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ABSTRACT

Analyses of learning often rely on coded data. One important
aspect of coding is establishing reliability. Previous research has
shown that the common approach for establishing coding reliability
is seriously flawed in that it produces unacceptably high Type I
error rates. This paper focuses on testing whether or not these error
rates correspond to specific reliability metrics or a larger
methodological problem. Our results show that the method for
establishing reliability is not metric specific, and we suggest the
adoption of new practices to control Type I error rates associated
with establishing coding reliability.
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1 INTRODUCTION

In May of 2018, the Journal of Learning Analytics published a
special issue exploring answers to the question, “What does
methodology mean for learning analytics” [2]. In this issue, several
articles discuss questions of reliability in models [3, 5, 14, 19], but
there was no discussion of inter-rater reliability (IRR). This is
problematic, as the reliability of any model depends on the
reliability of the inputs to the model. In many analyses of learning,
model inputs consist of coded data [8, 16, 20]. Thus, we argue,
methodological questions about coding reliability are—and should
be—important considerations for the field of learning analytics.

The general process for measuring IRR, or agreement between two
coders, is to have each rater (human or machine) code a subset of
the data, and then compute the rate of agreement using one of a
number of possible measures. The measures most commonly used
are the F statistic, Cohen’s k (hereafter, kappa), precision and
recall, percent agreement, and percent positive agreement (also
referred to as Jaccard’s J). The value of the statistic computed is
taken as a measure of agreement between the two raters.

In what follows, we examine the reliability of this process. We draw
on research by Eagan and colleagues [10], which demonstrates that
the standard method of establishing IRR introduces high Type I
error rates with kappa, one of the most widely used IRR metrics in
learning analytics. Briefly, they showed that finding agreement
above a given kappa level between two raters (human and/or
machine) on a subset of data did not provide a valid statistical
warrant for concluding that the actual rate of agreement was above
the desired value unless the subset was larger than those typically
used in studies involving human coders. In other words, IRR
measures computed on samples from larger datasets are in most
cases inappropriately generalized.

Here, we extend this line of inquiry to other common IRR metrics,
asking whether the problem uncovered by Eagan and colleagues is
a more general problem with the method by which IRR is currently
measured regardless of which statistic is used. We conclude that
IRR involving human coders, as it is currently practiced in many
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studies in the field of learning analytics, is unreliable. However, by
leveraging the conceptual and statistical problems we identify, we
are able to construct a solution space for the problem. We then
describe an alternative approach that uses a statistical control for
Type I error in IRR measurement more broadly.

2 THEORY
2.1 Coding Data

All models are grounded in data that facilitate the translation from
phenomena to interpretation. In many fields, coding schemes are
used to organize data into categories [1, 12, 21]. These coded data
can then be counted, compared, modeled, or otherwise analyzed to
provide supporting or refuting evidence for some claim, or a
justification for some action. In other words, coded data are crucial
links in the chains of evidence substantiating the claims that emerge
from a model. If a coding process doesn’t identify what it purports
to capture, conclusions or actions based on the model lose their
claim to validity.

There are some approaches to coding and modeling that categorize
data using a semantic or lexical model of a domain with no human
input (e.g., topic modeling [6]). However, any interpretation of the
meaning of those categories depends, at some point, on comparing
the results with human judgement. Indeed, even in cases where raw
data is fed directly into a model (e.g., neural networks [21]), the
accuracy of the resulting model requires data that constitutes a
ground truth. However, work in the social sciences often depends
on placing a human “in the loop” at some point. Thus, questions of
reliability, and therefore IRR, are an essential component of doing
valid research in learning analytics.

In this sense, coded data are a critical foundation of a researcher’s
ability to surface patterns, build models, draw inferences, and
decide on appropriate actions. However, coded data are not the
data themselves!' For this reason, Hammer and Berland [15]
suggest that codes are more aptly recognized as claims rather than
evidence. As with all claims, there is uncertainty associated with
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coding, and IRR metrics are a means to quantify that uncertainty by
measuring agreement between two coding processes using some
particular metric for “agreement.”

While there are approaches to coding that use ordinal or continuous
scales, human raters are notoriously bad at calibrating ratings
across coding instances [4], and many codes are more appropriately
modeled using a binary (present/not present) decision [24]. In what
follows we consider the case of IRR for binary coding schemes,
although many of the same concerns apply to ordinal and
continuous scales.’

2.2 IRR Metrics

There are number of IRR metrics, including percent agreement,
Holsti’s method, Scott’s pi, Spearman’s rho, Pearson’s correlation
coefficient, percent positive agreement (also known as Jaccard’s J),
Lin’s concordance correlation coefficient, precision and recall, F
statistic, the Kupper-Hafner index, or Krippendorft’s alpha. With
all of these methods, an /RR score is calculated based on a
contingency table showing the number of times the raters agreed
that the code was present or not present, and also the number of
times that one thought it was present and the other did not.? (See
Table 1 for the general structure of a contingency table for coding.)
The processes for calculating five of the most commonly-used IRR
metrics is shown in Table 2.

Table 1: Rater Agreement Contingency Table

Second Rater

Thinks code is
present

Thinks code is not
present

. . Positive Agreement
Thinks code is present
First P (PP)
Rater| Thinks code is not Disagreement (NP) Negative Agreement
present (NN)

Disagreement (PN)

Each of these measures is sensitive to different properties of the
data, such as the base rate of the code in the data (the frequency
with which it occurs) and the number of pieces of data both raters
coded.

Table 2: Common IRR measures

IRR measure Definition Equation
Precision (PR) Measures the likelihood that the first rater thinks the code is present PR = PP
if the second rater thinks the code is present. "~ PP+ NP
Recall (RC) Measures the likelihood that the second rater thinks the code is RC = PP
present if the first rater thinks the code is present. ~ PP+ PN
. . .. PRxRC
F Statistic (F) Measures the harmonic mean of two raters’ precision and recall. = Z(PR-I-—RC

! There is a broader discussion of the relationship between features in data and the selection of those features on one hand, and the validity of inferences drawn from models based
on those features on the other. Here, we are considering only the particular—but prevalent and important—case where human judgements are used to create some form of gold

standard or ground truth in coding data.
2 For a lengthier discussion of the import of binary coding see Shaffer [23].

3 IRR uses agreement in the application of a code as a proxy for agreement in the concept of a code. This is, perhaps, most evident in automated coding where a computer cannot

(yet) be said to understand a code, though it certainly can find it.
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Jaccard’s J (J)

Measures the likelihood that both raters think the code is present if

Cohen’s Kappa
() agreement, while controlling for chance.

P t . . . . h PP
or fercen either rater thinks the code is present. Note: this is stricter than J=—————
Positive .. . . PP + PN + NP
precision and recall because it accounts for all disagreement.

Agreement
_ 0A—-PAC
T 1-PAC

PP + NN

Measures the ratio of two raters’ observed agreement to perfect

0A

“PP + PN + NP + NN
PAC = (BR1 x BR2) + (1 — BR1)(1 — BR2)

Where OA = Observed Agreement,

PAC = Probability of Agreement,

BR1 = base rate of the code for rater 1, and
BR2 = base rate of the code for rater 2

2.3 Methods for Measuring IRR

Broadly speaking, there are two main approaches to measuring IRR
using such statistics. The first is for two processes (usually two
humans) to code all of the data. The measured rate of agreement in
this approach is thus the true rate of agreement between the two
processes.*

The second—and more common—approach to IRR uses a similar
method. It, too, begins with two processes (hereafter, raters) coding
the same data. However, in the second approach, the raters code
only a subset of the data, often referred to as a test set.

Regardless of the IRR metric used, this second approach has been
referred to as the Common Method for IRR Measurement
(hereafter, the Common Method [10, 23]). The Common Method
unfolds as follows (see also Figure 1):

1. The code is defined.
2. An IRR metric is chosen and a minimum value for acceptable
agreement is set.
3. A test set of a specified size is randomly selected from the
dataset.
4. Two raters independently code the test set.
5. The agreement of their coding is measured using the chosen IRR
metric.
6. The IRR measure is compared to the minimum value in Step 2.
a. If the IRR is below the minimum value, the raters resolve
their disagreements, which can involve changing definition
of the code, and repeat steps 3-5.
b. If the IRR is above the minimum value, researchers coding
is considered to be reliable.

&IRR

Define 8 Codes
code Test Set

Resolve Codes
differences N { e Test Set ‘
T
Yes

STOP

Figure 1: Workflow for establishing inter rater reliability
using the Common Method (shown here with kappa).

2.4 Potential Errors in the Common Method

Although it is possible to achieve acceptable IRR in the first test
set, it is more common to see raters coding multiple test sets before
getting acceptable rates of agreement. This means that the actual
number of excerpts coded by a human rater may be a significant
rate-limiting factor in the Common Method.

More important, however, the Common Method relies on an
implicit assumption that the IRR measured in the test set is
equivalent to the true IRR that would be measured if both raters
coded all of the data. For instance, if an IRR metric is reported at
0.90, it is assumed that if the two raters were to keep coding, their
IRR would continue to be 0.90.

In other words, the Common Method is making a specific claim:
the IRR metric from a sample (a test set) generalizes to a population
(all of the data if coded by both raters). Any such generalization is
potentially subject to Type I errors,” which occur when a false
conclusion is made about a population based on the properties of a

4 We are not claiming that the rate of agreement is “true” in any philosophical sense of the word, but only that the two processes have coded all the data and that we have quantified
(using some measure) the rate of agreement. We should note, however, that in cases where two raters code all the data, it is mode common not to report the level of agreement, but
rather to use social moderation [18] to reach a point of 100% agreement between the two coders. That is, the raters resolve their disagreements and come up with a single set of

codes for the data.

3 Type I errors are also known as false positives. The Type 1 error rate = (false positives / all test sets with IRR measured above the minimum rate of acceptable agreement). This is

explained further in Table 4.



LAK’20, March 23-27, 2020, Frankfurt, Germany

sample—in this case, if the IRR measured in a test set is above the
minimum level of agreement, but the true rate of agreement that
would be achieved if the two raters were to code the entire set is
below the minimum level.

This raises two issues. First, it is not clear what an acceptable
minimum rate for acceptable agreement should be. Kappa is often
considered “reliable” at 0.65, but the other four most commonly
used metrics have no agreed upon minimum. ¢ The choice of an
acceptable level of agreement thus depends on the standards of
research domain in which the coding is used, what decisions or
consequential inferences will be made based on analyses of the
coded data, as well as factors like the potential repercussions
associated with Type I and Type II errors.

Second, and perhaps more significant, the Common Method has no
provision for estimating the rate of Type I errors. Without
controlling for Type I errors, there is no statistically valid claim that
the IRR established for a sample actually applies to the entire
dataset from which the sample was drawn.

This raises a natural question: What is the impact of not controlling
Type I errors, under the conditions raters usually encounter, in the
field of learning analytics?

2.5 Monte Carlo Studies

Monte Carlo (MC) studies are commonly used to investigate
questions about the performance and reliability of statistical tests in
educational and psychological research [17]. MC studies are based
on replication: a large number of simulated datasets (replicates) are
generated, and a test statistic is calculated for each replicate. The
number of replicates is determined by the repetitions needed to
achieve statistical confidence in the result.

Critical to this process is the ability to construct simulated datasets
that reflect the properties of the phenomenon in question. In the
case of IRR, MC studies require construction of a simulated codeset
representing a complete dataset as coded by two raters.
Mathematically, this is represented by a set of binary ordered pairs
— (1,1); (1,0); (0,1); or (0,0)—where the first number represents
whether the code was applied by the first rater and the second
number represents whether the code was applied by the second
rater. (These correspond to the PP, PN, NP, NN combinations in
Table 1).

Eagan and colleagues [10] constructed such simulated codesets by
generating random pairs of 1s and 0s with a specified frequency to
represent the codes of the first rater, and then permuted the first
rater’s codes to achieve specified parameters varied at random.
(This process is further explained in the methods below). They used
MC studies to demonstrate that kappa had high (greater than o =
0.05) Type I error rates when IRR is calculated using the Common
Method under typical conditions.
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2.6 Research questions

In what follows, we adopt this method to assess the performance of
five IRR measures commonly used in learning analytics (see Table
2), including kappa to check for replicability between our MC
simulations and previous work. Eagan et al. [10] also demonstrated
that the error rate of kappa is sensitive to the parameters of base
rate and test set size. We therefore conducted MC simulations at
multiple test set sizes and base rates.

Because there are no established standards for acceptable minimum
rates of agreement, choosing an appropriate minimum level for an
IRR statistic depends on the statistic chosen and the context in
which the coding is used [11, 23]—and, in any event, establishing
such levels is beyond the scope of the current paper.” As a result,
we chose to explore the problems associated with the Common
Method at three different minimum rates of agreement, from the
lower end of those used in empirical studies to the higher end of
rates seen in the literature.

We conduct this set of MC studies across five IRR measures to
address the following research questions:

RQ1: Are the high Type I error rates associated with the
Common Method under typical coding conditions involving a
human rater specific to kappa, or do they pertain to the F
statistic as well?

RQ2: Do the most commonly used IRR measures have different
Type I error rates under typical coding conditions involving a
human rater?

3 METHODS

3.1 Generation of Simulated Codesets

We identified four parameters that would uniquely define a
simulated codeset: base rate of the code, codeset length (number of
items to be coded), a target kappa value, and a target precision
value.

For each simulated codeset, we used base rate and length to produce
a unique set of codes at perfect agreement.® That is, we constructed
a set of ordered pairs representing the codes for each piece of data
in the simulated code set as a series of (1,1) followed by a series of
(0,0) where the total number of ordered pairs (1,1) was equal to
base rate x length of the simulated codeset.

We then used the target kappa value to change a subset of the
ordered pairs (1,1) to (1,0) and a subset of the ordered pairs (0,0) to
(0,1). That is, we introduced error in the coding so as to produce
the target kappa level. Because kappa does not distinguish between
positive and negative agreements, we used the target precision
value to determine the proportion of (1,1)=>(1,0) changes into
(0,0)>(0,1) changes.

¢ Kappa is sometimes considered “reliable” at 0.65, but Cohen [7] provided no justification for this choice, and agreement at that rate often provides miscoded data at a rate high

enough to jeopardize face validity for coding.
7 An empirical approach to this issue is discussed in Eagan et al. [11].

8 Because the IRR metrics we tested were invariant to permutation, we did not need to consider the order of the ordered pairs in the codeset.
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A meta-analysis by Eagan and colleagues’ [10] found limited
guidance in the literature regarding appropriate parameter ranges of
base rate, kappa, and precision during the coding process. This was
due to the fact that most studies report only a final kappa value and
do not provide base rates, test set length, or other information about
the coding process.

Therefore, for our MC simulations, we empirically derived
conservative estimates of what two trained human raters would
reasonably produce for base rate, kappa and precision (see Table
3), based on the performance of raters observed in our own lab.
Nearly 75% of the discourse codes used in our lab have base rates
below 0.10. We believe our chosen parameters are not atypical in
the kinds of data used by learning analytics researchers.

Table 3: Simulated Data Generation and MC Parameters and
Ranges

Simulated Data Generation
Parameter Ranges

Parameters
Base Rate 0.05,0.10
Simulated Codeset Length 10,000
Kappa 0.30 - 1.00
Precision 0.60 - 1.00

MC Parameters Parameter Ranges

20, 40, 80, 200, 400, 800,
2000, 4000, 8000

Test set size

Number of replicates 12,000

3.2 MC simulation construction

Using the codeset generation method described above, we
employed the simulated IRR measurement (SIM) method [10] to
model the Common Method based on three additional parameters:
test set size, number of replicates, and minimum rate for acceptable
agreement.

We chose test set sizes representing a range of values (a) lower than
would be typically used by human coders (20, 40); (b) from the
range of values typically used by human coders (80, 200, 400); and
(c) larger than would be typically used by human coders but are
sometimes used in machine learning applications (800, 2000, 4000,
8000). We chose a number of replicates to determine Type I error
rates by incrementally increasing the number of replicates until the
standard deviation of the Type I error rates decreased to less than
or equal to 0.01. We found that 12,000 replicates were sufficient
given the other parameters in our MC studies.

To complete each MC study for all five IRR metrics, we applied
the SIM method as follows, using parameter values from Table 3:

1. We chose a base rate and test set size and created 12,000
simulated codesets using the generation method described above.

2. We computed the IRR metric for each simulated codeset, which
represented the true rate of agreement that would be achieved if
two raters had coded the entire dataset.

3. From each of these simulated codesets, we randomly selected a
test at a given test set size (Common Method Step 3). This
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represented the number of excerpts raters would code in
establishing IRR (Common Method Step 4).

4. We computed the IRR metric on each test set (Common Method
Step 5).

For each study, this resulted in 24,000 numbers (two for each
replicate): 12,000 true IRR values (one for each replicate), and
12,000 IRR values computed on one test set from each replicate.
We produced a contingency table, as shown in Table 4, and
computed the Type [ error rate = T1/(PP+TI).

Table 4: Type I Error Contingency Table
Test set IRR

Above minimum | Not above minimum

rate rate

.. Positive Agreement
Above minimum rate
True (PP)

IRR | Not above minimum

Type II error (T2)

Negative Agreement

Type I error (T1) (NN)

rate

For RQ1, we selected the F statistic because it is, along with kappa,
one of the most commonly used IRR metrics in the learning
analytics field. Because the F statistic does not have a standardized
minimum value of acceptable agreement, we chose to test its
performance at three levels that span a typically reported range
(0.50, 0.70, 0.90).

For RQ2, we repeated this MC process for each IRR metric using
all combinations of chosen base rates and test set lengths at the
median minimum value of acceptable agreement (0.70) from RQ1.

4 RESULTS

RQ1: Are the high Type I error rates associated with the
Common Method under typical coding conditions involving a
human rater specific to kappa, or do they pertain to the F
statistic as well?

Table 4 shows the Type I error rates of the F Statistic for codes with
base rates of 0.05 at all combinations of test set size and minimum
rate of acceptable agreement that we considered. Of the 27
simulations we conducted, 18, or two thirds, had Type I error rates
greater than 0.05. Of these 18, 10 had Type I error rates greater than
0.20.

Table 5 shows the Type I error rates of the F Statistic for codes with
base rates of 0.10 at all combinations of test set size and minimum
rate of acceptable agreement that we considered. Of the 27
simulations we conducted, 15, or just over half, had Type I error
rates greater than 0.05. Of these 15, 7 had Type I error rates greater
than 0.20.

We conclude from these MC studies that under many realistic
conditions under which IRR is computed, the Common Method
produces high Type I error rates. Regardless of base rate, the
Common Method does not perform well unless the minimum
required rate of agreement is high (F > 0.09). This is consistent with
previous results found for MC studies of kappa.
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Table 4: SIM method using F Statistic Type I error rates — for codes with base rate 0.05.

Test Set Size
20 40 80 200 400 800 2000 4000 8000
F Statistic minimum | 0.5 | 0.695 | 0547 | 0382 | 0271 | 0218 | 0.146 | 0.099 | 0.056 | 0.022*
rate of acceptable 0.7 0.478 0.330 0.229 0.164 0.099 0.066 0.036* 0.026* 0.010%*
agreement 0.9 0.489 0.304 0.139 0.067 0.041%* 0.027* 0.014* 0.010* 0.004*

* indicates Type I error rate less than 0.05

Table 5: SIM method using F Statistic Type I error rates — for codes with base rate 0.10.

Test Set Size
20 40 80 200 400 800 2000 4000 8000
F Statistic minimum | 05 | 0545 | 0387 | 0303 | 0230 | 0174 | 0.126 | 0.074 | 0.041* | 0.018*
rate of acceptable 0.7 0.331 0.236 0.192 0.111 0.075 0.049* 0.033* 0.017* 0.008*
agreement 0.9 0.303 0.153 0.085 0.046* 0.028%* 0.020%* 0.012* 0.007* 0.003*

* indicates Type I error rate less than 0.05

Table 6: SIM method using Precision, Recall, Jaccard’s J, and Kappa (BR 0.05, minimum acceptable agreement 0.7)

Test Set Size
20 40 80 200 400 800 2000 4000 8000
0.7 minimum Precision 0.570 0.524 0.445 0.408 0.354 0.286 0.212 0.125 | 0.0543
rate of Recall 0.500 0.310 0.182 0.097 0.066 | 0.046* | 0.026* | 0.015* | 0.006*
acceptable Jaccard’s J 0.460 0.288 0.174 0.090 0.064 | 0.037* | 0.024* | 0.014* | 0.007*
agreement Kappa 0.477 0.338 0.239 0.154 0.095 0.061 0.042% | 0.025*% | 0.009*

* indicates Type I error rate less than 0.05

RQ2: Do the most commonly used IRR measures have different
Type I error rates under typical conditions of coding involving
a human rater?

After conducting MC studies for the F Statistic with each
combination of base rate, test set size, and minimum rate of
agreement reported above, we ran simulations for each of the other
IRR metrics of interest (Precision, Recall, Jaccard’s J, and kappa).
For these MC studies, we maintained the same range of test set
sizes, but chose the common base rate of 0.05 and the median rate
of minimum acceptable agreement (0.70).

Table 6 shows the Type I error rates for Precision, Recall, Jaccard’s
J, and kappa for codes with base rate 0.05, a minimum rate of
acceptable agreement of 0.70, and all combinations of test set size.
We can see that of the 36 simulations we conducted, 25 had Type I
error rates greater than 0.05. Of these 25, 14 had Type I error rates
greater than 0.20. Acceptable Type I error rates were only achieved
in test set sizes of 800 or larger. In addition, in the ranges we
examined, Precision never had acceptable Type I error rates.

We thus conclude that while Type I error rates do vary between
different IRR statistics, no statistic performs well across the
majority of the range of conditions typically found in studies
involving human raters.

S DISCUSSION

Previous work [10] has shown that the Common Method for
establishing IRR introduces high Type I error rates for kappa. The
results of our MC studies here suggest that the Common Method
introduces unacceptable Type I error rates not just for kappa, but
for other frequently used metrics at combinations of parameters
typically used in the learning analytics community. This finding
introduces concerns about the reliability of research claims based
on coded data produced by the Common Method and contributes to
the broader investigation of the role of reliability in learning
analytics methodologies.

More specifically, our MC studies indicate that, under conditions
typical in studies involving human coders, Type I error rates begin
to fall below 0.05 as test set size and minimum acceptable rate of
agreement increase. However, the test set sizes at which this result
is achieved are beyond the capacity of most human raters,
especially considering that most analyses rely on multiple codes
and multiple iterations of testing for each code. Using a test set of
length 400 might involve coding 1500-2000 pieces of data for each
code in the analysis. Thus, test sets large enough to ensure low
Type I error rates may be unfeasible using the Common Method.

While all five IRR metrics exhibit the same Type I error rates when
used with the Common Method, Precision performed particularly
poorly. Even when using test set sizes of 8,000, the Common
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Method using Precision fails to achieve acceptable Type I error
rates for a low base rate code at a typical minimum acceptable rate
of agreement (Precision > 0.70). It is possible that Precision
performs poorly in these MC studies because we used Precision as
a parameter to generate the simulated codesets. However, in other
work we have used Recall as a parameter for the generation of
simulated codesets, and the same problem persists with Precision,
which is particularly sensitive to coding errors in low base rate
codes. Because there are few instances of the code, errors that either
remove or add positive examples have dramatic effects on
Precision.

These results highlight a number of conceptual and statistical
problems associated with the Common Method. First, whenever
IRR is calculated on a subset of data following the Common
Method, there is an inherent issue of generalization, regardless of
the IRR metric used. Second, problems with the Common Method
persist even at relatively high criteria for acceptable agreement.
Lastly, our results also identify broader statistical problems
involving Type I error rates associated with the Common Method.
For instance, the lower the base rate of a code, the more severe the
Type I error rates. Similarly, the lower the minimum level of
agreement, the more severe the Type I error rates.

These issues with the Common Method provide the outline for the
issues that need to be resolved in order to address shortcomings in
current IRR practices. The results of our study suggest that a viable
solution must:

1.  Work across different IRR metrics,

2. Be applicable beyond the observed sample agreement
(i.e., have acceptable Type I error rates)

3. Perform well for low base rate codes,

4. Be compatible with a method for determining
appropriate, and therefore variable, minimum levels of
acceptable agreement.

The requirement for a solution to work across different IRR metrics
is indicative of the unreliability of the Common Method itself. The
foundational nature of this problem suggests that what is needed is
not a new statistic, but rather a method that works in conjunction
with existing statistics by measuring and controlling for Type I
errors and thus providing valid warrants for generalizing from a
sample of data coded by two raters to their expected rate of
agreement across a larger dataset.

Because of the prevalence of important codes that may occur
infrequently in learning analytics data, a successful solution will
ideally perform well for low base rate codes.

And finally, given the lack of well-justified rates of agreement for
most IRR statistics, an idea solution will also make it possible to
determine appropriate minimum levels of acceptable agreement
given the specific statistical claim being made. That is, researchers
need to be able to establish that coding is reliable enough for some
specific analysis, task, or decision [11].
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This study has several limitations. First, we only investigated five
IRR metrics. There are many others, although they are not
frequently used. More importantly, we have no reason to believe
the Common Method would perform better with any of them.
Second, our study does not focus on the use of IRR between two
machine raters. In those cases, IRR can be established with test sets
that exceed the ranges we considered. However, even in these
circumstances, large amounts of human-coded data are often used
to establish validity and reliability of one, if not both, of the
machine raters, thereby potentially introducing the Type I error
rates documented above. Finally, not all learning analytics research
uses IRR. While IRR employed through the Common Method is
problematic, we do advocate using some approach (e.g., tho) to
establish warrants for the claims comprising learning analytics
research. These warrants ensure that results from the field are
reliable as they are recommended to the educational designers,
instructors, and students.

The unreliability of the Common Method has important
consequences for IRR, and thus for any research involving human
coders using binary codes. It means that humans either need to code
far more data than has been used in many prior studies, or
adjustments need to be made to the Common Method to control for
Type I errors.

It is beyond the scope of this paper to explore this issue in detail,
but we note that Shaffer’s rho [9, 10, 23] is one approach to control
for Type I error when using IRR metrics. Rho is a Monte Carlo
rejective method that addresses all four of the criteria outlined
above.

Briefly, rho is a method for controlling for Type I error in IRR
statistics that do not have known distributions (which includes all
metrics that we know of for binary coding; see Shaffer [23] for
more details on rho).

Rho is a Monte Carlo rejective method that creates a large number
of simulated data sets that conform to the null hypothesis: in this
case, a large number of data sets with properties of the original data
(e.g., code frequency) that have agreement below the chosen
threshold. Rho then uses whatever sampling procedure was used to
generate the original sample (that is, either random or conditional
sampling) to take a sample of each data set under the null
hypothesis. For each of these Monte Carlo samples, the value of the
IRR statistic being used is computed. This produces an empirical
distribution of the IRR statistic under the null hypothesis with the
given conditions of data and sampling procedure. The rho statistic
represents the percentage of samples in the empirical distribution
of the IRR statistic that are more extreme than the IRR value
observed in the actual sample. Thus, rho performs a similar
function to a t-test in providing a bound on the expected Type I
error rate in generalizing from a sample to a population.

As a result of the way rho is computed, it meets the criteria for
addressing problems with the Common Methods. Specifically, rho
(1) is independent of statistic used, and (2) controls for Type I error.
Moreover, because rho is an empirical rejective method, it is
accurate when conditional sampling is used. Thus, (3) rho can
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warrant generalizations in situations where positive instances of a
code are oversampled, improving the efficiency of IRR measures
for low frequency codes—that is, reducing the amount of data
human raters need to code. Finally, in contrast to analytic
distribution-based approaches (e.g. FCE [13]), rho can be used with
any minimum level of acceptable agreement. As a result, (4) it is
possible to include rho in Monte Carlo methods to estimate the
level of agreement required for a statistical result to remain valid
(see Eagan et al. [11] for more details.)

Whether researchers use rho or some other technique for
controlling the Type I errors associated with establishing IRR, our
results indicate that the reliability problems associated with the
Common Method persist across standard IRR metrics in situations
researchers are likely to encounter. These issues are fundamental to
any analytic claims relying on IRR in the evidentiary chain from
data to meaning. Moreover, these concerns offer a unique
opportunity for integrating solutions into the emerging learning
analytics community as it coheres and establishes its
methodological boundaries.
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