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Models with modular flavor symmetries have been thought to be highly predictive. We point out that 
these predictions are subject to corrections from non–holomorphic terms in the Lagrangean. Specifically, 
in the models discussed in the literature, the Kähler potential is not fixed by the symmetries, for instance. 
The most general Kähler potential consistent with the symmetries of the model contains additional terms 
with additional parameters, which reduce the predictive power of these constructions. We also comment 
on potential ways of how one may conceivably retain the predictivity.
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1. Introduction

Recently a rather exciting observation has been made [1,2]: 
nine neutrino parameters can be predicted from only three input 
parameters. The crucial ingredients of the corresponding model are 
modular flavor symmetries. The point of this paper is to show that 
these models actually have additional parameters which have not 
been taken into account in the models in the recent literature. We 
also comment on possible ways to retain control over these pa-
rameters.

To understand the main point of our paper, recall that the pre-
dictions of these models come from the fact that the superpotential
is fixed by the modular transformations. However, the superpoten-
tial only contains the physical parameters if the fields appearing 
there are “physical”, i.e. canonically normalized. As we shall see, 
the Kähler potential, which contains the information about the 
fields, is not at all fixed by the symmetries and transformation 
properties of the models. This is why the modular transformations 
alone do not allow one to make such remarkable predictions, as 
we shall discuss in more detail in what follows.

2. Modular flavor symmetries

Modular flavor symmetries have so far only been discussed in 
the supersymmetric context. There, they are modular transforma-

tions which act on a so–called modulus τ and “matter” superfields 
ϕ( j) according to [1]
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τ �→
a τ + b

c τ + d
=: γ τ , (1a)

φ( j) �→ (c τ + d)−k j ρ( j)(γ )φ( j) , (1b)

where a, b, c and d are the Ŵ ≡ SL(2, Z) parameters satisfying, 
by definition, a d − b c = 1 and ρ( j) is the representation matrix 
of some quotient group ŴN = Ŵ/Ŵ(N). −k j denotes the so–called 
modular weight. The collection of chiral superfields will be de-
noted � = (τ , φ(1), . . . , φ(F )).

The modular group Ŵ = Ŵ/Z2 is generated by

S =

(
0 1

−1 0

)
and T =

(
1 1

0 1

)
, (2)

which correspond to the transformations

τ
S

�−−→ −
1

τ
and τ

T
�−−→ τ + 1 . (3)

These generators satisfy

S2 = (S T )3 = 1 . (4)

It is straightforward to verify that

(−iτ + i τ̄ )−k (1)
�−−→ ((c τ + d) (c τ̄ + d))k (−iτ + i τ̄ )−k . (5)

Therefore, the combination

(−iτ + i τ̄ )−k j

(
φ( j)∗φ( j)

)
1

(6)

is invariant under modular transformations. Here, the notation 
(· · · )1 indicates a contraction to a ŴN 1–plet, i.e. to an invariant 
under ŴN . However, as we shall see below, this is not the only 
invariant.
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Table 1

Model 1 of [1]. Ec
i , L, Hu and Hd are the superfields of the charged leptons, left–

handed douplets, up–type Higgs and down–type Higgs, respectively.
(Ec

1, E
c
2, E

c
3) N L Hd Hu ϕ

SU(2)L ×U(1)Y 11 10 2−1/2 2−1/2 21/2 10
Ŵ3 (1,1′′,1′) 3 3 1 1 3

k (kE1 ,kE2 ,kE3 ) kN kL kHd
kHu kϕ

3. Additional parameters from non–holomorphic terms

The fact that there are additional terms in the Kähler poten-
tial has been already noted in [1,2]. The existence of additional 
terms already follows from the observation that the predicted pa-
rameters run. Running of couplings in supersymmetric theories can 
be understood as corrections to the Kähler potential. On the other 
hand, the superpotential is protected by holomorphicity, which is 
reflected by the non–renormalization theorems. As we shall see, 
the most general Kähler potential consistent with the symmetries 
has numerous additional parameters.

We will base our discussion on Model 1 of [1], which has the 
finite quotient symmetry Ŵ3 ≃ A4 . However, the analogous state-
ments apply to the follow–up models in the literature such as 
[2–9]. The Higgs and lepton sector of the model is specified in 
Table 1.

As the author of [1] has pointed out, the charged fermion 
masses are obtained by adjusting three parameters. The nontrivial 
predictions of this model are on the neutrino parameters, which 
come from the Weinberg operator

Wν =
1



[(Hu · L) Y (Hu · L)]1 . (7)

Here, Y is a triplet of modular functions of weight 2, Y =

(Y1, Y2, Y3)
T . The Kähler potential of the charged leptons is taken 

to be

K L = (−iτ + i τ̄ )−1 L† L . (8)

Here the modular weights of the leptons are −1 (corresponding 
to kL = 1) and Hu has zero weight (kHu = 0). The neutrino mass 
matrix is then given by

mν =
v2u



⎛
⎝

2Y1(τ ) −Y3(τ ) −Y2(τ )

−Y3(τ ) 2Y2(τ ) −Y1(τ )

−Y2(τ ) −Y1(τ ) 2Y3(τ )

⎞
⎠ . (9)

The crucial point is that this matrix has only three free real pa-
rameters: 
, Reτ and Imτ . On the other hand, the charged lepton 
Yukawa coupling is diagonal in this model (for 〈ϕ〉 = (u, 0, 0)T ). 
Therefore, the mass matrix (9) fixes nine observables: the three 
neutrino mass eigenvalues, three mixing angles, the so–called 
Dirac CP phase and two Majorana phases. In [1,2] values of τ that 
gives rise to realistic neutrino masses and mixing angles are spec-
ified. This is a spectacular result. Three real input parameters, 
, 
Reτ and Imτ , pin down three mass eigenvalues, three mixing an-
gles and three phases. That is, this setting appears to make six 
nontrivial predictions, which agree amazingly well with observa-
tion (so far).

In more detail, the MNS matrix is the mismatch of the unitary 
transformations that diagonalize the neutrino mass matrix and the 
charged lepton Yukawa coupling matrix, respectively,

U T
ν mν Uν = diag(m1,m2,m3) and

U
†
eL Ye Y

†
e UeL = diag(y2e , y

2
μ, y2τ ) . (10)

That is, U (0)
MNS = UeL U

T
ν , and since in the original Lagrangean Ye

is diagonal, U (0)
MNS = U T

ν . The first term depends on nine physical 
parameters,

mν = U∗
ν diag(m1,m2,m3)U

†
ν , where

Uν = Uν(θ12, θ13, θ23, δ,ϕ1,ϕ2, . . . ) (11)

with θi j denoting the three mixing angles, δ the Dirac CP phase, ϕi

the two Majorana phases, and the omission “. . . ” stands for three 
unphysical phases.

This parameter counting assumes that the Kähler potential is 
given by (8). However, the modular symmetries do not fix the form 
of the Kähler potential. Rather, the full Kähler potential includes 
additional terms beyond the one given in (8),

K = α0 (−iτ + i τ̄ )−1
(
L L

)
1

+

7∑

k=1

αk (−iτ + i τ̄ )
(
Y L Y L

)
1, k

+ . . . . (12)

Here we have summed over all singlet contractions (specified by 
subscript k), and α0 can be absorbed in a redefinition of the fields. 
Some of the relevant contractions are given by
{(

Y L
)T
3( j) (Y L)3(i)

}
i, j∈{1,2}

and the invariant contractions of the one–dimensional contractions 
(Y L)1,1′,1′′ with appropriate conjugates.1 Specifically, the first three 
terms in the expansion (12) are

�K = (−iτ + i τ̄ )

(
α1

(
Y L

)T
3(1) (Y L)3(1) + α2

(
Y L

)T
3(2) (Y L)3(2)

+ α3

[(
Y L

)T
3(1) (Y L)3(2) +

(
Y L

)T
3(2) (Y L)3(1)

]
+ . . .

)
.

(13)

Note that all the terms are on the same footing, there is a priori no 
reason why, say, the α0 term should be referred to as the leading 
term and the others as “corrections”.

Once we add the other fields of the model, even more terms 
will have to be added. For instance, the above model [1,2] also 
introduces a flavon ϕ (cf. Table 1). Therefore, we can add further 
terms to the Kähler potential of the form

�K =
∑

i

βi (−iτ + i τ̄ )−kL−kϕ
(
ϕ L ϕ L

)
1, i

, (14)

where we sum over all A4–invariant contractions.
The impacts of these additional terms can be significant. Sup-

pose one has derived predictions on the neutrino parameters based 
on the Kähler potential (8). The additional terms will modify the 
Kähler metric,

K
ij̄
L =

∂2K

∂Li ∂Lj̄

. (15)

This metric has to be diagonalized,

K L = U
†
L D

2 U L , (16)

where U L is unitary and D is diagonal and positive. Therefore, the 
canonically normalized fields are

L̂ = D U L L or equivalently L = U
†
L D

−1 L̂ . (17)

After adding the αi>0 contributions and transforming the fields 
back to canonical normalization, we need to diagonalize

1 Notice that the conjugate of (Y L)1′ , [(Y L)1′ ]∗ , transforms as 1′′ .
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Fig. 1. Dependence of the mixing angles on the additional parameter α3 (cf. Equa-
tion (13)).

Û T
ν D−1 U∗

L mν U
†
L D

−1 Ûν = diag(m1,m2,m3) , (18a)

Û
†
e D

−1 U∗
L Ye Y

†
e U

T
L D−1 Ûe = diag(y2e , y

2
μ, y2τ ) . (18b)

This is to be compared with (10). We see that if D is proportional 
to the unit matrix, there would be no effect, i.e. the original mixing 
matrix UL would still do the job of diagonalizing mν and thus the 
predicted values for the neutrino mixing parameters based solely 
on α0 contribution remain valid. However, for the contributions 
given in (12), D is generically not proportional to the unit matrix, 
and consequently the predicted values for the mixing angles get 
modified significantly. Our numerical analysis reveals that they are 
of the order

�θ
(k)
i j = αk · (1 . . .10)◦ , (19)

and similarly for the CP phases. This is illustrated in Fig. 1 for k =
3. Analytic formulae that allow one to evaluate the impact of these 
corrections have been derived in [10,11]. They confirm our result 
as given in (19). Importantly, these corrections are in general much 
larger than the corrections from RGE running and supersymmetry 
breaking which have been worked out in [2].

Altogether we see that in models with modular flavor symme-

tries the specification of τ and 
 is not sufficient to determine 
the neutrino parameters. There exist many additional parameters, 
and, as a consequence, the number of free parameters is generi-
cally larger than the number of predictions.

4. Discussion

The findings of the previous section should not be surprising. 
The salient properties of the models with modular flavor symme-

tries rely on the holomorphicity of the superpotential. However, 
the Kähler potential does not have these properties. Moreover, 
these symmetries are nonlinearly realized.

How can one conceivably control the Kähler potential better? 
This will be possible if one derives the modular flavor symme-

tries from some more complete setting. As is well known, these 
symmetries come from tori. Thus one expects that there will be 
interpretations of these symmetries in models with extra dimen-

sions.

Most prominently, modular symmetries appear in string theory. 
The existence of some non–Abelian symmetries has been already 
noted in [12], and more recently studied in more detail in [13,

14]. In particular, the Z3 orbifold, which also has (in the absence 
of so–called discrete Wilson lines) a �(54) flavor symmetry [15], 
has a T′ modular flavor symmetry [14]. Given these results, it is 
tempting to speculate that an A4 modular flavor symmetry could 

originate from the T 2/Z2 orbifold, where the four twisted string 
states form a (3 + 1) reducible representation.

Note that in string theory, the notation is usually somewhat 
different (cf. e.g. [16]). Instead of denoting the modulus τ and de-
manding that its imaginary part transforms as a real scalar and its 
real part as a pseudoscalar, many string theorists prefer to con-
sider T instead of τ = i T . Then the real part transforms as scalar 
and has often the interpretation of volume. The imaginary part is 
sometimes referred to as T –axion. The transformation of T and the 
matter fields under γ ∈ ŴN then reads

T �→
a T − ib

i c T + d
, (20a)

ϕ( j) �→ (i c T + d)n j ρ( j)(γ )ϕ( j) , (20b)

where the n j = −k j are the modular weights.

In contrast to the bottom–up models, in many string theory 
compactifications the modular weights are not free parameters but 
can be computed from other data of the models. They are used 
to derive approximate expressions for the Kähler potential. For 
example, by considering string scattering amplitudes in heterotic 
orbifold compactifications (although this result is more general; 
see e.g. [17]) and the so–called large volume limit Re T ≫ 1, it has 
been found that the leading contribution to the Kähler potential 
for the matter fields is given by [18]

K ⊃
∑

ℓ

F ∗
iℓ(T )Fℓ j(T )

(
T + T

)n j ϕ(i)ϕ( j) , (21)

where the modular weights n j are derived from the oscillator 
quantum numbers and the twist of the fields ϕ( j) , and turn out 
to be (mostly) nonpositive. Fℓ j are arbitrary holomorphic func-
tions, building a non–degenerate matrix that fix the basis of the 
field space. Although these functions are typically chosen as Fℓ j =

δℓ j for all j and ℓ, one may in principle also consider modular 
forms of nontrivial modular weight nFℓ j

. Modular invariance of the 
Kähler potential would then imply that n j must be replaced by 
n j + nFℓ j

in Equation (21). If we suppose that Fℓ j = δℓ jY (T ) for 
ϕ( j) = L, the terms of the Kähler potential (12) with k �= 0 are 
recovered with no additional suppression. Note however that the 
functions Fℓ j can be absorbed in field redefinitions at the expense 
of altering the superpotential couplings.

It is known that the Kähler potential (21) receives additional 
contributions (see e.g. [19]). E.g. for string compactifications where 
matter arises from bulk fields, the Kähler potential can be ex-
pressed as K = − ln(T + T − |ϕ( j)|2), which yields (6) only in the 
large volume limit. However, the best–fit point for phenomenology 
in the model discussed (Re T ≈ 1) violates this limit. It should also 
be noted that in string compactifications the superpotential usually 
transforms nontrivially, and has modular weight −1.

Furthermore, as is well known, string theory is in principle 
very predictive. However, in concrete examples it is nontrivial to 
make precise predictions. This is because string models leave us 
typically with several moduli, whose potential is hard to explic-
itly compute and to minimize. Therefore it might be worthwhile 
to derive modular flavor symmetries from less complex settings, 
such as magnetized tori, where the background fluxes lead to chi-
ral fermions [20]. Such models seem to give rise to modular flavor 
symmetries of the type discussed in this note [5]. These models 
are dual to D–brane models [21], and the couplings there can be 
mapped to couplings on orbifolds [22].

All these arguments suggest that more efforts need to go into 
deriving the modular flavor symmetries from string theory, or 
other higher–dimensional models. It is only then one might control 
the Kähler potential well enough to make controlled predictions.
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As a side remark, let us also comment on the terminology. In 
some of the recent literature, the transformation

W (�) �→ W (�) , (22a)

K (�,�) �→ K (�,�) + f (�) + f̄ (�) , (22b)

where f is a holomorphic function, is referred to as “Kähler trans-
formation”. Since the Lagrangean of a supersymmetric theory is 
given by

L =

∫
d4θ K (�,�) +

[∫
d2θ W (�) + h.c.

]
, (23)

we note that it is invariant under (22) just because
∫

d4θ f (�) =

∫
d4θ f̄ (�) = 0 . (24)

So (22) is nothing but the statement that one can shift the Kähler 
potential of a global supersymmetric theory by the real part of a 
holomorphic function without changing a Lagrangean. This is not 
a Kähler true transformation. Kähler transformations are formally 
written as [23]

W (�) �→ e− f (�)
W (�) , (25a)

K (�,�) �→ K (�,�) + f (�) + f̄ (�) . (25b)

They have the virtue of leaving the scalar potential

VSUGRA = eK
[
K ij̄ (D iW )

(
D j̄W

)
− 3|W |2

]
(26)

invariant. The Kähler transformation (25) does reduce to (22) for 
dimensionful fields � at zeroth order in �/
 because of the 
suppression scale 
 in the exponent of e− f . However, for dimen-

sionless fields, such as � = T (or τ ) (cf. [1, footnote 3]), no such 
suppression appears and thus only (25) is a proper Kähler trans-
formation in this context. As mentioned above, it does not make 
sense to expand in T /
, i.e. the point in field space at which |T |

is small is not a point one may expand around. This observation 
becomes relevant in constructions emerging from string theory, 
where the Kähler transformations (25), and not (22), are symme-

tries of the theory.

5. Summary

Motivated by the striking observation that modular flavor sym-

metries allow one, at some level, to successfully make several non-
trivial predictions [1,2], we have studied these models in some 
more detail. We find that there are additional parameters which 
have not been taken into account in the literature so far. The ex-
istence of these parameters renders these models less predictive 
than previously thought.

Let us emphasize, though, that despite the existence of addi-
tional parameters, the modular flavor symmetries continue to be 
highly interesting approach to the flavor problem. It will be instru-
mental to derive them from a more complete setting, in which one 
may hope to control the Kähler potential to a greater degree.
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