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Accurate and fast gravitational waveform (GW) models are essential to extract information about the
properties of compact binary systems that generate GWs. Building on previous work, we present an
extension of the NRTidal model for binary neutron star (BNS) waveforms. The upgrades are (i) a new
closed-form expression for the tidal contribution to the GW phase which includes further analytical
knowledge and is calibrated to more accurate numerical relativity data than previously available; (ii) a tidal
correction to the GW amplitude; and (iii) an extension of the spin-sector incorporating equation-of-state-
dependent finite size effects at quadrupolar and octupolar order; these appear in the spin-spin tail terms and
cubic-in-spin terms, both at 3.5 PN. We add the new description to the precessing binary black hole
waveform model IMRPhenomPv2 to obtain a frequency-domain precessing binary neutron star model. In
addition, we extend the SEOBNRv4 ROM and IMRPhenomD aligned-spin binary black hole waveform
models with the improved tidal phase corrections. Focusing on the new IMRPhenomPv2 NRTidalv2
approximant, we test the model by comparing with numerical relativity waveforms as well as hybrid
waveforms combining tidal effective-one-body and numerical relativity data. We also check consistency
against a tidal effective-one-body model across large regions of the BNS parameter space.
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I. INTRODUCTION

The first gravitational wave (GW) signal associated with
electromagnetic (EM) counterparts, detected on the 17th of
August 2017, marks a breakthrough in the field of multi-
messenger astronomy [1-3]. Analyses of the GW and EM
signatures favor a binary neutron star (BNS) coalescence,
e.g., [4-15]. Due to the increasing sensitivity of advanced
GW detectors, multiple detections of merging BNSs are
expected in the near future [16].

A prerequisite to extract information from the data is
theoretical predictions about the emitted GW signal. The
properties of the system are typically inferred via a coherent
Bayesian analysis based on cross-correlation of the mea-
sured strain with predicted waveform approximants, e.g.,
[17]. These cross-correlations are done for a large number
of target waveforms and require large computational
resources. Thus, the computation of each individual wave-
form needs to be efficient and fast to ensure that the
Bayesian parameter estimation of signals, containing sev-
eral thousand GW cycles (as typical for BNS systems), is at
all manageable. On the other hand, waveform models need
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to be accurate enough to allow a correct estimate of the
source properties, such as the masses, spins, and internal
structure of the NSs.

Over the last years, there has been significant progress
modeling the GW signal associated with the BNS coa-
lescence, including the computation of higher order tidal
corrections or spin-tidal coupling, e.g., Refs. [18-23],
and improved accuracy of BNS numerical relativity
(NR) simulations [24-29]. However, although the analyti-
cal progress has improved the performance of post-
Newtonian (PN) waveform approximants, PN models
still become increasingly inaccurate towards the merger,
e.g., [30-36].

Most of the current time-domain tidal waveform models
[24,37-43] are based on the effective-one-body (EOB)
description of the general relativistic two-body problem
[44.,45]. This approach has proven to be able to predict
the BNS merger dynamics in large regions of the BNS
parameter space, but recent NR data revealed configurations
for which further improvements of the tidal EOB models
are required [24,42,46]. While one can expect that over the
next years, these issues will be overcome due to further
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progress in the fields of NR, gravitational self-force, and PN
theory, the high computational cost for a single EOB wave-
form is yet another disadvantage. One possibility to speed up
the EOB computation is the use of high-order postadiabatic
approximations of the EOB description to allow an accurate
and efficient evaluation of the waveform up to a few orbits
before merger [41]. The other possibility, and most common
approach, is constructing reduced-order models [47,48].
Those models allow the fast computation of waveforms in
the frequency domain and are well suited for a direct use in
parameter estimation pipelines.

In addition to PN and EOB approximants, there have
been proposals for alternative ways to describe tidal GW
signals. References [49,50] develop phenomenological
black hole-neutron star (BHNS) approximants based on
NR data. Reference [51] transforms NR simulations of
binary black hole (BBH) systems by adding PN tidal
effects, and Refs. [52,53] develop a method to employ
NR waveforms or computationally expensive waveform
approximants (such as tidal EOB waveforms) directly for
parameter estimation.

Another approach to describe BNS systems was
presented in Ref. [54], in which BBH models have been
augmented by an analytical closed-form expression cor-
recting the GW phase to include tidal effects. This
waveform model [34,54], referred to as NRTidal, was
implemented in the LSC Algorithm Library (LAL) [55] to
support the analysis of GW170817 by the LIGO and Virgo
Collaborations (LVC) [1,10,56-58] and has also been used
outside the LVC, e.g.,, [59,60]. In addition, Ref. [61]
developed an alternative tidal approximant in the frequency
domain combining EOB and NR information following a
similar idea as in Ref. [54].

Studies showed that for GW170817, with its signal-to-
noise ratio (SNR) of ~30, waveform model systematics are
within the statistical uncertainties, i.e., that different
employed tidal GW models give slightly different, but
consistent constraints on the binary properties, e.g., [10].
However, systematic effects grow for an increasing number
of detections or GW observations with larger SNRs [35,36].
Reference [36] stated that for a GW170817-like event
measured with the anticipated design sensitivity of the
Advanced LIGO and Advanced Virgo detectors, systematic
effects dominate and the extracted equation of state (EOS)
constraints between existing waveform approximants
will become inconsistent. Furthermore, the analysis pre-
sented in Refs. [34,35] showed that the original NRTidal
model could potentially underestimate tidal deformabil-
ities, leading to possible biases for future detections with
larger SNRs.

Therefore, to further push for the availability of a fast and
accurate waveform model employable for the upcoming
observing runs in the advanced detector era, after recalling
the basics of NRTidal and discussing the NR simulations
and hybrid waveform construction in Sec. II, we improve
the NRTidal description by the following:

(i) Recalibrating the closed-form phenomenological
tidal description including additional analytical
knowledge and using improved NR data (Sec. III A);

(i) adding a tidal GW amplitude correction to the model
(Sec. III B);

(iii) incorporating EOS-dependent 3.5 PN spin-spin and
cubic-in-spin effects proportional to the quadrupole
and octupole moments of the NSs [43,62-64]
(Sec. III C).
We validate the new NRTidalv2 approximant with a set
of ten high-resolution NR waveforms (Sec. IVA) and 18
hybrids of NR waveforms and the TEOBResumS tidal
EOB model [40] (Sec. IV B). Furthermore, we compare the
model in a larger region of the parameter space than
currently covered with NR simulations by computing the
mismatch with respect to the SEOBNRv4T tidal EOB
model [38,39] (Sec. IV C). We note that for this waveform
model Ref. [48] recently developed a reduced-order model
which can also be used directly for GW data analysis. We
conclude in Sec. V. In the Appendixes, we discuss possible
extensions to the model, considering the tidal amplitude
correction (Appendix A) and the mass-ratio dependence of
the tidal phase (Appendix B).

In this article geometric units are used by setting
G = c = Mg = 1. At some places units are given explic-
itly to allow a better interpretation. Further notations are
M = M, + Mg for the total mass of the system, and y 4, v,
A4, Ap for the individual dimensionless spins and tidal
deformabilities of the stars. The mass ratio of the system
is g=M,/Mp and the symmetric mass ratio is
v=MMg/(M, + Mpz)>. We define the labeling of the
individual stars so their masses satisfy M, > M.

I1. BASIC IDEAS AND IMPROVED
NUMERICAL RELATIVITY DATA

A. The basic idea of NRTidal

During the BNS coalescence, each star gets deformed
due to the gravitational field of the companion. These tidal
deformations accelerate the inspiral and leave a clear
imprint in the GW signal, e.g., [65]. Consequently, the
theoretical modeling of BNSs and the extraction of tidal
effects from measured GW signals is an important way of
determining the internal structure of NSs and thus the EOS
of supranuclear dense matter.

The complex time-domain GW signal is given by

h(1) = A(1)e™00), (1)

with amplitude A(7) and time-domain phase ¢ (7). Here we
only consider the dominant 2,2 [spin (—2) weighted
spherical harmonic] mode. We assume in the following
that the phase can be decomposed into

D(D) = pp(®) + Pso(@) + Pss(@) + r(@) +---, (2)
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TABLE L

The nonspinning BNS and BBH hybrids employed in the construction of the NRTidalv2 model. The

columns refer to the name, the employed EOS, the individual masses of the stars MA, M3, the tidal deformabilities
A?, AB, the tidal coupling constant K'fo [Eq. (8)], and the ID in the CoRe and SXS databases.

Name EOS MA MB AA AB KZ‘[T 1D

SLy SLy 1.350 1.350 392.1 392.1 73.5 CoRe:BAM:0095"
H4 H4 1.372 1.372 1013.4 1013.4 190.0 CoRe:BAM:0037
MS1b MS1b 1.350 1.350 1389.4 1389.4 288.1 CoRe:BAM:0064
BBH .- 1.350 1.350 0 0 0 SXS:BBH:0066

*Our work employs a higher resolution than currently available for this setup in the CoRe catalog.

where the dimensionless GW frequency is given by
@ = Mo = MO,p(t). Here ¢, denotes the nonspinning,
point-particle, contribution to the overall phase, ¢go
corresponds to contributions caused by spin-orbit coupling,
¢ss corresponds to contributions caused by spin-spin
effects (both self-spin and spin-interactions), and ¢y
denotes the tidal effects present in the GW phase.

Similar to Eq. (1), the waveform can be written in the
frequency domain as

h(f) = A(f)e™!), 3)

with GW frequency f, frequency domain amplitude A( 1),
and phase y/(f). Here we assume again

(4)

Constraints on the supranuclear EOS governing the
matter inside NSs rely on an accurate measurement of
the tidal phase contribution. This contribution enters first at
the fifth PN order.'

The main idea of the NRTidal approach is to provide a
closed-form approximation for the tidal phase ¢ or yr.
Because standard GW data analysis is carried out in the
frequency domain, the frequency-domain model is of
particular importance, due to its efficiency. In addition to
the tidal contribution, the final NRTidal approximant also
incorporates EOS-dependent effects in ygg, since the spin-
spin contributions depend on the quadrupole and higher
moments of the individual stars, and thus on the internal
structure of the stars.

We note that there are higher order spin-tidal coupling
effects that have recently been computed [21,22]. However,
as outlined in [23], these terms will be unmeasurable in the
advanced GW detector era. Therefore, we do not include
them in the current description to avoid unnecessary
computational costs.

W (@) = wpp(®) +wso(®) + yss(@) +wr(®) + -

'There is also the possibility of extracting EOS information
from the spin-spin interaction first entering in the 2 PN ygg
contribution, where the individual terms of ygg are proportional
to the square of the individual spins, i.e., yi, x%, OF ¥a¥s-
Although the maximum NS spin in a BNS is not precisely known,
the fastest spinning NS in a BNS system observed to date (PSR
J1946 + 2052 [66]) will only have a dimensionless spin of
~0.02-0.04 at merger [67]. Thus, obtaining EOS information
from the spin-spin phase contribution is extremely challenging.

B. High-precision NR simulations

The field of NR has made significant progress over the
last years. Nevertheless, the production of highly accurate
gravitational BNS waveforms remains challenging and
there exist only a small number of simulations with low
eccentricity and with phase errors small enough to allow
GW modeling; cf. Refs. [24-29].

In addition to the dataset used for the original NRTidal
calibration [34,54], we performed one additional simula-
tion for a nonspinning equal-mass BNS setup employing a
piecewise-polytropic parametrization of the SLy [68] EOS.
This EOS is in agreement with recent constraints extracted
from GW170817 [13,56,57,60,69,70] and thus is a natural
choice for our work.” The same physical configuration has
already been used in the past for the construction of the
NRTidal model [27,54]; cf. Table I for further details. In
[27,54], we have simulated this setup with the BAM code
[25,72-74] for five different resolutions with 64, 96, 128,
192, and 256 points in the finest refinement level covering
the individual NSs. Here, we add one additional simulation
with 320 points in the finest refinement level. This
corresponds to a spatial resolution of 0.047 My =70 m
and computational costs of ~5 million CPU hours for this
single resolution.

The availability of six different resolutions and the
presence of clean convergence across multiple resolutions
allows us to employ Richardson extrapolation to obtain an
improved GW signal and to provide an associated error
budget; see Ref. [25] for more details. We present the GW
signal for the different resolutions in Fig. 1 (top panel) and
the phase difference and convergence properties in the
middle and bottom panels.

Except for the lowest resolution, clean second order
convergence is obtained throughout the inspiral. This
becomes evident by comparison of the individual phase
differences with the phase differences rescaled assuming
second order convergence (dashed lines). For the lowest
resolution setup (7¢4), second order convergence is lost a

*While the maximum mass of 2.05 Mg of the SLy EOS is
slightly outside of the 68.3% credible region of the recent heavy
pulsar mass measurement in [71] ([2.07,2.28] M), it is well
inside the 95.4% credible region of [1.97,2.40] M, which is
why we still consider it here.
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FIG. 1. New high-resolution NR data employed for the cali-

bration of the NRTidalv2 approximant. Top panel: Real part of
the GW signal for the six different resolutions employing 64, 96,
128, 192, 256, and 320 points in the refinement levels covering
the individual NSs. The waveforms shown are already extrapo-
lated to spatial infinity to correct for the finite radius extraction;
see [25] for more details (we use K = 1 here). Middle panel:
Phase difference between different resolutions. Bottom panel:
Phase difference between different Richardson extrapolated
waveforms or between a Richardson extrapolated waveforms
and the waveform from an individual resolution. The vertical
lines in each panel refer to the time of merger, i.e., the peak time
of the GW amplitude for the individual resolutions. The dashed
lines in the bottom two panels show the phase difference scaled to
the next lowest pair of resolutions assuming second order
convergence. u denotes the retarded time.

few orbits before merger (u ~ 1500M). Merger times for
each resolution are indicated by vertical solid lines
in Fig. 1.

The phase difference between the highest (13,,) and
second highest resolution (7155¢) is 0.52 rad at the moment
of merger. Performing a Richardson extrapolation [25], we
obtain more accurate phase descriptions. We denote
the Richardson extrapolated data obtained from the reso-
lutions ny and ny as R(ny, ny). We cross-check the robust-
ness of the procedure by presenting the phase differences
R(n320, n256) — nano and R(nas6, m192) — Mase in the bottom
panel of Fig. 1. Rescaling the phase difference of
R(n3a9, nasg) — N3y assuming second order convergence
shows excellent agreement with R(n,s6, 11197) — ns6. This
demonstrates that the leading error term scales quadratically
with respect to the grid spacing/resolution.

Thus, we can estimate the uncertainty of the Richardson
extrapolated waveform R(n3y, nos¢) to be the difference
with the ns,, resolution. At the moment of merger, this

gives an uncertainty of 0.37 rad. At this time the estimated
error due to the finite radius extraction is below 0.044 rad,
which leads to a conservatively estimated total error of
A¢hng <0.38 rad at merger.

An alternative, but not conservative, error measure is
given by the difference between the two Richardson
extrapolated waveforms (green line in the bottom panel).
We find that throughout the inspiral the difference between
the R(l’l320, I’l256) and R(n256, I’l192) is below 0.1 rad (at the
moment of merger A¢= 0.087 rad, which would lead to a
total error of <0.1 rad once finite radius extraction is
included).

In addition to this new setup, we also consider the
additional two high-resolution simulations available in the
CoRe database [28], cf. Table I. These setups, CoRe:
BAM:0037 and CoRe:BAM:0064, only employ 192 points
across the star and have conservatively estimated phase
uncertainties at merger of 1.20 and 2.27 rad, respectively.
We incorporated this accuracy difference by weighting the
individual setups differently during the construction of the
NRTidalv2 phase, as discussed in the next subsection.

C. Hybrid construction

In the original NRTidal work, PN, EOB, and NR
approximants have been separately used in different fre-
quency intervals. Here, we start by constructing hybrid
waveforms consisting of a time-domain tidal EOB model
(TEOBResumsS) inspiral [40] connected to the high-
resolution NR simulation discussed above. The hybridiza-
tion is performed as discussed in Refs. [34,35] to which we
refer for further details. In addition to the BNS hybrid
waveforms, we also create a hybrid between the nontidal
version of the TEOBResumS model and a binary black
hole waveform computed with the SpEC code [75], setup
SXS:BBH: 0066 of the public SXS catalog [76,77]. All
the hybrids have an initial frequency of 20 Hz.

We present the time-domain phase evolution of the BBH
and BNS hybrids in Fig. 2. For this plot we align the
waveforms at ~22 Hz.

‘We emphasize that only the four hybrid waveforms listed
in Table I are used for calibration of the NRTidalv2
model, where the dataset we are going to fit is

PR = :
T 73204192+ 192
x [320(¢psLy — Ppen) + 192(dus — Pusn)

+ 192(pms1v — Peu)]

1
=1 (5¢sLy + 3us + 3bmsio — 1 dppn)- (5)

The factors are obtained by linearly weighting the reso-
lutions of the individual NR data, i.e., 320 points across the
star for the SLy setup and 192 for H4 and MS1b setups. We
decided to use this minimal dataset since these are the
available data with the highest accuracy. Note that a simple
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FIG. 2. Time-domain phase of the hybrid waveforms employed
to develop NRTidalv2. The bottom panel shows the phase
difference caused by tidal effects.

restriction to the highest resolution, i.e., the SLy data, leads
to a phase description which does not accurately character-
ize binaries with large tidal deformabilities. Thus, it would
be preferable to include in the future a larger number of NR
simulations with varying masses, spins, mass ratios, and
EOSs once these are available. However, while there are a
small number of high-quality waveforms [27], these wave-
forms do not span a sufficiently large region of the parameter
space to incorporate additional mass ratio, EOS, or mass
dependencies in our phenomenological ansatz.

II1I. IMPROVEMENTS

The NRTidalv2 approach can be added to any BBH
model: we focus our discussion here on the frequency domain
IMRPhenomPv2, IMRPhenomD, and SEOBNRv4 ROM
models. We primarily concentrate on the extension of
IMRPhenomPv2 [78,79] describing precessing systems.
In addition, we have also added the improved tidal
phase description to the SEOBNRv4 ROM [80] and the
IMRPhenomD [79] approximants.” For SEOBNRv4
ROM and IMRPhenomD, we decided to include only the
tidal phase description to reduce additional computational
costs and allow a faster computation of waveforms than for
IMRPhenomPv2 NRTidalv2.

‘We present an overview of all existing NRTidal models
in Table II.

A. Recalibrating the NRTidal phase

1. Ansatz for the NRTidal time-domain phase

Nonspinning tidal contributions start entering the GW
phasing at the 5 PN order and partially known analytical
knowledge exists up to 7.5 PN [18],

3See [81,82] for more details of the reduced-order model
technique used to construct SEOBNRv4 ROM from the time-
domain approximant SEOBNRv4.

¢T = _KAcgethS/z(l + C?)C + C§/2x3/2

+cha? 4 ¢§,0°%) + [A < B, (6)
with the dimensionless EOB tidal parameter «, (defined

below) and x(®) = (®/2)*3. The individual coefficients
c? are

(X +12Xp) (7a)
Newt SXAX% ’
N 5(260X3 —2286X3 — 919X, + 3179) (7b)
) =— )
! 336(11X, — 12)
5
C?/z —Th (7¢)

) = [5(67702048X5 — 223216640X* + 337457524X3
—141992280X2 + 96008669X , — 143740242)]
/[3048192(11X,, — 12)], (7d)

7(10232X3 — 7022X3 + 22127X, — 27719)
192(11X, — 12) ’

(7e)

and similarly with A <> B. Here X, g = M, /M. We note
that although analytic knowledge exists up to the 7.5 PN
order, some unknown terms are present at 7 PN. As
discussed in Ref. [18], these terms are expected to be
small and are set to 0 in our definition of ¢4, c5.

As in the original NRTidal description [27,54] we
introduce the effective tidal coupling constant < which

describes the dominant tidal and mass-ratio effects,

2 X X \3
T _ B A A
Ko = B [(1 + 12X_A> <_CA> K+ (A< B)] (8)

where C, 3 =M, p/Rsp are the compactnesses of the

C5p0 = —

stars at isolation, and kg’B the Love numbers describing the
static quadrupolar deformation of one body in the gravito-
electric field of the companion [83-86]. The parameter
is related to A (the mass-weighted tidal deformability
commonly used in GW analysis [32]) by

. 16
A= ?KeTff’ )

and the individual tidal deformability parameters are
given by

2 k5"

App=--2_.
A.B 3C154’B

(10)
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TABLEII. Overview of the existing NRTidal approximants. The individual columns refer to the name of the approximant, the BBH
baseline, the employed tidal phase, the employed spin-spin and cubic-in-spin contribution, employed tidal amplitude corrections, and
the incorporation of precession, as well as the computational time A7’y of the model to produce a single waveform for a nonspinning,
equal mass binary with individual masses M, g = 1.35 and A4 3 =400 on an Intel Xeon E5-2630v3 processor for various starting

frequencies.

LAL approximant

Cubic Tidal ATy, [s]

name BBH baseline wr Spin spin in spin amp Precession 10 Hz 20 Hz 30 Hz 40 Hz
IMRPhenomD IMRPhenomD NRTidal Up to 3 PN (BBH) X X X 255 029 0.14 0.07
NRTidal

IMRPhenomD ~ IMRPhenomD  NRTidalv2 Up to 3 PN X X X 254 029 0.14 0.07
NRTidalv2

SEOBNRv4 ROM_ SEOBNRV4 NRTidal Up to 3 PN X X X 339 040 0.18 0.09
NRTidal ROM

SEOBNRv4 ROM_ SEOBNRV4 NRTidalv2 Up to 3 PN X X X 334 040 0.18 0.09
NRTidalv2 ROM

IMRPhenomPv2 IMRPhenomPv2 NRTidal Up to 3 PN X X 4 730 090 043 021
NRTidal

IMRPhenomPv2 IMRPhenomPv2 NRTidalv2 Upto35PN Upto v 856 1.06 051 0.28
NRTidalv2 35PN

The EOB tidal parameter used in Eq. (6) is given by 28024205 42837

Ky = 3XpX4A,. € = 1100736 Cs5/2 = 312 (14b)

In the restrict  the
AB AB AB AB

Y A S Ay to their equal-mass values (due to

following, we parameters

the absence of a large set of high-quality unequal mass
NR data), and therefore, discard the superscripts A and B.
For this case, an effective representation of tidal effects is
obtained using

13
¢r(x) = _Kgffg_yxs/zPNRTidaIVZ(x)v (11)

with the Padé approximant

PNrridanv2 (X)
B 14+nx+ n3/2x3/2 + nyx? + n5/2x5/2 + n3x?
o 1 —|—d1x+d3/2x3/2 +d2X2

(12)

To enforce consistency with the analytic PN knowledge
[Egs. (6)—(7e)], some of the individual terms are restricted,

ny :C1+d1, (133)
C1C3/2 — C5/2 — C32d) + N5y
n3/2 — / / c] / / , (13b)
ny :CZ+C]d1 +d2, (130)
Cspp + C3)0dy — ns)y
dsjs = - 2 , (130
with

3115 Sm

‘1= "4 €32 =775 (14a)

The remaining unknown four parameters are fitted to the
data,
ns;,, = 312.48173,

ny = —342.15498, (15a)

d; = —20.237200, d, = —5.361630. (15b)

Figure 3 shows our findings. We show as a gray shaded
region the parameter space in ¢r/k’; covered by our
simulations, where the gray dashed line refers explicitly to
the SLy configuration. Here we do not include any error
estimate in the BBH hybrid used to extract the tidal phase.
In addition, we present the 6 PN tidal contribution, which
the old NRTidal approximant reduces to in the low-
frequency limit; the 7.5 PN contribution, which the new
NRTidalv2 reduces to in the low-frequency limit; and the
7PN contribution, which is the PN approximant showing
the best agreement to the NR data. We also show the tidal
phase given in Kawaguchi et al [61],* which has been
calibrated to NR simulations up to a frequency of 1000 Hz
(thin dashed line). The model of Ref. [61] loses validity
outside its calibration region and overestimates tidal effects
at the moment of merger, though this would not affect GW
data analysis if a maximum frequency of 1000 Hz is
employed, or the signal at frequencies 1000 Hz is
sufficiently suppressed by the detectors’ noise. In addition,
we find good agreement between the Kawaguchi er al. fit
and the new NRTidalv2 approximation below 1000 Hz.
We also show the estimated tidal phase extracted by

*We obtain the time-domain tidal phase approximant from the
frequency domain expression given in Ref. [61] using the
stationary phase approximation.
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FIG. 3. Time-domain tidal phase contribution divided by the

tidal coupling constant k/;;. We show as a gray shaded region the
parameter space covered by our hybrids (Table I) and as a dashed
gray line the SLy hybrid’s tidal phase divided by the coupling
constant for this setup. In addition, the 6 PN (orange), 7 PN
(orchid), and 7.5 PN (blue) tidal phase estimates, as well as the
original NRTidal [54] (green) and Kawaguchi ef al. [61] (cyan)
approximants are presented. As a dark red line, we present an
estimate obtained using the tidal EOB model TEOBResumS. We
note that the Kawaguchi et al. and TEOBResumS tidal phases
depend on A even after being scaled by the coupling constant; for
this plot and the following ones we use A = 392.1 to describe the
SLy configuration. NRTidalv2 is shown with a black dashed
line. We mark the frequencies of 1000 Hz and the merger
frequency corresponding to our SLy setup, described in Table L.

comparing our BBH hybrid with a tidal EOB waveform
computed for our SLy configuration using the TEOBRe sumS
[40] model. The tidal phase estimate of the TEOBResumS
model is slightly less attractive for frequencies around
1000 Hz, but more attractive at higher frequencies. Finally,
the original NRTidal model is shown as a green line. The
tidal contribution is overestimated at about f ~ 1000 Hz, and
later underestimated. This oscillatory behavior has been seen
before, e.g., [27,34,54], and could potentially lead to biases in
the estimate of tidal effects from GW signals [35]. For both
NRTidal and NRTidalv2 the growth of the tidal phase
around merger is much smaller than for any other approx-
imant, which generally reduces possible pathologies in more
extreme regions of the parameters, e.g., a cancellation of the
point-particle and attractive tidal phase close to merger. As
expected the NRTidalv2 model stays within the gray
shaded region and, thus, close to the numerical relativity
dataset used for the calibration.

2. Frequency domain phase

As in Ref. [54] we employ the stationary phase approxi-
mation (SPA), discussed in, e.g., [18], to derive the tidal
phase contribution y; in the frequency domain, i.e., we
solve

dZU/T(W) - ld¢T(w)

de? o do

(16)

to obtain y. Although ¢7 is given explicitly, we solve
Eq. (16) numerically and approximate the result with a
Padé approximant similar to Eqs. (11) and (12),

39 -
wr(x) = =&l —— x> Pagrigana (%), (17)
16v
with
P NRTidalv2 (X)
_1+ﬁ1x+ﬁ3/2x3/2+ﬁ2x2+ﬁ5/2x5/2+ﬁ3x3 (18)
N 1 +211x+a3/2x3/2+32x2 ’
and
I7l1 =Z‘1+31, (198.)
- 8183 — Bsn — Eypady + Tis)s
fiyjy = 22052 5 2 (19b)
1
I7l2 = 6‘2+Z‘1211 +ZJ2, (19C)
~ Esj2 + C3pdy — s
dy;p = - / : 2 (19d)
1
where the known coefficients are
3115
1 = — C — — 2
Cq 1248’ C3/2 T, ( Oa)
28024205 42837
Gy = ——, Csjp = ———. 20b
273302208 ¢ ="Tg0p - (20b)
and the fitting coefficients are
its ), = 90.550822, iz = —60.253578, (21a)
d; = —15.111208, d, = 8.0641096.  (21b)

We present the final tidal phase contribution in the
frequency domain in Fig. 4 for a number of different GW
approximants. Figure 5 shows the corresponding phase
differences with respect to the NRTidalv2 model on a
double logarithmic scale.

B. Tidal amplitude corrections

The extraction of binary properties relies mostly on the
GW phase, which makes an accurate description of y the
primary target of GW modeling. However, a realistic
estimate of the GW amplitude is also of importance,
e.g., for a precise distance measurement.

Therefore, we discuss a possible extension of the
NRTidal approach including a tidal amplitude correction
in the frequency domain. An alternative time and frequency
domain amplitude correction is presented in Appendix A.

Here, we derive the frequency domain tidal correction
from the frequency domain representation of the SLy and
BBH TEOBResumS-NR hybrids, described in Table I.
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FIG. 4. Tidal phase in the frequency domain. We show the 6 PN
(orange), 7 PN (orchid), and 7.5 PN (blue) tidal phase estimates, as
well as the original NRTidal [54] (green) and the Kawaguchi et al.
[61] (cyan) approximant. The new model is shown with a black
dashed line. We mark the frequencies of 1000 Hz and the merger
frequency corresponding to our SLy setup, described in Table I.
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FIG. 5. Absolute magnitude of the tidal phase difference
between frequency domain approximants and the NRTidalv2
model. The vertical dashed line represents 1000 Hz, the fre-
quency up to which the Kawaguchi et al. model was calibrated,
and the solid line marks the merger frequency of the SLy setup we
consider.

We do not employ the H4 and MS1b setup for the amplitude
correction since their lower merger frequencies add addi-
tional complications during the construction procedure. The
top panel of Fig. 6 shows A for our generic setups and also the
BBH result augmented (A = Aggy + A1) by the 6 PN
expression,

~ /1607y M? _ 27 449
AgPN = 27 FLKZHX 7/4 <— T6x5 — 64x6> B (22)

e.g., Ref. [33], where D; is the luminosity distance of the
source, which is the appropriate substitution for the effective
distance used in Ref. [33] for our case.’ Kawaguchietal. [61]
extended Eq. (22) to

Note further that as before, we have restricted our analysis to the
leading order mass-ratio effect and do not incorporate further mass-
ratio dependence in the PN parameters. Furthermore, we restrict
our consideration to gravitoelectric contributions and do not
consider gravitomagnetic tidal effects recently computed in [20].

1072
1072 4
<
10744 - \
ApH ===dJ_
Asvy [ —
10-3 4-- -Appy + ASPN
5 |Appr — Asty|= == ApBH{ — AsLy|smoothea
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e
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FIG. 6. Frequency domain waveform amplitude. Top panel: We
show the BBH and BNS hybrids’ amplitudes as well as the BBH
amplitude augmented with the 6 PN tidal terms presented in
Eq. (22). Bottom panel: amplitude differences with the raw data
in black and the smoothed data as a blue dashed line. The final
NRTidalwv?2 fitis shown in red. The vertical dashed lines refer to
1000 Hz and to the merger frequency of the BNS hybrid
respectively.

2
T L

27 449
X < S ———xb - 4251x7'890>. (23)

16" T 64

Based on the good agreement we have found between the
results of Ref. [61] and the new NRTidalv2 phase
description below 1000 Hz, we want to use Eq. (23) as a
baseline for a possible frequency amplitude extension of the
NRTidalv2 approximant.

For this purpose we employ the ansatz

449 22672 ,2.89
ANRTidalv2 _ _ @91‘42 Ty 13/4 I +3sx +=5—x
T V24 D, et 1+ dx*

(24)

Equation (24) ensures that for small frequencies Eq. (23)
is recovered, but that the high-frequency behavior
(f > 1000 Hz) can be adjusted. We obtain d = 13477.8
by fitting the data presented in Fig. 6 (blue dashed line in the
bottom panel).

As for the previous NRTidal implementation, we add a
Planck taper [87] to end the inspiral waveform. The taper

®We note that the phase and amplitude extension presented in
[61] follow different approaches: While the tidal phase correction
is based on an additional contribution due to nonlinear tides, i.e.,
a higher order A contribution, the amplitude correction only uses
linear tidal effects, but adds an effectively higher order PN
coefficient. Therefore, the proposed amplitude extension of [61]
can easily be incorporated in our approach.
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begins at the estimated merger frequency [Eq. (11) of [34] ]
and ends at 1.2 times the merger frequency. Thus, the final
amplitude is given as

A = (ABBH + AI}IRTidalVZ) x APlanck- (25 )

Because of the smooth frequency and amplitude evolution
even after the moment of merger, this taper only introduces
negligible errors and does not lead to biases in the
parameter estimation of even SNR 100 signals, as shown
using an injection of an SLy hybrid with the same
parameters as those considered here in [35].

C. Incorporating higher order spin-spin effects

While nonspinning NSs and black holes only have a
nonzero monopole moment, spinning neutron stars and
black holes have an infinite series of nonzero (Geroch-
Hansen) multipole moments, e.g., Refs. [88,89]. The
contributions from the stars’ (mass) monopole and (spin)
dipole to the binary’s motion are explicitly accounted for in
the BBH baseline. Additionally, contributions from higher
spin-induced multipoles in the BBH baseline model are
indirectly included due to the calibration to NR simula-
tions. However, without further adjustment, all multipoles
would be specialized to the black hole values, which
(as shown in [34]) noticeably reduces the accuracy for
spinning BNS systems. Thus, to improve the performance
of NRTidalv2 for spinning configurations, we include
an EOS dependence in the quadrupole and octupole,
as these are the moments that appear in current PN
calculations. These two moments (in their scalar versions)
can be written as MY = —COM3 pii g S =
—CoPMS gl . respectively, for star A and B. Here
C’S‘B and CAP are the quadrupolar and octupolar spin-
induced deformabilities for the individual stars. Both Cg
and Cg, are 1 for a black hole.

In this paper, we extend the existing LALSuite imple-
mentation, which currently contains the EOS dependence
of the quadrupole moment only up to 3 PN [63,90] to
include the 3.5 PN spin-squared terms, completed using the
recently computed 3.5 PN tail terms [43]. We also include
leading order spin-cubed terms entering at 3.5 PN order.

The contributions of the quadrupole and octupole defor-
mations of the stars to the binary’s binding energy and
energy flux have been computed through 3.5 PN,
Refs. [40,62,63], building on earlier work reviewed in
[91]. We compute the phase in the frequency domain using
the SPA. These contributions to the phase were already
presented in [64], except the 3.5 PN spin-spin terms, as [64]
did not have the 3.5 PN spin-squared tail term from
Ref. [40]. Explicitly, the self-spin (i.e., Cq and Cp,) terms
in the phasing that we add to the BBH baseline are

3x75/2
Vss = s
+[A < B, (26)

~(A) ~(A) ~(A)
(‘//ss,zPNx2 + WSS,3PNX3 + WSS,3.5PNx7/2)

with

A~ (A ~A
W(ss?sz = _SOCQX%)(%’

5 .
V5 sen = o (9407 + 8218X,, — 2016X3)C4 X313,

(A 308 89
V/éS),S.SPN =10 [(Xfa + 3XA>)(A + (X% - 3XB>)(B

—~ 40;;} CAX3xA — 44008 X505 (27)

Here we use C4 == C3 — 1 and C{, = C3, — 1 to remove
the contribution from the black hole multipoles already
present in the baseline BBH phase.

Finally, we relate Cg to the tidal deformability A, and
C{. to C{ using the EOS-insensitive relations (Tables 1 and
2 from [92]),

log(C’é) = 0.1940 + 0.09163 log(A,) + 0.04812log?(A4)
— 0.004286log* (A4) + 0.00012450log*(A,)
(28)

and

log(Cf,) = 0.003131 + 2.071 log(C}) — 0.7152log>(C})
+0.2458log? (C4) — 0.03309l0g*(CA).  (29)

To allow a better interpretation of the spin-spin terms
discussed above, we present in Fig. 7 the individual
contributions If/(s/;)’QPN, 1/7(5’23131\1, and 1/7(5/;)’3_51,1\1. In addition,
for better visibility, we also show explicitly the spin-cubed
octupole term zp(c'?cﬁ_SPN = —440C3.X3 3. For an equal-

mass setup with A4% =350 and 4% =02 the 2 PN
contribution dominates up to @ ~ 0.06, before the positive
3 PN term becomes larger. Overall, we find that except for
the 3 PN contribution all terms are negative for the chosen
setup. We also see that throughout the inspiral the octupole
term is about 1 order of magnitude smaller than other
contributions. This observation remains valid even for spins
close to break-up y ~ 0.75. Thus, we do not attempt to
include additional higher order multipoles.

D. Precession dynamics

We conclude the discussion of the model by shortly
describing the incorporation of precession. The precession
dynamics in IMRPhenomPv2 NRTidalv2 isincluded as
in the previous IMRPhenomPv2 NRTidal approach [34].
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FIG. 7. Quadrupolar and octupolar spin-spin and cubic-in spin

contributions at 2 PN, 3 PN, and 3.5 PN order, as well as their
sum, all without the overall Newtonian scaling. Negative terms
are shown with dashed lines, positive terms with solid lines. The
plot assumes an equal-mass system with dimensionless spins
x4 = yp = 0.2 and tidal deformabilities of A, = Ap = 350. The
quadrupole and octupole moments are computed according to
Egs. (28) and (29) (CA = Cg =430, C3. = CB. =17.28).

For this we assume that the spin-orbit coupling can be
approximately separated into components parallel and per-
pendicular to the instantaneous orbital angular momentum,
where the component perpendicular to the orbital angular
momentum is driving the precessional motion [93-98].

Consequently, we construct a precessing tidal waveform
approximant from the spin-aligned model after adding all
tidal corrections to the underlying spin-aligned point
particle model. We then rotate the waveform to account
for precession, as discussed in Refs. [97,98].

IV. VALIDATION

A. Time-domain comparison with NR simulations

As a first validation check, we compute the time-domain
phase difference between IMRPhenomPv2 NRTidalv2

and a selected set of NR data; see Table III. All of
the employed waveforms are publicly available in the
CoRe database [28]. In addition to IMRPhenomPv2
NRTidalv2, we also present the phase difference with
respect to SEOBNRv4T and IMRPhenomPv2 NRTidal
in Fig. 8.

Waveform alignment: For comparison, we align all
waveforms with respect to the NR data by minimizing
the phase difference in the time interval [z;, 7]

(5t.60) = / "\ (0) = (1 + 51) + 6pldr. (30)

where x denotes the individual waveform approximant. The
alignment windows are marked by vertical dashed lines
in Fig. 8.

NR data uncertainty: For a quantitative comparison with
respect to the NR data, we assign each dataset with an
uncertainty, where we generally distinguish between (i) set-
ups employing the high-order flux scheme of [25] for
which clean convergence is found throughout the inspiral,
and (i) setups whose behavior is monotonic, but no clean
convergence is present. For the setups employing the high-
order flux scheme, we obtain a better phase estimate and an
error measure (green shaded region) due to Richardson
extrapolation [25,27]; cf. Sec. II B. Other configurations are
marked by blue shaded regions. For these cases, the
uncertainty due to numerical discretization is estimated
by the difference between the two highest resolutions,
which is not necessarily a conservative error estimate. For
both scenarios, we also include an error measuring the
effect of the finite radius extraction of the GW from the
numerical domain. This error measure is obtained by
computing the difference in the waveform’s phase with
respect to different extraction radii; see e.g., Refs. [25,46]
for a more detailed discussion.

TABLE III. NR BNS configurations for validation of the time-domain phasing. The columns refer to the CoRe-ID of the setup, the
EOS (see Ref. [68]), the NSs” individual masses M 4 g, the stars’ dimensionless spins y 4 g, the tidal deformabilities of the stars A4 g, the
tidal deformability of the binary A, the grid resolution covering the NS, and the residual eccentricity of the configuration. In the last
column we state whether we employ Richardson extrapolation for a better estimate of the phase. For those setups the errors shown in
Fig. 8 present a conservative error measure and are shown as green shaded regions. We note that setups CoRe:BAM:0037 and CoRe:
BAM:0064 have also been employed for the calibration of the model; see Eq. (5).

Name EOS M, [Mg] Mp [Mg] xa XB Ay Ap A hne [Mg] e [1073] Richardson
CoRe:BAM:0001 2B 1.371733 1.371733 0.000 0.000 126.73 126.73 126.73  0.0930 7.1 X
CoRe:BAM:0011 ALF2 1.500006 1.500006 0.000 0.000 382.77 38277 382.77 0.1250 3.1 X
CoRe:BAM:0037 H4  1.371733 1.371733 0.000 0.000 1006.2 1006.2  1006.2 0.0833 0.9 v
CoRe:BAM:0039 H4  1.372588 1.372588 0.141 0.141 1001.8 1001.8 1001.8 0.0833 0.5 v
CoRe:BAM:0062 MSIb 1.350398 1.350398 —0.099 —0.099 1531.5 1531.5 15315 0.0970 1.8 v/
CoRe:BAM:0064 MSI1b 1.350032 1.350032 0.000 0.000 1531.5 1531.5 15315 0.0970 1.8 v
CoRe:BAM:0068 MS1b 1.350868 1.350868 0.149 0.149 15252 15252 15252 0.0970 23 v
CoRe:BAM:0081 MSI1b 1.500016 1.000001 0.000 0.000 863.8 7022.3 24255 0.1250 15. X
CoRe:BAM:0094 MSI1b 1.944006 0.944024 0.000 0.000 1829 9279.9 1308.2 0.1250 34 X
CoRe:BAM:0105 SLy 1.350608 1.350608 0.106 0.106 388.2 388.24  388.2 0.0783 0.7 v
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FIG. 8. Top panel: Real part of the GW signal obtained from the NR data (black) and the IMRPhenomPv2 NRTidalv2 model (red
dashed). Bottom panel: Phase difference between the NR data listed in Table IIT and the IMRPhenomPv2 NRTidalv2,
IMRPhenomPv2 NRTidal, and SEOBNRv4T models; note that we discard the IMR prefix for better visibility in the panel
legends. The green shaded regions denote the errors computed using Richardson extrapolation and u is the retarded time, while the blue
shaded regions present the phase difference between the two highest NR resolutions. The vertical dashed lines mark the alignment
region while the solid vertical line marks the merger. See the main text for further details.

NRTidalv2 dephasing: Considering the performance of
the NRTidalv2 approximation, we find that for all cases
with reliable error measure (green shaded regions), the
dephasing between the model and the NR data is well within
the error estimate and never exceeds 1 rad. The performance
is comparable with the SEOBNRv4T model which is shown

as a blue dashed-dotted line.’ Considering the difference
withrespectto IMRPhenomPv2 NRTidal, we find thatas

"We note that very recently Ref. [48] has constructed a
reduced-order model of SEOBNRv4T which can also be used
directly for parameter estimation.
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TABLEIV. BNS hybrid configurations. The columns describe the name of the hybrid (CoRe database ID), the EOS, cf. [68], the NSs’
individual masses M, g, the stars’ dimensionless spins y4 g, the stars’ compactnesses C g, the tidal deformabilities of the stars A, p, the
tidal deformability of the binary A, the effective dimensionless coupling constant k!, and the merger frequency Smrg:

Name EOS M, [Mo] Mg [Mo]  xa Cy Cp Ay Ag A Kl fune [HZ]
Equal mass, nonspinning

CoRe:Hyb:0001 2B 1.3500 1.3500  0.000  0.000 0.205 0.205 1275 1275 1275 239 2567
CoRe:Hyb:0002  SLy 1.3500 1.3500  0.000 0.000 0.174 0.174 392.1 392.1 3921 735 2010
CoRe:Hyb:0003 H4 1.3717 1.3717  0.000 0.000 0.149 0.149 1013.4 1013.4 10134 190.0 1535
CoRe:Hyb:0004 MSI1b 1.3500 1.3500  0.000 0.000 0.142 0.142 1536.7 1536.7 1536.7 288.1 1405
CoRe:Hyb:0005 MSI1b 1.3750 1.3750  0.000  0.000 0.144 0.144 1389.4 1389.4 13894 260.5 1416
CoRe:Hyb:0006  SLy 1.3750 1.3750  0.000  0.000 0.178 0.178 3473 3473 3473 65.1 1978
Unequal mass, nonspinning

CoRe:Hyb:0007 MSI1b 1.5000 1.0000  0.000 0.000 0.157 0.109 866.5 7041.6 24335 4563 1113
CoRe:Hyb:0008 MS1b 1.6500 1.1000  0.000 0.000 0.171 0.118 505.2 44059 1490.1 279.4 1170
CoRe:Hyb:0009 MSI1b 1.5278 12222 0.000  0.000 0.159 0.130 779.6 25832 14204 266.3 1301
CoRe:Hyb:0010  SLy 1.5000 1.0000  0.000  0.000 0.194 0.129 1923 23150 720.0 135.0 1504
CoRe:Hyb:0011  SLy 1.5274 1.2222 0.000 0.000 0.198 0.157 1675 7322 3656 68.6 1770
CoRe:Hyb:0012  SLy 1.6500 1.0979  0.000 0.000 0.215 0.142 93.6 13723 408.1 765 1592
Equal mass, spinning

CoRe:Hyb:0013 H4 1.3726 1.3726  +0.141 +0.141 0.149 0.149 1009.1 1009.1 1009.1 189.2 1605
CoRe:Hyb:0014 MSI1b 1.3504 1.3504 -0.099 -0.099 0.142 0.142 15345 15345 15345 287.7 1323
CoRe:Hyb:0015 MSI1b 1.3504 1.3504  +0.099 +0.099 0.142 0.142 1534.5 15345 15345 287.7 1442
CoRe:Hyb:0016 MS1b 1.3509 1.3509  +0.149 +0.149 0.142 0.142 1531.8 1531.8 1531.8 287.2 1456
CoRe:Hyb:0017  SLy 1.3502 1.3502  +0.052 +0.052 0.174 0.174 392.0 3920 3920 735 2025
CoRe:Hyb:0018  SLy 1.3506 1.3506  +0.106 +0.106 0.174 0.174 391.0 391.0 3910 735 2048

expected the new NRTidalv2 model is less attractive,
which is caused by the slightly different behavior in the
frequency range @ > 0.05.

For the NR setups which show no clear convergence
throughout the inspiral, we find that for most cases the
estimated uncertainty is larger than the phase difference
between the NRTidalv2 and the NR data; the exceptions
are BAM:0081 and BAM:0094. These setups are charac-
terized by high mass ratios [BAM:0094 is to date the NR
dataset with the largest simulated mass ratio (¢ = 2.1)] and
tidal deformabilities which are in tension with the obser-
vation of GW170817 [57].

Additional simulations with clean convergence for large
mass ratios are needed to allow an overall improvement of
BNS models in these regions of the parameter space (see
Appendix B).

B. Mismatch computations with
respect to EOB-NR hybrids

To validate the new NRTidalv2 model, we compare
our LALSuite implementation against a set of target
waveforms combining TEOBResumS and NR data by
computing the mismatch. Those waveforms have been
constructed for Ref. [34] and are publicly available [28].
We refer to [34] for further details. The main properties of
these target waveforms are summarized in Table IV.

Mismatch computation: We compute the mismatch
according to

F — 1 — max (hl (¢c* [L')|h2) (31)

bete v/ (hy|hy)(halhy) ’

where ¢, . are an arbitrary phase and time shift. The
noise-weighted overlap is given by

wo Ty (F) 11
(h1|h2)=4m/ff_ %dﬁ (32)

where tildes denote the Fourier transform, S,(f) is the
spectral density of the detector noise, and f is the GW
frequency (in the frequency domain). We used the
Advanced LIGO zero-detuning, high-power (ZERO_DET _
high P) noise curve of [99] for our analysis® with a fixed
Smin = 30 Hz and a variable f,,, ranging from 500 Hz up
to the merger frequency (f ) reported in Table IV.
Mismatch with respect to hybrid waveforms: We
compute the mismatch for 18 TEOBResumS-NR hybrid
waveforms (Table IV) against a range of different
phenomenological models: IMRPhenomD [79,101] (no
tidal effects), IMRPhenomD NRTidal (incorporating
tidal effects using the NRTidal model of [34] but no
quadrupole-monopole self-spin terms), IMRPhenomPv2
NRTidal incorporating tidal effects using the NRTidal

®We note that this noise curve has recently been updated
slightly [100], but for consistency with Ref. [34] we employ the
old noise curve.
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FIG. 9. Mismatch with respect to the TEOBResumS-NR hybrids. We mark the merger frequency with a vertical dashed line. For
CoRe:Hyb:0001 the merger happens at 2567 Hz. The horizontal dashed lines mark mismatches of 1073, 1072, and 107!,

model of [34] including quadrupole-monopole self-spin
terms up to 3 PN, and the new model IMRPhenomPv2
NRTidalv2. In addition, we include the new SEOBNRvV4
ROM NRTidalv2 and IMRPhenomD NRTidalv2
approximants. We evaluate the waveform models at the
parameters of the hybrids reported in Table I'V with an initial
frequency of 30 Hz.

Generally, we find that IMRPhenomPv2 NRTidalv2
performs as well or better than IMRPhenomPv2
NRTidal, except for two cases. For all configurations
the mismatch stays below 5 x 1073 even for maximum
frequencies at or above the merger frequency. In addition,
our comparisons show again that the inclusion of
the quadrupole-monopole terms is important even for

astrophysically reasonable spins—see [34,102,103] for pre-
vious studies. In most cases the mismatches between the
hybrids and IMRPhenomD NRTidalv2 are marginally
smaller compared to SEOBNRv4 ROM NRTidalv2.Even
less notable are the differences between IMRPhenomD
NRTidalv2 and IMRPhenomPv2 NRTidalv2, which
are dominantly driven by the additional 3.5 PN spin-
spin and cubic-in-spin contributions in IMRPhenomPv2
NRTidalv2. The additional tidal amplitude corrections
have almost a negligible effect; cf. the nonspinning configu-
rations in Fig. 9.

Our comparison shows that the TEOBResumS-NR
hybrids are well described by the new approximant and
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that no additional pathologies (in the low-frequency
regime) are introduced during recalibration.

C. Cross validation against SEOBNRv4T

As a final check of the approximant, we compute the
mismatch between the IMRPhenomPv2 NRTidalv2
and the SEOBNRv4T model for a number of randomly
sampled configurations. We compare these mismatches
with  mismatches between IMRPhenomPv2 and
IMRPhenomPv2 NRTidalv2 to give an impression of
the importance of tidal effects. The match computation is
restricted to the frequency interval of f € [40,2048] Hz.
We have tested starting frequencies of 25 and 30 Hz for a
smaller number of cases and obtained smaller mismatches
than for the 40 Hz initial frequency. Therefore, to save
computational costs and to provide a conservative estimate,
we use a minimum frequency of 40 Hz.

1. Nonspinning configurations

We start this analysis by considering nonspinning con-
figurations. For this purpose, we select 1000 samples with
flat priors in My, Mp € [1,3]M and A4, Ap € [0,5000].
The final analysis is shown in Fig. 10, where we compare
the IMRPhenomPv2 NRTidalv2 and SEOBNRv4T
approximant. For nonspinning configurations the mis-
matches between IMRPhenomPv2 NRTidalv2 and
SEOBNRv4T are below 0.034 for our set of configurations.
The largest difference is found for large mass ratios; cf. upper
left and lower right corners of the top panel. For better
visualization, we mark mass ratios of ¢ = 1.25;1.5;2.0 by
diagonal gray, dark gray, and black lines, respectively.
Restricting to mass ratios below 1.5, we find a largest
mismatch of F = 0.024

In addition, our analysis shows that for larger tidal
deformabilities the mismatch between the two models
tends to increase; cf. upper right corner of the right panel
in Fig. 10. We mark in the plot A, + A = 1250;2500;
5000 with gray, dark gray, and black lines. Restricting our
analysis to A, + Ag < 2500 leads to a maximum mismatch
of F =0.016.

Overall, theaverage mismatch between IMRPhenomPv2
NRTidalv2 and SEOBNRv4T for our dataset is 0.009.
Interestingly, if we restrict our analysis to the more physical
parameter space in which the more massive star has the smaller
tidal deformability,9 the average mismatch decreases by
roughly a factor of 2 to 0.0059.

°For equations of state with no phase transition, the dimension-
less tidal deformability is a monotonically decreasing function of
the star’s mass—see, e.g., Fig. 1 in [104] for an illustration.
However, in cases with a phase transition that yields twin stars, the
tidal deformability is no longer a monotonically decreasing (or
even a single-valued) function of mass, as illustrated in, e.g.,
Refs. [105,106]. Of course, even in twin star cases, the deviations
from monotonic decrease and single-valuedness are not large,
while the parameters we generate by the aforementioned random
sampling can have significant violations.
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0 2000
Aa

FIG. 10. Mismatch between IMRPhenomPv2 NRTidalv2
and SEOBNRv4T. We consider 1000 randomly distributed non-
spinning configurations with M, Mg € [1, 3] M, (here we relax
our usual assumption that M, > Mp) and A4, Az € [0,5000].
The mismatches are computed within the frequency interval
f € [40,2048] Hz and we use a sampling rate of 8192 Hz. We
mark in the top panel mass ratios of 1.25;1.5;2.0 with diagonal
gray, dark gray, and black dashed lines, respectively. Similarly,
Ay + Ap = 1250;2500; 5000 are marked in the bottom panel.

Consequently, we find for nonspinning configurations
a good agreement between the tidal EOB model
SEOBNRvA4T and IMRPhenomPv2 NRTidalv2.'"

2. Spinning configurations

We further consider spinning configurations using flat
priors My p € [1,3] My, App €[0,5000], and y,3 €
[—0.30,0.30] as well as y,p € [-0.60,0.60]. For both
prior choices we select 3000 randomly distributed samples.

If we consider spins within y, 3z € [—0.30,0.30] (upper
panels of Fig. 11), we find a maximum mismatch of
F = 0.034, which is comparable with the nonspinning
result presented before. Overall, the average mismatch of
our 3000 samples for spins within y, 3 € [—0.30,0.30] is

""We note that as cross-validation of the implementation
of the other approximants, we also tested the mismatch
between IMRPhenomPv2 NRTidalv2 and SEOBNv4 ROM
NRTidalv2 and find an average mismatch of ~5 x 10

044003-14



IMPROVING THE NRTIDAL MODEL FOR ...

PHYS. REV. D 100, 044003 (2019)

0.020 3000 Hass

LS “
0.015 e
0.010

Aa

FIG. 11.

0.030
0.025
0.020
I,
0.015
0.010
0.005

0.16
0.14
0.12
0.10
0.08™
0.06
0.04
0.02

4000

Mismatch between IMRPhenomPv2 NRTidalv2 and SEOBNRv4T. We consider randomly distributed configurations

with My p € [1,3] Mg, Ayp € [0.5000], and y4 3 € [-0.30,0.30], as well as y, p € [-0.70,0.70]. The mismatches are computed
within the frequency interval f € [40,2048] Hz and a sampling rate of 8192 Hz is employed. We select 3000 random samples for
configurations with spins y, 5 € [-0.30,0.30] (top panels) and 3000 samples for y, 5 € [-0.60,0.60] (bottom panels).

F = 0.0072. For the same set of configurations, the average
mismatch with respect to IMRPhenomPv2 NRTidal is
F =0.0092, i.e., 25% larger. Furthermore, we find that, as
for the nonspinning cases, the largest mismatches are
obtained for configurations which have large mass ratios
and large tidal deformabilities. If only spin magnitudes up
to |ya g| < 0.3 are considered, we do not find a noticeable
spin effect.

However, spin effects become important for large spin
magnitudes. For spin magnitudes up to 0.6, the largest
mismatches between SEOBNRv4T and IMRPhenomPv2
NRTidalv2 are found for large antialigned spins, i.e., the
lower left corner of the right-most bottom panel of Fig. 11.
The maximum mismatch is F = 0.167 for our randomly
chosen set of configurations.

Comparing average values, we find that while the average
mismatch is 0.043 between the original IMRPhenomPv2_
NRTidal model and SEOBNRv4T, the average mismatch
decreases to 0.021 between the IMRPhenomPv2
NRTidalv2 model and SEOBNRv4T; i.e., much better
agreement is found within this large region of the param-
eter space.

The disagreement between SEOBNRv4T and
IMRPhenomPv2 NRTidalv2 for large antialigned spins
needs further investigation and requires additional NR
simulations in regions of the parameter space which are
currently not covered. Note that for the largest antialigned
spin, high-quality NR setups (CoRe:BAM:0062) the NSs
have only a spin of y, 5 = —0.10. For this physical con-
figuration, both waveform approximants (SEOBNRv4 T and

IMRPhenomPv2 NRTidalv2) describe the data within
the estimated uncertainty.

V. SUMMARY

In this article we have presented our most recent update
of the NRTidal model. The model gives a closed
analytical expression for tidal effects during the BNS
coalescence and can be added to an arbitrary BBH baseline
approximant. We added the new NRTidalv2 approximant
to IMRPhenomPv2 [78,79] to obtain a frequency-domain
precessing BNS approximant as well as to the (frequency-
domain) SEOBNRv4 ROM [80] and the IMRPhenomD
[79] approximants to allow an improved and fast modeling
of spin-aligned systems.

Our main improvements in comparison to the initial
NRTidal model are the following:

(i) a recalibration of the tidal phase to improved NR
data incorporating additional analytical knowledge
for the low-frequency limit;

(ii) the addition of a tidal amplitude correction to the
model;

(iii) incorporation of higher order (3.5 PN) quadrupole
and octupole information to the spin sector of the
model.

We also hope to further improve the NRTidalv2 model
for higher mass ratios to allow an accurate description of
high mass-ratio systems. Such an extension requires addi-
tional high-quality NR simulations for a variety of different
mass ratios.
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An additional improvement would be the incorporation
of the effect of f-mode resonances as recently computed in
Refs. [107,108], the incorporation of an updated precession
dynamics as used in [109], or the incorporation of higher
modes [110,111].

We have compared the IMRPhenomPv2 NRTidalv2
model with high-resolution numerical relativity data and
found agreement within the estimated uncertainty for all
NR data with clear convergence. Overall, the performance
of IMRPhenomPv2 NRTidalv2 is comparable with
state-of-the-art tidal EOB models.

This accuracy was verified by the mismatch computa-
tion between IMRPhenomPv2 NRTidalv2 and
TEOBResumS-NR hybrid waveforms, for which mis-
matches are well below 5 x 1073,

We concluded the performance test of the model with a
mismatch computation with respect to the tidal EOB model
SEOBNRv4T. For nonspinning cases (or cases with small
spins as employed in the low spin prior of the LVC
analysis) the mismatch computed from a starting frequency
of 40 Hz never exceeds F =~ 0.034 for M, € [1,3] M,
and A, 5 € [0,5000]. Considering spinning setups (v, z €
[-0.6,0.6]), the mismatch increases to a maximum
of F =0.164.
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APPENDIX A: ALTERNATIVE FORMULATION
OF A TIDAL AMPLITUDE CORRECTION

1. Tidal amplitude corrections in the time domain

As in the frequency domain, the BNS waveform
time-domain amplitude can be obtained by augmenting

existing BBH models with additional tidal corrections
A, ie.,
Agns = Appn +Ar. (A1)

References [18,20] present the tidal amplitude corrections
for the leading and next-to-leading order

8M
Ap = —”x\/E{Aijxﬁ [3(1 +2X,)
D, “\5

| 63— 15X, — 205X}, — 45X}
14

x + O(XS/Z)

+A B]}. (A2)

While Eq. (A2) describes the tidal amplitude corrections
for small frequencies, it loses validity close to the moment
of merger. For extreme cases, i.e., stiff EOSs and low NS
masses, the additional amplitude corrections can become
larger than Agpy causing the overall amplitude to be
negative. Thus, a further calibration to NR or EOB data
is required. We employ the quasiuniversal relations, which
allow an EOS-independent description of important quan-
tities at the moment of merger (merger frequency, merger
amplitude, reduced binding energy, specific orbital angular
momentum, and GW luminosity) [112-115]. As shown in
Fig. 6.7 of Ref. [114], the GW amplitude at the merger
follows a quasiuniversal relation as a function of the tidal
coupling constant

X (X0\5 . Xy (X5
T _o|2B(2A) A ZA (2B B A
2 [XA (CA Lt\e) ) @Y

namely,

DA™ /(uM)
1 +2.5603 x 1072«] — 1.024 x 1073 (x})?

= 1.6498
1 +4.7278 x 1072}

(A4)

We note that a straightforward extension of Eq. (A4)
(Eq. (6.15d) of Ref. [114]) would be the incorporation of a
larger number of NR simulations as publicly available; see
Ref. [28]. However, we postpone this to future work [116],
in which a more general discussion about quasiuniversal
relations during the BNS coalescence will be given.

To incorporate Eq. (A4) in Eq. (A2), we extend the
analytical knowledge with an additional, unknown higher
order PN term and define the NRTidal amplitude cor-
rection as

A¥RTidal _ SMUX ﬂ<@AKAx5 14 6‘:14)6 + e pps 14 ﬁ‘fx> ’
DL 5 1 + dx 1 + dx
(A5)
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where the individual terms &4, &1, 85, &% can be obtained
from Eq. (A2) once we express Ay p in terms of k, p.
Enforcing

Amrg(xmrg) :ABBH(xmrg) +A¥RTidal(xmrg) (A6)
gives us the unknown parameter d according to
8Mux’
{ \/7 [Cara(1 + 2fx
+epp(1 + )] - } (A7)

with AA = A™E(x™e) — Appy(x™e).

We note that although the outlined approach has been
tested for a selected number of cases, we did not implement
itin LALSuite due to the large computational costs inherent
to time-domain waveform approximants.

2. Frequency-domain amplitude corrections by SPA

In addition to the frequency-domain amplitude correc-
tion presented in the main text, we also present a possible
alternative way to augment the frequency-domain binary
black hole amplitude with tidal correction. For this purpose
we use the SPA to obtain the frequency-domain amplitude
from Eq. (AS). Following the SPA approach,

A:l 2.—7’/4,
2\/¢

where ¢ refers to the second time derivative of ¢.
Using Eq. (16) [see also Eq. (14) in [18]; note that the
published version is missing an equals sign], Eq. (A8) can

be rewritten as
2
A—a 5[y
2\ d@?

Inserting A = Aggy + At and w = wgpy + w7 leads to

(A8)

(A9)

n d'//BBH dV/T

A= (Aper + Ar) da? d(?)2 '

Treating the tidal phase correction as a small change of the
underlying BBH waveform, we rewrite the expression as

T |dy d>y
A = (Appir + Ar) \/\/ daI:BH daﬂ da};BH‘

(A11)

Linearizing ine = 0O(k) and neglecting terms proportional

to x? [noting that Ay = O(x)] leads to
7w |d? n |d?
. Agsi \/7 WPBH + Ap \/7 l//BBH‘
d@? d@?
ABBH ABBH/ABBH
(A12)
Thus, the final expression is given as
A A 1d? d?
e i E e . N E)
ABBH ABBH 2 da) da)

The approach outlined in this Appendix, i.e., Eq. (A13),
leads to much larger computational cost than the Padé
approximant [Eq. (24)], which is why we chose the easier
and more straightforward implementation shown in the
main body of the paper. However, this additional approach
might become relevant for a potential improvement/exten-
sion in the future.

APPENDIX B: EXTENSION OF THE NRTidal
PHASE INCORPORATING ADDITIONAL
MASS-RATIO DEPENDENCE

We outline a possible extension of the NRTidalv2
model which incorporates additional analytically known
mass-ratio dependence. Since we do not find such an
extension to perform better in our tests and to reduce
computational costs, we limit the mass ratio dependence in
the tidal phase simply to the prefactor o« x/;/v in the
current implementation of the model.

However, it is possible to recast Eq. (17) as

yr(x) = —kacgx*? Priga (*) = k32" Ppriga (1)
(B1)

with ¢f = —z25- (12 +§2) (and similarly for cf).
The individual Padé approximants Plgrig.(*),

P riaa (%) are similar to Eq. (18) together with the con-
straints in Eqgs. (19), but the known PN coefficients

~AB -AB ~AB -AB . .
€17 C5),, €57, C5)p have a mass ratio dependence as given

in Ref. [18].

Due to the limited set of high-quality NR data, the fitting
coefficients in Eqs. (20) (d,,d,, fis /2. 713) can only be
determined for the equal-mass case.

We find that while such a choice of the coefficients leads
to a correct mass ratio dependence for the low-frequency
limit, the higher frequency phase is described worse
compared to the NRTidalv2 approximation given in
the main text. We suggest that this is caused by the
inconsistency introduced by adding the mass-ratio depend-
ence in only some of the Padé coefficients.
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