Empirical Validation of System Dynamics Cyber
Security Models

Uma Kannan
Department of Computer Information Systems
Alabama State University
Montgomery, AL, USA
ukannan@alasu.edu

Abstract— Model validation, though a process that’s
continuous and complex, establishes confidence in the soundness
and usefulness of a model. Making sure that the model behaves
similar to the modes of behavior seen in real systems, allows the
builder of said model to assure accumulation of confidence in the
model and thus validating the model. While doing this, the model
builder is also required to build confidence from a target
audience in the model through communicating to the bases. The
basis of the system dynamics model validation, both in general
and in the field of cyber security, relies on a casual loop diagram
of the system being agreed upon by a group of experts. Model
validation also uses formal quantitative and informal qualitative
tools in addition to the validation techniques used by system
dynamics. Amongst others, the usefulness of a model, in a user’s
eyes, is a valid standard by which we can evaluate them. To
validate our system dynamics cyber security model, we used
empirical structural and behavior tests. This paper describes
tests of model structure and model behavior, which includes each
test’s purpose, the ways the tests were conducted, and empirical
validation results using a proof-of-concept cyber security model.

Keywords— Cyber security; cyber security modeling; system
dynamics; continuous simulation; simulation and modeling; cyber-
attacks/defenses; empirical validation.

1. INTRODUCTION

System dynamics (SD) [1] discerns how systems change
over time, through a continuous-event simulation
methodology. In SD, as defined, is a unified whole that comes
from an interaction over time amongst a collection of elements.

(2]

SD, developed by Massachusetts Institute of Technology’s
(MIT) Forrester in the early 1960’s, is a modeling technique
that solves persisting and continual dynamic industrial
management problems [3]. The application of SD helps solve
problems concerning both business policy and strategy today
[4, 5, 6].

The totality of the relationships between the physical
processes, information flows, and managerial policies, in SD,
defines the system’s “structure.” The focus of SD hones in on
the understanding of the dynamics of the variables of interest
that is created through the interaction of these components.
Operating over time, the “dynamic behavior patterns” of the
“structure” of the system is generated. Thus here, it becomes

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

Rajendran Swamidurai
Department of Mathematics and Computer Science
Alabama State University
Montgomery, AL, USA
rswamidurai@alasu.edu

essential that a valid description of the real processes be
provided by the defined model structure. [6]

A prototypical SD study first understands how and why the
dynamics of concern is generated, then looks for ways to
further improve the system’s performance through searching
the upper management’s policies, long-term, macro-level
decision rules. [6]

Model validation establishes confidence in the soundness
and usefulness of a model. Making sure that the model behaves
similar to the modes of behavior seen in real systems, allows
the builder of said model to assure accumulation of confidence
in the model and thus validating the model. While doing this,
the model builder is also required to build confidence from a
target audience in the model through communicating to the
bases. [7]

No strict standard of statistical predictive validity is used in
SD models, this is because, the best way SD models are
characterized are as a collective deduction of a group based on
only the understanding of a system at a certain point in time.
The validation of said model relies on a group of experts
agreeing on a casual loop diagram of the system. The
usefulness of a model through a user’s eyes, remains as a valid
standard by which we can evaluate them. [2, 5, 6, §]

Though numerous formal quantitative and informal
qualitative tools are used in model validation, both in general
and specifically in the field of cyber security, system dynamics
uses validation through a casual loop diagram of the system
agreed upon by a group of experts. Amongst others, the
usefulness of a model through a user’s eyes, is a valid standard
by which we can evaluate them. To validate our system
dynamics cyber security model, we used empirical structural
and behavior tests. This paper describes tests of model
structure and model behavior, which includes each test’s
purpose, the ways the tests were conducted, and empirical
validation results using a proof-of-concept cyber security
model.

This paper present our experience in using cybersecurity
testbed to empirically validate a cybersecurity system
dynamics proof of concept model.

II. SYSTEM DYNAMICS MODEL VALIDATION

The system dynamics model validation is a two-step
process: First establish the validity of the structure of the
model (structural testing), and then evaluate the accuracy of
the model behavior’s reproduction of real behavior
(behavioral testing) [9].

To measure the quality of our model (or to ensure that the
model was successfully completed), we ran the following
structural and behavioral tests on model-generated values
against hypothetical or real system parameters/values:

o Tests of Model Structure: Structure verification test,
parameter verification test, extreme conditions test,
and dimensional consistency test.

o Test of Model Behavior: Behavior reproduction test
and behavior anomaly test.

A. Tests of Model Structure

To test model’s structure direct structure tests are used.
There are two types of direct structure tests: empirical and
theoretical. In the empirical structural tests each model
equations or relationships are compared with the real system’s
quantitative or qualitative information; whereas, in the
theoretical structure tests the model equations or relationships
are compared with the generalized knowledge available in the
literature about the system. [9]

o Structure Verification Test: The structure verification
test asks whether the equations of the model with the
relationships is consistent with the knowledge of the
real system relevant to the purpose. [5, 7, 9, 10]

e Parameter Verification Test: The parameter
verification test is a two stage process, first identifying
the model parameters that correspond to the real
system and then numerically evaluating each parameter
for accuracy. [5,7,9]

e Extreme Conditions Test: The extreme conditions test
make sure that each equation is valid even when it
input parameters receives extreme values and checks
whether the model respond is plausible similar to the
real system when subjected to extreme policies,
shocks, and parameters [5, 7, 9].

o Dimensional Consistency Test: The dimensional
consistency test ensures that the units of measure are
consistent in all model/mathematical equations. [7, 9]

B. Tests of Model Behavior

To test the model’s behavior, structure-oriented behavior
tests (also known as indirect structure tests) are used. While
direct structural tests (or simply structural tests) do not involve
any simulation, these structure-oriented behavioral tests
involve simulation to uncover structural flaws that might hide
in the model. These structure-oriented behavior tests can be
applied to both the whole as well as sub-models. Unlike direct
structure tests, these indirect structure tests enable us to
conduct quantitative evaluations on the model. [9]

e Behavior Reproduction Test: The behavior

reproduction test evaluates the correctness of the

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

model-generated behavior by comparing it to the real
system’s observed behavior [7].

e Behavior Anomaly Test: The behavior anomaly test
verifies whether model exhibits an anomalous
behaviors when assumptions of the model are changed
or deleted [5, 7].

III. PROOF-OF-CONCEPT (PoC) MODEL

To convince ourselves of the feasibility of the overall
research objectives, we constructed a Proof-of-Concept (PoC).
The PoC simulated an HTTP Slow Read Attack on the
Webserver-Clients Interface Sub-Model of the proposed IT
Node.

A. Concept Design

1) The Problem

By design the HTTP protocol requires that when a client
wants to transmit or receive data to/from a server, then the
client must send its full data to the server before it can
process it. If the data from the client is not complete or the
data transfer rate is too slow, the server keeps that
connection active and keeps its resources busy waiting for
the client to complete its request. The Slow HTTP DoS
attacks (known variously as Slowloris, Slow HTTP POST,
and Slow HTTP GET) uses this fact about the HTTP
protocol and try to keep as many server connections open
as possible. If the server keeps too many resources busy,
this creates a denial of service (Figure 1).

(1)HTTP GET requests from attacker

(2) Attacker Reads the HTTP GET responses from server as slow as possibleto keep the

connections active for a longer period of time.
(3)HTTP GET request from client
(4) Server busy/unavailable message

Fig.1. PoC Architecture and Data Flow

2) Scenarios
a) Normal Scenario [11]

Read a file of size 1 MB (1048576 bytes) from the
HTTP Server.
1. Establish a connection to the server
2. Download the file (meaning, receive the
response) through 1448-byte TCP packets, the
maximum segment size that the underlying
communication channel supports.

3. Assume the download speed is 14480 bytes/sec. IV. VALIDATION RESULTS FOR PoC MODEL
The file will take 72.5 seconds
(1048576/14480=72.5) to download resulting in 4. Structure Verification Test

the client receiving a TCP packet with FIN The HTTP slow read DoS attack model equations (shown

(Finish) flag, indicating no more data from in Figure 3) were verified with the Webserver-Clients

sender/server. Interface Module (Figure 2) and Apache Webserver [12]
b) Attack Scenario [11] default parameters available in the literature.

Read a file of size 1 MB (1048576 bytes) from the
HTTP Server. Send legitimate HTTP requests and
slowly read responses with the intent of keeping as
many connections as possible in a active state.

1. Request a file which is larger than the server’s

B. Parameter Verification Test

The values assigned to the parameters of the simulation
were sourced from the existing knowledge and numerical data
from Apache webserver data [13]. For illustration purposes,

Table 1 lists some of the parameters and their values.
send buffer.
2. Request a large amount of connections, say 1000
qu . .g u 101, 53y | Parameters in the Model Assigned | Assumed
connections in total at a rate of 200 connections
d Valve Valve
per secon . . Number of connections 10
3. Let each client connection read the file at a rate Read rate from receive buffer (Normal 1443
of 500 bytes per second. . Scenario) bytes/sec
4. Steps 1 through 3 will keep many TCP Read rate from receive buffer (Attack 500
connections active for a prolonged period of time Scenario) bytes/sec
that puts the HTTP server under DoS attack. Wait Period (Amount of time the 60 sec
server will wait for certain events
B. Model before failing a request)
Figure 2 shows the stack and flow diagram for the model Target Test Duration 240 sec

and the SD model equations are shown in Figure 3.
Table.1. Model parameters and their values [11, 12]

C. Extreme Conditions Test

This was verified using the attack scenario (See Figure 5
OQ\ O"\ 6‘ and Figure 6). Once the HTTP server received a request for a
TTPSever serverflow BefdE\fer transmissionRate receiveBffegy, resource that did not fit into the server’s socket send buffer, it

..............] kept the connection active until the client received the entire

""""""""" requested file/resource. Sending a large number of legitimate

eSeN:f:pwerTaDiT:;eSe enCienar e Oee HTTP requests that were slowly acted on by the client caused

@ % dientBufferLowerli _ the system to keep connections in an active state until the

sendBufferLowerLim sendBufferuppertim Mt C"e”tE“fr;eitrum’e’éonnections were available. This created a Denial-of-Service
it it

(DoS) when all the available connections were occupied by
the attacker clients.

Fig.2. SD Model for HTTP Slow Read DoS Attack Attack Scenario (Read a file of size 1 MB (1048576 bytes)
from the HTTP Server.)
1. HTTPServer(t) = 1048576 — fot(serverFiow(t))dt 1. Establish a connection to the server.

2. Download the file (or receive the response) through
several TCP packets sized 500 bytes, the default

]

. sendBuffer(t) =0+ fot(serverFlow(t) — transmissionRate(t))dt

3. receiveBuffer(t) =0+ fot(tmnsmissionRate(t) — clientFlow(t))dt MinRate allowed by Apache server.
4. HTTPClient(t) =0+ fot(clientFlow(t))dt 3. Set the download speed to 500 bytes/sec, the default
5. IF (sendBuffer<=sendBufferLowerLimit) Then serverFlow.openServerTap=True MinRate allowed by Apache server.
6. IF (sendBuffer>sendBuffer UpperLimit) Then serverFlow.closeServer Tap=True 4. As shown in Figure 6, the HTTP server is under DoS
7. IF(receiveBuffer<=receiveBufferLowerLimit) Then attack — the file is never downloaded by the clients and

transmissionRate.openClientTap=True
8. IF(receiveBuffer>=receiveBuffer UpperLimit) Then
transmissionRate.closeClientTap=True

all the available connections are occupied by the
attacker clients.

The attack scenario parameters are shown in Figure 4, the

simulation results are shown in Figure 5, and the actual attack

Fig.3. Model Equations for HTTP Slow Read DoS Attack results on the testbed are shown in Figure 6 and Figure 7.

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

MName & & & Defintion

= HTTPClient (|]
= clientFlow.in clientFlow
=] receiveBuffer (| 0
clientFlow.out clientFlow
<= transmissionRate.in DISTRIBUTE(transmissionRate)
=& sendBuffer (| 0

= serverFlow.in DISTRIBUTE (serverFlow)

-2 transmissionRate.... DISTRIBUTE(transmissionRate)
=[] HTTPSever (| 1048576

LT serverFlow.out serverFlow
------ <> clientBufferUpperLimit 1048576
------ <> clientBufferLowerLimit o
----- 0% closeClientTap receiveBuffer »=clientBufferUpperLimit
------ <> sendBufferLowerLimit o
----- 43¢ closeServerTap sendBuffer = sendBufferUpperLimit
----- =0 openServerTap sendBuffer <=sendBufferLowerLimit
=[] isServerTapOpen [FaLSE
2 closeberverTap.out COLLECT(closeServerTap)
L@ ppenServerTap.in COLLECT{openServerTap)

----- 40 openClientTap receiveBuffer <=clientBufferLowerLimit
=[] isClientTapOpen [FALSE

: closeClientTap.out COLLECT(closeClientTap)

e ppenClientTap.in COLLECT(openClientTap)

Fig.4. Attack Scenario Parameters Settings

1000
900
800
700
600
500

Connections

300
200 A
100 \
0 i
0 20 40 50 80 100120140 160 180 200 220 240 260

Time (sec)

—Connected

(a) HTTP Server Status (Service)

Server Awvaihbility

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Time (sec)

available

(b) HTTP Server Status (Availability)

Fig.5. Attack Scenario Simulation Result

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

----- A% transmissionRate IF(isClientTapOpen,500,0)

----- ¢ clientFlow IF{(HTTP Client==1048376,{300,500,500,500,500,500,5
----- A% serverFlow IF(isServerTapOpen, 1448,0)

...... < sendBufferUpperLimit 1048576

Figure 5 shows the SD simulation results of the slow read
attack. The X-axis indicates the time (in seconds) taken to
download the file and the Y-axis indicates the number of
active connections maintained by the attacker at any particular
time. As shown in Figure 5(a), attacker clients were able to
hold their TCP connections by slowly reading the data from
the server for a very long time. Until the entire file is read
(1048576 bytes), the established connections were active.
Figure 5(b) shows that there were no available connections for
the new (legitimate) users during the time of attack — all the
available connections were occupied by the attacker. This
indicates that the server was under DoS attack.

For the PoC model validation we developed a
cybersecurity testbed which consisted of a wireless LAN. The
testbed consisted of Apache Webserver, a botnet consisted of
three laptop computers with Kali Linux 64-bit Operating
System running in a Virtual Machine environment installed on
MacBook Pro with 2.7GHz Intel Core i5 processor and Mac
OS Sierra version 10.12 Operating System, and the
workstations consists of two Mac Book Pro laptop computers
with Mac OS Sierra version 10.12 and 2.7GHz Intel Core i5
processor.

Connected

Time (sec)

M Connected
(a) HTTP Server Status (Service)

Axailability

1 21 41 61 81 101 121 141 1el 181 201 221 241

Time (sec)

M Service Available

(b) HTTP Server Status (Availability)

Fig.6. Attack Scenario Actual Result on Testbed HTTP
File Server

Figure 6 shows the HTTP (testbed) server status under an
HTTP Slow Read attack. The X-axis indicates the time (in
seconds) taken to download the file and the Y-axis indicates
the number of active connections maintained by the attacker at
any particular time. Figure 6(a) shows that the attacker clients
keep all the 256 available connections, Apache Webserver
default value, busy for the entire attack duration (240
seconds). Figure 6(b) shows the server availability. As the

Figure 6(b) indicates, the server was available only for the
first 5 seconds and once the attacker clients occupied all the
available connections the server was not available for the
legitimate user until the attack was over (240 seconds).

D. Dimensional Consistency Test

We ensured our units of measure were consistent with all
mathematical equations. Specifically, times were in seconds
and all data sizes were in bytes.

E. Behavior Reproduction Test

The simulation outputs for a normal scenario (Figure 7)
verified the model-generated behavior (Figure 8) similar to
observed behavior of the real system using real hardware
(Figure 9)

Normal Scenario (Read a file of size 67,264 KB
(68,878,336 bytes) from the HTTP Server.)

1. Establish a connection to the server.

2. Download the file (meaning, receive the response)
through 1448-byte TCP packets, the maximum
segment size that the underlying communication
channel supports.

3. The download speed of the Internet connection is 5.5
Mbps = 720,896 bytes/sec, then after 96 seconds later,
the client receive a TCP packet with FIN flag,
indicating no more data from sender/server (that is, the

file is downloaded).
Name & & & Definition
=& HTTPClient O 0
F: clientFlow.in clientFlow
receiveBuffer O 0
: -§F transmissionRate.in DISTRIBUTE(transmissionRate)
clientFlow.out clientFlow
sendBuffer O 0

transmissionRate.... DISTRIBUTE(transmissionRate)

5= serverFlow.in DISTRIBUTE(serverFlow)

5O HTTPSever O 68878336
E'=> serverFlow.out serverFlow
------ ¢ clientBufferUpperLimit 1048576
...... <> clientBufferLowerLimit 0
----- 0% closeClientTap receiveBuffer > =clientBufferUpperLimit
------ ¢ sendBufferLowerLimit v i}
----- A% closeServerTap sendBuffer > sendBufferUpperLimit
----- A% openServerTap sendBuffer <=sendBufferLowerlimit
B[] isServerTapOpen FALSE

- closeServerTap.out COLLECT(closeServerTap)
COLLECT(openServerTap)
IF{isClientTapOpen, 7201396, 0)
IF{HTTPClient< =68878336,{720896, 720801
IF{isServerTapOpen,1448,0)
1048576
"] receiveBuffer <=clientBufferLowerLimit
[FaLse
COLLECT(openClientTap)
COLLECT(closeClientTap)

LA gpenServerTapin
..... A% transmissionRate

..... 0% clientFlow

..... A% serverFlow

------ <> sendBufferUpperLimit
..... A% openClientTap

=[] isClientTapOpen
Qh openClientTap.in
Lo closeClientTap.out

& K & K EE

Fig.7. Normal Scenario Parameters Settings

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

100

S0

80

70
S
% so
=

40
3

30

20

10 1

o

0 20 40 60 80 100120140 160180200220 240
Time (sec)
= Connected
Fig.8. Normal Scenario Simulation Result

100
pelll
g % | -
HE
E 40
8 30

Time (sec)

™ Connected

Fig.9. Normal Scenario Actual Result on Testbed

F. Behavior Anomaly Test

The model behaved like the real system under study and we
did not discover any anomalous features of model behavior,
which sharply conflict with behavior of the real system.

V. SUMMARY AND CONCLUSION

Though various formal quantitative and informal
qualitative tools are used in model validation, the system
dynamics model validation in general and in the field of cyber
security in particular is done by getting a group of experts to
agree on a causal loop diagram of the system. Usefulness in
the user’s eyes is the appropriate standard by which to
evaluate these models. To validate a system dynamics cyber
security model, we developed a cybersecurity testbed,
conducted structural and behavior tests on the cybersecurity
model, and finally compared the simulation results of the
proof-of-concept cyber security model with the actual testbed
results.

VI. REFERENCES

[1] Forrester JW, "Industrial dynamics," Cambridge, MA: MIT
Press, 1961.

[2] Albert Sweetser, "A comparison of system dynamics (SD) and
discrete event simulation (DES)," 17th International Conference
of the System Dynamics Society, 1999.

[3] Yaman Barlas, "System dynamics: systemic feedback modeling
for policy analysis in knowledge for sustainable development—
an insight into the encyclopedia of life support systems," Paris,
France, Oxford, UK: UNESCO Publishing—Eolss Publishers,
2002.

[4] R.G. Coyle, "System dynamics modelling: a practical
approach," London: Chapman & Hall, 1996.

[5] John D. Sterman, "Business Dynamics: Systems Thinking and
Modeling for a Complex World," Irwin McGraw-Hill, McGraw-
Hill Higher Education, 2000, ISBN 0-07-231135-5.

[6] Dimitrios Vlachos, Patroklos Georgiadis, and Eleftherios
lakovou, “A system dynamics model for dynamic capacity
planning of remanufacturing in closed-loop supply chains,”
Computers & Operations Research 34 (2007) 367-394.

[7] J.W. Forrester and P.M. Senge, "Tests for building confidence in
system dynamics models," TIMS Studies in the Management
Sciences 1980, 14:209-28.

978-1-7281-0137-8/19/$31.00 ©2019 IEEE

[8] Thiago Barros Brito, Edson Felipe Capovilla Trevisan, and Rui
Carlos Botter, "A Conceptual Comparison between Discrete and
Continuous Simulation to Motivate the Hybrid Simulation
Methodology," Proceedings of the 2011 Winter Simulation
Conference

[91 Yaman Barlas, "Formal aspects of model validity and validation
in system dynamics," System Dynamics Review 2000,
12(3):183-210.

[10] Osman Balci, "Validation, verification, and testing techniques
throughout the life cycle of a simulation study," Annals of
Operations Research, Baltzer Science Publishers, Baarn/Kluwer
Academic Publishers, December 1994, Volume 53, Issue 1, pp
121-173, DOI: https://doi.org/10.1007/BF02136828

[11] Sergey Shekyan, "Are you ready for slow reading?," Security
Labs, January 5, 2012,
https://blog.qualys.com/securitylabs/2012/01/05/slow-read

[12] Apache HTTP Server Version 2.4 Documentation,
https://httpd.apache.org/docs/2.4/, Last Accessed: 2/17/2019,
8:47 PM

[13] Directive Quick Reference,
https://httpd.apache.org/docs/2.4/mod/quickreference.html, Last
Accessed: 2/17/2019, 8:48 PM

https://doi.org/10.1007/BF02136828
https://blog.qualys.com/securitylabs/2012/01/05/slow-read

