

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

Empirical Validation of System Dynamics Cyber

Security Models

Uma Kannan

Department of Computer Information Systems

Alabama State University

Montgomery, AL, USA

ukannan@alasu.edu

Rajendran Swamidurai

Department of Mathematics and Computer Science

Alabama State University

Montgomery, AL, USA

rswamidurai@alasu.edu

Abstract— Model validation, though a process that’s

continuous and complex, establishes confidence in the soundness

and usefulness of a model. Making sure that the model behaves

similar to the modes of behavior seen in real systems, allows the

builder of said model to assure accumulation of confidence in the

model and thus validating the model. While doing this, the model

builder is also required to build confidence from a target

audience in the model through communicating to the bases. The

basis of the system dynamics model validation, both in general

and in the field of cyber security, relies on a casual loop diagram

of the system being agreed upon by a group of experts. Model

validation also uses formal quantitative and informal qualitative

tools in addition to the validation techniques used by system

dynamics. Amongst others, the usefulness of a model, in a user’s

eyes, is a valid standard by which we can evaluate them. To

validate our system dynamics cyber security model, we used

empirical structural and behavior tests. This paper describes

tests of model structure and model behavior, which includes each

test’s purpose, the ways the tests were conducted, and empirical

validation results using a proof-of-concept cyber security model.

Keywords— Cyber security; cyber security modeling; system

dynamics; continuous simulation; simulation and modeling; cyber-

attacks/defenses; empirical validation.

I. INTRODUCTION

System dynamics (SD) [1] discerns how systems change
over time, through a continuous-event simulation
methodology. In SD, as defined, is a unified whole that comes
from an interaction over time amongst a collection of elements.
[2]

SD, developed by Massachusetts Institute of Technology’s
(MIT) Forrester in the early 1960’s, is a modeling technique
that solves persisting and continual dynamic industrial
management problems [3]. The application of SD helps solve
problems concerning both business policy and strategy today
[4, 5, 6].

The totality of the relationships between the physical
processes, information flows, and managerial policies, in SD,
defines the system’s “structure.” The focus of SD hones in on
the understanding of the dynamics of the variables of interest
that is created through the interaction of these components.
Operating over time, the “dynamic behavior patterns” of the
“structure” of the system is generated. Thus here, it becomes

essential that a valid description of the real processes be
provided by the defined model structure. [6]

A prototypical SD study first understands how and why the
dynamics of concern is generated, then looks for ways to
further improve the system’s performance through searching
the upper management’s policies, long-term, macro-level
decision rules. [6]

Model validation establishes confidence in the soundness
and usefulness of a model. Making sure that the model behaves
similar to the modes of behavior seen in real systems, allows
the builder of said model to assure accumulation of confidence
in the model and thus validating the model. While doing this,
the model builder is also required to build confidence from a
target audience in the model through communicating to the
bases. [7]

No strict standard of statistical predictive validity is used in
SD models, this is because, the best way SD models are
characterized are as a collective deduction of a group based on
only the understanding of a system at a certain point in time.
The validation of said model relies on a group of experts
agreeing on a casual loop diagram of the system. The
usefulness of a model through a user’s eyes, remains as a valid
standard by which we can evaluate them. [2, 5, 6, 8]

Though numerous formal quantitative and informal
qualitative tools are used in model validation, both in general
and specifically in the field of cyber security, system dynamics
uses validation through a casual loop diagram of the system
agreed upon by a group of experts. Amongst others, the
usefulness of a model through a user’s eyes, is a valid standard
by which we can evaluate them. To validate our system
dynamics cyber security model, we used empirical structural
and behavior tests. This paper describes tests of model
structure and model behavior, which includes each test’s
purpose, the ways the tests were conducted, and empirical
validation results using a proof-of-concept cyber security
model.

This paper present our experience in using cybersecurity
testbed to empirically validate a cybersecurity system
dynamics proof of concept model.

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

II. SYSTEM DYNAMICS MODEL VALIDATION

The system dynamics model validation is a two-step

process: First establish the validity of the structure of the

model (structural testing), and then evaluate the accuracy of

the model behavior’s reproduction of real behavior

(behavioral testing) [9].

To measure the quality of our model (or to ensure that the

model was successfully completed), we ran the following

structural and behavioral tests on model-generated values

against hypothetical or real system parameters/values:

• Tests of Model Structure: Structure verification test,

parameter verification test, extreme conditions test,

and dimensional consistency test.

• Test of Model Behavior: Behavior reproduction test

and behavior anomaly test.

A. Tests of Model Structure

To test model’s structure direct structure tests are used.

There are two types of direct structure tests: empirical and

theoretical. In the empirical structural tests each model

equations or relationships are compared with the real system’s

quantitative or qualitative information; whereas, in the

theoretical structure tests the model equations or relationships

are compared with the generalized knowledge available in the

literature about the system. [9]

• Structure Verification Test: The structure verification

test asks whether the equations of the model with the

relationships is consistent with the knowledge of the

real system relevant to the purpose. [5, 7, 9, 10]

• Parameter Verification Test: The parameter

verification test is a two stage process, first identifying

the model parameters that correspond to the real

system and then numerically evaluating each parameter

for accuracy. [5, 7, 9]

• Extreme Conditions Test: The extreme conditions test

make sure that each equation is valid even when it

input parameters receives extreme values and checks

whether the model respond is plausible similar to the

real system when subjected to extreme policies,

shocks, and parameters [5, 7, 9].

• Dimensional Consistency Test: The dimensional

consistency test ensures that the units of measure are

consistent in all model/mathematical equations. [7, 9]

B. Tests of Model Behavior

To test the model’s behavior, structure-oriented behavior

tests (also known as indirect structure tests) are used. While

direct structural tests (or simply structural tests) do not involve

any simulation, these structure-oriented behavioral tests

involve simulation to uncover structural flaws that might hide

in the model. These structure-oriented behavior tests can be

applied to both the whole as well as sub-models. Unlike direct

structure tests, these indirect structure tests enable us to

conduct quantitative evaluations on the model. [9]

• Behavior Reproduction Test: The behavior

reproduction test evaluates the correctness of the

model-generated behavior by comparing it to the real

system’s observed behavior [7].

• Behavior Anomaly Test: The behavior anomaly test

verifies whether model exhibits an anomalous

behaviors when assumptions of the model are changed

or deleted [5, 7].

III. PROOF-OF-CONCEPT (POC) MODEL

To convince ourselves of the feasibility of the overall
research objectives, we constructed a Proof-of-Concept (PoC).
The PoC simulated an HTTP Slow Read Attack on the
Webserver-Clients Interface Sub-Model of the proposed IT
Node.

A. Concept Design

1) The Problem

By design the HTTP protocol requires that when a client

wants to transmit or receive data to/from a server, then the

client must send its full data to the server before it can

process it. If the data from the client is not complete or the

data transfer rate is too slow, the server keeps that

connection active and keeps its resources busy waiting for

the client to complete its request. The Slow HTTP DoS

attacks (known variously as Slowloris, Slow HTTP POST,

and Slow HTTP GET) uses this fact about the HTTP

protocol and try to keep as many server connections open

as possible. If the server keeps too many resources busy,

this creates a denial of service (Figure 1).

Fig.1. PoC Architecture and Data Flow

2) Scenarios

a) Normal Scenario [11]

Read a file of size 1 MB (1048576 bytes) from the

HTTP Server.

1. Establish a connection to the server

2. Download the file (meaning, receive the

response) through 1448-byte TCP packets, the

maximum segment size that the underlying

communication channel supports.

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

3. Assume the download speed is 14480 bytes/sec.

The file will take 72.5 seconds

(1048576/14480=72.5) to download resulting in

the client receiving a TCP packet with FIN

(Finish) flag, indicating no more data from

sender/server.

b) Attack Scenario [11]

Read a file of size 1 MB (1048576 bytes) from the

HTTP Server. Send legitimate HTTP requests and

slowly read responses with the intent of keeping as

many connections as possible in a active state.

1. Request a file which is larger than the server’s

send buffer.

2. Request a large amount of connections, say 1000

connections in total at a rate of 200 connections

per second.

3. Let each client connection read the file at a rate

of 500 bytes per second.

4. Steps 1 through 3 will keep many TCP

connections active for a prolonged period of time

that puts the HTTP server under DoS attack.

B. Model

Figure 2 shows the stack and flow diagram for the model

and the SD model equations are shown in Figure 3.

Fig.2. SD Model for HTTP Slow Read DoS Attack

Fig.3. Model Equations for HTTP Slow Read DoS Attack

IV. VALIDATION RESULTS FOR POC MODEL

A. Structure Verification Test

The HTTP slow read DoS attack model equations (shown

in Figure 3) were verified with the Webserver-Clients

Interface Module (Figure 2) and Apache Webserver [12]

default parameters available in the literature.

B. Parameter Verification Test

The values assigned to the parameters of the simulation

were sourced from the existing knowledge and numerical data

from Apache webserver data [13]. For illustration purposes,

Table 1 lists some of the parameters and their values.

Parameters in the Model Assigned

Valve

Assumed

Valve

Number of connections 10

Read rate from receive buffer (Normal

Scenario)

 1448

bytes/sec

Read rate from receive buffer (Attack

Scenario)

 500

bytes/sec

Wait Period (Amount of time the

server will wait for certain events

before failing a request)

60 sec

Target Test Duration 240 sec

Table.1. Model parameters and their values [11, 12]

C. Extreme Conditions Test

This was verified using the attack scenario (See Figure 5

and Figure 6). Once the HTTP server received a request for a

resource that did not fit into the server’s socket send buffer, it

kept the connection active until the client received the entire

requested file/resource. Sending a large number of legitimate

HTTP requests that were slowly acted on by the client caused

the system to keep connections in an active state until the

connections were available. This created a Denial-of-Service

(DoS) when all the available connections were occupied by

the attacker clients.

Attack Scenario (Read a file of size 1 MB (1048576 bytes)

from the HTTP Server.)

1. Establish a connection to the server.

2. Download the file (or receive the response) through

several TCP packets sized 500 bytes, the default

MinRate allowed by Apache server.

3. Set the download speed to 500 bytes/sec, the default

MinRate allowed by Apache server.

4. As shown in Figure 6, the HTTP server is under DoS

attack – the file is never downloaded by the clients and

all the available connections are occupied by the

attacker clients.

The attack scenario parameters are shown in Figure 4, the

simulation results are shown in Figure 5, and the actual attack

results on the testbed are shown in Figure 6 and Figure 7.

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

Fig.4. Attack Scenario Parameters Settings

(a) HTTP Server Status (Service)

(b) HTTP Server Status (Availability)

Fig.5. Attack Scenario Simulation Result

Figure 5 shows the SD simulation results of the slow read

attack. The X-axis indicates the time (in seconds) taken to

download the file and the Y-axis indicates the number of

active connections maintained by the attacker at any particular

time. As shown in Figure 5(a), attacker clients were able to

hold their TCP connections by slowly reading the data from

the server for a very long time. Until the entire file is read

(1048576 bytes), the established connections were active.

Figure 5(b) shows that there were no available connections for

the new (legitimate) users during the time of attack – all the

available connections were occupied by the attacker. This

indicates that the server was under DoS attack.

For the PoC model validation we developed a

cybersecurity testbed which consisted of a wireless LAN. The

testbed consisted of Apache Webserver, a botnet consisted of

three laptop computers with Kali Linux 64-bit Operating

System running in a Virtual Machine environment installed on

MacBook Pro with 2.7GHz Intel Core i5 processor and Mac

OS Sierra version 10.12 Operating System, and the

workstations consists of two Mac Book Pro laptop computers

with Mac OS Sierra version 10.12 and 2.7GHz Intel Core i5

processor.

(a) HTTP Server Status (Service)

(b) HTTP Server Status (Availability)

Fig.6. Attack Scenario Actual Result on Testbed HTTP

File Server

Figure 6 shows the HTTP (testbed) server status under an

HTTP Slow Read attack. The X-axis indicates the time (in

seconds) taken to download the file and the Y-axis indicates

the number of active connections maintained by the attacker at

any particular time. Figure 6(a) shows that the attacker clients

keep all the 256 available connections, Apache Webserver

default value, busy for the entire attack duration (240

seconds). Figure 6(b) shows the server availability. As the

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

Figure 6(b) indicates, the server was available only for the

first 5 seconds and once the attacker clients occupied all the

available connections the server was not available for the

legitimate user until the attack was over (240 seconds).

D. Dimensional Consistency Test

We ensured our units of measure were consistent with all

mathematical equations. Specifically, times were in seconds

and all data sizes were in bytes.

E. Behavior Reproduction Test

The simulation outputs for a normal scenario (Figure 7)

verified the model-generated behavior (Figure 8) similar to

observed behavior of the real system using real hardware

(Figure 9)

Normal Scenario (Read a file of size 67,264 KB

(68,878,336 bytes) from the HTTP Server.)

1. Establish a connection to the server.

2. Download the file (meaning, receive the response)

through 1448-byte TCP packets, the maximum

segment size that the underlying communication

channel supports.

3. The download speed of the Internet connection is 5.5

Mbps = 720,896 bytes/sec, then after 96 seconds later,

the client receive a TCP packet with FIN flag,

indicating no more data from sender/server (that is, the

file is downloaded).

Fig.7. Normal Scenario Parameters Settings

Fig.8. Normal Scenario Simulation Result

Fig.9. Normal Scenario Actual Result on Testbed

F. Behavior Anomaly Test

The model behaved like the real system under study and we

did not discover any anomalous features of model behavior,

which sharply conflict with behavior of the real system.

V. SUMMARY AND CONCLUSION

Though various formal quantitative and informal

qualitative tools are used in model validation, the system

dynamics model validation in general and in the field of cyber

security in particular is done by getting a group of experts to

agree on a causal loop diagram of the system. Usefulness in

the user’s eyes is the appropriate standard by which to

evaluate these models. To validate a system dynamics cyber

security model, we developed a cybersecurity testbed,

conducted structural and behavior tests on the cybersecurity

model, and finally compared the simulation results of the

proof-of-concept cyber security model with the actual testbed

results.

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

VI. REFERENCES

[1] Forrester JW, "Industrial dynamics," Cambridge, MA: MIT

Press, 1961.

[2] Albert Sweetser, "A comparison of system dynamics (SD) and

discrete event simulation (DES)," 17th International Conference

of the System Dynamics Society, 1999.

[3] Yaman Barlas, "System dynamics: systemic feedback modeling

for policy analysis in knowledge for sustainable development—

an insight into the encyclopedia of life support systems," Paris,

France, Oxford, UK: UNESCO Publishing—Eolss Publishers,

2002.

[4] R.G. Coyle, "System dynamics modelling: a practical

approach," London: Chapman & Hall, 1996.

[5] John D. Sterman, "Business Dynamics: Systems Thinking and

Modeling for a Complex World," Irwin McGraw-Hill, McGraw-

Hill Higher Education, 2000, ISBN 0-07-231135-5.

[6] Dimitrios Vlachos, Patroklos Georgiadis, and Eleftherios

Iakovou, “A system dynamics model for dynamic capacity

planning of remanufacturing in closed-loop supply chains,”

Computers & Operations Research 34 (2007) 367–394.

[7] J.W. Forrester and P.M. Senge, "Tests for building confidence in

system dynamics models," TIMS Studies in the Management

Sciences 1980, 14:209–28.

[8] Thiago Barros Brito, Edson Felipe Capovilla Trevisan, and Rui

Carlos Botter, "A Conceptual Comparison between Discrete and

Continuous Simulation to Motivate the Hybrid Simulation

Methodology," Proceedings of the 2011 Winter Simulation

Conference

[9] Yaman Barlas, "Formal aspects of model validity and validation

in system dynamics," System Dynamics Review 2000,

12(3):183–210.

[10] Osman Balci, "Validation, verification, and testing techniques

throughout the life cycle of a simulation study," Annals of

Operations Research, Baltzer Science Publishers, Baarn/Kluwer

Academic Publishers, December 1994, Volume 53, Issue 1, pp

121–173, DOI: https://doi.org/10.1007/BF02136828

[11] Sergey Shekyan, "Are you ready for slow reading?," Security

Labs, January 5, 2012,

https://blog.qualys.com/securitylabs/2012/01/05/slow-read

[12] Apache HTTP Server Version 2.4 Documentation,

https://httpd.apache.org/docs/2.4/, Last Accessed: 2/17/2019,

8:47 PM

[13] Directive Quick Reference,

https://httpd.apache.org/docs/2.4/mod/quickreference.html, Last

Accessed: 2/17/2019, 8:48 PM

https://doi.org/10.1007/BF02136828
https://blog.qualys.com/securitylabs/2012/01/05/slow-read

