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ABSTRACT

Most binaries are undetected. Astrometric reductions of a system using the assumption that the
object moves like a single point mass can be biased by unresolved binary stars. The discrepancy
between the centre of mass of the system (which moves like a point mass) and the centre of
light (which is what we observe) introduces additional motion. We explore the extent to which
binary systems affect single object model fit to astrometric data. This tells us how observations
are diluted by binaries and which systems cause the largest discrepancies — but it also allows
us to make inferences about the binarity of populations based on observed astrometric error.
By examining a sample of mock observations, we show that binaries with periods close to 1
yr can mimic parallax and thus bias distance measurements, while long-period binaries can
introduce significant apparent proper motion. While these changes can soak up some of the
error introduced by the binary, the total deviation from the best-fitting model can be translated
into a lower limit on the on-sky separation of the pair. Throughout, we link these predictions
to data from the Gaia satellite, while leaving the conclusions generalizable to other surveys.

Key words: methods: analytical —astrometry — parallaxes —proper motions —binaries: gen-

eral.

1 INTRODUCTION

Around half of the solar-type stars are in binary systems (Duquen-
noy & Mayor 1991; Raghavan et al. 2010). Among more massive
stars, the fraction is higher still (Sana et al. 2012; Duchéne &
Kraus 2013). The number and properties of binaries tell us about
the conditions needed for star formation (Shu, Adams & Lizano
1987; Bate, Bonnell & Price 1995; Bonnell, Bate & Zinnecker
1998), the properties of the discs in which they form, and their
motions both in the dense stellar nursery and during their long
life histories. Binarity can affect the formation of planets and
the eventual fate of a star. Some of the most exotic objects in
the Galaxy result from the evolution of binary systems — includ-
ing cataclysmic variables, hot Jupiters, and type la supernova
(Whelan & Iben 1973; Tutukov & Yungelson 1981; Webbink
1984). It is even possible for a bright binary star companion to
tell us of the presence of a massive dark body, such as a cool
white dwarf or a stellar mass black hole (Andrews, Breivik &
Chatterjee 2019).

However, the number of known binaries is tiny compared to
the total number of catalogued stars. By many metrics, a typical
binary star appears indistinguishable from a single object. This
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means that most binaries on sky are still undetected, and the
information that can be gleaned from them still ready to be reaped.
However, it also means that, though they may not be detectable, any
observation we make assuming all stars are singular will necessarily
be contaminated by binaries.

Currently, we know of around a hundred thousand visual binaries
(Hartman & Lépine 2020), in which both objects can be separately
resolved. Eclipsing binaries, in which the system is by chance
aligned such that one star partially occults the other, are numbered
in the thousands (PrSa et al. 2011; Kirk et al. 2016). Binary stars can
also be spotted directly from spectra if the two components have
markedly different spectra that cannot be easily fitted by a single
star model (El-Badry et al. 2018). Accurate distance measurements
can also allow us to identify overbright systems that can most
easily be explained by a multiple-star system (Widmark, Leistedt
& Hogg 2018). Finally, spectroscopic binaries, whose motion can
be seen by measuring the shift in the radial velocities over an orbit,
are growing in number, with many thousands now known (Price-
Whelan et al. 2020). These probe close binary pairs (generally with
periods of 1 yr or less), for which multiple periods can be observed
and which cause measurably large radial velocity shifts. Each of
these methods is sensitive to different types of system, depending
on distance, period, or stellar parameters — but in many systems
multiple methods may be applicable helping to further constrain the
properties.
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Instruments like Hipparcos (Perryman et al. 1997) and Gaia
(Gaia Collaboration 2016) measure the position of stars on sky to
very high accuracy and enable the discovery of astrometric binaries.
These show significant binary motion on sky, on top of the motion
of the centre of mass (c.0.m.), and are becoming detectable as
the noise floor of astrometric observations reaches milliarcseconds
(mas) precision (Gaia Collaboration 2018). Long-period systems
will cause an extra component of motion of the c.0.m., changing
slightly over time, termed a proper motion anomaly (Kervella et al.
2019), which is sensitive to relatively long-period binaries (around
10 yr or more).

In this paper, we focus on another way in which binarity can
impinge on astrometric measurements: as excess error on a single-
body astrometric fit. For systems with periods less than ~10 yr,
a significant (=1/2) number of orbits can be completed over the
observing period of a single instrument. Thus, we expect the
astrometric motion of the c.o.m. to be well captured, but the
binary motion to cause excess noise, which could potentially be
harvested as inferred properties of the stars. By examining the
analytic deviations in an ideal case (Section 2), we can make
predictions which we then compare to a fuller numerical model
(Section 3) and mock observations (Section 4). We can then gain
insight into when the analytic treatment is accurate, and for which
types of systems we expect a significant deviation. Finally, in
Section 5, we discuss the impact of these effects on observable
properties, both as an identifier of binary systems and a nuisance
signal.

This analysis is heavily motivated by the Gaia survey, a space-
based telescope measuring the position and velocities of millions of
stars at a precision of a few mas over a period of years. However,
most of the behaviour is general, and could be applied to surveys
before and after Gaia. Thus, we will attempt to remain general,
and invoke the properties of the Gaia survey only when fiducial
numerical values are needed to further explore the results.

2 ANALYTIC DEVIATIONS

In the limit that the period of a binary is < the observing time
of a survey, we can derive an accurate analytic description of the
magnitude of on-sky deviation between the movement of the centre
of light (c.0.1.) compared to the c.o.m.

2.1 Offset between the centre of mass and of light

Let us start with a binary system, in which we label the bodies A
and B. We assume that A is the more luminous of the two. Thus,
we can remap the brightnesses of the two objects on to an absolute
luminosity and a ratio such that L = L and / = Lg/L,. The total
luminosity is Ly + Lg = L(1 + /) with [ < 1. We can define the
mass similarly, with M = M, and ¢ = Mg/M 4, which can be less
than or greater than one. For a value significantly greater than one,
the system can be described in the simpler framework of a massive
dark companion (Shahaf et al. 2019).

When we do not spatially resolve a binary or — to be more precise
— we cannot separate the point spread function (PSF) of the two
sources, we see the system at the position of its c.0.l. However, the
dynamics of the system govern the motion of the c.o.m. and thus if
these two are offset, the c.o.l. will orbit around the c.0.m. causing
the system to appear to be moving non-inertially.

If the total distance between the two sources is d, then the distance
from A to the c.o.m. is dg/(1 + g) while the distance to the c.o0.l. is
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dli/(1 4+ 1).! Thus, if 8d is the physical distance between the two, the

fraction of the distance between the c.o.m. and the c.o.l. is
8d —1

P Al

=TT oD (1)
d+gd+1)

2.2 Two-body orbits

Assuming Keplerian potentials and no external forces, the orbit
follows the usual parametric form. Using the eccentric anomaly 7,
the evolution of the separation d with time 7 is
P .
d =a(l —ecosn), t = Z—(n—esmn). 2)
b4

The orbital phase ¢ satisfies

cosn—e /1 —e%sin
cos¢p = cosh—e sing = 777. 3)
1 —ecosny 1 —ecosn

The semimajor axis a and period P are

qgGM? P ad
a=— , — = C))
2E 27 (1+q)GM

and thus specifying M and g and either of a or T is sufficient to
calculate the other. The eccentricity is

2

e=1- 1# Lf. 3)
q*> GM3a

Here E(< 0) and L are the total energy and angular momentum of the

two bodies, respectively, and are constant over the orbit. We cannot

solve equation (2) directly for (f), though approximate solutions

are possible (Penoyre & Sandford 2019).

2.3 On-sky projection

It will be useful to work in spherical coordinates (r, 6, ¢), where 0
is the polar angle ranging from O to  and ¢ is the azimuthal angle
ranging from O to 2. We are free to set the orientation and thus
align it with the phase of the binary at periapse (thus, making ¢
both the orbital phase and the azimuthal coordinate) and the origin
is at the c.o.m. of the binary.

The two components of the binary lie in the +d directions, where

cos ¢
d= [ sing (6)
0

in Cartesian coordinates.

We can also define the position of an observer in this frame by
two angles 6, (equivalent to inclination, i) and ¢, such that the
vector pointing towards the observer along the line of sight is

cos ¢, sin 6,
1= | sing,sin6, |. 7
cos 6,

Fig. 1 is a sketch of the system and the coordinates used, which we
must transform to an on-sky projection and eventually to a motion
in a specific coordinate frame (e.g. ecliptic longitude and latitude
or RA and Dec).

IThis is derived and explored in more detail in Appendix A.
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Figure 1. Sketch of the coordinate systems used to describe the motion
of the binary and the centre of mass. Both views are shown as they would
appear on sky (if the system could be resolved). Upper panel: Binary motion
around the centre of mass (at the origin) as described in (x, y, z) coordinates
with the orbit confined to the (x, y) plane and periapse of the brighter source
on the x-axis. The azimuthal viewing angle ¢, is shown, while the polar
viewing angle 6, cannot be, as it is the angle between the vectors Z and
i. The orbital phase of the binary is given by ¢, and the phase relative to
the viewing angle is ¢, = ¢ — ¢, (if shown in this diagram it would be
almost 27r). The centre of light will sit on the line between the two stars,
at a constant fraction of the distance. To convert into on-sky motion, we
project along the i, _i i directions that lie in, and perpendicular to, the plane
of the page. Bottom panel: The motion of the centre of mass of the system
follows a straight line proper motion across the sky, with added motion
caused by parallax (the change of a nearby object’s position compared to
the background due to Earth’s orbit around the Sun). The final coordinate
conversion is from on-sky coordinates with arbitrary direction specified by
w to those which line up with our reference coordinate system (e.g. ecliptic
longitude and latitude or RA and Dec).

2.4 Deviations for a circular binary orbit

In the case of a circular orbit, the formulae thus presented are
sufficient to describe the deviations caused by the binary. The
magnitude of the projected binary separation is

Is| =diAd] =d\/1—sin26,(1 — sin? @), )
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where ¢, = ¢ — ¢, is the azimuthal angle between the orbital phase
and the line-of-sight vector.

Let € be the 2D deviations of the c.0.l. from c.0o.m. in on-sky
coordinates — where we will express this here as an angle by
multiplying through by the parallax of the object @ (this assumes
that a is expressed in AU and thus € has the same units as @ ).
The physical distance, projected perpendicular to the line of sight,
between the c.o.m. and c.o.l. is thus

le] = Aw|s|

—1 1—¢?
_ _@ala —1l 1 —sin26,(1 —sintgy).  (9)
A4+g)1+1)1+ecos¢
Assuming that many periods of the binary are observed, the inferred
astrometric scatter of a single-body fit is equal to

86 = V/{le — (€)) = V/(lel>) — (&), 10

where () denotes the time average. If we assume that a sufficient
number of orbits occur over the observing period, we can take this
average to be over a single complete orbit. For the circular case (€)
is zero, i.e. the average position of the object is at the foci, and thus

walg — 1| sin2 0,
80cire = V {l€ %)= -
He) d+d+D) 2

For non-circular orbits, (€) is not in general zero and thus we must
express the position on sky fully to calculate §.

an

2.5 Binary motion across the sky plane

As illustrated in Fig. 1, it is natural to define two other unit vectors
that capture the projection on the plane perpendicular to I (and thus
describe the position on sky). These vectors can be taken as

1 1 — cos? ¢, sin® 6,
i= — sin ¢, cos ¢, sin 6, |, (12)

M — sin? 2 .
1 = sin®6, cos* ¢y \ _ o5, siné, cosb,

which projects on to the x-axis and thus appears to pass through the
orbital periapse and apoapse and

. 1 0
i= cos b, , (13)

V1 —sin?0,cos? ¢, \ _gin b, sin6,

which completes the orthonormal set. The choice of these two
directions is arbitrary (at least until we define the orientation of the
system on the sky), but provides an easily interpretable coordinate
system.

In these coordinates, the c.o.l. at time 7 is at position

Aa(l — e?) cos ¢ — cos @, cos ¢, sin’ 6,

i=AG-d) =
1 4+ ecos¢ \/m
. s Aa(l — €?) sin ¢ cos 6,
J=A0-d)= . ’
14+ ecos¢ \/m
I Ad-ay= 2= ino (14)
= -d) = ———% cos g, sin 0,
1+ ecos¢ ¢

where ¢, = ¢ — ¢, is the azimuthal angle between the current
position and the line of sight and d is specified by equations (2) and
(6).

Thus, at any given time, the full on-sky deviation from the c.o.l.
to c.o.m. is given by

i
= . 1
] w(j) (15)
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Taking the time average of this, we find

(6) __M1/l_cogz¢ sin2 6 <1> (16)
20+ +D) A"
and thus the full expression for 40 given any eccentricity is
walqg — | \/1 sin2@, 3+ sin?6,(cos? ¢, — 2) 5
— — — e2.
d+pd+D) 2 4

a7

In the circular limit, this agrees with the expression in equation (11)
as expected. For orbits approaching radial, we find
walq — |

_ 78 /1 —cos2¢,sin24,.
20+ +1) 1 — cos? ¢, sin? 6 (18)

Inspection of equation (17) shows that eccentricity always decreases
6.

In Appendix B, we derive a comprehensive, but significantly
more complex, expression for the full behaviour.

) grad =

2.6 Binary motion as astrometric error

If we do not resolve a binary and fit it as a single source, this on-sky
motion of the c.o.1. behaves as a source of astrometric error in two
ways.

First, it may change the inferred astrometric parameters. Sig-
nificant motion due to a binary could be interpreted as a change
in the motion of a single point source. Long-period binaries will
have a roughly constant offset from the c.0.m. Intermediate-period
systems, which complete a significant fraction of one orbit over the
observing time, can mimic significant proper motion. We investigate
this in detail for our numerical models in Section 3. Secondly, the
motion of systems with periods close to 1 yr may mimic parallactic
motion, and thus bias our estimate of the distance. Thirdly, it may
increase the observed noise. For systems for which the astrometric
fit to the c.o.l. motion well matches the c.o.m. motion, any on-
sky deviations appear as additional noise. Thus, systems with
anomalously high inferred noise may be caused by binaries — and
conversely high observed noise can be translated to a prediction of
binary properties.

Apparent motion of a single star on the sky, though it has five
free parameters, is highly constrained — consisting of straight line
motion across the sky superimposed on the apparent motion of
nearby sources due to Earth’s orbit around the Sun. The form of the
latter is fixed by the source position on sky, with the parallax only
scaling the magnitude of the effect. Thus, it is hard, though far from
impossible (especially in huge data sets such as the Gaia survey), to
convincingly mimic astrometric motion with short-period binaries.
Thus, binary motion will mostly contribute to increased error in
these cases.

Any observation also has some intrinsic astrometric error, o,y
(which is in part a function of the source, but we shall take as
constant for a given instrument). When we fit an astrometric model
on to a single source, we can construct the statistic

5 gb:s ((aobs - Olmodel)z + (ﬂObS — ﬁmodel)z) .

X = 3 19)
Oast
Here o and B are the on-sky angular coordinates and Ny is the
number of observations of the source. For a single star, we would
expect this to be close in value to ~Nys — 5, where the five
corresponds to the degrees of freedom of the astrometric fit.
When we add the induced motion of a binary, we expect the x? to

increase by Xpinary, = 86°/0%, from which we can make a prediction
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of the Unit Weight Error (UWE)

2 2
Xtotal 56
UWE jeq =/ —— =~/ 1 — 20
pred \/Nobs _5 \/ + (Uast) (20)

(ignoring cross-terms). This is a parameter recorded by the Gaia
survey, in the form of Renormalized Unit Weight Error (RUWE)
rescaling to account for systematic trends in the measurements? and
thus can be used to explore the distribution of binaries across the
huge Gaia DR2 catalogue (Belokurov et al. 2020).

3 NUMERICAL DEVIATIONS

For systems with longer periods, or those inhabiting certain
(un)fortunate parts of parameter space, the presence of a binary
companion biases the astrometric fit, such that the inferred parallax,
position, and proper motion are inaccurate. These cases defy
easy analytical exploration, but can be modelled numerically. By
fitting single-body astrometric solutions to their more complex on-
sky motion, we can compare the accuracy and precision of our
astrometric fits as a function of the properties of the binary.

3.1 Path of the c.o.m.

Given the above tools, we map out the path across the sky of the c.o0.1.
of a binary system — combining the on-sky motion of the c.0.m. and
the c.o.l. The former moves as a single body, including the effects
of parallax, and can travel a non-negligible distance on sky over the
observing period. The latter is a correction to this motion capturing
the Keplerian binary orbit, and can be assumed to be sufficiently
small such that the orbit is constant over the observing period (i.e.
the parameters of the orbit, including viewing angles, are constant)
and can be modelled as a linear correction to the c.o.m. position.

The single body motion depends on the orbit of the Earth, and
the position and proper motion. The most natural coordinate system
to use is the ecliptic, as it is the Earth’s motion around the Sun
that traces the parallactic ellipse. Letting ¢ be the phase of Earth’s
orbit and eg the eccentricity, we can express the full single-body
astrometric motion as

Aa(t) = Aag + (t —tg — tp) e

S (cos ¥ + eg(sin ¢ sin T — cos ¢)) 21)
0s Bi
and
AB(t) = ABo + (t —to — th)up
— o sin B;(sin ¥ 4 eg(cos ¥ sin T + sin ¢)), (22)
where
ty = @(COS Y — cos P + eg(sin T sin iy — sin 7y cos ¥y)),

(23)

2 (t—tp)

V(O =¢e(—tandt = —¢
of any pericentre passage of the Earth.? These results are derived in
detail in Appendix C.

, where Tg is 1 yr and 1, is the time

2See the Gaia consortium’s technical note GATA-C3-TN-LU-LL-124-01.
3For example, in relevance to Gaia we might use tp = 2456662.00 BJID,
shortly before the beginning of astrometric observations in Gaia DR2, fy =
2456863.94 BID.
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3.2 Path of the c.o.l.

As the binary separations are always small (compared to angles
spanning the whole sky), the addition of the binary component is
approximately linear.

Section 2.5 has mapped out the contribution due to the binary
orbit, but one final transformation must be made to align the
orientation of the binary system with our on-sky coordinates of
choice. We could imagine taking the system shown in Fig. 1 and
putting a pin through the origin, along the line of sight, and then
rotating the page beneath that pin. This introduces one last viewing
angle, the orientation of the system relative to our reference axes,
w,. We can also at this point move from coordinates describing
physical distances to movements on sky by multiplying by the
parallax, @, (as a is given in AU) to give the deviations of the c.o.l.
in the azimuthal and polar coordinates of our chosen astronomical
system (&, Bp):

ap =w(icosw, + jsinw,) and B, = w(cosw,j — sinw,i).
(24)

Thus, adding equations (21), (22), and (24), we can describe the
motion of the c.0.l. as observed by a survey such as Gaia. Examples
of such motions are shown for eight mock observations in Fig. 2, as
detailed in the next section.

4 MOCK OBSERVATIONS

We can generate mock observations by calculating the position of
the c.0.l. at a series of times. For significant binary separations, this
will deviate from the single-body orbit; thus, it is of interest to ask
how well we might fit a single-body orbit to the observed path and
how far our fit may be from the true parameters.

As an exploratory exercise, we have done this for two million
systems, for which we have chosen the parameters of the binary
based on the distributions listed in Table 1. For simplicity, we
work in coordinates aligned with the ecliptic plane, though as long
as we are consistent we are free to use any angular coordinate
system.

The distributions of these parameters have been chosen to be
both qualitatively representative of real data and relatively simple.
In some places, a balance has been struck between the two. For
example, the distributions of @, 1o, and g are taken from simple
fits to one million random Gaia sources (with parallax over error
greater than 15), while the angular positions are chosen to be
uniform on sky — whereas in reality stars are much more clustered
in the plane of the Milky Way and towards the Galactic Centre. As
the equations describing on-sky motion are approximately linear
in parallax and proper motion, the actual value should have little
impact on the offset (the value of interest).

The masses of the brightest star are taken from an initial mass
function proportional to M~23, limited to stars above 0.5Mg (a
range in which most IMFs converge). We initially experimented
with an empirical period distribution of binaries from Ragha-
van et al. (2010), though this peaks at a period of ~100 yr,
at which binary motion is negligible within Gaia’s temporal
baseline (and also orbital separation is large enough that the
sources may be independently resolvable depending on parallax).
Instead, we limited our period to 10 yr (effectively restricting the
binary separation to a few mas for our parallax distribution), and
chose a distribution that favours short periods and resembles the
Raghavan et al. (2010) distribution if curtailed at 10 yr, a range
containing around 20 per cent of all binaries. For simplicity, we
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use a uniform distribution of luminosity ratios. In general, we
expect luminosity and mass ratio to correlate so, to (very loosely)
represent this, we choose a value of ¢ log-normally distributed
around /. Thus, g will generally be close in value to /, but also
tend to be slightly larger (luminosity normally scales strongly
with mass) and have a wide spread that can encompass dark-
massive companions and low-mass bright giants. The eccentricity
was chosen to produce more circular orbits than highly eccentric
ones. Finally, #y, 6,, ¢,, and w, are all parameters we expect to be
isotropic.

The sample of generated systems is intended to represent actual
systems only in a loose sense — the focus being on spanning the
parameter space with a sensible distribution, not on recovering
detailed statistics of actual binaries. If we were really inclined
to scale up the proportion of binaries of these properties to the
whole sample of observed stars in a survey such as Gaia, it
would be contingent on estimating the fraction of all stars that
are unresolved binaries with periods less than 10 yr. We expect
other significant sources of error to be the choice of distributions of
[ and g (which are chosen for numerical convenience not based on
physics or observations), which may cause over/underabundances
of some types of systems but are unlikely to change bulk
properties.

For each system, we calculate the position of the c.o.l. at
100 times, randomly spaced over a 22 month period (a rough
approximation to the Gaia survey) — with an added astrometric
error of o, = 0.2 mas, distributed isotropically on sky. To simulate
observations, we fit single-body astrometric solutions to the sample
of generated mock observations, and via linear least squares, we
find best fits and errors on Aag, ABg, fia, tg, and  (details of
these fits are given in Appendix D).

4.1 Results from mock observations

Fig. 2 shows a sample of eight astrometric mock observations,
including their parameters. The first five have binary periods
less than the observing time of 22 months, while the last three
have longer periods. All systems shown have significant binary
motions, and many show substantial deviation from their c.o.m.
motion. However, not all of them have large UWE, as variation,
particularly in proper motion, can mimic the effect of the binary
at long periods, and at short periods binary deviations can act as
extra astrometric noise and just increase variance in the astrometric
fit.

Some binary motion is not easily approximated by parallactic
motion — in the first example in Fig. 2, a binary period of just under
half a year gives a smooth well-behaved curve, but one impossible
to fit well with a single-body astrometric fit. The third example
is one of a small but significant minority in which binary motion
at a period close to 1 yr enlarges (or in other cases contracts) the
parallax ellipse and changes the inferred parallax significantly. At
the same time, some binaries with long periods and large on-sky
deviations are fitted very well by the model, which translates their
on-sky motion to erroneous proper motion.

4.2 Distribution of binary deviations

The parameter space over which we have sampled binaries is
large (12 dimensional). For real observations, it could feasibly
be even larger, including information about scanning laws and
variable errors. Thus, the only conclusions we can draw from
the mock data are about the large-scale distributions, particularly
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about the magnitude of departures from the true astrometric so-
lution for the c.o.m. motion and how this depends on binary
parameters.

In Fig. 3, we compare the period of binaries to the shift
in inferred parallax, Aw = @ — @y, total proper motion,
ALl = /(e — Mare)* + (g — pue)?, and the goodness of
fit as characterized by observed UWE (equation 20). We show
the number density of all our mock observations (top row), and
the distribution compared with reference to 66 (bottom row)
— a close proxy for the magnitude of the contribution of the
binary.

Starting in the left-hand column, we see that the vast majority
of systems have small and likely imperceptible parallax deviations,
but some can be shifted by 1 mas or more. As we might expect,
parallax shift is only significant for systems with periods close
to 1 yr, a relationship that would likely become tighter for a
longer observing period. Those systems with large |Aw| tend

Af (mas)

—10.0 -

—12.5 -

2
Aa (mas)

Ap (mas)

0 1 2 3
Aa (mas)

Figure 2. Eight example unresolved binaries, showing: the motion of the centre of mass (black line) that moves as a single body, the motion of the centre of

true c.o.l.

measured c.o.l.

to have a significant binary component (60 ~ 1mas), but it
is not the case that the most extreme binaries give the largest
shift.

Unlike the parallax, the proper motion deviations (middle col-
umn) can be large (< 10 mas yr~!) for any period longer than about
1 yr, and the most extreme binaries tend to provide the largest
A . Finally, the UWE (right-hand column) also peaks at periods
close to 1 yr, but can be significant in systems with any but the
smallest period (note, however, that short-period systems at small
distances can provide significant UWE but are lacking in our mock
sample). For a fixed period, higher §6 corresponds to higher UWE.
Few systems at 10 yr periods have significant UWE, but there it
is clear that UWE > 2 can still occur even in systems with P >
10yr.

UWE scales linearly with parallax — and thus closer systems
can have significantly larger values. The highest parallaxes used in
the mock observations are around 10 mas. For systems in the local

UW E,s: 3.34

UW Epeq: 2.2

M (M) 28 binary parameters
P (year): 0.46

a (AU): 1.9

to (year): 0.25

q: 0.25

[: 033

A: 0.05

0, (rad): 1.1

¢y (rad): 1.2

wy (rad): 1.3

e: 0.073

ap (rad): 2.8 tromene parameters
Bo (rad): -1.0

w (mas): 8.366+0.14 (8.44)
Jio (mas yr=1): 1.094:0.19 (1.18)
s (mas yr=1): -8.9340.19 (-9.1)

true c.o.m.

Aayg (mas): 0.1940.2
Apy (mas): -0.314+0.2

UWE,s: 1.21

UWE,cq: 1.06

M (Mg): 2.6 binary parameters

best fit P (year): 0.55

a (AU): 1.2

to (year): 0.2

q: 0.93

1: 0.29

A: 0.26

0, (rad): 2.5

¢y (rad): 3.1

w, (rad): 3.8

e: 0.4

ag (rad): 2.9  tremec parameters

Bo (rad): 0.038

@ (mas): 0.65360.11 (0.592)

to (mas yr—1): 2.6340.2 (2.63)
} ws (mas yr—1): -0.35440.2 (-0.296)
4 Aay (mas): 0.041+0.21

Apy (mas): -0.014+0.21

light (red line) that deviates due to binarity, and the simulated observations including error that we fit to (red dots). The best-fitting single body curve is also
shown (dashed blue). Also shown in the top left is the ellipse (or fraction thereof) traced by the centre of light excluding parallax motion — to the same scale.
The properties of each system are shown to the right of the plots. Values derived from the least-squares fit are given with errors (true values in brackets). 1000

such fits can be viewed here.
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Table 1. Parameters and distributions used to generate the mock observa-
tions. The first five define the single-body astrometric motion and the others
define the binary motion. Here Ula, b] represents a uniformly drawn random
number between a and b, N[, o] represents a number drawn from a normal
distribution with mean p and width o, and S[u, o, ¢] is a draw from a
split-normal distribution with mode u, and width o below the mode and ¢
above.

Variable Description Distribution
@ [mas] Parallax 1051-0.05,0.17,0.36]
o [rad] Azimuthal position (¢=0) 27 - U[0, 1]
Bo [rad] Polar position (=0) sin =\ (U [-1, 1])
e [masyr~!] Azimuthal proper motion N[-1.6,7.6]
wp [mas yrfl] Polar proper motion N[-3.0,7.9]

l Binary luminosity ratio Ulo, 1]

q Binary mass ratio 1-10MN0:3]

P [yr] Binary period 10- U0, 1]
to Time of binary periapse P-UIO,1]

M [Mg] Mass of bright companion 1 —ulo, 1n=077
e Binary eccentricity ulo, 11

6, [rad] Polar viewing angle cos LU [-1,1])
¢y [rad] Azimuthal viewing angle 27 - U [0, 1]
w, [rad] Coord. projection angle 27 - U [0, 1]

vicinity of the Sun, parallaxes could reach 100’s of mas and thus
for the same systems, the signal could be very large, or alternatively
the magnitude of binary deviations could be an order of magnitude
smaller and still detectable.

4.2.1 Comparing to predicted UWE

In Fig. 4, we compare the predicted UWE as calculated via the
methods in Section 2.1 to that we find from fitting to the mock data.
Looking at the number density, we see that the predicted UWE is
effectively an upper limit on the observed UWE, with all systems
falling on or below the 1:1 line. It is systems with low periods,
peaking near 1 yr, for which the predictions and observations agree
well (lower periods may still be accurate, but both the predicted and
observed signals are very close to 1). As might be expected, closer
objects (larger parallax) have larger predicted and observed UWE.
For a given UWE,q, closer objects tend to have a higher UWE,,
which is a selection effect on period (for a fixed 50, further systems
must be wider binaries).

The eccentricity distribution is relatively flat, but there are a
few interesting features to note. Given the higher number of low-
eccentricity orbits, we would expect these to dominate across the
rest of the plot, but interestingly in the intermediate region (1 <
UWE,s < UWE,q), We see an overdensity of eccentric systems.
The reason for this is that the information content of an eccentric
orbit is syncopated, and the slow motion around apoapse is about
equally informative as the fast pericentre passage — thus, for long
period orbits, the observed UWE can still be relatively high if the
short observing window overlaps with pericentre passage. This is
more clearly seen in Appendix E, where we separate this plot by
period.

Well-predicted UWEs tend to have a higher Az, but this is
mostly due to the fact that their orbital period distribution overlaps
with 1 yr. More tellingly, the well-predicted orbits tend to have
low Ap — showing that the effect of the binary tends to either
be represented in the UWE or in extra proper motion, but not
both.

Binary deviations 329

4.2.2 Magnitude of deviations

We have seen a few examples where the binary contribution can be
‘absorbed’ into the astrometric solution, and not show itself directly
in UWE. In Fig. 5, we explore this by comparing the total deviation
from the true parameters, weighted by their errors

AY
s
S+ Gy Gy oy G2y e

to the UWE. This quantity goes to zero along the 1:1 line in the plot,
and thus systems on this line have most of their error dominated
by UWE. When above the line, most of the total error is absorbed
within the fit.

Comparing the first and second panels, we can see that the
low-UWE (1.2) systems can be split into two major groups —
short-period systems with smaller parameter error, and very long
period binaries completely dominated by parameter error. Looking
to the remainder of the middle panel, we see that intermediate-
period systems vary greatly in the relative contribution of errors, but
interestingly contours of constant period agree well with constant
total error — i.e. the period is a good predictor of total error, but
not whether it will be absorbed into the fit or the UWE. Finally,
looking at the binary contribution, as described by §6, we see that
both UWE and total error increase with more significant binaries.

This behaviour complicates the simple interpretation of a single
object and what can be inferred from its UWE. The analytic
prediction, working from an observation back to the properties of
the binary, will give a lower limit on the size of the orbit/mass of
the components — but depending on unseen factors that may be
a lower limit by some small percentage or orders of magnitude.
For a large population, this suggests that UWE will be a relatively
robust measurement of binarity, though again an underestimate.
It is possible that more information about the binary can be
extracted by comparing to the covariance of errors in the parameter
estimation (UWE being effectively the collapse of these variances
and covariances to a single scalar quantity).

5 REAL OBSERVATIONS

The importance of these short-period binaries on astrometric obser-
vations can be split into two cases. In the first, they are a blessing,
giving us a new method for identifying binary systems — imperfectly
but potentially in huge numbers, or reliably across populations. In
the second, they are a nuisance, biasing a small fraction of our
sample with no clean or universal way to account or adjust for
them.

5.1 Binary identification

For any observed astrometric system, we can measure the UWE.
The question is then whether we can reliably convert this to an
inference about the presence and properties of a possible binary.
Fig. 6 shows, as a function of the observed UWE of our mock
observations, the true 6. There is a wide spread in 66 for any given
UWE, but for higher UWE the majority of systems do lie along
a relatively tight relation (within a factor of 2 of the prediction
of equation 20) and, perhaps even more informatively, negligible
systems lie beneath that line. Thus, according to these data, observed
UWE:s of above ~1.4 could reliably be inferred to correspond to
binary systems, and for a population the median properties of these

MNRAS 495, 321-337 (2020)
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Figure 3. Comparison of the parallax and proper motion deviations, and the observed UWE, as a function of period. The x-axis is expressed as /P such as
to have uniform density of samples (see table 1). In the upper row, figures are coloured by number density, and in the lower by the median 86 that is a rough
representation of the magnitude of the binary contribution. The vertical dashed lines show periods of 1 yr and of 22 months. We see that parallax is most
affected by systems with a binary period of ~1 yr, even if the effect of the binary is modest (56 < 1 mas). Proper motion can be affected by binaries of periods
21 yr and the effect increases for more significant binary motion. Finally, the observed astrometric error, as expressed through the UWE, also peaks towards
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Figure 4. Comparison of the predicted UWE (via Section 2) and the UWE inferred from our mock observations. The dashed diagonal line shows a 1:1
correlation and the horizontal denotes an observed UWE of 1. Colour shows the median value of the specified parameter in each bin (save for the number
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Figure 5. Comparison of the total variation (the sum of squares of all parameter deviations normalized by their errors) including UWE to the UWE alone.
A 1:1 dotted line is shown for reference. Systems where most of the error is translated to UWE lie on or near this line, while others where significant binary
motion has resulted in large deviations of the inferred parameters (but small corresponding UWE) are well above this line. We show the number density of all

measurements, and the median period and 6.
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Figure 6. Comparison of the observed UWE to the true 56. Though the
spread is large, above UWES of around 1.4 (dotted line) there are negligible
systems which do not contain a significant binary. For a given UWE
(observable), we might ask whether we can constrain the binary properties.
Confidence intervals of 56 for a given UWE are shown at 5 per cent intervals,
ranging from 95 per cent (yellow) to 5 per cent (blue) — showing that we can
predict with relatively confidence a value of 80 (within a factor of 2) but
that the tail of the distribution skews to much higher values.

binaries can be well estimated. For an individual system, we can only
make a probable estimate of 50, and there is always the possibility
of a wild underestimate.

If the parallax is well constrained, 66 can be converted to a
physical separation between the c.o.l. and c.o.m. If A can be
estimated, this can be further translated to the true binary separation.
Alternatively, if the period and phase are known, we can make
a much more exact estimate of UWE for a given system (see
Appendix B) and thus comparing to observations Aa can be
precisely characterized.

This ignores any other sources of erroneous UWE that may exist
in the data set — either due to systematic errors, occasional oddities,
or other astrophysical sources. When applying this metric to real
data sets, the precision of measurements of UWE will need to
be tested explicitly to make inferences about individual objects. It

may also be the case that other observed quantities, such as radial
velocities or error on astrometric parameters (possibly including
the covariances) can further help delineate and characterize binary
systems.

5.2 Binary contamination

In Fig 7, we show the deviations and errors observed in our mock
sample of two million binaries. Separating by period, §6, and
UWE,, illuminates which systems fill out the total distribution
(black).

The largest panel shows the distribution of proper motion anoma-
lies, with a clear bimodal behaviour — with mostly longer period
systems having significant binary-induced proper motion, while for
most short-period systems the proper motion signal is consistent
with noise. A cut on UWE does not differentiate these two families,
while a cut on §6 puts a strong upper limit on %’:‘.

A UWE of 1.4 or below has been suggested as benchmark for
removing binary contaminants. However, such a cut (yellow) still
leaves around half of the binaries with 40 > 0.5 and the majority
of systems which have proper motion which have been skewed by
multiple o ,. This sample does exclude the highest values of o,
and o, suggesting that they are well fitted, simply erroneously so.
As we have stated before, this is the impact of binaries with periods
a factor of a few times the observing period, for which the partial
binary orbit mimics proper motion.

Smaller binaries, with lower values of 66 can still have significant
UWE and cause large errors in parallax and proper motion. These
account for almost all of the systems with a small | A x| and none of
the systems with [Ax| = 10. Shorter period binaries (red) can still
have significant §6 and UWE, and as a population have the highest
|Aw | (as we would expect given that this bracket covers the crucial
1 yr binary period). Significantly fewer of the high proper motion
anomaly systems have short periods.

Before moving on from this plot, it is interesting to discuss how
it would change if we had a longer observation interval. This would
raise the period above which binary motion could be disguised as
proper motion — narrowing the right-hand peak in 'ﬁ—“' and moving
it to higher values. ’

Denoting the fraction of all stars that are in binaries with periods
less than 10 yr as v, we can make some rough estimates for the

MNRAS 495, 321-337 (2020)
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Figure 7. The distribution of our mock observations, as a function of the
observed deviations and errors. As well as the total sample (black), we show
subsets with UWE s < 1.4 (yellow), 86 < 0.5 mas (orange), and P < 4 yr
(red). All y-scales are linear.

degree of binary dilution we should expect to see in astrometric
samples, with UWE < 1.4 and

(1) 66 > 0.2 mas: 30v per cent

(i) 80 > 1 mas: 8v per cent

(ili)) Aw > 0,: 20v per cent

(iv) Az > 0.1 mas: 0.6v per cent
(v) Ap > 20 ,: 40v per cent

(vi) Ap > 1 masyr~!: 4v per cent.

This is of course dependent on survey length. Again, we are using
Gaia DR2’s 22 months here — longer baselines will lower these

MNRAS 495, 321-337 (2020)

percentages, though they will also be able to detect deviations in
systems with P > 10 yr.

Finally, it is interesting to focus on the subset of systems with
periods close to 1 yr, which can well mimic parallactic motion over
a binary orbit. Limiting ourselves to 0.9 < P[yr] < 1.1, the number
of systems with Az > 0.1 mas goes up to 4v per cent and we find
that ~ 0.01v per cent have Az > 1 mas.

UWE < 1.4 can still be a sensible and useful delimiter — but
any such cut will let through a fraction of binaries, some of which
will be significantly affected by their binarity. Depending on the
case at hand, these may have little to no impact, or results may be
skewed by either large numbers of small but significant binaries, or
the very occasional extreme case. For example, though the shifts
to @ are generally small, this measure is necessary to calculate
the absolute magnitude of the star, and thus the most extreme
binary contributions may change the inferred luminosity of a star
significantly.

6 CONCLUSIONS

This paper has studied how unresolved binary systems will alter
astrometric observations.

For shorter period binaries ( the observational baseline of the
astrometric survey), the motion of the c.o0.l. leads to increased error
when fitting single body five-parameter astrometric solutions.* This
excess error then provides a lower limit to the on-sky angular
separation of the binary, which — assuming that the distance is well
known — can be translated to physical separation and other binary
properties. It is a lower limit, as there is always the possibility that
some of the binary motion is translated into a shift from the true
astrometric parameters (which describe the motion of the c.o.m. of
the system), and thus the observed noise will be lower and the fit
slightly biased. It is important to note that this ignores other sources
of noise and confusion, and thus anomalously high astrometric error
may be observed in single star systems — the reliability of this metric
will depend on the instrument and quite likely the particular star.
This means we can confidently make observations on a population
level (when random noise will cancel out and astrometric bias will
dilute our results but not mask them entirely), but inferences about
individual systems will require very careful interpretation and may
be impossible for many systems.

Longer period systems are more likely to bias the astrometric
fit. Much of this bias is soaked up into excess proper motion (and
position, but this is less physically meaningful). For systems with
a period close to 1 yr, it may also cause the parallax to be under-
or overestimated. This is less likely for eccentric orbits, for which
the motion around their orbit is syncopated and thus is less easily
mistaken for a parallactic ellipse. Periods significantly longer than
the observational baseline (such that negligible orbital motion is
observed) will just cause a constant offset of the position (thus
binaries on 10+ yr orbits will have negligible impact on Gaia DR2).

All our analysis is limited to binary systems, though in theory
much of this could be extended to systems with higher multiplicities.
Depending on the scales, multiple systems may be well approxi-
mated as a binary (e.g. a hierarchical triple where a tight binary
behaves analogously to a single star). As we are most sensitive to
orbits with periods close to 1 yr, this may limit the multiplicity as

“Future Gaia data releases will include astrometric fits with >5 parameters
(for a subset of stars) that will capture the binary motion described in this

paper.
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the more tightly packed a many-body system the more dynamically
unstable it becomes.

We hope this work provides a window both into how astrometric
observations may be affected by binaries, but also how binaries may
be identified and in some case characterized from the discrepancy
between their on-sky motion and a single-body astrometric fit. We
explore this directly in Belokurov et al. (2020), in which we examine
how UWE varies over the whole Gaia DR2 sample — identifying
populations of systems that show signs of binarity and comparing
to catalogues of known binaries and exoplanet hosts.
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APPENDIX A: THE C.O.L.

Finding the ‘c.0.l.” of two objects is a similar, though much less well-
defined exercise, to finding the c.o.m. It is only really a meaningful
measure when the two (or more) sources are partially or completely
unresolved, and has limited physical significance, being more a
function of our observations than the behaviour of the system.

For point sources, and sufficiently small extended objects, objects
will appear to have some finite width set by the resolving power
of our instruments (and any additional sources of noise such as
atmospheric turbulence) which here we will model as a Gaussian
PSF - though a similar argument could be extended to any finite
width symmetric distribution. We can model this as

7(##)2
b(x) x Le 2?2 | (A1)
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where b is the surface brightness at some point x on sky (which can
be measured in physical units or angular distances). L is the intrinsic
luminosity of the source,’ u is the actual position of the source, and
o is the width of the PSF. Under the assumption that the PSF is
mostly dependent on the instrument, not the source, o should be a
constant across similar observations, and for x measured in angle on
sky, o may be approximately constant for all observations. Though
this is a one-dimensional distribution, the arguments can easily be
extended to 2D.

We are mostly interested in pairs of unresolved sources, whose
total brightness at some point along the line passing through both
of their positions can be modelled as

_ (xqu)z _ (.vfug)z

be(x) x Lae *i +Lge ¥5 |, (A2)

where (x — ua) <K 04 and (x — up) <K op for x between u, and
ug (i.e. between the two sources).
Thus, using the convention from Section 2.1 where L = L, and

z=%<1

R PRy
bz(x):L(l—i-l—l((x ha) | 0= pp) >)+0(4).

2 20} 208

(A3)

When this system is observed, it will appear to be a single source
with a brightness L' = L(1 + [) + O(2) at a position ;' where
©= — 0. Thus,

,_MA+€17MB
=T

+ 0(2), (A4)
1+

€2
where € = Z—i

Working in coordinates such that s = O (centred on the brighter
object) and assuming that the PSF widths are the same for both
objects (which is reasonable for two objects of comparable lumi-
nosity in a close binary — though may cause significant deviations
in some cases), we recover the result from Section 2.1 describing
the position of the c.o.l. of an unresolved binary:

/_IMB
=11

+ 0(2). (A5)

A1 1D scans instead of 2D images

The above argument assumes that we are free to orient the direc-
tion along which we measure the brightness of the source (and
thus find the maximum) but that may not always be true — for
example, the Gaia survey provides much more accurate astrometric
measurements parallel to the direction it scans across the sky
than perpendicular, and for dimmer sources it only records 1D
positions.

If the system is scanned at an angle ¢ to the line connect-
ing the two sources (where we can take ¢ to run from O to
% without loss of generality), then the measured c.o.l. position
is modulated by a factor of cos¢. This means that for scans
that only resolve perpendicular to the binary no c.o.l. motion is
detected.

In general, we can assume that scan directions of the binary
will be roughly isotropic and thus the observed c.o.l. shift will be

5In reality, the luminosity is spread over a spectrum of wavelengths and the
observed brightness depends on the response function of our telescope. As
we will be comparing observations made by a single instrument, we can
think of L as already having taken the response function into account.
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modulated by the average of cos ¢ for0 < ¢ < 7 meaning observed
displacements will be reduced by a factor of %

In very particular cases, it is possible that the scans are aligned
and timed such that an effectively stationary binary (i.e. one with a
long period) appears to be moving significantly on sky and might be
mistaken for other forms of motion. The frequency of such objects
will be highly dependent on the form of the scanning law and a
large degree of chance, but can be expected to be rare.

APPENDIX B: ANALYTIC SOLUTIONS FOR
LONGER PERIOD BINARIES

The analytic deviations derived in Section 2 rely on the fact that the
number of observed binary orbits is 2> 1, and thus the average over
all time will tend to the average over a single orbit.

It is possible to perform the same analysis analytically (though
requiring numerical integration) for any system provided the period
and phase of the orbit at some point in time are known. For the vast
majority of systems, this information is exactly what we would like
to derive, and thus this analysis cannot be performed. However,
for known binary systems where this information is available
we could in theory use this to glean yet more insight into the
system.

Let us first write out the trigonometric part of equation (15) in
full

(B1)

- wAa 1-¢° (c0s¢> — cos ¥, cos ¢, sin® GU)

Q l+4ecosn sin ¢ cos 6,

where

Q(¢y, 0,) = /1 — cos? ¢, sin2 6, (B2)

is a constant throughout the orbit.
It will be useful to convert all time dependence [currently
expressed in ¢(#)] in terms of 7 such that this becomes

@ Aa [ Q*(cosn — e) — cos ¢, sin ¢, sin® B,+/1 — e2 siny
Q /1 —e%sinncosb, ’
(B3)

For a significant number of observations taken at uniform (or
uniformly random) intervals between some #; and #, of a known
binary with period P that passes through periapse at 7y (which we
will take to be the latest periapse passage before t,), we can integrate
this between 7, and 7, satistfying

P .
nh—t= E(m —esinny), (B4)

which can be solved numerically (for n, we can perform the same
calculation substituting #; for #,).
Now we can find the time-averaged position via

1 o) 1 mn
(e) = / edr = / (1 — ecosn)edn; (BS5)
h —1 Jy N2 — N Jy

at this point it will be useful to define a family of integrals

n2
Iy(n1, m2) = / sin® 1 cos” 1. (B6)

m

Letting An = 1, — n; and Ac, = cos(nn,) — cos(nn;) (and
similarly As, for sines), we can write out all the terms needed for
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this calculation:

Ip = An
110 = —Asl
101 = ACl
Lo — AT] Asy
) 4

Ac
I = —TZ
I — AT] As)
E) 4
Lo — 3AC| + AC3
Ty 12
I = AS] AS3
1Ty 12
I, = ACl AC3
2=y 12
Iy = 205 4 A% (B7)
BTy 12"

Note that when An is an integer multiple of 27 all terms except
oo, Iro, and Iy, are O — hence the calculation is significantly easier if
we integrate only over one full orbit. For arbitrary »; and 1,, these
can take any value and must be pre-calculated (though for large &7,
all trigonometric terms will be small, leading us back to the single
orbit solution).

Performing the integral over time is thus simplified to the exercise
of separating out powers of cos n and sin 5. This gives

(e) = T84 (924 — sin g, cos ¢, sin® 6,+/1 — e2(I1o — e1.1>)

T QAp cos 0,1 — e2(Iyg — elyy)

(BB)

and thus

2A2,2
l{e)]? = %(92{2 — 25in ¢, cos ¢, sin® G,/ 1 — €2
n
x (Iig — el1)¢ + (1 — sin® ¢, sin® 0,) (110 — el11)?),

(B9)

where

¢ =1+ eIy — e(loo + Ip) (B10)

(which we have separated out only to keep the formulas from spilling
out over many lines).
Performing the same analysis, we can find

w?A%a?

T’I (100e2 + 1102eMSin ¢, cOS ¢, sin’ 0,

— Ine + e)Q? + Ly(l — €*)(1 — sin® ¢, sin” 6,)
—1;:2(1 + ez)MSin ¢, cos ¢, sin’ 6,

+1po(1 +2¢H)Q? — Lye(l — €*)(1 — sin? ¢, cos® 6,)
+1122e\/1 — e sin @, cos ¢, sin> 6, — Ip3eQ?)  (B11)
and thus from equation (10) we can find 36 exactly.

In this regime, we can also find the proper motion anomaly, by
averaging é over An:

& = — /tzedzzw. (B12)

h—1 h—1

(lel) =

It is interesting to note that while the leading order term of (e)
decays as An~2 (and (|€|?) tends to a constant), the proper motion
only decays as An~! on average — but will be zero for any orbit
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harmonic with the observing period. Thus, even for large An (many
observed orbits) there may still be a significant bias on proper
motion.

APPENDIX C: SINGLE BODY MOTION

The single body motion can be captured by considering the unit
vector directed towards the source from the observer. If at some
initial time, 7y, the source is at some on-sky position (azimuthal and
polar angle) («¢, fo), and is moving with some proper motion ({4,
Wp), then at time ¢ the unit vector from Gaia to the source obeys

A A ’ A A~ w A w ’
r= <l‘0 + @ — 1) (Mapo + 1pqo + Ur*l'o) — —b(t )> .
Au All
(ChH

The < > brackets denote normalization, v, is the radial velocity
(which will disappear for all but the closest, fastest moving stars),
andt’ =1 — %(b(t) — b(ty)) - Ty accounts for the slight variation in
light traveltime due to Earth’s orbit (at most a 16 min correction).
b is the barycentric position of the satellite at time ¢ and p is the
parallax (i.e. it is this term that gives the epicycle-like motion of the
source as viewed by Gaia and allows us to find the parallax) and A,
is one astronomical unit. Three orthogonal unit vectors describe the
line-of-sight direction and those of increasing azimuthal and polar
angle, respectively

cos oy cos Py —sinag
fo = | sinagcosfBy |, Ppo=| cosay |,
sin By 0
— cos ag sin By
(’io = —sin [o%)) sin ,3() . (CZ)
cos Bo

All angles and angular velocities are expressed in radians.
As T gives the new approximate unit vector, we can find the
azimuthal and polar angles at a given time via

a() =tan~' 2 and B() = tan~! —— . (C3)

A

X x-’-

>

R

This expression ignores many (normally small) effects including
evolution of the proper motions, either due to acceleration of the
source or projection effects, as well as radial motion and relativistic
time corrections. For our mostly qualitatively arguments it shall
suffice, but a fuller description can be found in Lindegren et al.
(2016).

In C1, we linearize these equations under the assumption that
motion on sky is small to give a simpler approximate description of
the motion.

C1 Linear model

The one-body astrometric motion (as expressed in equation C1) can
be linearized in the limit of small on-sky motion. We can express the
expected position of the object at time 7 as a(f) = «; + Ac«(f), where
o; is some initial reference position which the motion remains in
the vicinity of. Similarly, B(t) = B; + AB(?). Note that Axy =
Aa(ty) and similarly A B are not necessarily 0, accounting for the
small offset caused by error and binary motion. We can assume
that the deviations are small, except in edge cases with coordinate
singularities but these can be avoided by a change of frame.
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C1.1 Simplifying the barycentric position

It will be most convenient here to use coordinates aligned with the
Earth’s orbital plane (as it is motion in this plane that translates to
the observed parallactic elliptical motion) and centred on the Sun.
Thus, let «; be the azimuthal angle covering [0, 27 ] and B; the polar
angle [—%, 7]. In these coordinates, the position of the Earth at
time 7 (and to a good approximation any observing instrument in
Earth’s orbit or at an Earth—Sun Lagrange point) is

cos @
b=A,(1—esinn)| sind |, (C4)
0

where e is the eccentricity (=0.0167), ® is the phase of Earth’s
orbit, and 7 is the eccentric anomaly satisfying

_ /T — eZsi
cos(®) = M’ sin(®) = vi—esmy (C5)
1—ecosn 1 —ecosn
and
Ti
t—ty= —E(n — esinn), (C6)
2

where T is 1 yr and £, is a reference time at which the Earth is at
periapse.

In general, this last expression cannot be inverted, but in the limit
of small eccentricity we can expand it to

2 (t — tp)

n=7t+esint + O2), where T =
T

€N

which gives

cos T — e(1 + sin? 1)
sint +esintcost |. (C8)
0

b= A,

C1.2 Linearized motion
The new normalized radial unit vector obeys
Fa, B) = i + Aacos Bipi + ABP;, (©9)

where f;, Pj, and §; are the equivalent of the vectors in equation (C2)
evaluated at («;, 8;) and are all orthogonal.

As all deviations are small the new, non-normalized, radial vector
accounting for the motion of the source is

r =1+ (Aag + (t' — to) ) cos BiPi + (APo + (t' — t0) )i

0, 2% - Zva)+ 002) (C10)
Vy—If — — .
Au Au

All but the first term on the RHS are small and thus the magnitude
of this vector is

= Vrr= \/1 +25 0 =B - £ + 0) 1)
and thus the new radial unit vector can also be expressed as

=&+ (Aag + (' — t0)ua) cos Bidi + (ABo + (' — 1))
+ AE((b(t/) -B)E; — b() + 0Q2). (C12)

C1.3 Total linearized motion

Taking equations (C9) and (C12) and projecting in the P; and §;
directions, we can express the on-sky motion of a single body
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as

Aa(t) = Aag 4 (t —tg — tp)

i (cos ¥ + e(siny sin T — cos ¢)) (C13)
cos B;

and

AB@) = ABo + (t —fo — tp)iup
— o sin B;(sin ¥ + e(cos ¥ sin T + sin ¢)), (C14)

where

A, cos B; . . .
= ——  (cos ¥ — cos Yy + e(sin T sin Y — sin Ty cos Yy))

(C15)

Ty

and ¥ (1) = (¢) — .

This shows the general form of parallactic motion — a linear
translation from some initial displacement (e.g. the Aoy + Aty
term in equation C13) and a circular motion projected on sky due to
Earth’s orbit (e.g. the wsin B;siny term in equation C14). The
projection effect is stark, as polar motion due to parallax goes
to zero near the ecliptic plane (8; &~ 0) and azimuthal motion
approaches a coordinate singularity at the poles (though changing
to another frame of reference this behaviour disappears). This
projection effect is the reason that it is much more difficult to
determine parallaxes of objects on the ecliptic plane, only one
component of the motion is visible, and thus the constraining
power of the observations is reduced. The small factors of e and
1, slightly complicate this simple picture but only at the level of a
few per cent; thus, intuition can still be gained from this linearized
form.

APPENDIX D: FITTING TO MOCK
OBSERVATIONS

To simulate observations, we can fit single-body astrometric solu-
tions to the sample of generated mock observations.

Given the linearized version of the on-sky motion (equations C13
and C14), we can write the on-sky positions as

((10bs> = Xr + oy, (Dl)
ﬂobs

where oy contains the error caused by the binary and by the random
systematic astrometric error, normally distributed around zero with
a width o .
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We can calculate the best-fitting five-parameter astrometric
model, 7, via linear least squares:

AC{O

ABy o
— (X'X) XT< b) (D2)

s obs

w

where aops and B, are the vector of Nyps (=100) mock azimuthal
and polar coordinates and

(1,0, t—tp(t,6,9), 0, pu(t, 0, )
X(t.0, ) = (0, 1, 0, t— ty(t. 0, ), ps(t. 6, ¢))’ (D3)
where
P.(t,0,¢) = — ! (cos ¥ + e(sin T sin Y — cos ¢)) (D4)
cos 6
and
ps(t, 0, ¢) = —sinf(sin Y + e(sin 7 cos ¥ + sin ¢)) (D5)

[0 and 1 are vectors of Ny zeros and ones, respectively, t are the
Nobs Observing times, and ¢ and 7 are the corresponding N, values
of Y (z, ¢) and t(?)].
We can calculate the observed UWE as
()
UWE,, = ﬂb— (D6)
Oast N, obs — 5

The corresponding errors in the parameters follow the 5 by 5
matrix

62 =02, - UWEL (X'X)™!, (D7)

T ast

where the on-diagonal terms give us the variance on a single
parameter and the off-diagonal terms the covariances. We will
express approximate errors in the parameters as the square root
of the on-diagonal terms.

APPENDIX E: PREDICTED VERSUS
OBSERVED UWE BY PERIOD

Fig. E1 shows the predicted UWE compared to the observed value
for binaries divided into three period intervals (separated at 2 and
5 yr). Now we can see very clearly the high good agreement between
predictions and the mock observations for short-period systems.
Even for periods a few times longer than the observing baseline (22
months), the observed UWE can be large.

Here we can see clearly that highly eccentric orbits, even on long
periods, can have large observed UWE — as though only part of
the orbit is resolved if that fraction overlaps with the fast motion
through periapse passage we still capture much of the total orbital
motion.
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Figure E1. Predicted versus observed UWE (as in Fig. 4) from our mock observations, separated by period of binary orbit. Top: P < 2yr, Middle: 2yr < P
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