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The construction of accurate and consistent initial data for various binary parameters is a critical
ingredient for numerical relativity simulations of the compact binary coalescence. In this article, we present
an upgrade of the pseudospectral SGRID code, which enables us to access even larger regions of the binary
neutron star parameter space. As a proof of principle, we present a selected set of first simulations based on
initial configurations computed with the new code version. In particular, we simulate two millisecond
pulsars close to their breakup spin, highly compact neutron stars with masses at about 98% of the maximum
supported mass of the employed equation of state, and unequal-mass systems with mass ratios even outside
the range predicted by population synthesis models (¢ = 2.03). The discussed code extension will help us
to simulate previously unexplored binary configurations. This is a necessary step to construct and test new
gravitational-wave approximants and to interpret upcoming binary neutron star merger observations. When
we construct initial data, we have to specify various parameters, such as a rotation parameter for each star.
Some of these parameters do not have direct physical meaning, which makes comparisons with other
methods or models difficult. To facilitate this, we introduce simple estimates for the initial spin,

momentum, mass, and center of mass (c.m.) of each individual star.

DOI: 10.1103/PhysRevD.100.124046

I. INTRODUCTION

In August 2017, the combined detection of a gravita-
tional-wave (GW) signal and the detection of electromag-
netic (EM) signals across the whole spectrum emitted from
the same astrophysical source, very likely a binary neutron
star (BNS) merger [1], initiated a new era of multimes-
senger astronomy [7,8].

While there are analytical models to describe BNS
coalescence as long as the two stars are well separated,
the highly nonlinear regime around the moment of merger is
only accessible with full numerical relativity (NR) simula-
tions. These simulations allow us to study the dynamics, GW
signal, and possible EM counterparts, and are therefore
required for a true multimessenger interpretation.

Most NR simulations are based on a 3 + 1 decomposi-
tion in which four-dimensional spacetime is foliated by
spacelike hypersurfaces. This means that for a successful
numerical simulation one has to solve the Einstein equa-
tions and the equations governing general-relativistic mat-
ter on a spacelike hypersurface as an initial condition; see,
e.g., Ref. [9] or Ref. [10] and references therein. Generally,
these initial data have to provide configurations in which
the stars are sufficiently far away from each other to allow a
study of the emitted GW signal, but one also wants a
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distance short enough to avoid the computational cost of
too many orbits. Current state-of-the-art BNS simulations
reach from a few orbits up to 22 orbits prior to merger [11].

Given the diversity of the BNS population, one has to be
able to construct accurate initial data for a variety of different
binary parameters for an accurate interpretation of future
detections. As an example, even relatively small spins can, if
neglected, lead to biases in the estimation of the source
properties (e.g., Refs. [12—14]). This fact together with the
observation of a number of highly spinning neutron stars
(NSs) [e.g., PSR J1748-2446ad [15] (the fastest spinning
NS, 716 Hz), PSR J1807-2500B [16] (the fastest spinning
NS in a binary, 239 Hz), and PSR J1946 + 2052 [17] (the
fastest spinning NS in a BNS system, 59 Hz)] make the
accurate modeling of spin effects indispensable.

Similarly, the observation of massive NSs with myg >
2 Mg (e.g., PSR J0740 + 6620 [18] with m = 2.14709)
shows that it is important to simulate stars with high masses
and thus high compactnesses. Collisions of such massive
stars might be almost indistinguishable from the merger of
small black holes (BHs), since the amount of ejected
material and consequently the brightness of the kilonova
typically decrease for high compactnesses and larger total
masses [19,20], and since tidal effects become too small to
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be reliably measured during the inspiral [21,22]. Additional
simulations are needed to further improve estimates of the
prompt collapse threshold [23,24], i.e., the mass at which
the colliding neutron stars immediately form a black hole.
Such threshold mass estimates, in addition to a detailed
understanding of when and which EM signals might be
observable before the merger [25,26], will become impor-
tant once the increasing number of GW triggers make
expensive EM follow-up campaigns for all potential GW
candidates very difficult [27]. This can be used to reduce
observational overhead.

Finally, as shown in, e.g., Refs. [19,28-32], the mass
ratio of a BNS system affects the GW and EM signals,
where higher-mass-ratio systems are typically less GW- but
more EM-bright. Based on the distribution of isolated,
observed NSs, mass ratios up to g, =~ 2.3 are allowed,
contrary to population synthesis models which predict
maximal values of ¢, ~1.8-1.9 (e.g., Refs. [33,34]).
To date, a maximum mass ratio of only g ~ 1.3 [35,36] has
been observationally confirmed; however, this small value
might purely be a selection effect due to the limited number
of observed BNS systems with well-constrained individual
masses.

Over the years, the numerical relativity community has
developed a number of codes for computing BNS initial
data in certain portions of the parameter space. Some of the
best-known codes are the open source spectral code
LORENE [37] with nonpublic extensions (e.g., Ref. [38]),
the Princeton group’s multigrid solver [39], BAM’s
multigrid solver [40,41], the COCAL code [42,43], SpEC’s
spectral solver Spells [44,45], and the spectral code SGRID
[34,46-48]. Recent developments include Refs. [49,50].

These codes have been employed for a variety of studies in
different corners of BNS parameter space [51], such as
spinning BNSs [29,34,52-56], precessing BNSs [34,45,57],
eccentricity-reduced BNSs [11,53,58—-63], highly eccentric
BNSs [64], high-mass BNSs (e.g., Refs. [24,32,65,66]), and
high-mass-ratio systems [34,67].

Despite these advances, there are a number of possible
configurations which, so far, have been out of reach for the
NR community, e.g., configurations with total masses
above M ~3.4 Mg have, to our knowledge, not been
simulated before. Similarly, highly spinning and precessing
systems close to the breakup or high-mass-ratio systems for
soft equations of state (EoSs) have been out of reach for the
numerical relativity community. All of these configurations
are not excluded by population synthesis models (e.g.,
Ref. [33]) and therefore should be studied. Even more
importantly, extreme corners of the parameter space have to
be covered properly to be able to test the reliability of
waveform approximants in regions in which they are
employed during the analysis of GW signals; see, e.g.,
Refs. [7,21,68,69].

Thus, to be prepared for future BNS mergers, we have
upgraded our initial data code SGRID to allow a computation

of BNS systems for large spins, compactnesses, and mass
ratios. As a proof of principle, we present the first
dynamical simulation of a BNS merger of two neutron
stars close to the breakup spin, a simulation with the highest
mass ratio (¢ = 2.03) considered in numerical relativity for
a soft equation of state, and a simulation with two stars
which have 98% of the maximum allowed mass for the
employed EoS. In addition, all of these simulations employ
eccentricity-reduced initial data, which is an important
ingredient for the production of high-quality data.

The article is structured as follows. Section II gives an
overview of the equations which we need to solve to obtain
consistent initial configurations. Section III summarizes the
numerical methods employed in the upgraded SGRID code.
In Sec. V we present the results for particular initial data,
and in Sec. VI we perform preliminary simulations to prove
the robustness of our new methods. We conclude in
Sec. VII. In addition, we present an empirical relation
between the NS spin and SGRID’s input parameters, the
employed procedure for the eccentricity reduction, and a
comparison between the old and new SGRID codes in the
Appendices.

Throughout the article, we use geometric units in which
G = c =1, as well as M = 1. Latin indices such as i run
from 1 to 3 and denote spatial indices, while greek indices
such as u run from O to 3 and denote spacetime indices.

II. BINARY NEUTRON STARS WITH SPIN
IN QUASIEQUILIBRIUM

We start by briefly describing the equations governing
BNSs in arbitrary rotation states in general relativity. These
equations were derived in Refs. [70,71] and extended to the
case of eccentric orbits in Refs. [34,40]; see also Ref. [72]
for a possible generalization. We refer to the review in
Ref. [10] for further references.

We base our method on the Arnowitt-Deser-Misner
(ADM) decomposition of the Einstein equations [73]
and rewrite the 4-metric g, in terms of the 3-metric y;;,
the lapse a, the shift f', and the extrinsic curvature K. The
NS matter is assumed to be a perfect fluid with stress-
energy tensor

T" = [po(1 + €) + Pluu* + Pg. (1)

Here py is the rest-mass density (which is proportional to
the number density of baryons), P is the pressure, € is
the internal energy density divided by pg, and u is the
4-velocity of the fluid. We also introduce the specific
enthalpy

h=1+e+P/p,. (2)

This quantity is useful because if we assume a polytropic
equation of state
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P— Kp1+1/n (3)

we can express the rest-mass density, the pressure, and the
internal energy in terms of it. The n here is known as the
polytropic index, and « is a constant. In this paper we
consider several different EoSs, all approximated by piece-
wise polytropes following Ref. [74]. Each piece is defined
within a certain interval in py and has its own n; and «; in
this interval. Within each polytrope piece we find

—n; h—kl i
= K. .
Po i 41
(B =k \ it
P:K,-""< l> ,
n,-+1

n; ki—1
L _(h—1 ! .
I’li+1( )+n,+l

(4)

€ =

The constants n;, k;, and k; have to be chosen such that P
and e are continuous across the p intervals. For the p
interval starting at p, = 0, which corresponds to the
outermost layer of the star, one obtains k = 0.

We express the fluid 4-velocity #* in terms of the
3-velocity

O’ = hyju, (5)

which in turn is split into an irrotational piece D¢ and a
rotational piece w',

(i’ = Digp + w', (6)

where D; is the derivative operator compatible with the
3-metric y;;.

In order to simplify the problem and obtain elliptic
equations, we make several assumptions. The first is the
existence of an approximate symmetry vector &, such that

£eg = 0. (7)

We also assume similar equations for scalar matter quan-
tities such as h. For a spinning star, however, £:u" is
nonzero. Instead, we assume that

vi£e(Vu) 0. (8)

so that the time derivative of the irrotational piece of the
fluid velocity vanishes in corotating coordinates. We also
assume that

yitsw, 70, (9)

i

and

O w; %0, (10)

hud

which describe the fact that the rotational piece of the fluid
velocity is constant along the world line of the star center.
These approximations together with the additional
assumptions of maximal slicing
vii K V=0 (11)
and conformal flatness

Vij = V/45ij (12)

yield the following coupled equations:
D%y + (LB)’J(LB) +2mypip =0, (13)

D;(LB)Y — (LB)D;In(ay~°) — 16may*j’ =0, (14)

D?(ay) — ay [37;/; (LB)(LB);; 4 2zy*(p + 25)] =0,
(15)
D18 (D1g4-) = o+ €0 =0, 16)

and

h= L= D+ w) (D). (1)

Here (LB) = D'B/ + D/B' =35 D;B*, D; = 9;, and we
have introduced
B = 4+ &+ QeB(x - xL,,), (18)
p = py(1+¢€) + Plulu’ — P,
J'=alpy(1+ ) + Plu®u (u'/u’ + f7).
§U = [po(1 +€) + Plu®u®(u' /u + ') (W [u + )
+ Py, (19)

o V24 (Dip+wi) (D' + W)
ah ’
a*[(Dip + wi)w']?
202

b=[(& +p)Dip — CP* +20°(D;p + wi)w',  (20)

L2:b+\/b2—

)

where we sum over repeated spatial indices, and C is a
constant of integration that, in general, can have a different
value inside each star.
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In addition to the construction of BNS configurations
with arbitrary spin, we also want to vary the eccentricity of
the systems. Thus, we follow the methods that we devel-
oped in Ref. [40] (see also Ref. [10]). In this approach, the
symmetry vector has the form

1p = Q=2 x' = x3,,,0) +r_1r2(x’ = Xcp)

(21)
where Q is the orbital angular velocity chosen to lie along
the x* direction and v, is the radial velocity that needs to be
negative for a true inspiral. Here, xi.,, denotes the c.m.
position of the system, r;, is the distance between the two
star centers, and
1 _ 1 1 1
Xe1y2 = Xem + €(Xeun = Xeu) (22)

depends on the eccentricity parameter ¢ and the location of
the two star centers x\ /2~ The specific form of Eq. (21) is
derived from the following two assumptions: (i) & is along
the motion of the star center, and (ii) without inspiral, each
star center moves along a segment of an elliptic orbit at
apoapsis that can be approximated by its inscribed circle.
The eccentricity parameter e that appears in xi,l 2 and the
radial velocity v, are freely adjustable to obtain any orbit
we want. Using this new symmetry vector E 172, we can still
solve the initial data equations with the same methods as
described before. Most importantly, in order to obtain a true
inspiral orbit with low eccentricity, we can adjust both e
and v,, while Q can be adjusted by other means such as the
“force balance” method discussed below. Or, we can set
e =0 and directly adjust Q and wv,, as discussed in
Appendix B.

The elliptic equations (13), (14), (15), and (16) have to
be solved by incorporating the boundary conditions

lim B! = 0,

r—00

limy =1,

r—00

limay =1 (23)
at spatial infinity and

(D'$)Dipy +w'Dipy = hu® (B +E)Dipy  (24)
at each star’s surface. While, in general, the rotational piece
of the fluid velocity w' can be chosen freely, we will use the
form

wi = ellka (xk — xk,), (25)
which (as demonstrated in Ref. [71]) results in almost
rigidly rotating fluid configurations with low expansion and
shear. The parameter xt., denotes the location of the star
center and @ is an arbitrarily chosen vector that determines

the star’s spin. Summation over the repeated indices j and k
is implied.

Once the equations (13), (14), (15), (16), and (17) are
solved, we know & (and thus the matter distribution)
and the fluid 3-velocity ®)ii’ via Eq. (6). The 3-metric is
obtained from Eq. (12) and the extrinsic curvature is
given by

Ki=—(Lp)i. (26)

uta

ITII. NUMERICAL METHOD

The elliptic equations (13), (14), (15), and (16) together
with the algebraic equation (17) are the main equations that
we have to solve in order to construct initial data. We do so
using the SGRID program [34,46—48], which uses pseudo-
spectral methods to accurately compute spatial derivatives.
We will solve the whole set of equations using an iterative
procedure, where we first solve the elliptic equations for a
given matter distribution /, then update the matter using the
algebraic equation (17), and then go back to the first step.

A. Surface fitting coordinates

The matter inside each star is smooth. However, at the
surface (at h = 1), pg, P, and € are not differentiable. So if
we want to take full advantage of a spectral method, the star
surfaces should be domain boundaries. However, when we
update the matter distribution given by /A within our
iterative approach the stars change shape. Hence, the
domain boundaries have to be adjusted as well. In order
to address this problem we cover space by multiple
domains, each described by their own coordinates. For
the star domains these coordinates depend on a freely
specifiable function which will allow us to adapt the
domain boundaries to the star surface. In the past we have
done this by making use of the coordinates (A, B, )
introduced by Ansorg [75], which can cover all of space
using only six computational domains. Here the coordi-
nates A and B both range from O to 1, and ¢ is a polar angle
measured around the x axis. The coordinate transforma-
tions contain freely specifiable functions o, (B, ¢) that can
be chosen such that domain boundaries coincide with the
star surfaces. Unfortunately, the coordinate transformation
from Ansorg coordinates (A, B, (p) to Cartesian-like coor-
dinates (x, v, z) is so complicated that its inverse cannot be
written down analytically. This makes it hard to adjust the
functions o, so that domain boundaries coincide with the
star surfaces, and has to be tackled with an extra numerical
root finder. Furthermore, the coordinate transformation is
also singular in certain regions. When we solve elliptic
equations with a Newton scheme we have to solve a linear
problem for each Newton step. However, the condition
numbers of the matrices describing this linear problem are
very high due to the coordinate singularities mentioned
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FIG. 1. Some domains and their coordinate lines in the xy

plane. Plotted are the domains inside and around neutron star 1.
The star is roughly spherical and covered by a central cube and
six cubed sphere wedges, four of which are shown because they
intersect the xy plane. The space around the star is covered by six
more domains to form a larger cube.

before. This can lead to numerical inaccuracies that are
hard to deal with.

For these reasons we have modified SGRID so that we can
now use surface fitting cubed sphere coordinates (4,A, B)
that have no singularities anywhere. In Fig. 1 we show the
coordinate lines in the z = 0 plane. The star is covered by a
central cube surrounded by several cubed sphere wedges.
The space around the star is covered by several more
domains. All domains together cover a larger cube con-
taining the star and its surroundings. The coordinate
transformation for the green wedge covering the star
interior to the right of the central cube is given by

X = x¢. + (a; — ag)A + ay,
Y =yei + (a1 = ag)Ad + aglA,
z=2zcy + [(ay — ag)d + ag)B, (27)

where 1 € [0,1], A,B € [-1, 1] and

O'I(A,B)
R v
1+A“+B

ag = const. (28)
The function o(A, B) determines the shape of the star
surface. Notice that for 6, (A, B) = R, = const we obtain a
spherical star surface with radius R,. The coordinate lines
in Fig. 1 are obtained for B = 0. The coordinate trans-
formation for the other wedges inside the star can be
obtained by exchanging x with y or z and by possible sign
changes of a; and a,. For example, the red wedge covering
the star interior below the central cube is given by

I
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FIG. 2. The domains in and around both stars augmented by
several more domains. The result is a large sphere that covers
both stars and their surroundings.

Y =DYcx + (al - aO)/’L + ap,
x = xc, + [(a1 — ag)A + aplA,
7= z¢y + (a1 —ag)d + agB, (29)

where now

o1(A.B)
V1+A*+ B
The inverted wedges just outside the stars are obtained by

reversing the roles of a; and a,. For the domain just below
the red wedge we would have

a =- ay = —const.  (30)

01 (AﬁB)
1+A?+ B

while still using Eq. (29).

Figure 2 shows how two such larger cubes as in Fig. 1
can be put next to each other, and in turn be surrounded by
more wedges so as to cover a large sphere. This sphere can
in turn be surrounded by shells that can be obtained by
choosing

ag = — a, = —const,  (31)

Oin Oout

=, a =,
V1 + A% + B2 ! V1 + A% + B2

where o, and o6, denote the inner and outer radius of the
shell. Since we have to impose the boundary conditions of
Eq. (23) at infinity one should choose o, to be very large.
However, for a given number of grid points in A this will
result in poor resolution in the radial direction, which
could adversely affect the accuracy of our method. For this
reason we introduce yet another coordinate transformation.

If we define r:= \/x*> + y> 4+ 7> and L := 6, — 6y,, then
Eqgs. (27) and (32) result in

(32)
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r =LA+ oy,. (33)
So if we want a domain that extends to a large radius it is
advantageous to replace the 1 coordinate with
) . (34)
in

:O-out 1_& :o-out 1 — Oin
P= r L Lito

Then, a quantity ¥ that behaves as ¥ ~ b, + b, /r for large
r becomes ¥ ~ c; + c,p, when expressed in terms of p
(here by, b,, ¢, and ¢, are constants). Thus, if within our
spectral method we expand ¥(p) in terms of Chebyshev
polynomials only the first few coefficients will be non-
negligible, which leads to a very good approximation when
we keep only a finite number of terms. This would not be
the case if we used A as our coordinate since then
Y ~d; + d,/A, which is not a polynomial in A.

B. Nonlinear equations that we have to solve

In order to construct initial data we have to solve the
elliptic equations (13), (14), (15), and (16). This is done
using SGRID’s pseudospectral method (as in Refs. [46-48]),
where we use Chebyshev expansions and introduce grid
points at the Chebyshev extrema. Once the number of grid
points is chosen all derivatives are approximated by certain
linear combinations of the field values at the grid points.
Such a pseudospectral method is similar in spirit to finite
differences but it uses all grid points in one direction to
approximate a derivative in this direction, and thus is much
more accurate for smooth fields. Once all derivatives have
been discretized in this way, we end up with a set of
nonlinear equations for all fields at all grid points. This
system of equations has the form

F,(U)=0, (35)
where the solution vector U is comprised of all of the fields
at all grid points, i.e.,
B{,Bi, ..., (a¥),

Ja¥)y, ..o i),

(36)

U= (wo, W1

where the subscripts label the grid points. Note, however,
that we also have to solve the algebraic equation (17),
which is done in an iterative manner. We update 4 and thus
the matter distribution after the elliptic equations have been
solved, and then the elliptic equations are solved again until
we reach a certain tolerance. Because we have to iterate
anyway, we do not solve the full system of equations (36),
but rather solve the equations for y, B!, a%¥, and ¢
individually one after the other within the overall iteration.
Then the nonlinear system of equations we solve at once is

(37)

where u is now one of the six fields y, B!, a¥, or ¢. To find
the solutions we use a Newton-Raphson scheme where u is
updated according to i, = Uyg + x until a desired
tolerance has been reached. As in any Newton scheme
the correction x is obtained by solving the linearized
equations

Of m(u) ,
ou"

= =fm(u). (38)
The challenging part of the method is then to find an
efficient way to solve this system of coupled linear
equations. In the past [34,46-48], when using only six

domains, we were able to use a direct solver for the sparse

matrix 2 ’”( ). However, now that we are using 38 domains

this is no longer efficient. We thus use an iterative
generalized minimal residual (GMRES) solver. This solver
needs a good preconditioner; otherwise, it will take too
many iterations to find a solution to the linearized equa-
tions. A preconditioner is essentially an approximate

inverse of the matrix af " ( ) that can be computed efficiently.

Here we use a block J acob1 method [76], i.e., we keep only

certain blocks of the matrix of,;" ﬁ, ) along the diagonal. Such

a block-diagonal matrix P is much easier to invert and thus

P! can be used as a preconditioner. We obtain these blocks

by first dropping all entries in a]; ® that couple different

computational domains. This results in 38 smaller blocks,
each of which can be inverted more easily than the full
matrix % To further speed up the computation of the
preconditioner, we subdivide each box along both the A
and B coordinate directions so that we end up with
2 x 2 x 38 = 152 even smaller blocks along the diagonal
of P, which can now be readily inverted by a direct solver
for sparse matrices [77-81]. This block-diagonal inverse
P~!is used as our preconditioner for the GMRES method,
which allows us to solve the linear system in Eq. (38) so
that we can take a Newton step.

Since we solve Egs. (13), (14), (15), and (16) on 38
computational domains we need interdomain boundary
conditions that connect them. In principle, these interdo-
main boundary conditions are very simple. One imposes
that each field and its normal derivative are continuous
across every interdomain boundary. These conditions are
imposed by replacing the elliptic equation at each boundary
point by either

U = Uygj (39)

(40)

n'O;u = n'0;uyg;,

where u,4; is the field value in the adjacent domain, and n'
is the vector normal to the boundary. Since both conditions
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have to be satisfied, one of them is imposed on the
boundary points on one side of the boundary and the other
is imposed on the other side in the adjacent domain. For the
full system in Eq. (37) it does not matter which condition is
used on which side. However, the preconditioner—which
contains blocks that come from only one domain—is
sensitive to this issue. It turns out that if one imposes
the condition (40) on all sides of a domain, the block
corresponding to this domain has a determinant of zero and
thus cannot be inverted. In SGRID this problem is avoided
by making sure that the condition (39) is imposed on at
least one boundary of each domain. SGRID now has the
ability to automatically find interdomain boundaries and
impose consistent conditions on them.

C. Modification to conformal factor equation

The conformal factor yw has to satisfy Eq. (13).
Unfortunately, this equation is not guaranteed to have
unique solutions. When this happens the linear solver fails
and one cannot find initial data. We have observed that this
does indeed happen when we try to construct initial data for
very compact stars. The problem can easily be seen for zero
shift (B = 0), where Eq. (13) takes the simple form

D>y = 2mpy’. (41)
If we linearize it we obtain
D26y = —10zpy*dy, (42)

where dy is the linearized conformal factor. Linear elliptic
equations of this type are well known, and one can prove
their uniqueness only if the coefficient in front of Sy on the
right-hand side is positive (see, e.g., Ref. [82]). However,
since both p and y are positive this coefficient is negative.
One can fix this problem by introducing a rescaled density

p=v'p, (43)

so that Eq. (13) becomes

5
- _ 72 s ooNii T
Dy = =2apy~ - ?(LB) /(LB);;- (44)

32a

If we keep p constant while we solve this equation, its
linearized version is

_ Syt _
D?5y = +6mpy~*oy — —— (LB)V(L

3272 B)l-j&//, (45)

which now is guaranteed to have unique solutions for
B = 0. The downside of this approach is that instead of
solving the equation once, one has to solve it iteratively.
After each elliptic solve for y one has to recompute p using
Eq. (43), and then solve again until the changes in y fall

below a specified tolerance. However, as described below
we have to solve our system of equations using an iterative
approach anyway. We thus rescale p according to Eq. (43)
and only update p at the start of each overall iteration.

D. Modification to velocity potential equation
near the star surface

Notice that the elliptic equation (16) for the velocity
potential ¢ reduces to a first-order equation at the star
surface where p, — 0. In fact, it reduces to Eq. (24) which
we use as a boundary condition on the star surface.
Nevertheless, in the star interior we solve Eq. (16). For
challenging cases with high spins or high masses we find
numerical problems close to the star surface arising from
this equation. In these cases the first derivatives of ¢ can
develop visible kinks just inside the star surface. These
kinks tend to destabilize the overall iteration so that we
cannot readily compute initial data. We have found that we
can smooth out these kinks by replacing Eq. (16) with

c(po)a
h

0 (D pe ><D¢)+D [”h Wi = poau (ﬂ'+5')]

PP+ 2[%111/‘5 (Oiw)(0:)

(40)

In the first term we have added the function

Poc — P
c(po) =P0+€/70L( 0/)0 0) ) (47)

which depends on a small number ¢ and on pg. which we
choose to be equal to p, at the star center. For ¢ =0 we
recover Eq. (16), but for positive e the principal part of
Eq. (46) now never vanishes. With this modification we are
also able to find solutions in more challenging cases. We
find that a value of ¢ = 0.1 works for all cases we have
considered. Consequently we consistently use this value,
even though for lower spins or equal masses we can often
use much lower values or even ¢ = 0. While we have not
yet tried a configuration with both very high spins and very
high mass, we expect that € = 0.1 should work in these
cases as well. Notice that ¢(py) = py at the star center and
that ¢(py) differs from p, mostly near the star surface. Since
at the star surface we impose the boundary condition (24)
that is derived from the unmodified Eq. (16), the mod-
ifications to ¢ are small.

The neutron star surfaces always coincide with domain
boundaries so that it is straightforward to impose the
boundary condition (24) for ¢ at each star surface.
Notice, however, that Eq. (16) and its boundary condition
in Eq. (24) do not uniquely specify a solution ¢. If ¢ solves
both Egs. (16) and (24), ¢ + const will be a solution as
well. In order to obtain a unique solution we demand that ¢

124046-7



TICHY, RASHTI, DIETRICH, DUDI, and BRUGMANN

PHYS. REV. D 100, 124046 (2019)

is zero at the star center, i.e., ¢(xi,) = 0. We impose this
condition by adding the term ¢(x%.,) to Eq. (46) on all grid
points in the cubic domain covering the star center.

E. Iteration scheme

The elliptic equations (44), (14), and (15) need to be
solved in all domains, while the matter equations (46) and
(17) are solved only inside each star. In order to solve the
elliptic equations (44), (14), (15), and (46) we need a fixed
domain decomposition. However, the location of the star
surfaces (where & = 1) is not known a priori, but rather
determined by Eq. (17). For this reason we use the
following iterative procedure:

(1) We first find an initial guess for & within each star; in
practice, we simply choose Tolman-Oppenheimer-
Volkoff solutions (see, e.g., Chap. 23 in Ref. [83])
for each star. For the irrotational velocity potential
we choose ¢ = Q(xL, —xL,,)x?, where x., and
xty, are the center of the star and the c.m. We
choose the initial orbital angular velocity according
to post-Newtonian theory.

(2) If the residual of Eq. (46) is larger than 10% of the
combined residuals of Egs. (44), (14), and (15),
we solve Eq. (46) for ¢. We then reset ¢ to
¢ = 02¢; + 0.8¢h,14, Where ¢b is the just obtained
solution of Eq. (46) and ¢4 is the previous value
of ¢.

(3) Next we solve the five coupled elliptic equa-
tions (44), (14), and (15) for Wy = (w, B, @)y
We then set ¥ = (y, B',a) to ¥ = 0.2%,; + 0.8¥4.

(4) Inorder to solve Eq. (17) we need to know the values
of the constants C, in each star as well as Q and
x¢y- We want to keep the star centers x,, , fixed at

their initial position, so that the stars do not drift
around during the iterations. The location of each
star center is given by 81h|xé = 0. Note that this

condition depends on Q and x.,,. One strategy to
find Q and x[.,, is thus to use a root finder to adjust Q
and x’,, until this condition is satisfied. This method
is known as “force balance.” In some cases we use
this force balance method. However, it is often
advantageous to fix € by other means, e.g., by
using an eccentricity-reduction procedure as de-
scribed in Appendix B. In this case one only needs
to find x[,,. This can be achieved by adjusting xL,,
such that the y component of the ADM linear
momentum is zero. Here the y direction denotes
the direction perpendicular to both the orbital
angular momentum and the line connecting the
two star centers.

(5) Next, we use Eq. (17) to update & in each star, while
at the same time adjusting C, such that the rest mass
of each star remains constant. The domain bounda-
ries need to be adjusted [by changing the surface

functions such as o, (A, B) in Eq. (28)] so that they
remain at the star surfaces, which change whenever
h is updated.

(6) We then evaluate the residuals [i.e., the L>-norm of
the left-hand sides of Egs. (44), (14), (15), and (46)].
If the combined residual is below a prescribed
tolerance we are done and exit the iteration at this
point.

(7) In order to ensure that the star centers always remain
at their original position we use a root finder to find
the locations where 0;2 = 0. We then translate &
(and all other matter variables such as p, and P) by
the amount necessary to bring them back to the
original x/.,, /2

(8) Finally, we go back to step 2.

IV. MASS, CENTER, MOMENTUM,
AND SPIN OF INDIVIDUAL STARS

In general relativity no unambiguous definitions for the
mass and spin of an individual star in a binary system exist.
Here we introduce easy-to-compute estimates for such local
quantities; see also, e.g., Refs. [29,45,84].

A star mass estimate can be obtained from

M := —% / Y00/ fdx. (48)

This equation has the same form as the ADM mass for
conformally flat metrics; however, the integration only runs
over the star. Here f;; = §;; is the flat conformal metric. We
find that this quantity is much closer to the mass of an
individual star with the same baryonic mass than an analog
definition using the physical metric y;; = wif ;j in place
of f;;. Also, if one considers the special case of the
Schwarzschild metric in conformally flat isotropic coor-
dinates, the above definition yields the correct mass, while
a definition using the physical metric y;; would give a mass
that is too large.

Since the above integral seems to capture the mass aspect
of a star, we introduce an analogous integral to define the
center of the star,

. 1 xi—x
Ry == | = MO0/ fdx.

(49)
This is essentially the same integral, except now weighted
with the coordinate x' divided by the mass M.

In order to obtain a momentum estimate we start with

1

P =g § Kikin Vady, (50)

which is again inspired by the definitions for the ADM
linear and angular momenta (see, e.g., Ref. [82]). However,
the integration here only runs over the surface of the star.
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Here, n' is the normal vector of the star surface and g is the
determinant of the metric induced on the surface by the
physical metric and is given by

qij = Yij — ninj, n; = }’ij”j7 "i”i =1 (51)
The vector k' is a symmetry vector that could be a
translational or rotational Killing vector resulting in linear
or angular momentum. However, since no exact Killing
vectors will exist in the case of binaries, and also to keep
things simple, we will construct k’ from the coordinate unit
vectors (1,0,0), (0,1,0), (0,0,1) for the case of linear
momentum, and from the coordinate rotation vectors
(1,0,0) x 7, (0,1,0)x 7, (0,0,1) x 7, where 7 = (x,y,2).
For linear momentum and angular momentum about Xy,
we thus obtain

, 1
P! = 8_% Kfz”[\/‘_ldzy (52)
T )«

and

o L
Ji= gn% Kyn'e"(x) = xgy )\ /qdy.  (53)

Notice that we would obtain the same results for P’ and J' if
we had defined them using the conformal K;; = y*K;;
while at the same time defining g;; to be the metric induced
by the conformal metric f;. Also note that the usual surface
integrals at infinity for ADM linear momentum and angular
momentum can be converted into volume integrals. These
volume integrals have support only within the stars, so that
a natural definition for the star momentum is just this
volume integral over the star. Furthermore, each such
volume integral over the star can be rewritten in terms
of a surface integral over the star surface. The expressions
for the resulting surface integrals are the same as Eqgs. (52)
and (53). This means that for a binary the J/ for each star
will add up to the total ADM angular momentum. These
facts should give us a measure of confidence in the
definitions (52) and (53), probably more confidence than
in the mass definition (48), where such arguments do
not apply.

Now that we can compute the linear and angular
momentum as well as the star center, we can define the
star spin in the usual way as

S’ = J' — eUkRLPE, (54)

The biggest uncertainty in this expression comes from R..
However, since R, computed using Egs. (48) and (49) is a

ratio of integrals, errors in the mass definition may at least
partially divide out.

V. NUMERICAL RESULTS: INITIAL
DATA CONSTRUCTION

A. Initial data sequences

As a first test of the upgraded SGRID code, we compute
initial data sequences for four sets of binary parameters,
comparing the results of the old and new SGRID imple-
mentations (see also Appendix C). All configurations
employ a piecewise-polytropic fit of the SLy EoS
[34,74]. The gravitational masses are either m; = m, =
1.375 M with mass ratio ¢ =1, or m; = 1.445 M,
my = 1.156 My with mass ratio ¢ = 1.25, combined with
the dimensionless spins y =0 and y = 0.05. Figure 3
shows the ADM angular momenta (Jpy, top panel) and
ADM masses (M apy, bottom panel) as a functions of
orbital velocity (M) for all four configurations and for the
new and old SGRID code (dashed lines). The slight
differences for large separations, i.e., small orbital frequen-
cies, might be due to the different eccentricities of the
individual setups.

In Fig. 4, we plot the binding energy

E, —— [ ZADM _ 4 55
b v< M > (55)

versus the reduced orbital angular momentum

L JADM_SI _S2
l: f— . 56
vM? vM? (56)

Here v = m;m,/M? is the symmetric mass ratio, M is the
total mass, and S, are the individual spin magnitudes.

&
LR .
9 B S
= | & o S
5] Folliael T
< Youlltw - -e
8 . N SNV .
[
Tl
s 4
0.010 0.012 0.014 0.016
[2 L ¢ 2 ¢ ¢
2.70
E (¢ =1.25,x = 0.0) new —-¥-- old
S 2.65 (g =125 =0.05) new — —*—old
(¢ =1,x=10.0) new 4 old
260 _ o (g=1,y="005) new ~@- old
0.010 0.012 0.014 0.016
MQ
FIG. 3. ADM angular momentum (Jopy) and mass (M apy) as

a function of the angular orbital velocity M. Solid lines refer to
results obtained with the new SGRID code, while dashed lines are
those obtained with the old implementation.
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—0.020
(¢=125x=0.0) new
—0.022 (g =1.25,x = 0.05) new
—0.024
& —0.026
—0.028
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—0.032
4.4 4.6 4.8 50
14

FIG. 4. Binding energy E,, as a function of the reduced orbital
angular momentum ¢ for different configurations, as discussed in
the main text. Solid lines refer to results obtained with the new
SGRID code, while dashed lines are those obtained with the old
implementation.

In Fig. 4, the solid lines represent the new SGRID data
while the dashed curves represent results obtained with the
previous code version. We find that both results are in good
agreement with each other, which validates our new
implementation.

B. Testing our spin definition for individual stars

In Table T we show the results of our mass and spin
definitions [Egs. (48) and (54)] for the case of a single star
and a BNS system with and without spin. We see that the
mass definition (48) for an individual star differs from the
ADM mass in isolation (which is m = 1.64) by about 1% in
the case of a binary, and is exact only for a single
nonspinning star. The spin definition is exact for a single
star and it is very likely that the spin estimates for binaries
are better than 1% accurate [85], because of the partial
cancellation of errors in R! discussed in Sec. IV.

In Fig. 5 we show the spin computed with Eq. (54)
versus the spin angular velocity @ for an equal-mass binary
with equal spins aligned with the orbital angular momen-
tum. In this case we can reach a spin of S/m? = 0.5763 at

TABLE I. Mass and spin estimates for the case of a polytropic
equation of state P = K/)(l)H/" with k =123.6, n=1. For a
binary with a separation of 47.2 (with Q = 0.005096), the mass
definition differs from the ADM mass in isolation by about 1%.
The spin definition is exact for a single star, and it is almost the
same for a single star and a star in a binary if the spin angular
velocity (o = 0.01525) is the same in both cases.

mg = 17745 — TOV m = 1.64 M, S, S, /m?
one nonspinning star (o = 0) 1.640 0 0
one spinning star (o = 0.01525) 1.646 +0.8706 +0.3237
two nonspinning stars (o = 0) 1.620 —-0.0007 —0.0003
two spinning stars (w = 0.01525) 1.626 +0.8652 +0.3217

spin of one star in binary

0.1

0.0
0.000

0.010 0.015 0.020

w

0.005

FIG. 5. Dimensionless spin of one star in an equal-mass binary
with m,/, = 1.64, r|, = 47.2, using a polytropic equation of
state with xk = 123.6, n = 1.

@ = 0.0202, which is slightly beyond the mass shedding
limit of about 0.5705 for a single star with this polytropic
equation of state [87]. If we further increase @, SGRID fails.
This happens because during the iterations the star expands
far into the domains that are supposed to be outside of the
star such that it is impossible to adjust our domains to be
surface fitting. We think that this is not a true failure of the
program and should be expected to happen, since the stars
will shed mass at these spin angular velocities.

VI. NUMERICAL RESULTS: DYNAMICAL
EVOLUTIONS

A. Evolving millisecond pulsars

As discussed in the Introduction, NSs are expected to be
spinning and a number of millisecond pulsars have been
observed already (although none of them bound in a BNS
system). To prove that our upgraded SGRID version is
capable of simulating millisecond pulsars, we will present an
equal-mass, aligned-spin configuration in which the indi-
vidual baryonic masses of the two stars are m} , = 1.494607
and the rotational velocity (25) is set to @, = 0.03.

We compute initial configurations for this system with
two different SGRID resolutions, using 22 x 22 x 22 and
26 x 26 x 26 points in all domains. While the lower-
resolution result for this challenging configuration can
be computed in 52.4 hours, the higher-resolution run takes
about 93.2 hours. Both initial data computations were
performed on a single Intel Xeon node with 20 cores on
FAU’s Koko cluster. Due to the different resolutions, the
initial configurations are slightly different, as shown in
Table II. We find differences within the estimated masses of
about 2% and dimensionless spins of about 3% between the
quasilocal mass/spin measure (Sec. [V) and the single-star
properties of a NS with the same EoS, baryonic mass, and
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TABLE II.

Mass and dimensionless spin for different resolutions for the binary millisecond configuration, as well

as the ADM mass and angular momentum. The NS spin and mass estimates are computed from the quasilocal
measures introduced before and from a comparison to single-star values estimated from isolated stars with the same
EoS, baryonic mass, and rotational velocity as the individual constituents of the binary system.

quasiloc. quasiloc.

resolution 1 i

singl.star

signl.star

J
12 ADM

M apm

22 x22x22
26 x 26 x 26

1.346800 0.59466
1.346948 0.59474

1.364748
1.365494

0.57536
0.57504

2.711566
2711535

9.8464958
9.8494049

rotational velocity. These differences show that the intro-
duced quasilocal mass measure allows only an approximate
extraction of the individual masses for binary configura-
tions. For a high-quality analysis of high-resolution data,
2% differences in the individual masses (i.e., absolute
differences of the order of ~10~%) are well above the
acceptable uncertainty of an analysis of the energetics of
the system, for which uncertainties of ~107> are typically
required; see, e.g., Refs. [52,88,89]. We thus recommend
using the ADM mass of a single star with the same baryonic
mass and spin as the best available measure for the mass of
an individual star. However, the situation is different for the
introduced quasilocal spin measure. The fact that there is a
3% difference between the quasilocal spin of a star in a
binary and the spin of a single star with the same EoS,
baryonic mass, and rotational velocity does not mean that
the quasilocal spin measure has a 3% error. Rather, it is
quite likely that we are simply comparing two stars with
different spins, because using the same rotational velocity
(w = 0.03) does not necessarily lead to the same spin when
we compare a star in a binary and a single star.

Despite these small differences, each case describes a
binary in which both stars spin close to breakup. As far as
we know, this is to date the highest spinning BNS
simulation that includes the merger and postmerger. We
evolve the system with the BAM code using 96 points within
the finest refinement level. This resolution is not sufficient
for a highly accurate GW signal needed for waveform
model development, but sufficient to show that the simu-
lation of binary millisecond systems is feasible. The NS
tracks (for one star), the emitted GW signal, and the
Hamiltonian constraint for the two resolutions are shown
in Fig. 6. We find almost circular orbits with a residual
eccentricity of ~1073, due to the employed eccentricity
reduction. The difference between the phases of the GW
signals shown in the middle panel of Fig. 6 is about 1 radian
at the moment of merger. It is caused by (i) the different
resolutions of the initial data, (ii) the slightly different
masses of the configurations (cf. Table II), and (iii) the fact
that eccentricity reduction was only applied to the low
SGRID resolution, while we simply used the same values for
v, and Q for the high SGRID resolution. The bottom panel
shows the Hamiltonian constraints, where we find only
minor differences between the two SGRID resolutions.

154

~10 0 10

0.2 1

0.0 1

}%e(hQQ/A4)

—0.21—22 x 22 x 22
-==26 % 26 x 26

0 1000 2000 3000 4000
u/M
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by
1077_

1078 r T ,
0 1000 2000 3000 4000

t/M

FIG. 6. NS tracks of a binary pulsar system as described in
Table II for two different resolutions (top panel). We show the real
part of the dominant (2,2) mode of the GW signal (Re(h,,)) for
both resolutions (middle panel) and the Hamiltonian constraint
(bottom panel).
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— starl
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FIG.7. Tracks of the star centers for the equal-mass binary with
compactness (%) = 0.284.

B. Evolving highly compact stars

In the past we implemented the Hamiltonian constraint
as in Eq. (13) and found that we were able to find a solution
only for low compactness. With the modification given by
Eq. (44) and described in Sec. III C we can now construct
much more compact stars. As an example we have
considered an equal-mass binary without spin, where each
star has a baryonic mass of my = 2.4 and obeys the SLy
equation of state. This baryonic mass corresponds to a
gravitational mass of m = 2.0213 and a compactness of
(%), = 0.284 for each star at infinite separation. The
gravitational mass is thus very close to the maximum
possible m,, = 2.0606 with the SLy equation of state. As
far as we know, it is also the most compact BNS system
evolved so far.

We have evolved this binary with BAM using a piecewise-
polytropic fit for the SLy EoS [34,74] with an added
thermal contribution to the pressure following a I" law with
I'=1.75. In Fig. 7 we show the tracks of the two star
centers starting from an initial coordinate separation of 52
up to merger. The initial orbital angular velocity and radial
velocity are Q = 0.0048738 and v,, = —0.00151. The latter
values have been obtained using the eccentricity-reduction
procedure described in Appendix B.

C. Evolving unequal-mass systems

In order to cover a larger set of configurations for binary
neutron stars and to test the capability of the new version
of SGRID, we have also constructed the initial data for a
high-mass-ratio system. We chose the configuration to
be composed of two nonspinning neutron stars with a
piecewise-polytropic fit of the SLy EoS [34,74] with

20 1
10 1
©
= 0]
>
~10
—201 star 1
star 2
—20 —10 0 10 20
I/M@
0.2 1
=
X
& 0.0 1
ey
=
—0.2 1

0 200 400 600 800 1000 1200 1400
u/M

FIG. 8. NS tracks of the two stars in our high-mass-ratio
simulation (top panel) and the real part of the dominant (2,2)
mode of the GW signal (bottom panel).

gravitational masses of 1.99 My and 0.98 M, which
results in a mass ratio of ¢ = 2.03. This is the highest
mass ratio considered for a soft equation of state in
numerical relativity for a BNS system. While these mass
ratios might even be at the edge of what is theoretically
allowed, a study of these kinds of systems is essential to
develop and improve waveform models; see, e.g., Ref. [62].

In Fig. 8 we show the tracks of each neutron star in the
binary after three steps of eccentricity reduction. These
tracks illustrate the trajectory of the center of each neutron
star in the xy plane. The center of each neutron star is
estimated as the minimum of the lapse inside each star.
Near merger, the less massive star is disrupted, which
causes the track of the less massive star to end.

In Fig. 8 we show the dominant (2,2) mode of the GW
(Re(hy,)) versus the retarded time. Due to the very large
mass of the primary star the system undergoes a prompt
collapse to a BH after the moment of merger. The
gravitational-wave signal thus settles down very quickly
after the merger.
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VII. SUMMARY

In this article we have presented upgrades made to the
SGRID code to improve the capability of constructing initial
data for numerical relativity simulations. Among other
things, our upgrades involve a new grid structure, the use of
different coordinates, as well as a reformulation of the
equations for the conformal factor and the velocity poten-
tial. In order to compare with other methods or models such
as post-Newtonian theory, one would like to know certain
physical quantities such as the mass and spin of each star.
We have presented simple estimates for the initial mass,
spin, momentum, and c.m. of each individual star.

We have tested our new implementation by comparing
results against the previous SGRID version and found
good agreement between initial data sequences. We also
observed lower constraint violations (see Appendix C), and
in addition were able to construct more demanding initial
data sets with high spins, masses, and mass ratios.

To show that the new code version will be of importance
within the field of numerical relativity, we have constructed
initial data for a binary system with individual stars close to
the breakup and to the maximum mass allowed by the
equation of state, as well as a BNS system with a soft
equation of state characterized by a high mass ratio of
g = 2.03. All of these simulations enter previously unex-
plored regions of the BNS parameter space. Due to an
eccentricity-reduction procedure, the presented simulations
have typical eccentricities of ~1073. This allows them to be
used for the calibration and validation of gravitational
waveform models.

In the future, we plan to use SGRID’s new capabilities to
perform new simulations and extend the publicly available
CoRe database [65] with high-quality data, which was
previously not accessible within the numerical relativity
community.
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APPENDIX A: EMPIRICAL w-y RELATION

As shown, SGRID can construct initial configurations in
which the individual stars have arbitrary spin [34,46,47].
However, for this one has to specify the angular velocity of
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FIG. 9. The dimensionless spin according to Eq. (Al) as a
function of spin computed in the new SGRID for different EoSs
(top panel). The fractional residuals are shown in the bottom
panel. The black dashed curve represents the ysgrip = Yt
scenario.

the fluid w, the baryonic masses, and the EoS as input
parameters. The spin itself cannot be specified directly.
Thus, to minimize computational costs and simplify the
computation, we need to find an ansatz for the spin in terms
of SGRID’s input parameter. One such phenomenological fit
has been given in Appendix C.2 of Ref. [34]. However, we
found that it might give large errors at high spins, which are
now reachable with our new SGRID implementation.
Therefore, building upon that, we fit the following data
generated for a single star to the SGRID output for ysgrp-
We use four EoSs (SLy, ALF2, H4, and a I" = 2 polytrope)
with baryonic masses M, /M € [1.1,1.7] in steps of 0.1
and compactnesses in the range C € [0.09,0.20]. We find
the following phenomenological fit for the dimensionless
spin magnitude y of a single NS:

I =a1(1+mMpy)(1+ ¢,C 4 ,C + ¢3C° + ¢4C*)

x (1 + dyw)w, (Al)
where the coefficients a; = 59.329, m; = 1.9267, ¢, =
—17.1537, ¢, =122.8986, c3 =—401.3542, ¢, = 483.0869,
and d; = 10.2497 are computed by fitting the data,
cf. Fig. 9. Specifically, for all combinations of NS
mass and EoS we employ ten different values of o €
[0.000, 0.02] in steps of Aw = 0.002. The fractional resid-
uals for each configuration are shown in the bottom panel
Fig. 9. The new fit gives a maximum error of 10% for some
extreme cases; otherwise, the error is below 5%.

APPENDIX B: Q-BASED ECCENTRICITY-
REDUCTION PROCEDURE

In most cases we have used an eccentricity-reduction
procedure very similar to the one in Ref. [45], instead of the
one described in Ref. [34], because in many cases it is
advantageous to avoid using the “force balance” relation
mentioned in point 4 of Sec. IIIE.
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We start with a post-Newtonian estimate for € as well as
v, = 0. We then evolve for about three orbits and fit the
observed distance d(t) between the star centers to

A B
S(t) = Sy + Aot _|_71¢2 ——cos(wt + ¢), (B1)
)
S

where S, Ay, A;, B, oy, and ¢ are fit parameters. From the
fit parameters we compute the measured eccentricity

B
COde

e =

(B2)

as well as the changes

Bwj cos ¢

ov, = —Bsing, 0Q = 20d,

(B3)
in v, and Q needed to lower the eccentricity. We then
recompute initial data with the new values for v, and €, and
evolve and fit again to obtain the next set of changes to v,
and Q. We usually perform three or four such reduction
steps. Notice that we typically use the proper distance as the
distance measure d() that we fit, and that we set d,, equal to
the initial coordinate distance. The latter has given slightly
better estimates for ov, and o€ than simply setting dy = .

APPENDIX C: COMPARISON
WITH THE OLD VERSION OF SGRID

In order to test the new implementation, we have
constructed and evolved initial data with the same physical
parameters using the two different SGRID versions. We use
the same configuration for both initial data, namely, a
I'=2, k =123.6489 EoS. The system is an equal-mass
binary in which the individual stars have a baryonic mass
of 1.625 M. The initial separation between the stars is
68.8 km.

Figure 10 shows the Hamiltonian constraint across one of
the stars at the initial time after interpolating the SGRID data
onto BAM’s grid. As we can see, the new SGRID version (solid
line) produces smaller constraint violations than the old
version (broken line) inside the star, while at the star surfaces
both lead to approximately the same violations. Outside the
stars, the old SGRID version seems slightly superior.

In Fig. 11 we show the dominant (2,2) mode of GW. We
evolve both initial data sets with BAM using exactly the

Hamiltonian constraint magnitude att=0

10~
107>
1076
1077
\
1
1078 1
Wi
: ] new sgrid
10-9 i" ~—= old sgrid
5 10 15 20 25

X/Mo

FIG. 10. The Hamiltonian constraint across one of the stars at
the initial time for both the old (broken line) and new (solid line)
version of SGRID. Similar violations occur in both approaches
near the star surfaces, but inside the stars the new version shows
less violations.
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u/M
FIG. 11. Comparison between the GW signals computed for the

same physical configurations computed with the old and new
SGRID code. Old SGRID results are shown by the orange dashed
curve, while new SGRID results are shown by the blue solid curve.

same setup for both evolutions, namely, six refinement
levels and 96 points to cover the star. The GWs are
extracted at a distance of 900 M. Waveforms are aligned
for the two cases at early times, i.e., before u < 600M. We
find that both waves agree very well throughout the merger
and in the early postmerger part; see Fig. 11.
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