

the fact that ds(M) ~ exp(—gég(”]\?)) where g? is the coupling of the i SU(3) factor rather

than the actual QCD coupling, implying that Af" will be a fractional power of AgQgS , where

the actual fraction depends on the ratios of coupling strengths and the distribution of the
matter fields among the different group factors.

However the full expression of the corrections to the axion mass eqgs. (4.11)—(4.15) also
includes an additional suppression factors, for example the conversion factor (M /27vy)b 4.
Indeed the presence of this factor implies that, up to an order one coefficient, our results

for mZ_f2 are smaller than the previous estimates (73, f2 ) in [12] by a factor of

2 b;—4
| MO\
Ma; 96 ( ) . (4.17)

12
me. 2muy

"To a good approximation all SM quarks are massless at scales M > TeV.

~19 —



This suppression is due to two independent reasons:

e Our vacuum instanton density dy(p)|s—=r—o is smaller by a factor of 272V than the
one used in [12]. This discrepancy originates from a small error in 't Hooft’s original
calculation [40], which was later corrected in an Erratum. However, the source for
the instanton density [45] cited in [12] still contains this error.

e In [12] the p integration was cut off at p = 1/M by hand. However, when working
in the constrained instanton framework the p integral is convergent and we find that
the actual cutoff is roughly p ~ 1/(2mvy) (see also [15]).

The actual size of the suppression depends on the relation between the matching scale M
and the VEV vyx. Since M corresponds to the mass scale of the massive gauge bosons, it
scales like M = gef vy, where gog is some combination of g1, ..., gg. For couplings of O(1)
this leads to a suppression of (27)*~%, which is strongest for the SU(3) group factors that
do not couple to fermions. As we will show momentarily, this suppression is significant
in the minimal model with only two group factors, but is less important once more SU(3)
factors are included and the matching relation in eq. (4.6) allows larger couplings in the
individual SU(3) factors.

4.3 Example SU(3)%, SU(3)% — SU(3)qcp

Let us now have a look at the minimal model with k£ = 2. In this case the matching scale
is directly set by masses of the heavy gauge bosons (and scalars)

M? = (g} + g3)v3%. (4.18)

In order to do the matching we use the RG equation to run the MS QCD coupling from the
top mass at as(m¢) = 0.10 to the matching scale M. The small instanton contribution to
the axion mass relative to the QCD contribution can now be computed using the mass scales
m2, f2, and m2 fZ from eqs. (4.11) and (4.15) respectively. For simplicity we will assume
that fo, = fa, = fa and use eq. (1.1) to obtain a numerical value for fym, = (75.5 MeV)2.

This ratio is shown for both axions (solid for m,, /m, and dashed for mg, /m,) for the
choice of M = 10 GeV for the symmetry breaking scale in figure 3(a). In contrast to
previous estimates [12] (shown in red), the full calculation shows that there is no region
in parameter space where both axion masses are enhanced by more than an O(1) factor
compared to the pure QCD prediction at the same time. One of the axions might be
heavy, but then the other will be dominated by the QCD contribution to its potential
and will therefore be like the standard QCD axion. The largest effect of small instanton
contributions to both axion masses is found at the intersection of the two curves where both
axions have the same mass which is about M,/m, = 2.4 times heavier than the standard
QCD axion. Figure 3(b) shows the maximal enhancement of the axion mass due to small
instantons as a function of the symmetry breaking scale M. This shows that even taking
M to be at the Planck scale the axion mass cannot deviate by more than a factor of ~ 100
from the QCD prediction. Due to the suppression factor in eq. (4.17) the enhancement is
lower by about two orders of magnitude than the initial prediction in [12].

—90 —



100 N * Initial Estimate 1000 .

1000 -
sl s : AN §| 3 Initial Estimate Full Calculation
f AN 10-
EIE 100 - . S
' Full Calculation 1
10,
f 0.1
1. M =10" Gev
0.050 0.055 0.060 0.065 0.070 108 10° 10'2 10 10'®
a1 (M) M [GeV]

(a) (b)

Figure 3. Small instanton contribution to the axion mass relative to the IR QCD contributions
in the model based on the symmetry breaking structure SU(3) x SU(3) — SU(3)qcp. On the left

we show our results for the full calculation in blue compared to the initial estimates in previous

work [12] in red at a breaking scale of M = 10'*GeV as a function of a; = %. The solid

(dashed) curves show mg, /mg (Ma,/Mme), which intersect at M,/m, = 2.4 in the full calculation
and at M,/m, = 251 in previous estimates. On the right we show the values for M,/m, at the
intersection point of mg, /m, and mg,/m, for a wide range of breaking scales M. In both plots we

took fa1 = faz = fa,-

We can therefore conclude that it is hard to get significant contributions from small
instantons to the axion mass in the minimal model. However, according to our parametric
estimate in section 2, we expect a larger mass enhancement in models with more SU(3) fac-
tors. In the following we demonstrate that this conclusion is indeed correct by considering
the next to minimal model with k& = 3 factors.

In the model with k¥ = 3 group factors SU(3)? is broken by the VEVs of two link
fields, which we both take to be (¥) = vy 3. Note that since SU(3)2 couples to both link
fields, not all gauge bosons get the same masses. One linear combination, corresponding
to the QCD gluons, stays massless as before, whereas the masses of the other two linear

combinations are given by

2
v
Mg, , =%(9§+2g§+g§i\/4g§+(g%—g§)2>. (4.19)

The matching threshold is given by the geometric mean of these two mass eigenvalues

1/4
M = (9593 + 9393 +9%g§) vy . (4.20)

As in the minimal model we take f,, = fu, = fa; = fa and show our result (blue) in
figure 4 for the small instanton contributions to the axion mass compared to the estimates
n [12] (red), fixing in both cases go = g3. In figure 4(a) we again show m,, /m, (solid) and
May/Me (dashed) at a breaking scale of M = 10'* GeV. Note that m,, is always larger
than m,, for identical couplings, since m,, is suppressed by an additional factor of 92-b2/2,
As can be seen, even though the mass enhancement is again smaller in the full calculation
than in the initial estimate, small instantons can still enhance the mass of all three axions
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Figure 4. Small instanton contribution to the axion mass relative to the IR QCD contributions in
the model based on the symmetry breaking structure SU(3) x SU(3) x SU(3) — SU(3)qcp. On the
left we show the results for the full calculation in blue compared to the initial estimates in previous
work [12] in red at a breaking scale of M = 10'* GeV as a function of a; = %. The solid (dashed)
curves show mg, /ma (Ma,/ma), which intersect at M,/m, ~ 4 -10'° in the full calculation and
at My/ma = 9 - 1012 in previous estimates. On the right we show the values for M,/m, at the
intersection point of mg, /m, and mg, /m, or at the maximum of m,, /m, if they do not intersect
for a wide range of breaking scales M. In both plots we took f., = fa, = fas = fo and fixed
g2 = g3, which implies that m,, is always slightly larger than mg,.

simultaneously by up to a factor of 4 - 10'° compared to the QCD contribution at the
intersection point. Figure 4(b) shows that small instantons give dominant contributions to
the axion mass also at smaller breaking scales M, making the axion considerably heavier
than in the standard QCD axion scenario. Note that at small M, mg, /m, and mg,/m,
do not intersect anymore. When this is the case mg, /mq < mgq,/m, due to its suppression
by the Yukawa couplings and therefore we take the maximum of m,, /m, as an estimate
for the maximal simultaneous enhancement of all axion masses. This is the reason for the
kink in the curves in the figure 4(b).

Adding additional SU(3) factors increases the possible enhancement of the axion mass
even further. It was already noted in [12] that for & > 1 the axion masses scale as
Mg, ~ Mz/fal. for i = 2,...,k and mg, ~ \/fMQ/fal, where the first axion mass is
parametrically suppressed relative to the others by the Yukawa couplings and loop factors
VK ~ 10712, With the help of eq. (2.14) we can now understand the scaling of the axion

mass with M? as the limit bqep/k 2% 0in eq. (2.14).

5 Conclusions

We have presented a full calculation of the effects of small instantons on the axion mass
in product group extensions of QCD. We found that a non-trivial embedding of the QCD
instanton into the UV group will lead to an unusual scaling of small instanton contributions,
which will appear as fractional instantons from the low-energy point of view. This opens
up the possibility for small instantons in partially broken gauge groups to dominate over
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the large QCD instantons and significantly raise the axion mass away from the usual
m2 — f, relation.

We have carried out the full 1-instanton calculation of the vacuum-to-vacuum transition
amplitude of the broken product gauge group theories. As a first step we calculated the
1-instanton contribution to the vacuum bubble for a fully broken bosonic SU(N) theory by
performing the integral over the bosonic zero modes and non-zero modes. Since the gauge
group is broken the effects of large instantons are exponentially cut off, and the calculation
can be reliably carried out. While the inclusion of fermions and their interactions is usually
handled using a ’t Hooft operator approximation, we were able to evaluate the effects of
the fermionic modes along with the Higgs loops needed to close up the zero modes directly
without resorting to the 't Hooft operator approximation. This has the advantage that the
result is manifestly finite and does not require the introduction of a regulator via a cutoff
(whose exact definition in simple estimates usually leads to some uncertainty on the exact
numerical value of the corrections).

Using this method we were able to perform the calculation in the full theory with
product groups broken to the diagonal and verify the scalings expected from our simple
estimates. While the numerical value of the enhancement is not significant for the simplest
2 product group extension, already for 3 group factors we can obtain a large enhancement
of the axion mass.
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A ’t Hooft operator approach

In this appendix we compute the small instanton contribution to the vacuum energy or ax-
ion potential in the presence of massless fermions using the 't Hooft operator approximation
and compare it to the full calculation in section 3.3.

In a gauge theory with F' massless fermion flavors in the fundamental representation
of SU(N) the pure vacuum-vacuum amplitude in the instanton background vanishes and
the instanton configuration only contributes to correlation functions in which each fermion

~93 -



flavor and chirality appears at least once, i.e. for example (0| Hf(zﬁfwf)\OMQ:l # 0. The
effect of the instanton can thus be captured by the 't Hooft operator, which is an effective
2F fermion operator of the form (see e.g. [40])

i d Q14 —
. 5£F —e 0 / Fch(p>p3F (H%Vf)) 1°2F (}?:9 ("L/JRf(fl’O)wa’(«TO))i1~~~i2F + h.C., (Al)

where the determinant goes over flavor indices and the hermitian conjugate results from the

anti-instanton configuration. Ci(p) is defined in eq. (3.29) and (x g\J]vf))“ 2

is obtained by
computing the 2F fermion correlation function in the instanton background and matching
the result to the above effective operator. Note that the integration over the instanton
location inside SU(N), for which we assumed that 337 523 |(¢in)|? inside Cn(p) is

independent of the instanton position, projects out all invariant contractions of the fermion

SU(N) indices i1,...,ip. For one fermion flavor the matching is straightforward (see [46]
for an example in SU(2) and SU(3)) and gives
— —3 d -
—oLFt = / pfch(p)p%gle(xo)m1(330) +he., (A.2)

where we used that (ﬁg\lf))im = ng\lf)&li? (for example for SU(3): ngl) = %)

Since we want to close the ‘t Hooft operator with Higgs loops, we are only interested
in flavor diagonal SU(N) contractions of the form (1gt)f". Therefore we will consider
the effective Lagrangian

F
, d
— oLt ~ 6_19/ ppC H #(xo)r ¢(z0) + huc. (A.3)

Note that due to Fierz relations among SU(N) invariants, the prefactor (m%))F is not exact,
but will deviate from the full prefactor by an O(1) factor.

Such a 't Hooft operator contributes to the axion potential if one closes the fermion
legs with loops. The leading contribution arises from closing the operator with Higgs loops
via Yukawa couplings to the fermions as shown in figure 1(b). This is the case since the
diagram only includes marginal couplings and therefore scales as M2 where My is the
cutoff for the divergent loop integrals.

Focusing on SU(3) and identifying 6 = 6 —ay/f.,, we can match the resulting operator
to the effective Lagrangian in eq. (4.8) to obtain mg, fa,

m? 2 = 2K / D (o) (42 M3 P)F (A4)
where K contains the Yukawa couplings and loop factors
F ”
K= = A.
ypm (A.5)
f=1

Note that we canceled a factor N = 3 from the sum over colors in the loop for each fermion
flavor with the 37 from (Ii:(gl))F . Computing the p integral one obtains

(1)
3F + b — M\ T Mo \ PP
2 N cu 4
5 4 r e M A.
m; d3(M)|g_g f (477) [ 2 :|<27TU§;> (27“12) (49

where M is the matching scale for the couplings.
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Comparing this result to eq. (4.15), which was obtained by including the SM Higgs and
Yukawa couplings directly in the path integral evaluation of the vacuum-vacuum amplitude,
one finds that with M, the cutoff of the loop integrals, an additional scale appears.
However, the exact definition of M,,; is ambiguous and always introduces an uncertainty.

Since My, enters mgl fgl with a large power, even O(1) changes in the definition of My

2

can have a significant impact on mg,

31. This ambiguity is removed in the calculation in
section 3.3, since the result is manifestly finite.

Both methods are equivalent and therefore we can use the result from section 3.3 to
infer the appropriate definition of My for this process. We find that both approaches
yield the same result, up to an O(1) factor, if one identifies M.yt ~ vy, in nice agreement
with our intuitive expectations.

B Converting results to MS scheme

All results in section 3 were derived in the Pauli-Villars regularization scheme. However,
in perturbative calculations dimensional regularization and the MS or MS scheme are
more common. In this appendix we briefly summarize how to convert the results to these
schemes.

Already in [40] 't Hooft showed that in order to convert the results to dimensional
regularization one has to do the substitutions

1 1
In g — 4_n—§'y+§ln47r (zero-modes) , (B.1)
Inpo = —— — Sy 4+ Slndm — & (kinetic terms) (B.2)
—_— = - - - = etic terms )
np = = o7+ g lndr — o inetic terms) ,

where the first substitution has to be made for the pg originating from gauge and fermion
zero-modes and the second for pg from kinetic terms, i.e. from the non-zero modes and
scalar fields.'® This substitution only affects the running coupling in the exponential

7'['2 7'1'2
S elerne (et s

82 1 1 1/1 1 1
- - 1 —— + —(Indw — bp—=|F—=-N—-=5 B4
g%<n)+<np+4_n+2<“ =) )3 (373N - gS). ()
where we separated in eq. (B.3) the contributions to by originating from zero modes (first
bracket) from the ones from non-zero modes (second bracket). The renormalized coupling
now depends on the renormalization scheme. Here we will consider MS and MS scheme

"®In [40] ’t Hooft found —3 instead of the —3 in eq. (B.2). This mistake was noted by Hasenfratz

and Hasenfratz [47] and reconciled the disagreement with Shore, who did the instanton calculation using
dimensional regularization [48]. 't Hooft corrected the —2 in eq. (B12) of [49] to —1. However, this was
1

later again corrected by Shifman [43] to the —5 we use in eq. (B.2).
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which are defined by

82 82 1
Bs(10) ) (Inp+ —n> " B9
9134:?12//)) — 9?972721) + <lnp o+ %(lnélﬂ - 7)>b0 . (B.6)
Note that in the above we have to identify [40]
gp(n) = gums(p) and Inp+ ﬁ — In(pp) , (B.7)
gB(n) = gys() and Inp+ ﬁ + %(ln A — ) = In(pp) , (B.8)

where p is the renormalization scale in dimensional regularization. Thus to convert our
results to MS scheme we have to replace
1 .
e—872/9%(1/p)=CaN _ e*ﬁ(ZF*S)e—SWZ/gﬁTS(l/P)—@“SN’ (B.9)
with C%VTS given by
1

s = ¢, — G (B.10)

Using this the instanton density in MS scheme is given by

—_— 1 1
AN (p)|, = DTN dy (o)

s (B.11)
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