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ABSTRACT

Most binaries are undetected. Astrometric reductions of a system using the assumption that the

object moves like a single point mass can be biased by unresolved binary stars. The discrepancy

between the centre of mass of the system (which moves like a point mass) and the centre of

light (which is what we observe) introduces additional motion. We explore the extent to which

binary systems affect single object model fit to astrometric data. This tells us how observations

are diluted by binaries and which systems cause the largest discrepancies – but it also allows

us to make inferences about the binarity of populations based on observed astrometric error.

By examining a sample of mock observations, we show that binaries with periods close to 1

yr can mimic parallax and thus bias distance measurements, while long-period binaries can

introduce significant apparent proper motion. While these changes can soak up some of the

error introduced by the binary, the total deviation from the best-fitting model can be translated

into a lower limit on the on-sky separation of the pair. Throughout, we link these predictions

to data from the Gaia satellite, while leaving the conclusions generalizable to other surveys.

Key words: methods: analytical – astrometry – parallaxes – proper motions – binaries: gen-

eral.

1 IN T RO D U C T I O N

Around half of the solar-type stars are in binary systems (Duquen-

noy & Mayor 1991; Raghavan et al. 2010). Among more massive

stars, the fraction is higher still (Sana et al. 2012; Duchêne &

Kraus 2013). The number and properties of binaries tell us about

the conditions needed for star formation (Shu, Adams & Lizano

1987; Bate, Bonnell & Price 1995; Bonnell, Bate & Zinnecker

1998), the properties of the discs in which they form, and their

motions both in the dense stellar nursery and during their long

life histories. Binarity can affect the formation of planets and

the eventual fate of a star. Some of the most exotic objects in

the Galaxy result from the evolution of binary systems – includ-

ing cataclysmic variables, hot Jupiters, and type 1a supernova

(Whelan & Iben 1973; Tutukov & Yungelson 1981; Webbink

1984). It is even possible for a bright binary star companion to

tell us of the presence of a massive dark body, such as a cool

white dwarf or a stellar mass black hole (Andrews, Breivik &

Chatterjee 2019).

However, the number of known binaries is tiny compared to

the total number of catalogued stars. By many metrics, a typical

binary star appears indistinguishable from a single object. This

⋆ E-mail: zephyrpenoyre@gmail.com

means that most binaries on sky are still undetected, and the

information that can be gleaned from them still ready to be reaped.

However, it also means that, though they may not be detectable, any

observation we make assuming all stars are singular will necessarily

be contaminated by binaries.

Currently, we know of around a hundred thousand visual binaries

(Hartman & Lépine 2020), in which both objects can be separately

resolved. Eclipsing binaries, in which the system is by chance

aligned such that one star partially occults the other, are numbered

in the thousands (Prša et al. 2011; Kirk et al. 2016). Binary stars can

also be spotted directly from spectra if the two components have

markedly different spectra that cannot be easily fitted by a single

star model (El-Badry et al. 2018). Accurate distance measurements

can also allow us to identify overbright systems that can most

easily be explained by a multiple-star system (Widmark, Leistedt

& Hogg 2018). Finally, spectroscopic binaries, whose motion can

be seen by measuring the shift in the radial velocities over an orbit,

are growing in number, with many thousands now known (Price-

Whelan et al. 2020). These probe close binary pairs (generally with

periods of 1 yr or less), for which multiple periods can be observed

and which cause measurably large radial velocity shifts. Each of

these methods is sensitive to different types of system, depending

on distance, period, or stellar parameters – but in many systems

multiple methods may be applicable helping to further constrain the

properties.
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Instruments like Hipparcos (Perryman et al. 1997) and Gaia

(Gaia Collaboration 2016) measure the position of stars on sky to

very high accuracy and enable the discovery of astrometric binaries.

These show significant binary motion on sky, on top of the motion

of the centre of mass (c.o.m.), and are becoming detectable as

the noise floor of astrometric observations reaches milliarcseconds

(mas) precision (Gaia Collaboration 2018). Long-period systems

will cause an extra component of motion of the c.o.m., changing

slightly over time, termed a proper motion anomaly (Kervella et al.

2019), which is sensitive to relatively long-period binaries (around

10 yr or more).

In this paper, we focus on another way in which binarity can

impinge on astrometric measurements: as excess error on a single-

body astrometric fit. For systems with periods less than ∼10 yr,

a significant (�1/2) number of orbits can be completed over the

observing period of a single instrument. Thus, we expect the

astrometric motion of the c.o.m. to be well captured, but the

binary motion to cause excess noise, which could potentially be

harvested as inferred properties of the stars. By examining the

analytic deviations in an ideal case (Section 2), we can make

predictions which we then compare to a fuller numerical model

(Section 3) and mock observations (Section 4). We can then gain

insight into when the analytic treatment is accurate, and for which

types of systems we expect a significant deviation. Finally, in

Section 5, we discuss the impact of these effects on observable

properties, both as an identifier of binary systems and a nuisance

signal.

This analysis is heavily motivated by the Gaia survey, a space-

based telescope measuring the position and velocities of millions of

stars at a precision of a few mas over a period of years. However,

most of the behaviour is general, and could be applied to surveys

before and after Gaia. Thus, we will attempt to remain general,

and invoke the properties of the Gaia survey only when fiducial

numerical values are needed to further explore the results.

2 A NA LY TIC DEVIATIONS

In the limit that the period of a binary is � the observing time

of a survey, we can derive an accurate analytic description of the

magnitude of on-sky deviation between the movement of the centre

of light (c.o.l.) compared to the c.o.m.

2.1 Offset between the centre of mass and of light

Let us start with a binary system, in which we label the bodies A

and B. We assume that A is the more luminous of the two. Thus,

we can remap the brightnesses of the two objects on to an absolute

luminosity and a ratio such that L = LA and l = LB/LA. The total

luminosity is LA + LB = L(1 + l) with l < 1. We can define the

mass similarly, with M = MA and q = MB/MA, which can be less

than or greater than one. For a value significantly greater than one,

the system can be described in the simpler framework of a massive

dark companion (Shahaf et al. 2019).

When we do not spatially resolve a binary or – to be more precise

– we cannot separate the point spread function (PSF) of the two

sources, we see the system at the position of its c.o.l. However, the

dynamics of the system govern the motion of the c.o.m. and thus if

these two are offset, the c.o.l. will orbit around the c.o.m. causing

the system to appear to be moving non-inertially.

If the total distance between the two sources is d, then the distance

from A to the c.o.m. is dq/(1 + q) while the distance to the c.o.l. is

dl/(1 + l).1 Thus, if δd is the physical distance between the two, the

fraction of the distance between the c.o.m. and the c.o.l. is

� =
δd

d
=

|q − l|
(1 + q)(1 + l)

. (1)

2.2 Two-body orbits

Assuming Keplerian potentials and no external forces, the orbit

follows the usual parametric form. Using the eccentric anomaly η,

the evolution of the separation d with time t is

d = a(1 − e cos η), t =
P

2π
(η − e sin η). (2)

The orbital phase φ satisfies

cos φ =
cos η − e

1 − e cos η
sin φ =

√
1 − e2 sin η

1 − e cos η
. (3)

The semimajor axis a and period P are

a = −
qGM2

2E
,

P

2π
=

√

a3

(1 + q)GM
, (4)

and thus specifying M and q and either of a or T is sufficient to

calculate the other. The eccentricity is

e2 = 1 −
1 + q

q2

L2

GM3a
. (5)

Here E(< 0) and L are the total energy and angular momentum of the

two bodies, respectively, and are constant over the orbit. We cannot

solve equation (2) directly for r(t), though approximate solutions

are possible (Penoyre & Sandford 2019).

2.3 On-sky projection

It will be useful to work in spherical coordinates (r, θ , φ), where θ

is the polar angle ranging from 0 to π and φ is the azimuthal angle

ranging from 0 to 2π . We are free to set the orientation and thus

align it with the phase of the binary at periapse (thus, making φ

both the orbital phase and the azimuthal coordinate) and the origin

is at the c.o.m. of the binary.

The two components of the binary lie in the ±d̂ directions, where

d̂ =

⎛

⎝

cos φ

sin φ

0

⎞

⎠ (6)

in Cartesian coordinates.

We can also define the position of an observer in this frame by

two angles θ v (equivalent to inclination, i) and φv such that the

vector pointing towards the observer along the line of sight is

l̂ =

⎛

⎝

cos φv sin θv

sin φv sin θv

cos θv

⎞

⎠. (7)

Fig. 1 is a sketch of the system and the coordinates used, which we

must transform to an on-sky projection and eventually to a motion

in a specific coordinate frame (e.g. ecliptic longitude and latitude

or RA and Dec).

1This is derived and explored in more detail in Appendix A.
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Binary deviations 323

Figure 1. Sketch of the coordinate systems used to describe the motion

of the binary and the centre of mass. Both views are shown as they would

appear on sky (if the system could be resolved). Upper panel: Binary motion

around the centre of mass (at the origin) as described in (x, y, z) coordinates

with the orbit confined to the (x, y) plane and periapse of the brighter source

on the x-axis. The azimuthal viewing angle φv is shown, while the polar

viewing angle θv cannot be, as it is the angle between the vectors ẑ and

l̂. The orbital phase of the binary is given by φ, and the phase relative to

the viewing angle is ϕv = φ − φv (if shown in this diagram it would be

almost 2π ). The centre of light will sit on the line between the two stars,

at a constant fraction of the distance. To convert into on-sky motion, we

project along the î, ĵ, l̂ directions that lie in, and perpendicular to, the plane

of the page. Bottom panel: The motion of the centre of mass of the system

follows a straight line proper motion across the sky, with added motion

caused by parallax (the change of a nearby object’s position compared to

the background due to Earth’s orbit around the Sun). The final coordinate

conversion is from on-sky coordinates with arbitrary direction specified by

ω to those which line up with our reference coordinate system (e.g. ecliptic

longitude and latitude or RA and Dec).

2.4 Deviations for a circular binary orbit

In the case of a circular orbit, the formulae thus presented are

sufficient to describe the deviations caused by the binary. The

magnitude of the projected binary separation is

|s| = d|l̂ ∧ d̂| = d
√

1 − sin2 θv(1 − sin2 ϕv), (8)

where ϕv = φ − φv is the azimuthal angle between the orbital phase

and the line-of-sight vector.

Let ǫ be the 2D deviations of the c.o.l. from c.o.m. in on-sky

coordinates – where we will express this here as an angle by

multiplying through by the parallax of the object ̟ (this assumes

that a is expressed in AU and thus ǫ has the same units as ̟ ).

The physical distance, projected perpendicular to the line of sight,

between the c.o.m. and c.o.l. is thus

|ǫ| = �̟ |s|

=
̟a|q − l|

(1 + q)(1 + l)

1 − e2

1 + e cos φ

√

1 − sin2 θv(1 − sin2 ϕv). (9)

Assuming that many periods of the binary are observed, the inferred

astrometric scatter of a single-body fit is equal to

δθ =
√

〈|ǫ − 〈ǫ〉|2〉 =
√

〈|ǫ|2〉 − |〈ǫ〉|2, (10)

where 〈〉 denotes the time average. If we assume that a sufficient

number of orbits occur over the observing period, we can take this

average to be over a single complete orbit. For the circular case 〈ǫ〉
is zero, i.e. the average position of the object is at the foci, and thus

δθcirc =
√

〈|ǫ|2〉 =
̟a|q − l|

(1 + q)(1 + l)

√

1 −
sin2 θv

2
. (11)

For non-circular orbits, 〈ǫ〉 is not in general zero and thus we must

express the position on sky fully to calculate δ.

2.5 Binary motion across the sky plane

As illustrated in Fig. 1, it is natural to define two other unit vectors

that capture the projection on the plane perpendicular to l̂ (and thus

describe the position on sky). These vectors can be taken as

î =
1

√

1 − sin2 θv cos2 φv

⎛

⎝

1 − cos2 φv sin2 θv

− sin φv cos φv sin2 θv

− cos φv sin θv cos θv

⎞

⎠, (12)

which projects on to the x-axis and thus appears to pass through the

orbital periapse and apoapse and

ĵ =
1

√

1 − sin2 θv cos2 φv

⎛

⎝

0

cos θv

− sin φv sin θv

⎞

⎠, (13)

which completes the orthonormal set. The choice of these two

directions is arbitrary (at least until we define the orientation of the

system on the sky), but provides an easily interpretable coordinate

system.

In these coordinates, the c.o.l. at time t is at position

i = �(î · d) =
�a(1 − e2)

1 + e cos φ

cos φ − cos ϕv cos φv sin2 θv
√

1 − sin2 θv cos2 φv

,

j = �(ĵ · d) =
�a(1 − e2)

1 + e cos φ

sin φ cos θv
√

1 − sin2 θv cos2 φv

,

l = �(l̂ · d) =
�a(1 − e2)

1 + e cos φ
cos ϕv sin θv (14)

where ϕv = φ − φv is the azimuthal angle between the current

position and the line of sight and d is specified by equations (2) and

(6).

Thus, at any given time, the full on-sky deviation from the c.o.l.

to c.o.m. is given by

ǫ = ̟

(

i

j

)

. (15)
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Taking the time average of this, we find

〈ǫ〉 = −
3e̟ |q − l|a

2(1 + q)(1 + l)

√

1 − cos2 φv sin2 θv

(

1

0

)

(16)

and thus the full expression for δθ given any eccentricity is

δθ =
̟a|q − l|

(1 + q)(1 + l)

√

1 −
sin2 θv

2
−

3 + sin2 θv(cos2 φv − 2)

4
e2.

(17)

In the circular limit, this agrees with the expression in equation (11)

as expected. For orbits approaching radial, we find

δθrad =
̟a|q − l|

2(1 + q)(1 + l)

√

1 − cos2 φv sin2 θv . (18)

Inspection of equation (17) shows that eccentricity always decreases

δθ .

In Appendix B, we derive a comprehensive, but significantly

more complex, expression for the full behaviour.

2.6 Binary motion as astrometric error

If we do not resolve a binary and fit it as a single source, this on-sky

motion of the c.o.l. behaves as a source of astrometric error in two

ways.

First, it may change the inferred astrometric parameters. Sig-

nificant motion due to a binary could be interpreted as a change

in the motion of a single point source. Long-period binaries will

have a roughly constant offset from the c.o.m. Intermediate-period

systems, which complete a significant fraction of one orbit over the

observing time, can mimic significant proper motion. We investigate

this in detail for our numerical models in Section 3. Secondly, the

motion of systems with periods close to 1 yr may mimic parallactic

motion, and thus bias our estimate of the distance. Thirdly, it may

increase the observed noise. For systems for which the astrometric

fit to the c.o.l. motion well matches the c.o.m. motion, any on-

sky deviations appear as additional noise. Thus, systems with

anomalously high inferred noise may be caused by binaries – and

conversely high observed noise can be translated to a prediction of

binary properties.

Apparent motion of a single star on the sky, though it has five

free parameters, is highly constrained – consisting of straight line

motion across the sky superimposed on the apparent motion of

nearby sources due to Earth’s orbit around the Sun. The form of the

latter is fixed by the source position on sky, with the parallax only

scaling the magnitude of the effect. Thus, it is hard, though far from

impossible (especially in huge data sets such as the Gaia survey), to

convincingly mimic astrometric motion with short-period binaries.

Thus, binary motion will mostly contribute to increased error in

these cases.

Any observation also has some intrinsic astrometric error, σ ast

(which is in part a function of the source, but we shall take as

constant for a given instrument). When we fit an astrometric model

on to a single source, we can construct the statistic

χ2 =
Nobs
∑

(

(αobs − αmodel)
2 + (βobs − βmodel)

2

σ 2
ast

)

. (19)

Here α and β are the on-sky angular coordinates and Nobs is the

number of observations of the source. For a single star, we would

expect this to be close in value to ∼Nobs − 5, where the five

corresponds to the degrees of freedom of the astrometric fit.

When we add the induced motion of a binary, we expect the χ2 to

increase by χ2
binary = δθ2/σ 2

ast from which we can make a prediction

of the Unit Weight Error (UWE)

UWEpred =

√

χ2
total

Nobs − 5
≃

√

1 +
(

δθ

σast

)2

(20)

(ignoring cross-terms). This is a parameter recorded by the Gaia

survey, in the form of Renormalized Unit Weight Error (RUWE)

rescaling to account for systematic trends in the measurements2 and

thus can be used to explore the distribution of binaries across the

huge Gaia DR2 catalogue (Belokurov et al. 2020).

3 N U M E R I C A L D E V I AT I O N S

For systems with longer periods, or those inhabiting certain

(un)fortunate parts of parameter space, the presence of a binary

companion biases the astrometric fit, such that the inferred parallax,

position, and proper motion are inaccurate. These cases defy

easy analytical exploration, but can be modelled numerically. By

fitting single-body astrometric solutions to their more complex on-

sky motion, we can compare the accuracy and precision of our

astrometric fits as a function of the properties of the binary.

3.1 Path of the c.o.m.

Given the above tools, we map out the path across the sky of the c.o.l.

of a binary system – combining the on-sky motion of the c.o.m. and

the c.o.l. The former moves as a single body, including the effects

of parallax, and can travel a non-negligible distance on sky over the

observing period. The latter is a correction to this motion capturing

the Keplerian binary orbit, and can be assumed to be sufficiently

small such that the orbit is constant over the observing period (i.e.

the parameters of the orbit, including viewing angles, are constant)

and can be modelled as a linear correction to the c.o.m. position.

The single body motion depends on the orbit of the Earth, and

the position and proper motion. The most natural coordinate system

to use is the ecliptic, as it is the Earth’s motion around the Sun

that traces the parallactic ellipse. Letting φE be the phase of Earth’s

orbit and eE the eccentricity, we can express the full single-body

astrometric motion as

�α(t) = �α0 + (t − t0 − tb)μα

−
̟

cos βi

(cos ψ + eE(sin ψ sin τ − cos φ)) (21)

and

�β(t) = �β0 + (t − t0 − tb)μβ

−̟ sin βi(sin ψ + eE(cos ψ sin τ + sin φ)), (22)

where

tb =
Au cos βi

c
(cos ψ − cos ψ0 + eE(sin τ sin ψ − sin τ0 cos ψ0)),

(23)

ψ(t) = φE(t) − τ and τ = 2π(t−tp)

TE
, where TE is 1 yr and tp is the time

of any pericentre passage of the Earth.3 These results are derived in

detail in Appendix C.

2See the Gaia consortium’s technical note GAIA-C3-TN-LU-LL-124-01.
3For example, in relevance to Gaia we might use tp = 2456662.00 BJD,

shortly before the beginning of astrometric observations in Gaia DR2, t0 =
2456863.94 BJD.
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3.2 Path of the c.o.l.

As the binary separations are always small (compared to angles

spanning the whole sky), the addition of the binary component is

approximately linear.

Section 2.5 has mapped out the contribution due to the binary

orbit, but one final transformation must be made to align the

orientation of the binary system with our on-sky coordinates of

choice. We could imagine taking the system shown in Fig. 1 and

putting a pin through the origin, along the line of sight, and then

rotating the page beneath that pin. This introduces one last viewing

angle, the orientation of the system relative to our reference axes,

ωv . We can also at this point move from coordinates describing

physical distances to movements on sky by multiplying by the

parallax, ̟ , (as a is given in AU) to give the deviations of the c.o.l.

in the azimuthal and polar coordinates of our chosen astronomical

system (αb, βb):

αb = ̟ (i cos ωv + j sin ωv) and βb = ̟ (cos ωvj − sin ωvi).

(24)

Thus, adding equations (21), (22), and (24), we can describe the

motion of the c.o.l. as observed by a survey such as Gaia. Examples

of such motions are shown for eight mock observations in Fig. 2, as

detailed in the next section.

4 MOCK O BSERVATIONS

We can generate mock observations by calculating the position of

the c.o.l. at a series of times. For significant binary separations, this

will deviate from the single-body orbit; thus, it is of interest to ask

how well we might fit a single-body orbit to the observed path and

how far our fit may be from the true parameters.

As an exploratory exercise, we have done this for two million

systems, for which we have chosen the parameters of the binary

based on the distributions listed in Table 1. For simplicity, we

work in coordinates aligned with the ecliptic plane, though as long

as we are consistent we are free to use any angular coordinate

system.

The distributions of these parameters have been chosen to be

both qualitatively representative of real data and relatively simple.

In some places, a balance has been struck between the two. For

example, the distributions of ̟ , μα , and μβ are taken from simple

fits to one million random Gaia sources (with parallax over error

greater than 15), while the angular positions are chosen to be

uniform on sky – whereas in reality stars are much more clustered

in the plane of the Milky Way and towards the Galactic Centre. As

the equations describing on-sky motion are approximately linear

in parallax and proper motion, the actual value should have little

impact on the offset (the value of interest).

The masses of the brightest star are taken from an initial mass

function proportional to M−2.3, limited to stars above 0.5 M⊙ (a

range in which most IMFs converge). We initially experimented

with an empirical period distribution of binaries from Ragha-

van et al. (2010), though this peaks at a period of ∼100 yr,

at which binary motion is negligible within Gaia’s temporal

baseline (and also orbital separation is large enough that the

sources may be independently resolvable depending on parallax).

Instead, we limited our period to 10 yr (effectively restricting the

binary separation to a few mas for our parallax distribution), and

chose a distribution that favours short periods and resembles the

Raghavan et al. (2010) distribution if curtailed at 10 yr, a range

containing around 20 per cent of all binaries. For simplicity, we

use a uniform distribution of luminosity ratios. In general, we

expect luminosity and mass ratio to correlate so, to (very loosely)

represent this, we choose a value of q log-normally distributed

around l. Thus, q will generally be close in value to l, but also

tend to be slightly larger (luminosity normally scales strongly

with mass) and have a wide spread that can encompass dark-

massive companions and low-mass bright giants. The eccentricity

was chosen to produce more circular orbits than highly eccentric

ones. Finally, t0, θ v , φv , and ωv are all parameters we expect to be

isotropic.

The sample of generated systems is intended to represent actual

systems only in a loose sense – the focus being on spanning the

parameter space with a sensible distribution, not on recovering

detailed statistics of actual binaries. If we were really inclined

to scale up the proportion of binaries of these properties to the

whole sample of observed stars in a survey such as Gaia, it

would be contingent on estimating the fraction of all stars that

are unresolved binaries with periods less than 10 yr. We expect

other significant sources of error to be the choice of distributions of

l and q (which are chosen for numerical convenience not based on

physics or observations), which may cause over/underabundances

of some types of systems but are unlikely to change bulk

properties.

For each system, we calculate the position of the c.o.l. at

100 times, randomly spaced over a 22 month period (a rough

approximation to the Gaia survey) – with an added astrometric

error of σ ast = 0.2 mas, distributed isotropically on sky. To simulate

observations, we fit single-body astrometric solutions to the sample

of generated mock observations, and via linear least squares, we

find best fits and errors on �α0, �β0, μα , μβ , and ̟ (details of

these fits are given in Appendix D).

4.1 Results from mock observations

Fig. 2 shows a sample of eight astrometric mock observations,

including their parameters. The first five have binary periods

less than the observing time of 22 months, while the last three

have longer periods. All systems shown have significant binary

motions, and many show substantial deviation from their c.o.m.

motion. However, not all of them have large UWE, as variation,

particularly in proper motion, can mimic the effect of the binary

at long periods, and at short periods binary deviations can act as

extra astrometric noise and just increase variance in the astrometric

fit.

Some binary motion is not easily approximated by parallactic

motion – in the first example in Fig. 2, a binary period of just under

half a year gives a smooth well-behaved curve, but one impossible

to fit well with a single-body astrometric fit. The third example

is one of a small but significant minority in which binary motion

at a period close to 1 yr enlarges (or in other cases contracts) the

parallax ellipse and changes the inferred parallax significantly. At

the same time, some binaries with long periods and large on-sky

deviations are fitted very well by the model, which translates their

on-sky motion to erroneous proper motion.

4.2 Distribution of binary deviations

The parameter space over which we have sampled binaries is

large (12 dimensional). For real observations, it could feasibly

be even larger, including information about scanning laws and

variable errors. Thus, the only conclusions we can draw from

the mock data are about the large-scale distributions, particularly

MNRAS 495, 321–337 (2020)
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about the magnitude of departures from the true astrometric so-

lution for the c.o.m. motion and how this depends on binary

parameters.

In Fig. 3, we compare the period of binaries to the shift

in inferred parallax, �̟ = ̟ − ̟ true, total proper motion,

|�μ| =
√

(μα − μα,true)2 + (μβ − μβ,true)2, and the goodness of

fit as characterized by observed UWE (equation 20). We show

the number density of all our mock observations (top row), and

the distribution compared with reference to δθ (bottom row)

– a close proxy for the magnitude of the contribution of the

binary.

Starting in the left-hand column, we see that the vast majority

of systems have small and likely imperceptible parallax deviations,

but some can be shifted by 1 mas or more. As we might expect,

parallax shift is only significant for systems with periods close

to 1 yr, a relationship that would likely become tighter for a

longer observing period. Those systems with large |�̟ | tend

to have a significant binary component (δθ ∼ 1 mas), but it

is not the case that the most extreme binaries give the largest

shift.

Unlike the parallax, the proper motion deviations (middle col-

umn) can be large (� 10 mas yr−1) for any period longer than about

1 yr, and the most extreme binaries tend to provide the largest

�μ. Finally, the UWE (right-hand column) also peaks at periods

close to 1 yr, but can be significant in systems with any but the

smallest period (note, however, that short-period systems at small

distances can provide significant UWE but are lacking in our mock

sample). For a fixed period, higher δθ corresponds to higher UWE.

Few systems at 10 yr periods have significant UWE, but there it

is clear that UWE > 2 can still occur even in systems with P >

10 yr.

UWE scales linearly with parallax – and thus closer systems

can have significantly larger values. The highest parallaxes used in

the mock observations are around 10 mas. For systems in the local

Figure 2. Eight example unresolved binaries, showing: the motion of the centre of mass (black line) that moves as a single body, the motion of the centre of

light (red line) that deviates due to binarity, and the simulated observations including error that we fit to (red dots). The best-fitting single body curve is also

shown (dashed blue). Also shown in the top left is the ellipse (or fraction thereof) traced by the centre of light excluding parallax motion – to the same scale.

The properties of each system are shown to the right of the plots. Values derived from the least-squares fit are given with errors (true values in brackets). 1000

such fits can be viewed here.

MNRAS 495, 321–337 (2020)
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Table 1. Parameters and distributions used to generate the mock observa-

tions. The first five define the single-body astrometric motion and the others

define the binary motion. Here U[a, b] represents a uniformly drawn random

number between a and b, N[μ, σ ] represents a number drawn from a normal

distribution with mean μ and width σ , and S[μ, σ , ς ] is a draw from a

split-normal distribution with mode μ, and width σ below the mode and ς

above.

Variable Description Distribution

̟ [mas] Parallax 10S[−0.05, 0.17, 0.36]

α0 [rad] Azimuthal position (t=0) 2π · U[0, 1]

β0 [rad] Polar position (t=0) sin −1(U [−1, 1])

μα [mas yr−1] Azimuthal proper motion N [−1.6, 7.6]

μβ [mas yr−1] Polar proper motion N [−3.0, 7.9]

l Binary luminosity ratio U [0, 1]

q Binary mass ratio l · 10N[0, 1
2

]

P [yr] Binary period 10 · U [0, 1]2

t0 Time of binary periapse P · U [0, 1]

M [M⊙] Mass of bright companion 1
2

(1 − U [0, 1])−0.77

e Binary eccentricity U [0, 1]2

θv [rad] Polar viewing angle cos −1(U [−1, 1])

φv [rad] Azimuthal viewing angle 2π · U [0, 1]

ωv [rad] Coord. projection angle 2π · U [0, 1]

vicinity of the Sun, parallaxes could reach 100’s of mas and thus

for the same systems, the signal could be very large, or alternatively

the magnitude of binary deviations could be an order of magnitude

smaller and still detectable.

4.2.1 Comparing to predicted UWE

In Fig. 4, we compare the predicted UWE as calculated via the

methods in Section 2.1 to that we find from fitting to the mock data.

Looking at the number density, we see that the predicted UWE is

effectively an upper limit on the observed UWE, with all systems

falling on or below the 1:1 line. It is systems with low periods,

peaking near 1 yr, for which the predictions and observations agree

well (lower periods may still be accurate, but both the predicted and

observed signals are very close to 1). As might be expected, closer

objects (larger parallax) have larger predicted and observed UWE.

For a given UWEpred, closer objects tend to have a higher UWEobs,

which is a selection effect on period (for a fixed δθ , further systems

must be wider binaries).

The eccentricity distribution is relatively flat, but there are a

few interesting features to note. Given the higher number of low-

eccentricity orbits, we would expect these to dominate across the

rest of the plot, but interestingly in the intermediate region (1 <

UWEobs < UWEpred), we see an overdensity of eccentric systems.

The reason for this is that the information content of an eccentric

orbit is syncopated, and the slow motion around apoapse is about

equally informative as the fast pericentre passage – thus, for long

period orbits, the observed UWE can still be relatively high if the

short observing window overlaps with pericentre passage. This is

more clearly seen in Appendix E, where we separate this plot by

period.

Well-predicted UWEs tend to have a higher �̟ , but this is

mostly due to the fact that their orbital period distribution overlaps

with 1 yr. More tellingly, the well-predicted orbits tend to have

low �μ – showing that the effect of the binary tends to either

be represented in the UWE or in extra proper motion, but not

both.

4.2.2 Magnitude of deviations

We have seen a few examples where the binary contribution can be

‘absorbed’ into the astrometric solution, and not show itself directly

in UWE. In Fig. 5, we explore this by comparing the total deviation

from the true parameters, weighted by their errors

��

σ�

=
√

(�̟

σ̟

)2

+
(�μα

σμα

)2

+
(�μβ

σμβ

)2

+
(�α0

σα0

)2

+
(�β0

σβ0

)2

(25)

to the UWE. This quantity goes to zero along the 1:1 line in the plot,

and thus systems on this line have most of their error dominated

by UWE. When above the line, most of the total error is absorbed

within the fit.

Comparing the first and second panels, we can see that the

low-UWE (�1.2) systems can be split into two major groups –

short-period systems with smaller parameter error, and very long

period binaries completely dominated by parameter error. Looking

to the remainder of the middle panel, we see that intermediate-

period systems vary greatly in the relative contribution of errors, but

interestingly contours of constant period agree well with constant

total error – i.e. the period is a good predictor of total error, but

not whether it will be absorbed into the fit or the UWE. Finally,

looking at the binary contribution, as described by δθ , we see that

both UWE and total error increase with more significant binaries.

This behaviour complicates the simple interpretation of a single

object and what can be inferred from its UWE. The analytic

prediction, working from an observation back to the properties of

the binary, will give a lower limit on the size of the orbit/mass of

the components – but depending on unseen factors that may be

a lower limit by some small percentage or orders of magnitude.

For a large population, this suggests that UWE will be a relatively

robust measurement of binarity, though again an underestimate.

It is possible that more information about the binary can be

extracted by comparing to the covariance of errors in the parameter

estimation (UWE being effectively the collapse of these variances

and covariances to a single scalar quantity).

5 R EAL O BSERVATI ONS

The importance of these short-period binaries on astrometric obser-

vations can be split into two cases. In the first, they are a blessing,

giving us a new method for identifying binary systems – imperfectly

but potentially in huge numbers, or reliably across populations. In

the second, they are a nuisance, biasing a small fraction of our

sample with no clean or universal way to account or adjust for

them.

5.1 Binary identification

For any observed astrometric system, we can measure the UWE.

The question is then whether we can reliably convert this to an

inference about the presence and properties of a possible binary.

Fig. 6 shows, as a function of the observed UWE of our mock

observations, the true δθ . There is a wide spread in δθ for any given

UWE, but for higher UWE the majority of systems do lie along

a relatively tight relation (within a factor of 2 of the prediction

of equation 20) and, perhaps even more informatively, negligible

systems lie beneath that line. Thus, according to these data, observed

UWEs of above ∼1.4 could reliably be inferred to correspond to

binary systems, and for a population the median properties of these

MNRAS 495, 321–337 (2020)
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330 Z. Penoyre et al.

Figure 3. Comparison of the parallax and proper motion deviations, and the observed UWE, as a function of period. The x-axis is expressed as
√

P such as

to have uniform density of samples (see table 1). In the upper row, figures are coloured by number density, and in the lower by the median δθ that is a rough

representation of the magnitude of the binary contribution. The vertical dashed lines show periods of 1 yr and of 22 months. We see that parallax is most

affected by systems with a binary period of ∼1 yr, even if the effect of the binary is modest (δθ � 1 mas). Proper motion can be affected by binaries of periods

�1 yr and the effect increases for more significant binary motion. Finally, the observed astrometric error, as expressed through the UWE, also peaks towards

shorter periods, though less starkly than the parallax, and scales with the binary contribution.

Figure 4. Comparison of the predicted UWE (via Section 2) and the UWE inferred from our mock observations. The dashed diagonal line shows a 1:1

correlation and the horizontal denotes an observed UWE of 1. Colour shows the median value of the specified parameter in each bin (save for the number

density plot).
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Binary deviations 331

Figure 5. Comparison of the total variation (the sum of squares of all parameter deviations normalized by their errors) including UWE to the UWE alone.

A 1:1 dotted line is shown for reference. Systems where most of the error is translated to UWE lie on or near this line, while others where significant binary

motion has resulted in large deviations of the inferred parameters (but small corresponding UWE) are well above this line. We show the number density of all

measurements, and the median period and δθ .

Figure 6. Comparison of the observed UWE to the true δθ . Though the

spread is large, above UWEs of around 1.4 (dotted line) there are negligible

systems which do not contain a significant binary. For a given UWE

(observable), we might ask whether we can constrain the binary properties.

Confidence intervals of δθ for a given UWE are shown at 5 per cent intervals,

ranging from 95 per cent (yellow) to 5 per cent (blue) – showing that we can

predict with relatively confidence a value of δθ (within a factor of 2) but

that the tail of the distribution skews to much higher values.

binaries can be well estimated. For an individual system, we can only

make a probable estimate of δθ , and there is always the possibility

of a wild underestimate.

If the parallax is well constrained, δθ can be converted to a

physical separation between the c.o.l. and c.o.m. If � can be

estimated, this can be further translated to the true binary separation.

Alternatively, if the period and phase are known, we can make

a much more exact estimate of UWE for a given system (see

Appendix B) and thus comparing to observations �a can be

precisely characterized.

This ignores any other sources of erroneous UWE that may exist

in the data set – either due to systematic errors, occasional oddities,

or other astrophysical sources. When applying this metric to real

data sets, the precision of measurements of UWE will need to

be tested explicitly to make inferences about individual objects. It

may also be the case that other observed quantities, such as radial

velocities or error on astrometric parameters (possibly including

the covariances) can further help delineate and characterize binary

systems.

5.2 Binary contamination

In Fig 7, we show the deviations and errors observed in our mock

sample of two million binaries. Separating by period, δθ , and

UWEobs illuminates which systems fill out the total distribution

(black).

The largest panel shows the distribution of proper motion anoma-

lies, with a clear bimodal behaviour – with mostly longer period

systems having significant binary-induced proper motion, while for

most short-period systems the proper motion signal is consistent

with noise. A cut on UWE does not differentiate these two families,

while a cut on δθ puts a strong upper limit on |�μ|
σμ

.

A UWE of 1.4 or below has been suggested as benchmark for

removing binary contaminants. However, such a cut (yellow) still

leaves around half of the binaries with δθ > 0.5 and the majority

of systems which have proper motion which have been skewed by

multiple σμ. This sample does exclude the highest values of σ̟

and σμ, suggesting that they are well fitted, simply erroneously so.

As we have stated before, this is the impact of binaries with periods

a factor of a few times the observing period, for which the partial

binary orbit mimics proper motion.

Smaller binaries, with lower values of δθ can still have significant

UWE and cause large errors in parallax and proper motion. These

account for almost all of the systems with a small |�μ| and none of

the systems with |�μ| � 10. Shorter period binaries (red) can still

have significant δθ and UWE, and as a population have the highest

|�̟ | (as we would expect given that this bracket covers the crucial

1 yr binary period). Significantly fewer of the high proper motion

anomaly systems have short periods.

Before moving on from this plot, it is interesting to discuss how

it would change if we had a longer observation interval. This would

raise the period above which binary motion could be disguised as

proper motion – narrowing the right-hand peak in |�μ|
σμ

and moving

it to higher values.

Denoting the fraction of all stars that are in binaries with periods

less than 10 yr as ν, we can make some rough estimates for the

MNRAS 495, 321–337 (2020)
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332 Z. Penoyre et al.

Figure 7. The distribution of our mock observations, as a function of the

observed deviations and errors. As well as the total sample (black), we show

subsets with UWEobs < 1.4 (yellow), δθ < 0.5 mas (orange), and P < 4 yr

(red). All y-scales are linear.

degree of binary dilution we should expect to see in astrometric

samples, with UWE < 1.4 and

(i) δθ > 0.2 mas: 30ν per cent

(ii) δθ > 1 mas: 8ν per cent

(iii) �̟ > σ̟ : 20ν per cent

(iv) �̟ > 0.1 mas: 0.6ν per cent

(v) �μ > 2σμ: 40ν per cent

(vi) �μ > 1 mas yr−1: 4ν per cent.

This is of course dependent on survey length. Again, we are using

Gaia DR2’s 22 months here – longer baselines will lower these

percentages, though they will also be able to detect deviations in

systems with P > 10 yr.

Finally, it is interesting to focus on the subset of systems with

periods close to 1 yr, which can well mimic parallactic motion over

a binary orbit. Limiting ourselves to 0.9 < P[yr] < 1.1, the number

of systems with �̟ > 0.1 mas goes up to 4ν per cent and we find

that ∼ 0.01ν per cent have �̟ > 1 mas.

UWE < 1.4 can still be a sensible and useful delimiter – but

any such cut will let through a fraction of binaries, some of which

will be significantly affected by their binarity. Depending on the

case at hand, these may have little to no impact, or results may be

skewed by either large numbers of small but significant binaries, or

the very occasional extreme case. For example, though the shifts

to ̟ are generally small, this measure is necessary to calculate

the absolute magnitude of the star, and thus the most extreme

binary contributions may change the inferred luminosity of a star

significantly.

6 C O N C L U S I O N S

This paper has studied how unresolved binary systems will alter

astrometric observations.

For shorter period binaries (� the observational baseline of the

astrometric survey), the motion of the c.o.l. leads to increased error

when fitting single body five-parameter astrometric solutions.4 This

excess error then provides a lower limit to the on-sky angular

separation of the binary, which – assuming that the distance is well

known – can be translated to physical separation and other binary

properties. It is a lower limit, as there is always the possibility that

some of the binary motion is translated into a shift from the true

astrometric parameters (which describe the motion of the c.o.m. of

the system), and thus the observed noise will be lower and the fit

slightly biased. It is important to note that this ignores other sources

of noise and confusion, and thus anomalously high astrometric error

may be observed in single star systems – the reliability of this metric

will depend on the instrument and quite likely the particular star.

This means we can confidently make observations on a population

level (when random noise will cancel out and astrometric bias will

dilute our results but not mask them entirely), but inferences about

individual systems will require very careful interpretation and may

be impossible for many systems.

Longer period systems are more likely to bias the astrometric

fit. Much of this bias is soaked up into excess proper motion (and

position, but this is less physically meaningful). For systems with

a period close to 1 yr, it may also cause the parallax to be under-

or overestimated. This is less likely for eccentric orbits, for which

the motion around their orbit is syncopated and thus is less easily

mistaken for a parallactic ellipse. Periods significantly longer than

the observational baseline (such that negligible orbital motion is

observed) will just cause a constant offset of the position (thus

binaries on 10+ yr orbits will have negligible impact on Gaia DR2).

All our analysis is limited to binary systems, though in theory

much of this could be extended to systems with higher multiplicities.

Depending on the scales, multiple systems may be well approxi-

mated as a binary (e.g. a hierarchical triple where a tight binary

behaves analogously to a single star). As we are most sensitive to

orbits with periods close to 1 yr, this may limit the multiplicity as

4Future Gaia data releases will include astrometric fits with >5 parameters

(for a subset of stars) that will capture the binary motion described in this

paper.
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the more tightly packed a many-body system the more dynamically

unstable it becomes.

We hope this work provides a window both into how astrometric

observations may be affected by binaries, but also how binaries may

be identified and in some case characterized from the discrepancy

between their on-sky motion and a single-body astrometric fit. We

explore this directly in Belokurov et al. (2020), in which we examine

how UWE varies over the whole Gaia DR2 sample – identifying

populations of systems that show signs of binarity and comparing

to catalogues of known binaries and exoplanet hosts.
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A P P E N D I X A : TH E C . O . L .

Finding the ‘c.o.l.’ of two objects is a similar, though much less well-

defined exercise, to finding the c.o.m. It is only really a meaningful

measure when the two (or more) sources are partially or completely

unresolved, and has limited physical significance, being more a

function of our observations than the behaviour of the system.

For point sources, and sufficiently small extended objects, objects

will appear to have some finite width set by the resolving power

of our instruments (and any additional sources of noise such as

atmospheric turbulence) which here we will model as a Gaussian

PSF – though a similar argument could be extended to any finite

width symmetric distribution. We can model this as

b(x) ∝ Le
− (x−μ)2

2σ2 , (A1)

where b is the surface brightness at some point x on sky (which can

be measured in physical units or angular distances). L is the intrinsic

luminosity of the source,5 μ is the actual position of the source, and

σ is the width of the PSF. Under the assumption that the PSF is

mostly dependent on the instrument, not the source, σ should be a

constant across similar observations, and for x measured in angle on

sky, σ may be approximately constant for all observations. Though

this is a one-dimensional distribution, the arguments can easily be

extended to 2D.

We are mostly interested in pairs of unresolved sources, whose

total brightness at some point along the line passing through both

of their positions can be modelled as

b�(x) ∝ LAe
− (x−μA)2

2σ2
A + LBe

− (x−μB )2

2σ2
B , (A2)

where (x − μA) ≪ σ A and (x − μB) ≪ σ B for x between μA and

μB (i.e. between the two sources).

Thus, using the convention from Section 2.1 where L = LA and

l = LB

LA
< 1

b�(x) = L

(

1 + l −
1

2

(

(x − μA)2

2σ 2
A

+
(x − μB)2

2σ 2
B

))

+ O(4).

(A3)

When this system is observed, it will appear to be a single source

with a brightness L
′ = L(1 + l) + O(2) at a position μ

′
where

db�

dx
= 0. Thus,

μ′ =
μA + l

ǫ2 μB

1 + l

ǫ2

+ O(2), (A4)

where ǫ = σB

σA
.

Working in coordinates such that μA = 0 (centred on the brighter

object) and assuming that the PSF widths are the same for both

objects (which is reasonable for two objects of comparable lumi-

nosity in a close binary – though may cause significant deviations

in some cases), we recover the result from Section 2.1 describing

the position of the c.o.l. of an unresolved binary:

μ′ =
lμB

1 + l
+ O(2). (A5)

A1 1D scans instead of 2D images

The above argument assumes that we are free to orient the direc-

tion along which we measure the brightness of the source (and

thus find the maximum) but that may not always be true – for

example, the Gaia survey provides much more accurate astrometric

measurements parallel to the direction it scans across the sky

than perpendicular, and for dimmer sources it only records 1D

positions.

If the system is scanned at an angle φ to the line connect-

ing the two sources (where we can take φ to run from 0 to
π
2

without loss of generality), then the measured c.o.l. position

is modulated by a factor of cos φ. This means that for scans

that only resolve perpendicular to the binary no c.o.l. motion is

detected.

In general, we can assume that scan directions of the binary

will be roughly isotropic and thus the observed c.o.l. shift will be

5In reality, the luminosity is spread over a spectrum of wavelengths and the

observed brightness depends on the response function of our telescope. As

we will be comparing observations made by a single instrument, we can

think of L as already having taken the response function into account.
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modulated by the average of cos φ for 0 < φ < π
2

meaning observed

displacements will be reduced by a factor of 2
π

.

In very particular cases, it is possible that the scans are aligned

and timed such that an effectively stationary binary (i.e. one with a

long period) appears to be moving significantly on sky and might be

mistaken for other forms of motion. The frequency of such objects

will be highly dependent on the form of the scanning law and a

large degree of chance, but can be expected to be rare.

APPENDIX B: A NA LY TIC SOLUTIONS FOR

L O N G E R P E R I O D B I NA R I E S

The analytic deviations derived in Section 2 rely on the fact that the

number of observed binary orbits is �1, and thus the average over

all time will tend to the average over a single orbit.

It is possible to perform the same analysis analytically (though

requiring numerical integration) for any system provided the period

and phase of the orbit at some point in time are known. For the vast

majority of systems, this information is exactly what we would like

to derive, and thus this analysis cannot be performed. However,

for known binary systems where this information is available

we could in theory use this to glean yet more insight into the

system.

Let us first write out the trigonometric part of equation (15) in

full

ǫ =
̟�a

�

1 − e2

1 + e cos η

(

cos φ − cos ψv cos φv sin2 θv

sin φ cos θv

)

, (B1)

where

�(φv, θv) =
√

1 − cos2 φv sin2 θv (B2)

is a constant throughout the orbit.

It will be useful to convert all time dependence [currently

expressed in φ(t)] in terms of η such that this becomes

ǫ =
̟�a

�

(

�2(cos η − e) − cos φv sin φv sin2 θv

√
1 − e2 sin η√

1 − e2 sin η cos θv

)

.

(B3)

For a significant number of observations taken at uniform (or

uniformly random) intervals between some t1 and t2 of a known

binary with period P that passes through periapse at t0 (which we

will take to be the latest periapse passage before t1), we can integrate

this between η1 and η2 satisfying

t1 − t0 =
P

2π
(η1 − e sin η1), (B4)

which can be solved numerically (for η2 we can perform the same

calculation substituting t1 for t2).

Now we can find the time-averaged position via

〈ǫ〉 =
1

t2 − t1

∫ t2

t1

ǫdt =
1

η2 − η1

∫ η2

η1

(1 − e cos η)ǫdη; (B5)

at this point it will be useful to define a family of integrals

Iab(η1, η2) =
∫ η2

η1

sina η cosb η. (B6)

Letting �η = η2 − η1 and �cn = cos (nη2) − cos (nη1) (and

similarly �sn for sines), we can write out all the terms needed for

this calculation:

I00 = �η

I10 = −�s1

I01 = �c1

I20 =
�η

2
−

�s2

4

I11 = −
�c2

4

I02 =
�η

2
+

�s2

4

I30 = −
3�c1

4
+

�c3

12

I21 =
�s1

4
−

�s3

12

I12 = −
�c1

4
−

�c3

12

I03 =
3�s1

4
+

�s3

12
. (B7)

Note that when �η is an integer multiple of 2π all terms except

I00, I20, and I02 are 0 – hence the calculation is significantly easier if

we integrate only over one full orbit. For arbitrary η1 and η2, these

can take any value and must be pre-calculated (though for large δη,

all trigonometric terms will be small, leading us back to the single

orbit solution).

Performing the integral over time is thus simplified to the exercise

of separating out powers of cos η and sin η. This gives

〈ǫ〉 =
̟�a

��η

(

�2ζ − sin φv cos φv sin2 θv

√
1 − e2(I10 − eI11)

cos θv

√
1 − e2(I10 − eI11)

)

(B8)

and thus

|〈ǫ〉|2 =
̟ 2�2a2

�η2
(�2ζ 2 − 2 sin φv cos φv sin2 θv

√

1 − e2

× (I10 − eI11)ζ + (1 − sin2 φv sin2 θv)(I10 − eI11)2),

(B9)

where

ζ = (1 + e2)I01 − e(I00 + I02) (B10)

(which we have separated out only to keep the formulas from spilling

out over many lines).

Performing the same analysis, we can find

〈|ǫ|2〉 =
̟ 2�2a2

�η

(

I00e
2 + I102e

√

1 − e2 sin φv cos φv sin2 θv

− I01e(2 + e2)�2 + I20(1 − e2)(1 − sin2 φv sin2 θv)

−I112(1 + e2)
√

1 − e2 sin φv cos φv sin2 θv

+I02(1 + 2e2)�2 − I21e(1 − e2)(1 − sin2 φv cos2 θv)

+I122e
√

1 − e2 sin φv cos φv sin2 θv − I03e�
2
)

(B11)

and thus from equation (10) we can find δθ exactly.

In this regime, we can also find the proper motion anomaly, by

averaging ǫ̇ over �η:

〈ǫ̇〉 =
1

t2 − t1

∫ t2

t1

ǫ̇dt =
ǫ(t2) − ǫ(t1)

t2 − t1
. (B12)

It is interesting to note that while the leading order term of 〈ǫ〉
decays as �η−2 (and 〈|ǫ|2〉 tends to a constant), the proper motion

only decays as �η−1 on average – but will be zero for any orbit
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harmonic with the observing period. Thus, even for large �η (many

observed orbits) there may still be a significant bias on proper

motion.

A P P E N D I X C : SI N G L E BO DY M OT I O N

The single body motion can be captured by considering the unit

vector directed towards the source from the observer. If at some

initial time, t0, the source is at some on-sky position (azimuthal and

polar angle) (α0, β0), and is moving with some proper motion (μα ,

μβ ), then at time t the unit vector from Gaia to the source obeys

r̂ =
〈

r̂0 + (t ′ − t0)

(

μα p̂0 + μβ q̂0 + vr

̟

Au

r̂0

)

−
̟

Au

b(t ′)

〉

.

(C1)

The <> brackets denote normalization, vr is the radial velocity

(which will disappear for all but the closest, fastest moving stars),

and t ′ = t − 1
c
(b(t) − b(t0)) · r̂0 accounts for the slight variation in

light traveltime due to Earth’s orbit (at most a 16 min correction).

b is the barycentric position of the satellite at time t and p is the

parallax (i.e. it is this term that gives the epicycle-like motion of the

source as viewed by Gaia and allows us to find the parallax) and Au

is one astronomical unit. Three orthogonal unit vectors describe the

line-of-sight direction and those of increasing azimuthal and polar

angle, respectively

r̂0 =

⎛

⎝

cos α0 cos β0

sin α0 cos β0

sin β0

⎞

⎠, p̂0 =

⎛

⎝

− sin α0

cos α0

0

⎞

⎠,

q̂0 =

⎛

⎝

− cos α0 sin β0

− sin α0 sin β0

cos β0

⎞

⎠. (C2)

All angles and angular velocities are expressed in radians.

As r̂ gives the new approximate unit vector, we can find the

azimuthal and polar angles at a given time via

α(t) = tan−1 r̂y

r̂x

and β(t) = tan−1 r̂z
√

r̂2
x + r̂2

y

. (C3)

This expression ignores many (normally small) effects including

evolution of the proper motions, either due to acceleration of the

source or projection effects, as well as radial motion and relativistic

time corrections. For our mostly qualitatively arguments it shall

suffice, but a fuller description can be found in Lindegren et al.

(2016).

In C1, we linearize these equations under the assumption that

motion on sky is small to give a simpler approximate description of

the motion.

C1 Linear model

The one-body astrometric motion (as expressed in equation C1) can

be linearized in the limit of small on-sky motion. We can express the

expected position of the object at time t as α(t) = αi + �α(t), where

αi is some initial reference position which the motion remains in

the vicinity of. Similarly, β(t) = β i + �β(t). Note that �α0 =
�α(t0) and similarly �β0 are not necessarily 0, accounting for the

small offset caused by error and binary motion. We can assume

that the deviations are small, except in edge cases with coordinate

singularities but these can be avoided by a change of frame.

C1.1 Simplifying the barycentric position

It will be most convenient here to use coordinates aligned with the

Earth’s orbital plane (as it is motion in this plane that translates to

the observed parallactic elliptical motion) and centred on the Sun.

Thus, let αi be the azimuthal angle covering [0, 2π ] and β i the polar

angle [− π
2
, π

2
]. In these coordinates, the position of the Earth at

time t (and to a good approximation any observing instrument in

Earth’s orbit or at an Earth–Sun Lagrange point) is

b = Au(1 − e sin η)

⎛

⎝

cos �

sin �

0

⎞

⎠, (C4)

where e is the eccentricity (=0.0167), � is the phase of Earth’s

orbit, and η is the eccentric anomaly satisfying

cos(�) =
cos η − e

1 − e cos η
, sin(�) =

√
1 − e2 sin η

1 − e cos η
(C5)

and

t − tp =
TE

2π
(η − e sin η), (C6)

where TE is 1 yr and tp is a reference time at which the Earth is at

periapse.

In general, this last expression cannot be inverted, but in the limit

of small eccentricity we can expand it to

η = τ + e sin τ + O(2) , where τ =
2π (t − tp)

TE

, (C7)

which gives

b = Au

⎛

⎝

cos τ − e(1 + sin2 τ )

sin τ + e sin τ cos τ

0

⎞

⎠. (C8)

C1.2 Linearized motion

The new normalized radial unit vector obeys

r̂(α, β) = r̂i + �α cos βi p̂i + �βp̂i, (C9)

where r̂i, p̂i, and q̂i are the equivalent of the vectors in equation (C2)

evaluated at (αi, β i) and are all orthogonal.

As all deviations are small the new, non-normalized, radial vector

accounting for the motion of the source is

r = r̂i + (�α0 + (t ′ − t0)μα) cos βi p̂i + (�β0 + (t ′ − t0)μβ )q̂i

+vr

̟

Au

r̂i −
̟

Au

b(t ′) + O(2). (C10)

All but the first term on the RHS are small and thus the magnitude

of this vector is

|r| =
√

r · r =
√

1 + 2
̟

Au

(vr − b(t ′) · r̂i) + O(2) (C11)

and thus the new radial unit vector can also be expressed as

r̂ = r̂i + (�α0 + (t ′ − t0)μα) cos βi p̂i + (�β0 + (t ′ − t0)μβ )q̂i

+
̟

Au

((b(t ′) · r̂i)r̂i − b(t ′)) + O(2). (C12)

C1.3 Total linearized motion

Taking equations (C9) and (C12) and projecting in the p̂i and q̂i

directions, we can express the on-sky motion of a single body

MNRAS 495, 321–337 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
5
/1

/3
2
1
/5

8
2
8
7
3
1
 b

y
 U

n
iv

e
rs

ity
 o

f P
itts

b
u
rg

h
 u

s
e
r o

n
 1

6
 J

u
n
e
 2

0
2
0



336 Z. Penoyre et al.

as

�α(t) = �α0 + (t − t0 − tb)μα

−
̟

cos βi

(cos ψ + e(sin ψ sin τ − cos φ)) (C13)

and

�β(t) = �β0 + (t − t0 − tb)μβ

− ̟ sin βi(sin ψ + e(cos ψ sin τ + sin φ)), (C14)

where

tb =
Au cos βi

c
(cos ψ − cos ψ0 + e(sin τ sin ψ − sin τ0 cos ψ0))

(C15)

and ψ(t) = �(t) − τ .

This shows the general form of parallactic motion – a linear

translation from some initial displacement (e.g. the �α0 + �tμα

term in equation C13) and a circular motion projected on sky due to

Earth’s orbit (e.g. the ̟ sin β isin ψ term in equation C14). The

projection effect is stark, as polar motion due to parallax goes

to zero near the ecliptic plane (β i ≈ 0) and azimuthal motion

approaches a coordinate singularity at the poles (though changing

to another frame of reference this behaviour disappears). This

projection effect is the reason that it is much more difficult to

determine parallaxes of objects on the ecliptic plane, only one

component of the motion is visible, and thus the constraining

power of the observations is reduced. The small factors of e and

tb slightly complicate this simple picture but only at the level of a

few per cent; thus, intuition can still be gained from this linearized

form.

APPENDIX D : FITTING TO MOCK

OBSERVATIONS

To simulate observations, we can fit single-body astrometric solu-

tions to the sample of generated mock observations.

Given the linearized version of the on-sky motion (equations C13

and C14), we can write the on-sky positions as

(

αobs

βobs

)

= Xπ + σ�, (D1)

where σ� contains the error caused by the binary and by the random

systematic astrometric error, normally distributed around zero with

a width σ ast.

We can calculate the best-fitting five-parameter astrometric

model, π̂ , via linear least squares:

π̂ =

⎛

⎜

⎜

⎜

⎜

⎝

�α0

�β0

μα

μβ

̟

⎞

⎟

⎟

⎟

⎟

⎠

=
(

XT X
)−1

XT

(

αobs

βobs

)

, (D2)

where αobs and βobs are the vector of Nobs (=100) mock azimuthal

and polar coordinates and

X(t, θ, φ) =
(

1, 0, t − tb(t, θ, φ), 0, pα(t, θ, φ)

0, 1, 0, t − tb(t, θ, φ), pβ (t, θ, φ)

)

, (D3)

where

pα(t, θ, φ) = −
1

cos θ
(cos ψ + e(sin τ sin ψ − cos φ)) (D4)

and

pβ (t, θ, φ) = − sin θ (sin ψ + e(sin τ cos ψ + sin φ)) (D5)

[0 and 1 are vectors of Nobs zeros and ones, respectively, t are the

Nobs observing times, and ψ and τ are the corresponding Nobs values

of ψ(t, φ) and τ (t)].

We can calculate the observed UWE as

UWEobs =

∣

∣

∣

∣

∣

∣

∣

∣

(

αobs

βobs

)

− Xπ̂

∣

∣

∣

∣

∣

∣

∣

∣

σast

√
Nobs − 5

. (D6)

The corresponding errors in the parameters follow the 5 by 5

matrix

σ̂ 2
π = σ 2

ast · UWE2
obs(X

T X)−1, (D7)

where the on-diagonal terms give us the variance on a single

parameter and the off-diagonal terms the covariances. We will

express approximate errors in the parameters as the square root

of the on-diagonal terms.

APPENDI X E: PREDI CTED VERSUS

OBSERV ED UWE BY PERI OD

Fig. E1 shows the predicted UWE compared to the observed value

for binaries divided into three period intervals (separated at 2 and

5 yr). Now we can see very clearly the high good agreement between

predictions and the mock observations for short-period systems.

Even for periods a few times longer than the observing baseline (22

months), the observed UWE can be large.

Here we can see clearly that highly eccentric orbits, even on long

periods, can have large observed UWE – as though only part of

the orbit is resolved if that fraction overlaps with the fast motion

through periapse passage we still capture much of the total orbital

motion.
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Figure E1. Predicted versus observed UWE (as in Fig. 4) from our mock observations, separated by period of binary orbit. Top: P < 2 yr, Middle: 2 yr < P

< 5 yr and bottom: P > 5 yr. Note the changing scale of the colour bar for the median periods.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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