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Models with modular flavor symmetries have been thought to be highly predictive. We point out that
these predictions are subject to corrections from non-holomorphic terms in the Lagrangean. Specifically,
in the models discussed in the literature, the Kdhler potential is not fixed by the symmetries, for instance.
The most general Kéhler potential consistent with the symmetries of the model contains additional terms
with additional parameters, which reduce the predictive power of these constructions. We also comment

on potential ways of how one may conceivably retain the predictivity.
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1. Introduction

Recently a rather exciting observation has been made [1,2]:
nine neutrino parameters can be predicted from only three input
parameters. The crucial ingredients of the corresponding model are
modular flavor symmetries. The point of this paper is to show that
these models actually have additional parameters which have not
been taken into account in the models in the recent literature. We
also comment on possible ways to retain control over these pa-
rameters.

To understand the main point of our paper, recall that the pre-
dictions of these models come from the fact that the superpotential
is fixed by the modular transformations. However, the superpoten-
tial only contains the physical parameters if the fields appearing
there are “physical”, i.e. canonically normalized. As we shall see,
the Kdhler potential, which contains the information about the
fields, is not at all fixed by the symmetries and transformation
properties of the models. This is why the modular transformations
alone do not allow one to make such remarkable predictions, as
we shall discuss in more detail in what follows.

2. Modular flavor symmetries

Modular flavor symmetries have so far only been discussed in
the supersymmetric context. There, they are modular transforma-
tions which act on a so-called modulus T and “matter” superfields
¥ according to [1]
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where a, b, ¢ and d are the I' = SL(2, Z) parameters satisfying,
by definition, ad — bc =1 and p is the representation matrix
of some quotient group I'y =I'/T'(N). —k; denotes the so-called
modular weight. The collection of chiral superfields will be de-
noted ® = (7, ¢®, ..., o),

The modular group T’ =I'/Z; is generated by

S = (_01 é) and T = (g) }), (2)

which correspond to the transformations

S

1
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These generators satisfy

$2=(ST)® = 1. (4)
It is straightforward to verify that

—it+it)* D (ct+d) €T+d) (—it+iD) . (5)

Therefore, the combination

(—iT4+iD)™ <¢u‘>*¢,u>)1 (6)

is invariant under modular transformations. Here, the notation
(--+)q indicates a contraction to a 'y 1-plet, i.e. to an invariant
under I'y. However, as we shall see below, this is not the only
invariant.
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Table 1
Model 1 of [1]. Ef, L, Hy and Hg are the superfields of the charged leptons, left-
handed douplets, up-type Higgs and down-type Higgs, respectively.

(ES, ES, ES) N L Hq Ha )
SUR2)L x U(Dy 1 1o 2, 2.y, 2y, 1o
I's 1,1”,1) 3 3 1 1 3
k (kE] ’kEZ*kEB) kN k’_ kHd kHu k«;

3. Additional parameters from non-holomorphic terms

The fact that there are additional terms in the Kdhler poten-
tial has been already noted in [1,2]. The existence of additional
terms already follows from the observation that the predicted pa-
rameters run. Running of couplings in supersymmetric theories can
be understood as corrections to the Kahler potential. On the other
hand, the superpotential is protected by holomorphicity, which is
reflected by the non-renormalization theorems. As we shall see,
the most general Kdhler potential consistent with the symmetries
has numerous additional parameters.

We will base our discussion on Model 1 of [1], which has the
finite quotient symmetry I's >~ A4. However, the analogous state-
ments apply to the follow-up models in the literature such as
[2-9]. The Higgs and lepton sector of the model is specified in
Table 1.

As the author of [1] has pointed out, the charged fermion
masses are obtained by adjusting three parameters. The nontrivial
predictions of this model are on the neutrino parameters, which
come from the Weinberg operator

1
"=~
Here, Y is a triplet of modular functions of weight 2, Y =

(Y1, Y2, Y3)T. The Kihler potential of the charged leptons is taken
to be

[(Hu-L)Y (Hy- D]y - (7)

K. = (—it+it) ' LTL. (8)

Here the modular weights of the leptons are —1 (corresponding
to k; = 1) and Hy has zero weight (ky, = 0). The neutrino mass
matrix is then given by

v2 [2Y1(D) =Y3(r) —Ya(7)
my = X” —Y3(r) 2Y2(r) —Yi(7) | . (9)
—Ya(r) —Yi(r) 2Y3(7)

The crucial point is that this matrix has only three free real pa-
rameters: A, Ret and Imt. On the other hand, the charged lepton
Yukawa coupling is diagonal in this model (for (¢) = (u,0,0)T).
Therefore, the mass matrix (9) fixes nine observables: the three
neutrino mass eigenvalues, three mixing angles, the so-called
Dirac CP phase and two Majorana phases. In [1,2] values of T that
gives rise to realistic neutrino masses and mixing angles are spec-
ified. This is a spectacular result. Three real input parameters, A,
Ret and Im, pin down three mass eigenvalues, three mixing an-
gles and three phases. That is, this setting appears to make six
nontrivial predictions, which agree amazingly well with observa-
tion (so far).

In more detail, the MNS matrix is the mismatch of the unitary
transformations that diagonalize the neutrino mass matrix and the
charged lepton Yukawa coupling matrix, respectively,

Ugmv U, = diag(my,my,m3) and

UL Ye YU, = diagy2.y2.y2). (10)
That is, Ul(\/(l)l)\ls =Ug, U‘f, and since in the original Lagrangean Y,
is diagonal, U](v?,)\]s = UT. The first term depends on nine physical
parameters,

m, = U} diag(ml,mz,mg)UI, where

Uy =Uy(612,6013,623,8, 91,92, ...) (11)
with 6;; denoting the three mixing angles, § the Dirac C’P phase, ¢;
the two Majorana phases, and the omission “...” stands for three

unphysical phases.

This parameter counting assumes that the Kdhler potential is
given by (8). However, the modular symmetries do not fix the form
of the Kahler potential. Rather, the full Kdhler potential includes
additional terms beyond the one given in (8),

K=ag (-it+it)~" (LL),
7
+ Y (-t +iT) (YLYIL),  +... . (12)
k=1

Here we have summed over all singlet contractions (specified by
subscript k), and «g can be absorbed in a redefinition of the fields.
Some of the relevant contractions are given by

=T

YI) (Y D)y }
{( )30 (Y D)0 Liena)
and the invariant contractions of the one-dimensional contractions
(Y L)q,1 1» with appropriate conjugates.! Specifically, the first three
terms in the expansion (12) are

. .= =T =T
AK = (it +i7T) (oq (YL)30 (Y )30y + a2 (Y L)30) (Y D)se

s [(YZ);U (Y L)z + (VZ);Z) Y L)gm] +.. ) .
(13)

Note that all the terms are on the same footing, there is a priori no
reason why, say, the g term should be referred to as the leading
term and the others as “corrections”.

Once we add the other fields of the model, even more terms
will have to be added. For instance, the above model [1,2] also
introduces a flavon ¢ (cf. Table 1). Therefore, we can add further
terms to the Kahler potential of the form

AK = Y Bi(-it+in)y M (pLlgl), (14)

1

where we sum over all Aj-invariant contractions.

The impacts of these additional terms can be significant. Sup-
pose one has derived predictions on the neutrino parameters based
on the Kdhler potential (8). The additional terms will modify the
Kdhler metric,

iy 32K
= — . (15)
oL dL;
This metric has to be diagonalized,
K, = Ul D*U;, (16)

where U; is unitary and D is diagonal and positive. Therefore, the
canonically normalized fields are

L=DU,L or equivalently L = UI D'T. (17)

After adding the «j-o contributions and transforming the fields
back to canonical normalization, we need to diagonalize

1 Notice that the conjugate of (Y L)/, [(Y L)y/]*, transforms as 1”.
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Fig. 1. Dependence of the mixing angles on the additional parameter o3 (cf. Equa-
tion (13)).

ul'p~'uim, UI D~ 'U, = diag(my, mz, m3),

Ul Ut YeYIUT D71 U = diag(y2. y2.y?).

(18a)
(18b)

This is to be compared with (10). We see that if D is proportional
to the unit matrix, there would be no effect, i.e. the original mixing
matrix Uy would still do the job of diagonalizing m, and thus the
predicted values for the neutrino mixing parameters based solely
on ¢ contribution remain valid. However, for the contributions
given in (12), D is generically not proportional to the unit matrix,
and consequently the predicted values for the mixing angles get
modified significantly. Our numerical analysis reveals that they are
of the order

k o
Aefj‘) = oy (1...10)°, (19)

and similarly for the CP phases. This is illustrated in Fig. 1 for k =
3. Analytic formulae that allow one to evaluate the impact of these
corrections have been derived in [10,11]. They confirm our result
as given in (19). Importantly, these corrections are in general much
larger than the corrections from RGE running and supersymmetry
breaking which have been worked out in [2].

Altogether we see that in models with modular flavor symme-
tries the specification of T and A is not sufficient to determine
the neutrino parameters. There exist many additional parameters,
and, as a consequence, the number of free parameters is generi-
cally larger than the number of predictions.

4. Discussion

The findings of the previous section should not be surprising.
The salient properties of the models with modular flavor symme-
tries rely on the holomorphicity of the superpotential. However,
the Kahler potential does not have these properties. Moreover,
these symmetries are nonlinearly realized.

How can one conceivably control the Kdhler potential better?
This will be possible if one derives the modular flavor symme-
tries from some more complete setting. As is well known, these
symmetries come from tori. Thus one expects that there will be
interpretations of these symmetries in models with extra dimen-
sions.

Most prominently, modular symmetries appear in string theory.
The existence of some non-Abelian symmetries has been already
noted in [12], and more recently studied in more detail in [13,
14]. In particular, the Zs orbifold, which also has (in the absence
of so-called discrete Wilson lines) a A(54) flavor symmetry [15],
has a T" modular flavor symmetry [14]. Given these results, it is
tempting to speculate that an A4 modular flavor symmetry could

originate from the T?2/Z, orbifold, where the four twisted string
states form a (3 + 1) reducible representation.

Note that in string theory, the notation is usually somewhat
different (cf. e.g. [16]). Instead of denoting the modulus 7 and de-
manding that its imaginary part transforms as a real scalar and its
real part as a pseudoscalar, many string theorists prefer to con-
sider T instead of T =iT. Then the real part transforms as scalar
and has often the interpretation of volume. The imaginary part is
sometimes referred to as T-axion. The transformation of T and the
matter fields under y € 'y then reads

aT —ib
T —_— 20
T T +d’ (20a)
9V > (cT +d)" pP(y) ", (20Db)

where the n; = —k; are the modular weights.

In contrast to the bottom-up models, in many string theory
compactifications the modular weights are not free parameters but
can be computed from other data of the models. They are used
to derive approximate expressions for the Kdhler potential. For
example, by considering string scattering amplitudes in heterotic
orbifold compactifications (although this result is more general;
see e.g. [17]) and the so-called large volume limit Re T > 1, it has
been found that the leading contribution to the Kahler potential
for the matter fields is given by [18]

K > Y Fy(MF (T (T+T)" g, (21)
4

where the modular weights nj are derived from the oscillator
quantum numbers and the twist of the fields ¢, and turn out
to be (mostly) nonpositive. F,; are arbitrary holomorphic func-
tions, building a non-degenerate matrix that fix the basis of the
field space. Although these functions are typically chosen as Fyj =
8¢j for all j and ¢, one may in principle also consider modular
forms of nontrivial modular weight ng, i Modular invariance of the
Kahler potential would then imply that n; must be replaced by
nj +ng,; in Equation (21). If we suppose that Fgj = 8,;Y(T) for
oW =L, the terms of the Kahler potential (12) with k # 0 are
recovered with no additional suppression. Note however that the
functions Fy; can be absorbed in field redefinitions at the expense
of altering the superpotential couplings.

It is known that the Kdhler potential (21) receives additional
contributions (see e.g. [19]). E.g. for string compactifications where
matter arises from bulk fields, the Kdhler potential can be ex-
pressed as K = —In(T + T — |¢|2), which yields (6) only in the
large volume limit. However, the best-fit point for phenomenology
in the model discussed (Re T = 1) violates this limit. It should also
be noted that in string compactifications the superpotential usually
transforms nontrivially, and has modular weight —1.

Furthermore, as is well known, string theory is in principle
very predictive. However, in concrete examples it is nontrivial to
make precise predictions. This is because string models leave us
typically with several moduli, whose potential is hard to explic-
itly compute and to minimize. Therefore it might be worthwhile
to derive modular flavor symmetries from less complex settings,
such as magnetized tori, where the background fluxes lead to chi-
ral fermions [20]. Such models seem to give rise to modular flavor
symmetries of the type discussed in this note [5]. These models
are dual to D-brane models [21], and the couplings there can be
mapped to couplings on orbifolds [22].

All these arguments suggest that more efforts need to go into
deriving the modular flavor symmetries from string theory, or
other higher-dimensional models. It is only then one might control
the Kdhler potential well enough to make controlled predictions.
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As a side remark, let us also comment on the terminology. In
some of the recent literature, the transformation

W(D) > W (D),
K(®, ®) > K(®, D)+ f(P)+ f(D),

(22a)
(22b)

where f is a holomorphic function, is referred to as “Kahler trans-
formation”. Since the Lagrangean of a supersymmetric theory is
given by

&L = /d“e K(®, ) + [/dze’%/(@—i—h.c} , (23)

we note that it is invariant under (22) just because

/d“e f(®) = /d“e]f@) =0. (24)

So (22) is nothing but the statement that one can shift the Kahler
potential of a global supersymmetric theory by the real part of a
holomorphic function without changing a Lagrangean. This is not
a Kahler true transformation. Kdhler transformations are formally
written as [23]

W (D) > e TPy (o), (25a)
K(®,®) > K(®, @)+ f(®)+ f(D). (25b)
They have the virtue of leaving the scalar potential
Youcrn = X [KT (D) (D57) =310/ 12) (26)

invariant. The Kahler transformation (25) does reduce to (22) for
dimensionful fields & at zeroth order in ®/A because of the
suppression scale A in the exponent of e~/. However, for dimen-
sionless fields, such as ® =T (or 7) (cf. [1, footnote 3]), no such
suppression appears and thus only (25) is a proper Kdhler trans-
formation in this context. As mentioned above, it does not make
sense to expand in T/A, i.e. the point in field space at which |T|
is small is not a point one may expand around. This observation
becomes relevant in constructions emerging from string theory,
where the Kdhler transformations (25), and not (22), are symme-
tries of the theory.

5. Summary

Motivated by the striking observation that modular flavor sym-
metries allow one, at some level, to successfully make several non-
trivial predictions [1,2], we have studied these models in some
more detail. We find that there are additional parameters which
have not been taken into account in the literature so far. The ex-
istence of these parameters renders these models less predictive
than previously thought.

Let us emphasize, though, that despite the existence of addi-
tional parameters, the modular flavor symmetries continue to be
highly interesting approach to the flavor problem. It will be instru-
mental to derive them from a more complete setting, in which one
may hope to control the Kihler potential to a greater degree.
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