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Abstract

We develop and implement a model to analyze the internal kinematics of galaxy clusters that may contain
subpopulations of galaxies that do not independently trace the cluster potential. The model allows for substructures
within the cluster environment and disentangles cluster members from contaminating foreground and background
galaxies. We estimate the cluster velocity dispersion and/or mass while marginalizing over uncertainties in all of
the above complexities. Using mock observations from the MultiDark simulation, we compare the true
substructures from the simulation with the substructures identified by our model, showing that 50% of the
identified substructures have at least 79% of its members are also members of the same true substructure, which is
on par with other substructure identification algorithms. Furthermore, we show a ∼35% decrease in scatter in the
inferred velocity dispersion versus true cluster mass relationship when comparing a model that allows three
substructures to a model that assumes no substructure. In a first application to our published data for A267, we
identify up to four distinct galaxy subpopulations. We use these results to explore the sensitivity of inferred cluster
properties to the treatment of substructure. Compared to a model that assumes no substructure, our substructure
model reduces the dynamical mass of A267 by ∼22% and shifts the cluster mean velocity by ∼100 km s−1,
approximately doubling the offset with respect to the velocity of A267ʼs brightest cluster galaxy. Embedding the
spherical Jeans equation within this framework, we infer for A267 a halo massM200=(7.0±1.3)×1014Me h−1

and concentration = clog 0.71 0.3810 200 , consistent with the mass–concentration relation found in cosmological
simulations.

Unified Astronomy Thesaurus concepts: Galaxy clusters (584); Abell clusters (9); Galaxy distances (590); Redshift
surveys (1378); Jeans mass (869); Astronomy data modeling (1859); Astronomy data analysis (1858)

1. Introduction

Galaxy clusters are the most massive gravitationally bound
and relaxed structures in the universe, thereby representing
important laboratories for observational cosmology (Rines
et al. 2003, 2013; Voit 2005; Jones et al. 2009; Vikhlinin et al.
2009; Geller et al. 2013; Sohn et al. 2017). Due to their high
density of galaxies, they are also ideal for studying galaxy
interactions and the effect these interactions have on the galaxy
population. Galaxy clusters are studied in a multitude of ways,
from gravitational lensing, both weak and strong (e.g.,
Kneib 2008; Postman et al. 2012; Applegate et al. 2014;
Barreira et al. 2015; Gonzalez et al. 2015, and references
therein), to X-ray temperature measurements of hot intracluster
gas (Guennou et al. 2014; Moffat & Rahvar 2014; Girardi et al.
2016; Rabitz et al. 2017), to Sunyaev–Zeldovich effects
(Sunyaev & Zeldovich 1970; Churazov et al. 2015), to
spectroscopic velocity measurements of cluster members
(e.g., Rines et al. 2003, 2016; Geller et al. 2014; Stock et al.
2015; Biviano et al. 2016; Tasca et al. 2017, and references
therein). All of these methods can provide mass estimates, thus
constraining the high-mass end of the halo mass function,
thereby constraining cosmological parameters such as the
amplitude of the power spectrum or the evolution of dark
matter and dark energy density parameters.

When calculating cluster masses using the velocities of
cluster members, it is common to assume that the cluster is a
relaxed system with a gravitational potential and kinematics

that satisfy the viral theorem. However, such assumptions

neglect recent galaxy accretion that could alter the distribution

of galaxies in phase space (Regos & Geller 1989; van Haarlem

et al. 1993; Diaferio & Geller 1997; Rines et al. 2003).

Additionally, even in systems that appear relaxed, these

mergers can generate residual substructure within the cluster

environment such that individual galaxies are not necessarily

independent tracers of the gravitational potential (Dressler &

Shectman 1988; Biviano et al. 2002; Girardi et al. 2015). These

factors have the potential to impact dynamical mass measure-

ments, leading to systematic errors that will then propagate into

cosmological inferences.
Recent efforts have been made to identify substructure

within galaxy clusters. There are many 3D, 2D, and 1D tests

for substructure that have been developed in the past few

decades (Dressler & Shectman 1988; West et al. 1988; West &

Bothun 1990; Coziol et al. 2009; Hou et al. 2009). Pinkney

et al. (1996) compared and discussed the validity of some of

the earlier tests, while others have applied them to Sloan Digital

Sky Survey (SDSS) clusters (Einasto et al. 2012). Recent

efforts in substructure analysis have focused on identifying

subpopulations based on galaxy morphological types (e.g.,

Biviano et al. 2002; Barrena et al. 2007; Chon et al. 2012;

Girardi et al. 2015). Accounting for such substructure when

measuring dynamical masses is vital in achieving accurate

estimates. For example, Old et al. (2018) have shown that

almost all dynamical mass estimators overestimate cluster
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masses for clusters with significant dynamical substructure
compared to estimates for clusters without substructure.

Furthermore, the identification and proper modeling of
substructure may be important for distinguishing among
competing models for the nature of dark matter. For example,
under the standard cold dark matter (CDM) paradigm, dense
“cusps” form at the centers of dark matter halos (Dubinski &
Carlberg 1991; Navarro et al. 1996, 1997). In galaxy cluster
halos, CDM cusps will tend to bind the brightest cluster galaxy
(BCG) near the halo center. However, recent simulations
suggest that if the dark matter undergoes significant self-
interactions, the subsequent unbinding of central cusps
(particularly in response to major mergers) would allow BCGs
to “wobble” about the cluster center (Harvey et al. 2017; Kim
et al. 2017). Such wobbles could be detected as offsets between
clusters and their BCGs in the projected phase space.
Substructure can affect the detection of such offsets, as the
elements within a given substructure do not independently
sample a phase space that is representative of the cluster itself.

Clearly, substructure can affect inferences about the internal
dynamics of galaxy clusters. Here we devise a framework that
can account for both affects simultaneously. This allows us to
study the impacts of both phenomena on cluster mass estimates
and to marginalize over uncertainties in rotation and sub-
structure. In this paper we apply this model to our own
published spectroscopic observations of A267 (Tucker et al.
2017), combined with measurements from the redshift catalog
HectoSpec (Rines et al. 2013) to achieve a large sample. We
summarize these data sets in Section 4.1. In Section 2 we
describe the dynamical model, and we then apply the model to
A267 assuming a uniform velocity dispersion (Section 4.3) and
a dark matter halo model (Section 4.4). Throughout the
paper we use H0=100h−1 km s−1Mpc−1 and mass density
Ωm=0.3.

2. Galaxy Cluster Mixture Model

In this section we describe the mixture model for galaxy
cluster substructure analysis.

We model the observed distribution of galaxy positions and
redshifts as a random sample from several distinct galaxy
populations. We define the populations as the main cluster
population, a set of subpopulations of galaxies within the
cluster, and a contamination population including both fore-
ground and background galaxies. Because spectroscopic
observations are used as follow-up to already-identified clusters
with good photometry, the model incorporates into the
likelihood function the sky positions from a full photometric
catalog, as well as spectroscopic line-of-sight velocity
measurements of a subset of these galaxies. Therefore, we
define the likelihood function that, given a set of model
parameters q, describes the observed position and velocity
distribution as

=   , 1phot spec ( )

where phot is the likelihood function associated with the

photometric data set and spec is associated with the spectro-

scopic data set.
We model the discrete photometric sample of galaxies as

being drawn independently from an underlying surface bright-
ness profile RI ( ). Therefore, the likelihood for the observed

photometric sample is (Richardson et al. 2011)
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where  is the field of view (FOV), RI ( ) is the surface

brightness profile, Ngal is the number of galaxies observed in

the photometric data set, and ri is the position on the sky of

each galaxy. The constant of proportionality here does not

depend on the model. For a multipopulation model, the surface

brightness profile is the sum of the profiles for each individual

population:
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where Np is the number of populations in the model. For the

purposes of this paper we assume that all profiles (main cluster

halo and substructures) are dark matter dominated and therefore

follow a Navarro–Frenk–White (NFW) profile (Navarro et al.

1996):
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where νs and rs are the scale density and radius of an

NFW profile, respectively. Equation (4) simply projects the 3D

light profile νNFW onto the plane of the sky, yielding the 2D

light profile INFW. Luckily, this projection is analytic for an

NFW profile and is given by
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where x=r/rs (Bartelmann 1996).
The spectroscopic likelihood function used to describe the

velocity distribution is

 q= rP v , , 6
i

N

i ispec

spec

( ∣ ) ( )

where Nspec is the number of galaxies from the photometric

catalog with spectroscopic derived line-of-sight velocities vi
and qrP v ,i i( ∣ ) is the probability distribution of measured line-

of-sight velocity vi, given position ri, and model parameters q.
We can then marginalize this distribution over the populations

and invoke Bayes’s rule to write

åq q q q
q

=
=

r r
r

r
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P
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,
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The first term in the numerator is simply the number fraction of

galaxies within that population: q = =P M F N NM M tot( ∣ ) . The

second term in the numerator, qrP M,i( ∣ ), is the probability for

a galaxy at position ri given the population M and the model q,
which is directly proportional to the surface brightness profile

of the population: q p=r rP M r I N, 2i i M i M( ∣ ) ( ) . The denomi-

nator we can again marginalize over the populations so that

2

The Astrophysical Journal, 888:106 (22pp), 2020 January 10 Tucker et al.



åq q q=r rP P Q P Q,i Q
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p( ∣ ) ( ∣ ) ( ∣ ). And so we can rewrite

Equation (7) as
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The final probability distribution in Equation (8) describes
the velocity distribution for a given population M and position
ri. The modeling framework is flexible in the sense that any
choice of a velocity distribution function can be used here.
Although it is not the most physically motivated model, we use
a Gaussian velocity distribution similar to Mamon et al. (2013)
because it is easy to implement numerically and is a fairly good
approximation for the observed profile of galaxy clusters:
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where δi is the measurement uncertainty in line-of-sight

velocity vi, s ri M( ) is the projected velocity dispersion profile

of the Mth population evaluated at the sky position of each

galaxy ri, and á ñV M is the average velocity of the Mth

population. Once again the modeling framework is flexible to a

variety of choices of projected velocity dispersion profile. In

Sections 3 and 4.3, we apply a uniform velocity dispersion

s s=r M M( ) for both the main cluster halo and all subpopula-

tions, whereas in Section 4.4 we assume that the velocity

dispersion of the main cluster halo follows a dark matter halo

such that it is radial symmetric s s==r rM main main( ) ( ) and can

be evaluated using a Jeans analysis.
For real observations from galaxy redshift catalogs, the

contamination population of galaxies is typically dominated by
foreground and background clusters that happen to lie along the
line of sight to the cluster of interest. For this reason, extra care
must be taken when choosing a physically motivated
contamination model. We discuss the specific choices made
for contamination models in Sections 3.3 and 4.2 below.

For every model q, we can evaluate the probability that each
galaxy is a member of the various populations. Given a
galaxy’s velocity vi and position ri, the probability that it is a
member of population M is

å
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In the following sections we will use “probability of member-

ship to the cluster” to refer to the probability that an individual

galaxy belongs to either the main population or any

subpopulation, and we define this membership probability

as = - = 1 Mmem contam.
In order to fit this model, we use the nested sampling

algorithm MultiNest (Feroz et al. 2009), which simultaneously
calculates the Bayesian evidence, used for model selection, and
generates random samples from the posterior probability
distribution. We will use the Bayesian evidence as a metric
to select the optimal number of subpopulations for a given
data set.

3. Tests with Mock Observations from Simulations

The main goal of this modeling framework is to produce
more accurate estimates of cluster masses by accounting for
substructure of the cluster. Therefore, as a first test of this
modeling framework, we use mock galaxy cluster redshift
catalogs produced from the MultiDark Planck 2 N-body
simulation (MDPL2; Klypin et al. 2016).

3.1. The MultiDark Simulation

We conduct this analysis with mock observations generated
from a publicly available snapshot from MDPL2 simulation.6

MDPL2 is an N-body dark-matter-only simulation with 38403

particles in a box of length 1 Gpc h−1 and a mass resolution of
1.51×109Me h−1. The simulation was executed using
L-GADGET-2 (Springel 2005) and uses a Planck ΛCDM
cosmology (Planck Collaboration et al. 2014): ΩΛ=0.693,
Ωm=0.307, h=0.678, n=0.96, σ8=0.8828.
Halos and subhalos were identified from simulation data

using the ROCKSTAR halo finder (Behroozi et al. 2013),
which performed a clustering algorithm in the 6D phase space
(three positions and three velocities) of dark matter particles.
Subhalos were then populated by galaxies using the galaxy
assignment procedure UniverseMachine (Behroozi et al. 2019).
Unlike other galaxy assignment procedures, UniverseMachine
is able to track the gravitational evolution of each galaxy’s
subhalo even below the resolution limit of ROCKSTAR, thus
increasing the total number of simulated galaxies. The resulting
catalogs provide information on the cluster mass and size, as
well as 6D phase-space information on each galaxy: comoving
position and proper velocity information.

3.2. Mock Observations

Mock observations are generated from these galaxy cluster
catalogs using the prescription described in detail in the
Appendix of Ho et al. (2019). The general procedure is as
follows. First, a large cylindrical cut about the center of each
cluster is made in projected phase space with radius of
10Mpc h−1 and length ±6×103 km s−1 oriented along the
line of sight. This large cut will include the infall region of the
cluster and include contamination galaxies that could fall along
the line of sight to the cluster. Each galaxy that falls within this
cylinder (and has a mass at accretion M M10acc

11
 h

−1
) will

be projected along the line of sight, thus producing a catalog of
simulated observations of sky positions and line-of-sight
velocities. For each cluster, we follow this procedure for three
separate orthogonal pointings, thus producing three mock
observation catalogs for a given cluster, which (for statistical
purposes) we treat as independent clusters.
We divide clusters into a low- and a high-mass sample. The

low-mass sample has a mass range from ´ M0.72 1014  h
−1 to

0.96×1014M h
−1 with a median 0.86×1014M h

−1, and
the massive sample ranges from 0.63×1015M h

−1 to
2.04×1015M h

−1 with median 0.98×1015M h
−1. All

mass values listed here and for the remainder of this section are
M200c and defined as the mass enclosed by a spherical
overdensity 200 times the critical density of the MDPL2
simulation, and these masses are calculated using all dark
matter particles belonging to the cluster’s ROCKSTAR halo
that fall within the spherical overdensity. We used the

6
https://www.cosmosim.org/
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z=0.117 snapshot and placed the observer at z=0.
Furthermore, the mock observation generation does not include
observational effects such as obstructions or lensing.

Figure 1 shows two sets of mock cluster observations. The
top set is one of the low-mass clusters, while the bottom is a
high-mass cluster. In total, our galaxy cluster sample includes
92 unique clusters from the simulation volume (half in the
high-mass bin), projected along three orthogonal pointings,
totaling 276 mock galaxy cluster redshift catalogs. For each
redshift catalog, we use all sky positions of galaxies as our
photometric data set, but we select a subset of these galaxies
(80%) to produce the spectroscopic catalog that includes the
line-of-sight velocities. We produce 10 random samplings of
each galaxy cluster redshift catalog.

3.3. Model Setup

For each mock cluster catalog we fit four multipopulation
models with ÎN 0, 1, 2, 3subs { }. For each model we assume a
uniform velocity dispersion for the main cluster halo and all
substructures: s s=r M M( ) . For the contamination model, we
assume a uniform distribution of galaxies on the sky, as well as
a uniform velocity distribution:

q= S = =
-

=r rI P v M
v v

, contam, ,
1

,

11

M i icontam 0
max min

( ) ( ∣ )

( )

where Σ0 is a free parameter in the model, while vmax and vmin

are set by the range of velocities in the data set. Therefore, each

model in total includes two free parameters for the contamina-

tion model, five free parameters for the main halo, and six free

parameters for each subpopulation. All free parameters, the

chosen prior, and a description are listed in Table 1.
Most free parameters listed in Table 1 have uniform prior

distributions; however, we use a nonuniform prior to determine
the mean velocities of the substructures. This prior choice was
made after considering two related issues with the modeling.
First, we need to invoke an identifiability requirement so
that the Bayesian sampling algorithm (MultiNest) can differ-
entiate between the various populations; we do this by
requiring the substructures to have decreasing velocity (i.e.,
á ñ > á ñ > á ñV V Vsub,1 sub,2 sub,3). If we were to implement this
requirement using uniform priors with a maximum value
specified by the i− 1 velocity, then the true prior distribution
would have significantly more prior weight to low-velocity
values. Instead, we use a prior that is uniform in the hyper-
triangle defined by > á ñ > >v V v...max sub,1 min and zero else-
where (Handley et al. 2015):

p á ñ = -
> á ñ > >

12

V N v v
v V v

1
...

0 otherwise

,N
sub subs max min

max sub,1 min
subs

⎧

⎨
⎪

⎩
⎪

( )

( ) ( )

where vmax and vmin are defined relative to the main halo

velocity á ñ V 5000main km s−1, respectively. This prior essen-

tially mimics a distribution generated by sampling a uniform

prior for each velocity parameter and then reordering them

from greatest to least.
The number fractions of galaxies in each population FM are

defined by the hyperparameters fi. The transformation of these
hyperparameters to the true member fractions is





=

= -

= - -

=

=

F f

F f f

F f f f

1

1 1 . 13

i

N

i

i i

j i

N

j

contam contam

main contam
1

sub, contam

subs

subs

( )

( )( ) ( )

This prescription guarantees that å =F 1M M . In order to

guarantee that the main halo corresponds to the largest halo in

the model, we further restrict that >F F imain sub, .

3.4. Results

Most of the mock observations of galaxies generated from
MDPL2 include some amount of 3D substructures. We define a

Figure 1. Two example mock observations of clusters produced from MDPL2.
The top cluster is part of the low-mass sample, while the bottom is from the
high-mass bin. The red points are galaxies that are members of the
ROCKSTAR cluster halo.

4
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3D substructure as any ROCKSTAR halo with at least 10
member galaxies within the FOV that is gravitationally bound
to the cluster. These 3D substructures could be an infalling
group of galaxies or a distinct subpopulation associated in
some way with the cluster. The multipopulation models
identify substructures from the projected sky position and
velocity of each galaxy; therefore, we will refer to substructures
identified with these models as 2D substructures. Examples of
the 3D and 2D substructures are shown in Figure 2. In the top
set of panels each point is colored by the 3D substructure the
galaxy belongs to, with red points showing the main cluster and
black points showing galaxies that are not members of a 3D
substructure. In the bottom portion of Figure 2 we show the
results of the Nsubs=3 model for this cluster by coloring the
galaxies depending on their membership to the 2D substruc-
tures. Clearly there is a correlation between the green 2D
substructure and the true 3D substructures. The misidentified
2D substructures are likely 3D substructures that are unbound
to the cluster and are therefore not shown in the top portion of
Figure 2.

As is obvious in Figure 2, each 2D substructure could
include members from different 3D substructures or none, so
we quantify the success rate of a 3D substructure identification.
We also compare these results to a recent substructure
identification method that utilizes the caustic technique (Yu
et al. 2015, hereafter Y15). The method detailed in Y15 uses a
preprocessing step of the caustic method to build a binary tree
based on the projected binding energy between galaxies and
groups of galaxies and then cuts the tree to identify
substructures. They tested their methodology using the
Coupled Dark Energy Cosmological Simulation (Baldi 2012),
and they report that 49% of their identified 2D substructures
contain at least one member of a 3D substructure and that 51%
of the 2D substructures with at least one 3D member have 80%
of their members belonging to the same 3D substructure. Here
we will use the same metric they developed to compare our
identification with theirs.

There are a few caveats we want to address before our
discussion of the results. First, Y15 tested their substructure
identification on dark matter particles in the simulation instead
of galaxies painted onto subhalos as we do. Second, although
our model is interested in identifying substructure, this is
merely a secondary feature, not the main focus of our modeling

framework. And finally, our model is restricted to a preset
number of substructures, while the caustic method allows for
any number of substructures; therefore, the substructures
identified with our model are more likely to be larger and
include galaxies from multiple 3D substructures. Despite these
caveats, we will quantify the comparison between these two
methods because the caustic technique substructure identifier
is by far the most robust substructure identification model
presented in the literature.
For each 2D substructure with at least one galaxy that is also

a member of a 3D substructure, Y15 defines f3D as the largest
fraction of its members that are also members of the same 3D
substructure. Because our substructure model calculates the
probability of membership posterior distributions for each
galaxy for each 2D substructure, we identify the member
galaxies of each 2D substructure with two methods. The first
method (SUBMEM1) draws Nsamples=10,000 samples from
each galaxy’s membership probability posterior distributions
and assigns a membership to the 2D substructure with the
highest probability of membership. Then, for each galaxy we
take the mode of these samples to determine their final 2D
substructure membership. This method will generate a 2D
substructure membership for each galaxy. The second method
(SUBMEM2) is more selective and only assigns a 2D
substructure membership if the galaxy has a probability of
membership   0.9M (Equation (10)).
Using the SUBMEM1 method for substructure member

identification, 59% of 2D substructures have at least one
member of a 3D substructure. Compared to Y15ʼs method
(47%), the substructures identified with our modeling are more
likely to have at least one member of a 3D substructure;
however, this is a bit misleading. Because we fix the number of
2D substructures per model (and only allow upward of three
substructures), the 2D substructures are more likely to be large
and include many 3D substructures. This will inflate this
percentage. This effect is best realized in the distribution of f3D,
which is shown in Figure 3. Because each 2D substructure is
large and could contain many 3D substructures, there are very
few 2D substructures with large f3D values when using the
SUBMEM1 method for membership identification. The black
curve in Figure 3 shows the cumulative distribution of f3D,
showing that our models have a median value of ∼0.40,
whereas, compared to Y15 (shown in red), the caustic

Table 1

Free Parameters and Priors for MultiDark Mock Observation Models

Parameter Prior Description

S - -hlog Mpc10 0
1 2[ ( ) ] Uniform between −5 and 5 Uniform contamination light profile

fcontam Uniform between 0 and 1 Number fraction of contamination galaxies

r Rlog s10 ,main max[ ] Uniform between −3 and 0 NFW scale radius of main halo light profile
-r hlog Mpcc10 ,main
1[ ( )] Uniform between −6 and −1 Radial offset of center of main halo

qc,main Uniform between 0 and 2π Angular location of center of main halo

zmain Uniform between 0.1 and 0.15 Redshift of main halo = á ñz V cmain main

s -log km s10 main
1( ) Uniform between 0 and 3.5 Velocity dispersion of main halo

r Rlog s i10 ,sub, max[ ] Uniform between −3 and 0 NFW scale radius of ith substructure light profile

r Rlog c i10 ,sub, max[ ] Uniform between −3 and 0 Radial offset of center of ith substructure

qc i,sub, Uniform between 0 and 2π Angular location of center of ithsubstructure

á ñV isub, See Equation (12) Velocity of ith substructure

s sisub, main Uniform between 0 and 1 Velocity dispersion of ith substructure

fi Uniform between 0 and 1 Number fraction hyperparameter

5
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technique has a median value of 0.77. In other words, 50% of
the 2D substructures identified using SUBMEM1 have only
∼40% of their member galaxies that are also members of the
same bound 3D substructure. However, some of these galaxies
included in each 2D substructure could have a low probability
of memberships, which might be skewing this distribution. If
this is the case, then SUBMEM2 (which only includes highly
probable substructure members) should perform much better.

For 2D substructure members identified by SUBMEM2,
53% of 2D substructures have at least one member of a 3D
substructure. Furthermore, for these 2D substructures, 50%
have f 0.793D for the Nsubs=3 models, which is a slight

improvement over Y15. The full distribution of f3D for
SUBMEM2 is shown in Figure 4. For =N 1, 2subs our model
is slightly outperformed by Y15, but the Nsubs=3 model has a
small advantage over Y15. This clearly shows that, especially
for the highly probable 2D substructure member galaxies, the
2D substructures identified in this model correlate with the true
bound 3D substructures of the cluster.
Identifying substructure is merely an added bonus of the

modeling framework; the main purpose is to measure more
precise cluster masses while simultaneously accounting for
substructure. In Section 4.4 we implement a dark matter halo
model to fit real observations of A267 in order to fit the
underlying dark matter mass profile of the cluster; however,
this calculation is expensive and would be unfeasible to run
over a large amount of mock observations. Therefore, here we
will discuss the uniform velocity dispersion smain as a proxy for
cluster mass. Figure 5 shows the distribution smain as a function
of true cluster mass M200c for all clusters. There is a well-
established power-law scaling relationship between velocity
dispersion and mass that dates back to Fritz Zwicky
(Zwicky 1933) and is still commonly used today (e.g., Bocquet
et al. 2015). This relationship is due to the virial theorem
s µ M1 3, but the power-law index is commonly a free
parameter fit from data. The value of the power-law index is
easy to fit; however, the scatter about the power-law relation-
ship is of greater importance (Ntampaka et al. 2016).
In Figure 5 we fit a power law through the derived cluster

velocity dispersion smain as a function of true cluster mass
M200c along with the scatter about this relationship. The power
law is shown by the blue dashed lines, while the width of the fit

Figure 2. Same massive cluster shown in Figure 1, but now the galaxies are
colored based on their membership to true 3D substructures (top) and 2D
substructures identified by the Nsubs=3 model (bottom). The true 3D
substructures are identified as any ROCKSTAR halo gravitationally bound to
the cluster that falls within the FOV of the cylindrical cut and has at least 10
galaxies.

Figure 3. Distribution of f3D, the largest fraction of the total number of
members of a 2D substructure that are also members of a single 3D
substructure. Member galaxies of each 2D substructure were determined via the
SUBMEM1 method. The panels are organized by the number of subpopula-
tions allowed in each model. The error bars show the 10% and 90% limits
derived from the 10 random samplings of each mock observation. The black
line shows the cumulative distribution function of this distribution, while the
red line shows the cumulative distribution function for f3D using the caustic
technique outlined in Y15.
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scatter is shown by the blue dotted lines. Clearly, as we
increase the number of subpopulations Nsubs, the scatter
decreases drastically. Furthermore, we separate the cluster
sample into two groupings, relaxed and substructured,
depending on the number of bound 3D substructures each
cluster has. In the bottom panel, we show the residuals and the
mean and standard deviation of the residual distributions for
each grouping. This shows that the scatter in the residuals of
the substructured cluster sample decreases by nearly 35% from
the Nsubs=0 model to the Nsubs=3 model.

4. Application to A267

In this section we will apply the multipopulation model
outlined in Section 2 above to spectroscopic observations of the
galaxy cluster A267 (z∼0.23). In Section 4.1, I will describe
the data set. Section 4.2 will layout the contamination model
used here. Section 4.3 will describe and present the results for
the modeling assuming a uniform velocity dispersion for the
main cluster halo. In Section 4.4 we apply a dark matter halo
model in order to fit the mass profile of A267.

4.1. Observational Data Set

The A267 data are drawn from three separate catalogs. The
spectroscopic observations are a combination of over 1000
measured redshifts by HectoSpec (HeCS; Rines et al. 2013)
and 223 galaxies with the Michigan/Magellan Fiber System
(M2FS). For galaxies that were observed in both data sets, we
used a weighted (by inverse variance of redshift) mean of the
measured redshifts. The combination of these included 1219
galaxy redshifts with a median error of 32 km s−1.

The observations, data reduction, and spectral fitting model
for the M2FS spectroscopy are described in detail in Tucker
et al. (2017). We fit these spectra using a population synthesis
integrated light model, which estimates line-of-sight velocity,
vlos, along with stellar population parameters mean age,

metallicity Fe H[ ], chemical abundance a Fe[ ], and internal
velocity dispersion sint. A summary of these results can be
found in Table 3 of Tucker et al. (2017), and the full data
product, including sky-subtracted spectra with variances, best-
fitting model, and samples from the posterior distribution, can
be found online atdoi:10.5281/zenodo.831784.
The HeCS catalog is described in detail by Rines et al.

(2013) and contains redshifts for over 22,000 galaxies in over
50 different clusters. Compared to the M2FS sample, the HeCS
sample for A267 is much larger and provides wider coverage.
The M2FS sample, while smaller, provides extra dimensions of
information, including mean ages and metallicities.
Both spectroscopic data sets were selected via the galaxy red

sequence described in Section 2.1 of Tucker et al. (2017) and
shown in Figure 1 of that paper. We applied this same selection
criterion to obtain a photometric galaxy sample from the SDSS
of 1849 galaxies. The galaxies contained in the spectroscopic
sample are a subset of those in the photometric sample.
Figure 9 shows the positions of all galaxies used in this
analysis. The open markers are galaxies with only photometric
observations, while the filled markers are galaxies with
spectroscopically measured redshifts. Figure 10 shows the
redshift distribution of galaxies used in this analysis.
Because we select galaxies via the red sequence, our

inferences on cluster substructure and kinematics are biased
to the quiescent galaxy population. We note that the velocity
dispersion of quiescent galaxy members has been shown in the
past to be smaller than the velocity dispersion of blue members
(see, e.g., Zhang et al. 2012).
The spectroscopic completenesses as a function of radial

distance and r-band magnitude are shown in Figure 6. The
majority of the galaxies targeted via the red sequence lie
between magnitudes 18 and 21.

4.2. Contamination Model

The gray histograms in Figure 10 show the velocity
distribution of the A267 spectroscopic sample. The contamina-
tion population of galaxies (the numerous subpeaks throughout
the distribution) is dominated by foreground and background
groups and clusters of galaxies; therefore, extra care must be
taken in determining the contamination model. To this end, we
implement a modified version of the multipopulation model
with the aim of fitting a fixed number of these contamination
clusters and some uniform component on the sky. We fit the
contamination model in advance using only galaxies without
spectroscopic redshifts and galaxies with spectroscopic red-
shifts that are obvious contaminants (i.e., galaxies with line-of-
sight velocities - >v cz 5000i 267∣ ∣ km s−1

).
The contamination model is of the same form as the

multipopulation mixture model described in detail in Section 2,
with a few minor changes. This model will be made up of
Ncontam+1 populations. The first population will be used to
describe the field galaxies that will not be fit into a clustered
population. Therefore, we assume that these galaxies will be
uniformly distributed on the sky = S=rI M contam 00

( ) , with a
generalized gamma distribution used to describe the velocity
distribution:

q= =
-

G

-

rP v M
p a v v a

d p
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Figure 4. Same as Figure 3, except we use the SUBMEM2 method to identify
2D substructure members.
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where p, a, and d are free parameters and Γ is the gamma

function. This distribution was chosen for its flexibility to

handle the redshift distribution of field galaxies in our sample;

however, there is no physical motivation for the gamma

distribution. We do not include observational errors in this

velocity distribution because the distribution covers a large

range in redshift space and so the relatively small velocity

errors will have little effect on the underlying distribution. The

remaining Ncontam populations are described by NFW light

profiles with Gaussian velocity distributions. The free para-

meters used for this contamination model are listed and

described in the top portion of Table 2.

Figure 5. Velocity dispersion of the main cluster halo smain as a function of true cluster mass M200c from the MDPL2. Each column corresponds to the number of
subpopulations Nsubs allowed in each model. The top panels show the distribution of galaxies, clearly showing the high- and low-mass samples. Each point is colored
depending on whether the cluster is relaxed (i.e., little to no significant substructure) or substructured. The error bars show the 10% and 90% ranges from the 10
random samplings of each cluster. Because there is a power-law relationship between velocity dispersion and mass, we fit a power law (blue dashed lines) with scatter
(blue dotted lines). In the bottom panels we show the residuals and quantify the scatter of these residuals for the relaxed and substructured clusters, independently. As
the number of subpopulations in the model increases, the fit scatter in the power law decreases, as does the residual scatter of substructured clusters.
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For the same reasons discussed in Section 3.3, we use a
nonuniform prior on the redshifts of the contamination
populations:

p

= -
> > >

15

z

N z z
z z z

1
...

0 otherwise

,N

contam

contam max min
max contam,1 min

contam

⎧

⎨
⎪

⎩⎪

( )

( )

!( )

where zmin and zmax are set by the full range of redshifts in our

sample.
For this model we fit Ncontam=5 contamination popula-

tions. These five populations are clearly visible in the velocity
distribution of our sample (gray histograms), as well as the
model fit in Figure 10. Although there are clearly more peaks in
the velocity distribution that the model does not properly
account for, it is unfeasible to fit those distributions because
MultiNest becomes increasingly inefficient at sampling high-
dimensional posteriors. In order to fit this model, we required
∼1.25×109 likelihood evaluations with a sampling accep-
tance rate of 1.8×10−4, which took over 1.6×104 CPU
hours to fully sample the posterior distributions.

In order to cut down on the number of free parameters, we fit
the contamination model beforehand and feed this fit model
into the analysis described below. We originally sampled the
posterior of the contamination model; however, this also
drastically decreased the sampling efficiency, so instead we use
the highest likelihood model from the fit instead. We have seen
that there is no dependence on the resulting posterior
distribution in spite of this choice.

4.3. Uniform Velocity Dispersion Profile

In this section we use a simple kinematic model in order to
explore how inferences on the kinematics of A267 depend on

the number of subpopulations allowed. We do this by running
five separate model fits, each model allowing an additional
subpopulation (from zero to four). The free parameters and
their prior ranges used in these models are given in Table 2.

4.3.1. Model Setup

The model setup is similar to the setup described in Section 3.3,
with a few minor differences mainly pertaining to the contamina-
tion model. We use the pre-fit contamination model described in
Section 4.2, which drastically reduces computation time and
increases computation efficiency. Although the contamination
model is already fit, we do allow there to be a rescaling of the
uniform contamination component Σrs. The remaining free
parameters are discussed in detail in Section 3.3. We again use
the same prior on the line-of-sight velocities of the subpopulations
in order to preserve prior probability mass and solve the
identifiability issue (Equation (12)). The transformations from
the number fraction hyperparameters to the true number fractions
are given by






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=
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In total these models are described by + + N2 5 6 subs free

parameters. For the A267 sample we include Ngal=1675
galaxies in the photometric sample, with Nspec=1121 of these

galaxies with spectroscopically measured line-of-sight velocities.

4.3.2. Substructures in A267

As discussed in Old et al. (2018), the presence of
substructure can have a significant effect on dynamical mass
measurements of galaxy clusters. In order to understand this
effect on mass estimates, we first assume a simple uniform
velocity dispersion profile to explore how substructure
influences these measurements. We fit a set of five models,
with each model allowing an additional subpopulation within
the cluster environment (the largest number of subpopulations
we fit is Nsubs=4).
Figure 7 shows a summary of the main results from this

analysis in black. In the top panel we show the evolution of the
change in the log evidence for each model relative to a model
with one fewer subpopulation. This value is frequently referred
to as the Bayes factor, and it is commonly used for model
selection. The larger the Bayes factor, the more significant the
evidence is that the new model is “better” than the previous
model, accounting for differences in model complexity.
According to Kass & Raftery (1995), a Bayes factor
(D Evlog( )) between 3 and 5 indicates “strong” evidence, and
if this factor exceeds 5, then the new model is very strongly
favored. The Bayes factor is consistently >5 for the Nsubs=1,
2, and 3 models, which indicates that each of these models is
strongly favored over the model with one less subpopulation

Figure 6. Spectroscopic completeness as a function of radial distance (top) and
SDSS r-band magnitude (bottom).
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(Nsubs=0, 1, and 2, respectively). However, the Nsubs=4
model (with Bayes factors <3) is only “slightly positive” or
“not worth more than a bare mention” compared to the
Nsubs=3 model.
The second panel in Figure 7 shows the number of

likelihood evaluations needed to adequately sample the
posterior probability density function (pdf) of each model. As
expected for models with an increasing number of free
parameters, the required number of likelihood evaluations
increases exponentially, rendering the computation of increas-
ing numbers of subpopulations >N 4subs expensive.

The third panel in Figure 7 shows the number fraction of
galaxies in all subpopulations. This panel gives an idea of how
many galaxies are added to the subpopulations with an
increasing number of subpopulations.

In the next three panels of Figure 7 we show the evolution of
free parameters describing the main cluster: NFW scale radius
rs,main, mean cluster redshift zmain, and uniform velocity
dispersion smain. The sixth panel (smain) shows the evolution
of velocity dispersion, a proxy for cluster mass. For
comparison, we include the velocity dispersion for A267
measured by Rines et al. (2013), which is calculated by first
identifying cluster members via the Caustic technique (Diaferio
& Geller 1997) and calculating the dispersion of the members
about the mean cluster redshift (also determined via the Caustic
method). The Caustic method does not explicitly consider the
effects of substructure (unless it is evident in the plane of
v Rlos– ), so we compare it to our measurement assuming
Nsubs=0, finding good agreement. As the number of
subpopulations increases, the velocity dispersion trends

downward; furthermore, the velocity dispersion decreases by
∼400 km s−1 from Nsubs=3 to Nsubs=4 (see below for more
details on this drop-off).
The inflation of velocity dispersion due to the presence of

substructure is not a new result. Beers et al. (1982) studied the
dynamics of A98 and showed that the cluster was substructured
with two distinct components. Furthermore, by using a two-
component model to fit the cluster dynamics, they showed that
failure to recognize this substructure inflates the velocity
dispersion and hence the mass-to-light ratio of the cluster.
Geller (1984) obtains a similar result for the Cancer Cluster.
What is new here is the ability to evaluate the number of
substructures and estimate cluster mass while marginalizing
over uncertainty in the substructure parameters.
As the number of subpopulations increases, the scale radius

rs,main decreases for the most part. This trend is consistent with
the mass of the main cluster also decreasing. While the redshift
of the cluster stays roughly constant throughout most of the
models, it is significantly lower than the redshift of the BCG of
A267, which is shown as the black dashed line in Figure 7.
This offset is on the order of ∼100 km s−1 and could be
interesting with regard to tests of a “wobbling” BCG as
predicted by SIDM (Harvey et al. 2017; Kim et al. 2017).
There is clearly something different happening from

Nsubs=3 to Nsubs=4, so let us look more into that now.
Figure 8 shows the distributions of galaxies on the sky and in
phase space. Each galaxy is colored by their memberships to a
given population. The galaxy members were determined via the
SUBMEM2 method discussed above, which assigns member-
ship to a population if a galaxy has a probability of membership

Table 2

Free Parameters and Priors for Uniform Velocity Dispersion Model of A267

Parameter Prior Description

S -log radians10 0
2[ ] Uniform between −2 and 15 Light profile for uniform component of contamination model

alog10 Uniform between −6 and 6 Parameter of gamma distribution Equation (14)

dlog10 Uniform between −6 and 1 Parameter of gamma distribution Equation (14)

plog10 Uniform between −6 and 6 Parameter of gamma distribution Equation (14)

r Rlog s i10 ,contam, max[ ] Uniform between −3 and 0 NFW scale radius of ith contamination population

r Rlog c i10 ,contam, max[ ] Uniform between −3 and 0 Radial offset of center of ith contamination population

qc i,contam, Uniform between 0 and 2π Angular location of center of ith contamination population

z icontam, See Equation (15) Redshift of ith contamination population

s -log km si10 contam,
1( ) Uniform between 0 and 3.5 Velocity dispersion of ith contamination population

f icontam, Uniform between 0 and 1 Number fraction hyperparameters for contamination model

S -log radians10 rs
2[ ] Uniform between −1 and 1 Rescale uniform component of contamination model

fcontam Uniform between 0 and 1 Number fraction of all contamination population

r Rlog s10 ,main max[ ] Uniform between −3 and 0 NFW scale radius of main halo light profile

r Rlog c10 ,main max[ ] Uniform between −3 and 0 Radial offset of center of main halo

qc,main Uniform between 0 and 2π Angular location of center of main halo

zmain Uniform between 0.22 and 0.245 Redshift of main halo = á ñz V cmain main

s -log km s10 main
1( ) Uniform between 0 and 3.5 Velocity dispersion of main halo

r Rlog s i10 ,sub, max[ ] Uniform between −3 and 0 NFW scale radius of ith substructure light profile

r Rlog c i10 ,sub, max[ ] Uniform between −3 and 0 Radial offset of center of ith substructure

qc i,sub, Uniform between 0 and 2π Angular location of center of ith substructure

á ñV isub, See Equation (12) Velocity of ith substructure

s sisub, main Uniform between 0 and 1 Velocity dispersion of ith substructure

fi Uniform between 0 and 1 Number fraction hyperparameter

Note. The first set of parameters (first 10 rows) are for the contamination model and are fit ahead of time using only obvious contamination galaxies. For the

contamination model we use one uniform population and five NFW populations. The remaining free parameters are used to describe the kinematics of the cluster.
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that exceeds 0.9. If a galaxy’s probability of membership is
below this threshold for all populations, then it is labeled as a
contamination galaxy. We showed in Section 3.4 that this

prescription for identifying substructure members yields a
strong correlation to the true 3D substructures for mock
observations from simulations.
In the Nsubs=0 panels, the cluster and its trumpet-shaped

caustic are clearly visible. The first substructure the model fits
is an elongated grouping of galaxies with a center x∼−15′

and velocity offset ∼+4000 km s−1 relative to the cluster. The
second substructure found is a small localized group of galaxies
that also has a large velocity offset relative to the cluster
(∼−4000 km s−1

). An important feature to note is that the
subpopulation identified in the Nsubs=1 model is still
identified as a distinct substructure in the Nsubs=2 model.
This is important because each model is independent of the
previous one; there is no guarantee that the identification of the
substructure will be consistent. The third subpopulation
identified a localized group of galaxies at a large projected
radius of ∼5Mpc h−1 but at a similar redshift to the cluster.
These galaxies are likely an infalling group of galaxies to
A267. Once this substructure is modeled accordingly, the
cluster light profile is more compact, yet the velocity dispersion
increases slightly.
The Nsubs=4 model yields an odd result that is actually

expected once the assumptions of the model are considered.
With the added complexity of the fourth substructure and the
requirement that the velocity dispersion of the cluster is
constant, the model essentially overfits the distributions. This
can easily be seen in the striped pattern in the Nsubs=4 phase-
space panel of Figure 8. The cluster’s light profile is much
larger now and the velocity dispersion is much smaller because
the model can easily fit a small uniform dispersion profile while
accepting the tails as independent substructures. There are sets
of galaxies that were once highly probable members of the
main cluster that are now no longer highly probable members
of any population. The Bayesian evidence (top panel of
Figure 7) does not favor this model over the Nsubs=3 model;
however, this could change once we incorporate a more
realistic velocity dispersion profile, as will be discussed in
Section 4.4 below.
Table 3 gives a summary of the results for the Nsubs=3

model. The parameters describing the main cluster halo all have
strong constraints; furthermore, the center of the main halo’s
light profile is offset from the BCG of A267 by
89.9±14.2 kpc h−1. The scale radii of the substructures are
relatively unconstrained mainly because of the low number of
galaxies in each population. The scale radius of the first
subpopulation is completely unconstrained. This is likely due
to the fact that the galaxies in this population (see Figure 9)
are elongated on the sky and therefore are not fit well by the
radially symmetric NFW profile. Despite the poor fits to
the light profile, the central locations, redshifts, and velocity
dispersions of the substructures are relatively well constrained.
Figure 9 shows a more in-depth look at the sky positions of

the galaxies labeled by their most likely substructure member-
ship for the Nsubs=3 model. In the top left panel, we show just
the sky position of our sample. Galaxies with colors and
various shapes are ones with spectroscopic redshifts and
colored based off of their membership. The black points are
galaxies without spectra that were used to constrain the light
profiles in the model. The contours show the light profile fit
from the model of all populations (contamination + main
cluster + substructures). The other two panels show an overlay
image of our analysis (the colored circles and white contours)

Figure 7. Summary plot of the subpopulation analysis, with the black curves
showing the progression for the uniform velocity dispersion models, while red
is for the dark matter halo models. The top panel shows the evolution of the
change in Bayesian evidence relative to a model with one fewer subpopulation,
which is commonly known as the Bayes factor. The second panel shows the
number of likelihood evaluations required to adequately sample the posterior
pdf of each model. Next is the number fraction of galaxies within all
subpopulations. The bottom four panels are the model parameters used to
describe the main cluster populations: NFW scale radius rs,main, mean cluster
redshift zmain, velocity dispersion smain, and mass M200 and concatenation c200
for the dark matter model. The dashed line in the fifth panel shows the
measured redshift of the BCG for A267. In the sixth panel, the green star shows
the velocity dispersion of A267 as measured by Rines et al. (2013).
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with the SDSS mosaic (Blanton et al. 2017), the weak-lensing
signal in blue (Okabe et al. 2010), and X-ray luminosity in pink
(XMM-Newton ObjID 0084230401). The bottom panel is a
zoom-in on the central core of A267.

In Figure 10 we show the velocity distribution of our sample.
We overplot the velocity distributions fit to the data for the
Nsubs=3 model. The darker and lighter regions of these
distributions show the inner 68% and 95% limits of the
posterior distributions, respectively. The contamination model
(blue) fits the five strongest subpeaks in this distribution, with

the gamma distribution doing a good job fitting the broad
distribution of field galaxies. The inset in the upper left corner
shows a zoom-in of the distribution around the mean redshift of
A267, which shows in greater detail the velocity distributions
of the main halo and substructures.

4.3.3. Comparison to Other Test for Substructures

A commonly used statistical test for substructure is known as
theΔ-statistic and was developed by Dressler & Shectman (1988).

Figure 8. Sky position and phase-space diagrams for the A267 sample from the uniform velocity dispersion models. Each galaxy is colored based off of their
membership to each substructure. Black galaxies are contamination galaxies, red are main cluster halo galaxies, and green, purple, orange, and brown are the four
substructures fit in the models. The panels are organized by increasing number of substructures accounted for in the model.

Table 3

Mean Values and Standard Deviations of 1D Posterior pdf’s for A267 Free Parameters in the Uniform Velocity Dispersion =N 3subs Model

-r hkpcs
1 a deg2000 d deg2000 z s -km sdisp

1 fmem Nmem

Main 357±68 28.174±0.001 0.999±0.001 0.2288±0.0003 951±56 0.199±0.012 183±22

Sub1 930±692 27.964±0.048 0.944±0.075 0.2403±0.0004 229±96 0.014±0.005 8±3

Sub2 247±269 28.070±0.032 0.625±0.105 0.2297±0.0016 429±124 0.015±0.006 7±3
Sub3 54±189 28.022±0.057 0.864±0.042 0.2173±0.0003 131±74 0.006±0.002 5±1
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The Δ-statistic looks for deviations in the local velocity

from the global velocity of the cluster. First, for each galaxy one

calculates the mean local velocity vlocal and local dispersion σlocal
of the n nearest neighbors to the galaxy, where typically

~n Ntot . This local velocity and dispersion are compared to

the global velocity á ñV 267 and dispersion smain of the cluster

quantified by

d s s s= + - á ñ + -n v V1 .

17

i
2

local 267
2

local main
2

main
2( )[( ) ( ) ]

( )

The full Δ-statistic is the sum of di over all galaxies Ntot.

Figure 9. Top left: positions of galaxies on the sky. Each galaxy is colored and shaped based on which population in which the galaxy has the highest probability of
membership: red circles are the main cluster population; green triangles, purple squares, and orange diamonds are for the three subpopulations; and blue stars are either
foreground or background contamination galaxies. The solid red circle shows the scale radius of the main cluster population rs,main centered on A267. The other
colored circles show the scale radius rs i,sub, of their respective subpopulations centered on the measured center of the population. The dashed black curves show

contours of equal density from the highest likelihood number density profile to the data (å rI
M

N
M

p ( )). In the other two panels, we overplot these contours, as well as the

scale radii of the populations on top of the SDSS image center on A267, the X-ray luminosity (shown as a pink hue), and the weak-lensing signal (Okabe et al. 2010;
shown in light blue). The bottom panel is a zoom-in on the center of A267.
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The Δ-statistic is used to test whether or not there is
considerable substructure within the cluster’s environment.
According to Dressler & Shectman (1988), for a relaxed cluster

without significant substructure Δ∼Ntot. Figure 11 shows a
“bubble plot,” a commonly used representation of the Δ-
statistic. Each galaxy’s “bubble” is sized by that galaxy’s δi
value given by Equation (17). In each panel we show the
progression of this plot for an increasing number of
subpopulations. We use the SUBMEM2 method of cluster
member identification by applying a hard cut on the probability
of membership in the main cluster main and only show galaxies
with > 0.9main . In the upper left corner we also show the ratio
Δ/Ntot in order to show a quantitative comparison between the
two methods. As the number of substructures increases to
Nsubs=3, the ratio ofD Ntot is slightly closer to 1, yet it is still
larger, suggesting that there may be additional substructures.
This is also noticeable qualitatively by the overall decrease in
size of the δ-bubbles. However, this ratio increases to its largest
value for the Nsubs=4 model, suggesting that the substructures
identified by this model are likely not real, as already discussed
above. The main takeaway from this comparison is that our
model is improving theΔ-statistic; however, it is limited by the
uniform velocity dispersion profile, which affects the identifi-
cation of additional substructures for the Nsubs=4 model.
We also make a qualitative comparison of the substructures

identified with the Nsubs=3 model to the binary tree algorithm
of Yu et al. (2015). The sky positions and phase-space
diagrams for both sets of substructures are shown in Figure 12.
There is some agreement between the main cluster halos (red
circles) and the purple substructure. The main cluster identified
with the Nsubs=3 model has a more concentrated distribution
albeit with a broader velocity dispersion. The purple sub-
structure identified by the binary tree method is more extended
on the sky compared to a similar substructure identified by the
Nsubs=3 model. Interestingly, the cyan and orange substruc-
tures from the binary tree method do have some overlap with
two of the substructures from the Nsubs=4 model (see
Figure 8). We will revisit this comparison below while
discussing the results of the model using a radial velocity
dispersion profile as opposed to a uniform profile used here.

Figure 10. Velocity distribution profile. The gray histograms show the profile of
the galaxy redshift sample (HeCS plus M2FS). The red curve is the profile for the
main cluster population; the green, purple, orange, brown, and cyan curves are for
the five subpopulations; and the blue curve is for the contamination population.
The black curve is the sum of all of these profiles. The inset in the upper left corner
shows the distribution zoomed in on the region of redshift space around A267.

Figure 11. “Bubble plot” for the Δ-statistic. Each member galaxy is plotted
with a circle whose size is proportional to di (Equation (17)). Regions of large
circles show areas with high probability of substructure. From left to right and
top to bottom we increase the number of subpopulations, which is given in the
lower left corner of each panel.

Figure 12. Comparison of the Nsubs=3 model’s substructures (left) with those
identified by the binary tree method (Yu et al. 2015; right). The top panels
show the sky positions of the galaxies, while the bottom panels show the phase-
space diagrams.
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4.4. Dark Matter Halo Model

Thus far we have assumed that A267ʼs velocity distribution
is independent of radius. In the following subsections, we
describe our procedure and results for fitting a dark matter halo
model and corresponding velocity dispersion profile to the
main cluster population of A267 (s s=r rmain main( ) ( )). We will
first describe the theoretical framework for calculating the
velocity dispersion profile as a proxy for cluster mass using the
spherical Jeans equation, and then we will describe how we
implement this technique for A267.

4.4.1. Jeans Analysis

In order to measure cluster mass, we assume that the galaxies
within the main cluster population sample a single, pressure-
supported halo that is dynamically relaxed and traces an
underlying dark-matter-dominated gravitational potential. With
the additional assumption of spherical symmetry, the mass
profile, M(r), of the dark matter halo relates to the galaxy
distribution function via the Jeans equation:

n
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2
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where n r( ) is the 3D galaxy number density, s rr
2 ( ) is the radial

velocity dispersion, and b s sº - q1 r
2 2 is the orbital aniso-

tropy. Using cosmological dark-matter-only simulations,

Wojtak et al. (2013) showed that the velocity anisotropy for

cluster-sized halos (1014–1015h−1Me) is roughly constant

with radius at a value β∼0.4. According to Binney &

Tremaine (2008), for the special case of constant, nonzero

anisotropy, the Jeans equation has the simple solution
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And by projecting along the line of sight, we can relate the

mass profile to the observable profiles of the projected galaxy

number density I(R) and velocity dispersion profile σp(R) by
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And so, by plugging Equation (19) into Equation (20),

specifying an underlying dark matter halo model M(R), and

adopting a profile for I(R), we can determine the velocity

dispersion and mass profiles of the cluster.
For simple anisotropy profiles, we can rewrite the combina-

tion of Equations (19) and (20) as
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where the kernel K depends on the choice of anisotropy and is

given for five anisotropy models in Appendix 2 of Mamon &

Łokas (2005). For A267, we used a constant anisotropy model.

Although it is not the most physically motivated model, we use

a Gaussian velocity distribution similar to Mamon et al. (2013)

because it is easy to implement numerically and is a fairly good

approximation for the observed profile of galaxy clusters.

4.4.2. Model Setup

The modeling setup for the radial velocity dispersion profile
is similar to the uniform dispersion setup especially in terms of
the contamination model and substructures. Similar to before,
we still assume that the number density profile of the main
cluster halo follows an NFW profile, but now there is an
underlying dark matter halo that we also assume is NFW in
shape. These profiles will have the same centers but could
have different scale radii. For the dark matter halo, the dark
matter NFW profile ρ(r) is related to the mass profile

by òp r=M R r r dr4
R

0

2( ) ( ) .

The dark matter halo is parameterized by two free
parameters: M200=M(r200) and c200=r200/rs, where r200 is
the radius at which the mean density falls to 200 times the
critical density of the universe. For the Jeans analysis, we
parameterize the model by the velocity anisotropy index β,
which we assume to be uniform. The anisotropy index
varies from -¥ for completely tangential orbits to +1
for purely radial orbits. Because of this large parameter
space, we reparameterize the anisotropy index so that
b b¢ = - -log 110( ), which we constrain to vary between
−1<β′<+1.
Altogether this model will include two free parameters for

the contamination model (in addition to the pre-fit contamina-
tion model described in Section 4.2), seven free parameters for
the main cluster halo, and six free parameters for each
substructure. All free parameters and the adopted priors are
listed in Table 4. Similar to before, the transformation from the
number fraction hyperparameters to the number fractions of
each population is given by Equation (16).

4.4.3. Results for A267

The red curves in Figure 7 show the progression of model
parameters as the number of substructures is increased from
Nsubs=0 to Nsubs=4. There is a similar behavior for this set
of modeling compared to the uniform velocity dispersion
models. From Nsubs=0 to Nsubs=1 the Bayes factor (top
panel) increases considerably, which indicates that the
Nsubs=1 model is favored between the two. This trend
continues with the Nsubs=2 model, and although the Bayes
factor is not quite as large for the Nsubs=3 model, it still
exceeds 5, providing strong evidence in favor of this model
over models with fewer substructures. Unlike the uniform
velocity dispersion models, which do not favor the Nsubs=4
model, there is strong evidence in support of the Nsubs=4
model with a dark matter halo.
The remainder of the parameters follow a similar trend to the

uniform dispersion analysis except for the Nsubs=4 models. In
the dark matter halo model when Nsubs=4, the results are more
consistent with the results from the models with fewer
substructures. Furthermore, the mass of the cluster (sixth
panel) decreases continuously and at a relatively steady rate as
the number of substructures increase. The velocity offset from
the BCG of A267 to mean redshift of the cluster remains
roughly constant at ∼150 km s−1; however, the mean velocity
of the cluster decreases slightly for the Nsubs=4 model, mainly
due to the fact that the mean velocity of the additional
substructure identified populates the high-velocity tail of the
cluster’s distribution.
Figure 13 shows the progression of substructure membership

for an increasing number of substructures. This figure is similar
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to Figure 8, except for the choice of velocity dispersion profile.

Both dispersion profiles yield two similar substructures, the

green and purple populations seen in the Nsubs=2 panels of

both figures. One significant difference is that, with the radial

dispersion profile used here, there are now main halo members

beyond 4Mpc h−1, unlike in the uniform dispersion models. In

the Nsubs=3 and 4 panels, there is one fewer substructure

identified than the model allows. This is due to the fact that

posterior distribution for the additional substructure is highly

multimodal, and so the procedure we use to identify cluster

members essential finds no members of these populations. If,

instead of sampling the posterior, we used just one sample, then

there would be the proper number of substructures in all panels

of Figure 13.
Figure 14 shows the 1D and 2D posterior distributions for

three parameters describing the subpopulations in the Nsubs=3
(top) and Nsubs=4 models (bottom). The colors of each

posterior correspond to the colors of the substructures shown in

Figure 13. The purple and yellow posteriors in the Nsubs=3
and 4 panels, respectively, are unconstrained, which is why

there are no member galaxies identified for these substructures

in Figure 13. This multimodal behavior is typically indicative

of at least one additional substructure that the model does not

have the flexibility to fit because the number of substructures is

fixed for each model. Nevertheless, the main goal of this

modeling framework is to measure cluster masses while

marginalizing over potential substructure, which is still
achieved even though these parameters are unconstrained.
Figure 15 shows the 1D and 2D posterior distributions for

the parameters that define the main cluster population in the
Nsubs=4 model. The main cluster halo parameters are all
reasonably well constrained. Table 5 lists a summary of the
results for these parameters, as well as the parameters
describing the substructures. It is clear from this table that
Sub3 (the yellow distributions in Figure 14) is largely
unconstrained. Furthermore, as is the case for the uniform
dispersion models, the estimates on the NFW scale radii of the
substructures’ light profiles are largely uncertain owing to the
low number of highly probable members in these populations.
In Figure 15, there is a strong c200–β degeneracy and a

weaker M c200 200– degeneracy. The M c200 200– relation is a
usefully cosmological scaling relation that exhibits relatively
low scatter. In Figure 16 we zoom in on the M c200 200– panel
and compare the results from the dark matter halo models with
predictions of the M c200 200– relation derived from N-body
simulations (Dutton & Macciò 2014; Diemer & Kravt-
sov 2015). Even though the mass of the dark matter halo
decreases with increasing number of subpopulations and
the posterior for c200 is relatively less constrained, we still
recover a mean concentration in accordance with Dutton &
Macciò (2014).
Figure 17 shows the velocity dispersion profile s rmain ( )

inferred from the Jeans analysis of A267. The dark and light

Table 4

Free Parameters and Priors for Dark Matter Halo Model of A267

Parameter Prior Description

S -log radians10 0
2[ ] Uniform between −2 and 15 Light profile for uniform component of contamination model

alog10 Uniform between −6 and 6 Parameter of gamma distribution Equation (14)

dlog10 Uniform between −6 and 1 Parameter of gamma distribution Equation (14)

plog10 Uniform between −6 and 6 Parameter of gamma distribution Equation (14)

r Rlog s i10 ,contam, max[ ] Uniform between −3 and 0 NFW scale radius of ith contamination population

r Rlog c i10 ,contam, max[ ] Uniform between −3 and 0 Radial offset of center of ith contamination population

qc i,contam, Uniform between 0 and 2π Angular location of center of ith contamination population

z icontam, See Equation (15) Redshift of ith contamination population

s -log km si10 contam,
1( ) Uniform between 0 and 3.5 Velocity dispersion of ith contamination population

f icontam, Uniform between 0 and 1 Number fraction hyperparameters for contamination model

S -log radians10 rs
2[ ] Uniform between −1 and 1 Rescale uniform component of contamination model

fcontam Uniform between 0 and 1 Number fraction of all contamination population

r Rlog s10 ,main max[ ] Uniform between −3 and 0 NFW scale radius of main halo light profile

r Rlog c10 ,main max[ ] Uniform between −3 and 0 Radial offset of center of main halo

qc,main Uniform between 0 and 2π Angular location of center of main halo

zmain Uniform between 0.22 and 0.245 Redshift of main halo = á ñz V cmain main

-M M hlog10 200
1[ ] Uniform between 13 and 16 Mass of cluster interior to r200

clog10 200[ ] Uniform between 0 and 2 Concentration of dark matter halo: =c r rs DM200 200 ,

b- -log 110[ ] Uniform between −1 and +1 Anisotropy index β of velocity dispersion profile

r Rlog s i10 ,sub, max[ ] Uniform between −3 and 0 NFW scale radius of ith substructure light profile

r Rlog c i10 ,sub, max[ ] Uniform between −3 and 0 Radial offset of center of ith substructure

qc i,sub, Uniform between 0 and 2π Angular location of center of ith substructure

á ñV isub, See Equation (12) Velocity of ith substructure

s -log km si10 sub,
1[ ] Uniform between 0 and 3 Velocity dispersion of ith substructure

fi Uniform between 0 and 1 Number fraction hyperparameter

Note. The first set of parameters (first 10 rows) are for the contamination model and are fit ahead of time using only obvious contamination galaxies. For the

contamination model we use one uniform population and five NFW populations. The remaining free parameters are used to describe the kinematics of the cluster.
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shaded regions show the 68% and 95% confidence intervals of
the posterior pdf’s, respectively, while the black curve show the
median posterior velocity dispersion profile. In red we compare
the fit velocity dispersion profile to the binned velocity
dispersion calculated with highly probable member galaxies
( > 0.9main ). In the infall region of A267 (Rp2Mpc h−1

),
the fit dispersion profile exceeds the binned data. This is likely
due to an inhomogeneity of the galaxy distribution in the
cluster outskirts (Yu et al. 2016; Liu et al. 2018). The
assumptions made when conducting a Jeans analysis break
down at these radii, thus yielding a poor fit.

In order to qualitatively show any potential bias in
calculating a binned velocity dispersion, we check the binning
procedure using mock data generated from halo models
sampled from the posterior. At each sample of the posterior,
a catalog of galaxies is generated. These galaxies are then
binned, and a velocity dispersion is calculated in the same way
as the real data. The blue points show the results of this
posterior predictive check. The error bars are calculated from
the scatter of the velocity dispersion within each bin across the
sampled posterior. The posterior predictive check shows almost

no bias in the binned dispersion; however, there is considerably
larger scatter within each bin than would be expected from the
1σ and 2σ widths of the posterior.
Figure 18 shows the mass profile of the dark matter halo for

A267. Like previous plots, the dark and light regions show the
68% and 95% confidence intervals of the pdf’s, respectively,
and the solid black curve shows the median posterior. For
comparison we include previous mass measurements of A267
from a variety of different techniques: in green the weak-
lensing mass M200

WL (Okabe & Smith 2016), in red and purple

the caustic mass M200
Caustic and viral mass calculated with

velocity dispersion of cluster members Mvir
Dispersion, respectively

(Rines et al. 2013), and in blue the X-ray-derived mass MX
500

(Jiménez-Bailón et al. 2013). Our results are consistent with
MX

500, M200
Caustic, and M200

WL, but we measure a significantly

smaller mass than Mvir
Dispersion because the mass estimate derived

from the velocity dispersion is more susceptible to substructure.
Also shown in Figure 18 are the median posterior curves of the
mass profile from the models with fewer substructures. For
A267, as the number of substructures increases, the mass of the
cluster decreases.

Figure 13. Same as Figure 8, except now for the dark matter halo models.
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5. Conclusions

We have developed a multipopulation mixture model in

order to simultaneously model the internal kinematics and

substructure of A267. We included in this model the ability to

fit Nsubs subpopulations, as well as cluster parameters such as

NFW scale radius, mean cluster redshift, and velocity

dispersion. We embedded this model in a full Bayesian

framework, such that we quantify posteriors of all free

parameters, as well as parameter covariances. In the application

of this model to A267, we considered two alternative models

that differ in how the cluster velocity dispersion is treated. We

first assumed a simple uniform velocity dispersion profile to

analyze the dependence of the internal kinematics on the
arbitrary choice of the number of subpopulations. We then
solved the spherical Jeans equation in order to fit a dark matter
halo to A267, thus inferring the enclosed mass profile while
allowing the velocity dispersion to vary with radius.
Prior to the work with A267, we tested the uniform velocity

dispersion model with mock redshift observations from the
dark-matter-only simulation MultiDark (MDPL2; Klypin et al.
2016). This allowed a comparison of the identified 2D
substructures from this model with the true 3D substructures
within the cluster environment known from the simulation. By
comparing galaxies identified by the models as highly probable
members to the 2D substructures, we report that 53% of the 2D
substructures have at least one member galaxy that is also a
member of a true 3D substructure. Furthermore, 51% of these
2D substructures have >f 0.793D (the largest fraction of the
total number of members of a 2D substructure that are also
members of a single 3D substructure). Both these values are on
par with the current most robust cluster substructure identifica-
tion algorithm (Yu et al. 2015, 2018); furthermore, our
modeling framework simultaneously fits light and mass profiles
of the cluster, which is lacking in the caustic methods.
The main focus of this modeling framework is to estimate

more accurate cluster masses while accounting for the
potential of substructure. To this end we showed with the
mock observations from MDPL2 that there is significantly
less scatter in the M200c–σ power-law relation when account-
ing for three additional substructures compared to a similar
model that does not account for substructure (Figure 5).
Furthermore, the majority of the decrease in scatter can be
attributed to the clusters that exhibit significant amounts of
true 3D substructures.
For A267, we investigated the dependence of the internal

kinematics on the number of subpopulations. We showed that

Figure 14. 2D and 1D posterior distributions for subpopulations inferred from
the Nsubs=3 (top) and Nsubs=4 (bottom) models. The colors of each
distribution correlate to the colors of the substructures shown in Figure 13.

Figure 15. Posterior pdf’s of parameters specifying the dark matter halo of
A267, using the Jeans equation analysis described in Section 4.4. We show the
scale radius of the NFW light profile rs,main, mean cluster redshift zmain, virial
mass and concentration of the dark matter halo M200 and c200, and velocity
anisotropy β. We also show the 1σ, 2σ, and 3σ contours for the 2D posteriors.
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Table 5

Mean Values and Standard Deviations of 1D Posterior pdf’s for A267 Free Parameters in the Dark Matter Halo =N 4subs Model

-r hkpcs
1 a deg2000 d deg2000 z s -km sdisp

1 -M M h10200
14 1

 clog10 200 β fmem Nmem

Main 388±87 28.174±0.001 0.999±0.001 0.2288±0.0003 7.0±1.3 0.71±0.38 −1.3±2.1 0.192±0.013 194±24

Sub1 790±703 27.974±0.047 0.949±0.061 0.2404±0.0003 188±72 0.013±0.004 8±3
Sub2 110±202 28.150±0.016 1.066±0.028 0.2363±0.0020 235±97 0.009±0.004 5±2

Sub3 198±404 28.115±0.204 0.865±0.204 0.2241±0.0045 339±224 0.011±0.007 4±3

Sub4 34±43 28.016±0.003 0.859±0.003 0.2173±0.0002 100±36 0.006±0.002 5±0
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as the number of subpopulations increases, the inferred scale
radius and velocity dispersion of the cluster both decrease, with
significant consequences for cluster mass estimates (Figure 7).
For the uniform velocity dispersion model the Bayes factor
shows the largest evidence in favor of the Nsubs=3 model;
however, for the dark matter set of models Nsubs=4 is most
favored. Comparing the preferred dark matter model Nsubs=4

to a dark matter model without substructure, we infer a
dynamical mass that is ∼22% smaller than the model that
neglects substructures. Furthermore, we found that the mean
redshift of the cluster is also sensitive to the presence and
treatment of subpopulations. This demonstrates how account-
ing for substructure can have significant implications for
detecting “wobble” of the BCG around the cluster core, as
predicted by self-interacting dark matter models (Harvey et al.
2017; Kim et al. 2017).
We compared the substructure identification of this model to

two other substructure methods: the Dressler–Shectman Δ-test
(Dressler & Shectman 1988) and the binary tree caustic
algorithm (Yu et al. 2015). We showed that the Δ-statistic
decreased as increased numbers of substructures identified by
our model were removed from the cluster environment, which
is an indication that these substructures influence theΔ-statistic
(Figure 11). We also made a qualitative comparison between
the substructures identified in the Nsubs=3 uniform velocity
dispersion model and the substructures identified by the binary
tree algorithm (Figure 12). At least one substructure in both
methods overlaps with the other; furthermore, there is also a
correlation with one of the substructures identified in the
Nsubs=4 dark matter model.
Most previous works with regard to substructure have

focused on substructure detection; in other words, they are
formulated to state how likely a cluster is to exhibit
substructure. More recent work has focused on algorithms for
identifying the substructures and the galaxy members; how-
ever, these methods have focused on a binary assignment to
each galaxy (either a member or not). Here we take the next
step forward: first our algorithm provides the statistical
framework to assign a probability of membership to the cluster

Figure 16. Mass–concentration posteriors from the dark matter halo models.
Each color represents a model that allows for a different number of
subpopulations. The dashed black curve shows the M c200 200– relation from
Dutton & Macciò (2014) and Diemer & Kravtsov (2015).

Figure 17. Line-of-sight velocity dispersion profile for A267 with the
Nsubs=4 model. The dark and lighter regions correspond to 1σ and 2σ of
the posterior, respectively. The solid black line is the median posterior curve.
The red points show the velocity dispersion of binned member galaxies. The
blue points show the binned velocity dispersion calculated with simulated data
generated from sampling the posterior distribution.

Figure 18. Projected radial mass profile for A267 with the Nsubs=4 model.
The darker and lighter regions correspond to 1σ and 2σ of the posteriors,
respectively. The solid black line is the median posterior curve. The colored
points show four different mass estimates of A267 from weak lensing (Okabe
& Smith 2016; green), caustic (Rines et al. 2013; red), velocity dispersion
(Rines et al. 2013; purple), and X-ray (Jiménez-Bailón et al. 2013; blue). Also
shown, as the black curves, are the mass profiles for the models with fewer
substructures.
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and each subpopulation within the cluster. Furthermore, unlike
previous substructure methods, this model simultaneously fits
the light and dark matter profiles of the cluster while
accounting for these substructures. Although the fitting of the
model is inefficient for large numbers of substructures, the
advantages of this modeling framework are a step in the right
direction with regard to dynamical mass estimators and
substructure.

Finally, we embedded our mixture model within a dynamical
model that relates the dark matter halo potential to
cluster kinematics. From this analysis, allowing for up
to Nsubs=4 subpopulations, we infer for A267 a halo
mass =  ´ -M M h7.0 1.3 10200

14 1( )  and concentration
= clog 0.71 0.3810 200 with velocity dispersion anisotropy

β=−1.3±2.1. The mass and concentration posteriors are
consistent with the well-established M c200 200– relation derived
from N-body simulations (Figure 16; Dutton & Macciò 2014;
Diemer & Kravtsov 2015). The corresponding mass profile
(Figure 18) is in good agreement with previously measured
masses of A267 from X-ray and weak-lensing measurements
(Okabe et al. 2010; Jiménez-Bailón et al. 2013, respectively),
as well as the dynamical estimate based on the caustic
technique (Rines et al. 2013). Interestingly, the dynamical
mass previously estimated directly from the galaxy velocity
dispersion (assuming no sub-substructure; Rines et al. 2013) is
larger than we infer when we allow for Nsubs=4 subpopula-
tions, but in better agreement with the mass profile we obtain if
we restrict our Jeans model to Nsubs=0 subpopulations.

Although the largest number of substructures we fit is
Nsubs=4, in the dark matter halo models there is evidence
from the posterior distributions that there could be at least
one other substructure (Figure 14). The multimodal behavior of
the posterior distributions for the set of parameters describing
one of the subpopulations suggests that there could be an
additional substructure still unaccounted for. Unfortunately,
due to the inefficiency of the sampling of MultiNest for high
dimensionality parameter spaces (required over 109 likelihood
evaluations for the Nsubs=4 model), it is computationally
unfeasible to fit an =N 5subs model with MultiNest and the
current modeling framework. However, recent work has been
done to develop sampling algorithms that are ideal for
problems like this where the number of populations is a free
parameter in the model (Brewer & Foreman-Mackey 2016).
Future work should be done to investigate the efficacy of using
a diffusive sampling algorithm to sample the posterior
distributions instead of MultiNest.

A rotational velocity term could also be added to the velocity
distributions (Equation (9)) in order to study the presence and
effects of a cluster rotation. Recent studies have shown that
residual angular momentum during cluster formation, as well as
the presence of infalling groups, could contribute a rotational
velocity to a cluster (Aryal et al. 2013; Tovmassian 2015;
Manolopoulou & Plionis 2017). Li (1998) suggests that any
global rotation of the universe could provide angular
momentum to galaxy clusters during their formation. Early
efforts were made to detect rotations in galaxy clusters;
however, this proved difficult without distinguishing between
closely interacting groups (see, e.g., Materne & Hopp 1983;
Oegerle & Hill 1992). More recently the effects of recent
mergers and close interactions have been accounted for, and
some authors have started exploring galaxy rotation in more
depth. Some have used large surveys such as SDSS to look for

galaxy rotation in relaxed systems and report evidence of
rotating clusters (Hwang & Lee 2007; Tovmassian 2015).
Multiple analyses of A2107 have concluded that it is rotating
(Oegerle & Hill 1992; Kalinkov et al. 2005). Through X-ray
observations some groups have studied the rotation of the
intracluster medium (e.g., Bianconi et al. 2013). And most
recently Manolopoulou & Plionis (2017) applied a model for
determining whether a cluster rotates and, if it does,
information about its rotational dynamics. The modeling
framework presented here could add another tool in the
growing study of galaxy rotation.
In summary, we have developed a dynamical mixture model

to account for both internal rotation and substructure within
galaxy clusters. Our first application, to A267, illustrates the
sensitivity of important dynamical results—mean redshift,
scale radius, internal velocity dispersion, and dynamical mass
—to the presence and modeling of substructure. This work
adds to mounting evidence that, given the widespread interest
in using galaxy clusters for both cosmology and tests of dark
matter models, it is necessary to account for such substructure
when modeling galaxy kinematic data. In future work, we will
extend this analysis to other galaxy clusters with similarly large
and high-quality data sets.
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